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Excitation Conditions for Uniform Exponential
Stability of the Cooperative Gradient Algorithm
Over Weakly Connected Digraphs

Muhammad U. Javed ', Jorge |. Poveda

Abstract—In this letter, we study the problem of robust
adaptive parameter estimation over networks with per-
sistently exciting (PE) nodes and cooperative estimation
dynamics. For this problem, it is well known that for
networks characterized by undirected connected graphs,
the property of uniform exponential stability (UES) can be
established under a cooperative PE condition that relaxes
the standard individual PE assumptions traditionally used
in adaptive control. However, it is an open question whether
similar cooperative PE conditions can also be used in gen-
eral directed graphs. We provide an answer to this question
by characterizing a generalized cooperative PE condition
that is proved to be necessary and sufficient for UES
in cooperative gradient dynamics evolving over arbitrary
weakly connected digraphs. We also derive a similar gen-
eralized cooperative data-based condition for distributed
learning dynamics that use recorded data instead of per-
sistently exciting signals. We further present numerical
experiments that study the rates of convergence of the
dynamics.

Index Terms—Adaptive control, networked control

systems, Lyapunov methods.

[. INTRODUCTION

NE OF the cornerstones of many adaptive and learning-

based controllers is their ability to achieve robust real-
time parameter estimation under sufficient excitation in the
system [1]. For single-agent systems, this task can be achieved
by using the well-known gradient algorithm [2], [3], which
can be analyzed by studying the dynamics

—kip(d () x, (1)

where ¢ is a regressor function, and x is the parameter
estimation error. Systems of the form (1) also emerge fre-
quently in the context of model-reference adaptive control [4],

ki =0,
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neuro-adaptive optimal control [5], and extremum seeking con-
trol [6]. The convergence and stability properties of system (1)
under different assumptions on the mapping ¢ — ¢(f) have
been extensively investigated over the last three decades,
see for instance [2], [4], [7]. Among these properties, the
notions of uniform asymptotic and exponential stability (UAS
and UES, respectively) are of particular interest given that
they additionally confer suitable robustness properties via
Lyapunov converse theorems [8]. Indeed, one of the fun-
damental results in adaptive control states that system (1)
renders the origin UES if and only if ¢ is persistently exciting
(PE), i.e.,

T

[ ¢ Tdr = a1l @
for all + > ty > 0, and for some a1, T = 0 [3, Th. 2.5.1].

When the adaptive or estimation problem is defined on a
networked multi-agent system instead of a single-agent system,
the gradient dynamics (1) can be suitably modified to incor-
porate cooperation between neighboring nodes (or agents) of
the network. In this case, one can consider the cooperative
gradient algorithm [9], that can be analyzed by studying the
following dynamics for each agent i:

ki = Fi(x, 1) = —kigi(O$i(0) ' xi — k2 ) a(xi — %), (3)
jeN;

where A; is the set of in-neighbors of agent i, x; and ¢; € R”
are the local state and regressor of the ith agent, g;; > 0 is
the weight associated with the (j, /)th edge in the digraph, and
k2 > 0 is a tunable gain. If k2 = 0, it is easy to see that
every agent will render the point x¥ = 0 UES if and only if
the local regressor ¢; satisfies the PE condition (2). However,
as shown in [9] and [10], for networks characterized by undi-
rected graphs, the incorporation of the cooperative term in (3)
guarantees that the origin of the system is UES under the
following weaker cooperative PE (C-PE) condition:

+T N
f > " $i(@)i(m) dr > anly,
t

i=1

)

where the summation is taken over all agents of the network.
This relaxation is conceptually and practically relevant for
large-scale networked adaptive systems, where it is generally
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difficult to guarantee that every node of the network satis-
fies an individual PE condition of the form (2). However,
by considering only undirected graphs, the class of problems
that can be addressed by using dynamics of the form (3) is
significantly narrowed down, compared to other networked
control problems that are usually defined on general directed
graphs. It thus leaves as open questions whether cooperative
adaptive systems of the form (3) can also be extended to gen-
eral directed graphs, and what classes of excitation conditions
should be considered in this scenario. Some recent efforts in
this direction have been made in [11]-[13] by using PE con-
ditions to characterize the connectivity of the network, and
in [5] by considering digraphs that are weight-balanced and
strongly connected. However, to the knowledge of the authors,
whether or not system (3) renders the origin UES under gen-
eralized cooperative PE conditions for arbitrary digraphs, as
well as the necessity properties of these conditions, remain as
open questions in the literature.

In this letter, we address these questions by introducing a
novel generalized cooperative PE condition for multi-agent
systems with topologies characterized by weakly connected
digraphs. We show that this excitation condition is necessary
and sufficient for UES in systems of the form (3) with bounded
regressors. Moreover, we present extensions to systems where
recorded data is available to some of the nodes of the network,
in the spirit of concurrent learning. In summary, the following
are the main contributions of this letter:

1) We introduce a generalized cooperative PE condition
for arbitrary weakly connected digraphs. We show that, for
systems of the form (3), this generalized condition is sufficient
and necessary for UES of the origin. Unlike the sufficient
results presented in [9] for undirected graphs, our analysis
for sufficiency makes use of the notion of uniform com-
plete observability (UCO) [3], [14], under a judicious choice
of the output injection matrix. This technique allows us to
overcome the restrictions imposed by the lack of symme-
try in the Laplacian matrix £ that emerges in undirected
graphs. It also allows us to dispense with the assumption that
(L+B)+(L+B)T = 0, for an arbitrary non-negative, nonzero
diagonal matrix B, as considered in [5], which only holds
when the digraph is strongly connected and weight-balanced
(see [15, Lemma 13]).

2) As a by-product of the proof of our previous result,
we derive a novel weak cooperative “richness” condition for
data-enabled parameter estimation dynamics in the spirit of
concurrent learning, see [16], [17]. Previous results in the lit-
erature established similar conditions for undirected graphs,
see [6]. However, to the best knowledge of the authors,
the characterization of the “richness” condition for general
digraphs was absent in the literature.

3) Finally, we investigate through numerical examples the
rate of convergence of system (3), for different classes of
digraphs of different sizes.

The results of this letter are instrumental to the design
of distributed adaptive controllers for large-scale network
systems that go beyond those considered in this letter. Indeed,
our results can be used to characterize which nodes of the
network need to satisfy PE conditions (individual or coop-
erative) in order to guarantee uniform exponential parameter
identification in distributed adaptive control problems. In the
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data-enabled case, our results characterize the nodes of the
network that require “jointly sufficiently” rich data, and also
uncover the existence of nodes that have a marginal effect in
the estimation dynamics.

The rest of this letter is organized as follows: Section II
presents some preliminaries. Sections IIT and IV presents our
main results and the proofs. Section V presents numerical
results, and finally Section VI ends with conclusions.

Il. PRELIMINARIES

We denote as Ej; the matrix with all entries equal to zero
except at the (i, j)th entry, which is equal to one. We use
1y € RM to denote a vector of ones. An identity matrix of
dimension n is denoted by I,,. We use e; to denote the standard
basis in R". A block matrix F is represented in terms of its
(i, j)th matrix block as F = [F;]. We use diag{-} to build a
block diagonal matrix from given matrices and diag(-) to build
a diagonal matrix from a given vector. We use | - | to denote
the standard Euclidean norm, and || - || to denote the Frobenius
norm. We also use [|¢||j.ri7] = ( fj” 6 (t)|2dt)?. Given a
matrix C, we use p(C) to denote the spectral radius of C. An
M-matrix is a square matrix A = sI — C with non-positive
off-diagonal entries, where C is a non-negative matrix, and
s > p(C). This matrix is non-singular when s > p(C).

A directed graph or digraph G(V, E) is characterized by
the set of nodes V = {1, 2,3, ..., N}, and the set of directed
edges E. The edge set E consists of ordered pairs of the form
(j, i), which indicates a directed link from node j to node i. We
assume that the digraphs are simple, i.e., there are no self-arcs.
If there exists a directed edge (j, i) in E, then node j is called an
in-neighbor of node i. We assign a positive weight aj; to each
edge (j, i). By default, a;; = 0 if (j, i) is not an edge. Then,
we define a weighted Laplacian matrix L = [l;] € RNxN
associated with the digraph by setting [;; := —a;; for j # i and
lj = Z‘il aj; for i =j.

A digraph is strongly connected if for any two distinct nodes
i and j in the digraph, there is a path from i to j. A digraph
G is weakly connected if the undirected graph, obtained by
ignoring the orientations of the edges, is connected. A weakly
connected digraph G can have multiple strong connected com-
ponents (SCC). Following [18], the skeleton of the digraph
G is the digraph G, obtained by condensing each SCC to
a single node. The nodes in the skeleton digraph with no
in-neighbors are called leading nodes, and the correspond-
ing SCCs in G are called the leading SCCs. By relabeling
the nodes of G, the Laplacian matrix L of the weakly con-
nected digraph G can be written as a lower block triangular
form L = [Ls, 0; Ly, Lf]. The matrix L, is block diagonal
L; = diag{Ly1, . .., Lsx}, where each diagonal block is an irre-
ducible, singular M-matrix, corresponding to a certain leading
SCC. The lower-left block —Lg of L is a non-negative matrix
and the lower-right block Ly is a non-singular M-matrix.

We also recall the following two definitions, see [3], [19].
The first one concerns the stability properties of systems with
inputs. The second one is common in adaptive control.

Definition 1: A smooth system X = f(f, x, u) is said to ren-
der the origin input-to-state stable (ISS) if 3 f € KL and
¢ € K such that for any initial state x(fp) and any bounded
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input u, the solution x exists for all f > fp, and satisfies:

Ix(O] = B(Ix(to)], t — to) + C(miuli:q lu(o)).

When u = 0, and 3 ¢y, c2 > 0 such that B(r,s) = cjre— 2%,
the origin is uniformly globally exponential stable.

Definition 2: For X = A(f)x, y = Cx, the pair (A, C) is said
to be uniformly completely observable (UCO) if a1, a2, T >
0 such that V t > £y, the following holds:

+T
arl < f W(r, 1) C(r) T C(r)W(z, Hdr < arl,
t
where W(-, -) is the state transition matrix of the system.

I1l. GENERALIZED COOPERATIVE PE CONDITION AND
MAIN RESULTS

We consider a multi-agent system composed of N agents,
whose information flow topology is given by a digraph G,
and where the dynamics of each agent i are characterized
by system (3). This type of dynamics emerge frequently in
parameter identification problems where the agents of the
network aim to cooperatively learn a global parameter 8 by
using individual real-time measurements of a signal of the
form y;(f) = 9T¢,(r) where ¢ is a known regressor, see
for 1nstance [2], [3]. Indeed, by defining the local estimate
$i(t) == 6:(t) T gi(r), and the quadratic cost J; := €2/2, with
e; = y;—Yi, each agent can update its own parameter estimate
6; via the following cooperative gradient descent rule:

9,' = —k] Vé,'j: — kg Z a,j({-il,- — 9;)
JjeNi

By defining x; == 6; — 6, and noticing that Vy J" =€V € =
di(Dp; (I)Tx,, the error dynamics %; are prec1sely given by (3).
For these dynamics, we are interested in the properties of the
regressors ¢; that provide sufficient and necessary conditions
for UES of the origin in an arbitrary digraph G. To do this,
we first take a common assumption in the literature [2], [7],
[9], namely, that each ¢; is uniformly bounded above. Next,
we have the following definition:

Definition 3: Let G be a weakly connected digraph with N
nodes. The regressors {¢,} _, are said to satisfy the generalized
cooperative PE (gC-PE) condltlon for G if for each leading
SCC k, with total agents M;, we have

t+T Mk
f Zqﬁ,(zm (v)dr > a1l (5)

for some Tj, ai,1 > 0, and for all 1t = 1p = 0.

Remark 1: Since each ¢; is assumed to be uniformly
bounded above, the integral in (5) is also bounded above by
a 21, for some positive ay 2.

The gC-PE condition generalizes existing cooperative PE
conditions for multi-agent systems, such as those presented
in [9] for undirected graphs (bidirectional), and in [5] for
weight-balanced and strongly connected digraphs. In partic-
ular, when the digraph is strongly connected, it follows that
Mj = N, and in this case we recover the C-PE condition (4).
Similarly, when the digraph is fully disconnected, (5) reduces
to the standard PE condition (2) applied to every agent of the
network.
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Fig. 1. Examples of digraphs. (a-b) Strongly Connected (c-d) Weakly
Connected but not Strongly Connected.
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We are now ready to present the main result of this letter.

Theorem 1: Consider a multi-agent system with individual
agent dynamics given by (3). Suppose that the digraph G is
weakly connected; then, the origin of the system is UES if
and only if the gC-PE condition (5) holds.

Example 1: Consider the digraphs shown in Figure 1. The
gC-PE condition (5) reduces to the C-PE condition (4) for
networks (a) and (b), which guarantees UES under the dynam-
ics (3). However for networks (c) and (d), the gC-PE condition
is stronger than the C-PE condition. For example: in order to
satisfy gC-PE condition in network (c), two sets of agents, i.e.,
{1,2} and {4}, must satisfy the C-PE condition separately.

The next corollary is an immediate consequence of the proof
of Theorem 1, which will be provided in the next section. To
the best knowledge of the authors, this result is also novel in
the literature of concurrent learning in multi-agent systems.

Corollary 1: Let F; be defined as in (3). Consider a multi-
agent system with individual agent dynamics given by

L
ki =Fi(x, ) — ks ) ¢ilt)¢i(t,) " xi, (6)
=1

for all i € V, where k3 > 0. Suppose that the digraph G is
weakly connected and that there exist ey > 0 and sequences
{tfr'}ﬁ:l such that for each kth leading SCC of G, the col-
lection {¢;(1)}}_, satisfies 31 Y1, ¢i(t1)i(t)T > €xly;
then, the origin of (6) is UES.

A consequence of Corollary 1 is that an appropriate data
allocation to the regressor functions of the leading SCCs of the
graph is sufficient to guarantee UES under the dynamics (6).
Note that this allocation is not unique. In particular, it can be
satisfied by allocating enough rich data to one single node of
each SCC, by uniformly distributing the data among all the
nodes of the SCC, or by using any other allocation strategy
that balances the two previous approaches.

V. PROOF OF THEOREM 1

We devote the rest of this letter to prove Theorem 1.
Some lengthy computations are omitted and presented in the
extended manuscript [15].

A. Cascaded Form and Change of Coordinates
Let x := [x], x]]T where x; is the state associated with the
agents in leading SCCs, and xy is the state associated with the
remaining agents. Similarly, let ® := diag{®;, ®r} where the
matrices ®; and ®; are block diagonal and defined as ®; =
diag{¢s1, ..., ¢sm}, and @f = diag{¢r1, ..., dar}. With the
above annotations, system (3) can be written as:
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¥ = — (k1 ®s® + koL )xs, (7a)
(o] + kL)

X = —(k[ d:afd:a}— + kgLf)xf — koLgxs, (7b)
where Ly = Ly ® I, Ly = Ly ® I, and Ly = Ly ® I,. One
can also obtain (7) by appealing to the Frobenius normal form
(see, e.g., [20]).

Remark 2: Recall from Section II that L, is a block diago-
nal matrix with K blocks in total, one for each leading SCC.
This, together with the block diagonal structure of dJs(DsT, indi-
cates that the dynamics of the leading SCCs (7a) are also
decoupled from each other. Thus, without loss of generality,
for our analysis we can assume that the weakly connected
digraph G contains only one leading SCC.

Next, to facilitate the analysis of (7), we define permutation
matrices IT;, Iy of dimensions Mn x Mn and M'n x M'n (with
total blocks M x n and M’ x n) respectively,

Iy = [Tg 1, 8)

such that each block Il;; = Ej and Ilf; = Ej is of
dimensions n x M and n x M’ respectively. The next result fol-
lows directly by computation. For completeness, step-by-step
deduction is presented in the extended manuscript [15].

Lemma I: Under permutation matrices Il; and Ilf, as
defined in (8), the transformation of coordinates x, := l'[ssz
and x,, = l'[}rxf, results in the dynamics

I, = [ns,lj] 1

).Cc = _(kIHc(f) + kZLc)xc, (93)
-"‘rw = _(kIHw(r) + kZLw)xw - kZLcwxm (9b)

where L¢ = T1] LIl = I, ® Ly, Ly, = [ LTy = I, ® Ly,
Low = M] Ly Ly, He == 1] ®,®] T, H,, = 1] & ®] Ty
In particular, if we divide H. (and H,,) into n x n blocks, then
each block is an M x M (and M’ x M’) diagonal matrix.

We now proceed to study the stability properties of
system (7) by studying the stability properties of system (9). In
Section IV-B, we show that the subsystem (9a) is UES if and
only if the gC-PE condition holds, and in Section IV-C, we
show that the subsystem (9b) is ISS. We conclude the proof
of Theorem 1 in Section IV-D.

B. UES of Subsystem (9a)

This subsection establishes the following proposition.

Proposition 1: The dynamics (9a) render the origin UES if
and only if the gC-PE condition (5) holds.

To prove Proposition 1, we need a few preliminary results.
Let w € RM with |w| = 1, be a left eigenvector of the
irreducible, singular M-matrix L, corresponding to the zero
eigenvalue, ie., LSTW = 0, then by the Perron Frobenius
Theorem, we can choose w such that all of its entries are posi-
tive. Next, we define the matrices P, = diag(w), P, =1, ®P;
and M, = LIP,c + P.L., where L. is defined in Lemma 1.
We have the following results for these matrices:

Lemma 2: The following holds: (i) P. is diagonal and
positive definite, (ii) M, > 0, (iii) dim(ker(M,)) = n.

Proof: (i) It follows directly from the definition of P.. (ii)
Using the properties of Kronecker product, we can write M.
as, M, = I,,@(LSTPS—I—PSLS). Since L is an irreducible, singu-
lar M-matrix, by [21, Th. 4.31], we have that L;'—Ps—l—PsLs > 0.
This establishes that M, is positive semi-definite. (iii) Let
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(Aj,vj),j=1,..., M, be the eigenvalue and eigenvector pairs
of positive semi-definite matrix LSTPS + P,L;. The eigenvalues
can be arranged as,

M<l<---<Aipm. (10

Since L1y = 0, Pslyy = w, and L;rw = 0, it then follows
that: ker(L;'—Ps + P;Ls) = Span(1yy). This implies that 11 =0
and A; > Oforallj e {2, 3, ..., M}. Each eigenvalue A; in (10)
is repeated n times to form the spectrum of M., with the corre-

sponding eigenvectors given by ¢;®@v; foralli e {1,2,...,n}.
Hence, ker(M,.) = Span(e; ® 1)) and dim(ker(M.)) = n. This
concludes the proof. |

Corollary 2: Let H, and P, be defined in Lemmas 1 and 2,
respectively. Then, P H, is positive semi-definite.

Proof: Recall from Lemma 1 that H. is a positive semi-
definite block matrix, with each of its blocks being a diagonal
matrix. Also, recall from Lemma 2 that P. = I, ® P is a
block diagonal matrix, with all the blocks being the same
diagonal matrix. It then follows that P, and H. commute.
Corollary 2 then follows from the fact that the product of two
commuting positive semi-definite matrices is again positive
semi-definite [22, Th. 3]. [ |

Next, we let the matrices A and C be defined as follows:

1
20

We show below that the pair (A, C) is UCO under the gC-
PE condition. This fact is key to prove Proposition 1. It takes
several steps to establish the fact, and we will use the output
injection theorem [3, Lemma 2.5.2] applied to the pair (0, C).
To proceed, we first have the following lemma.

Lemma 3: The pair (0, C) in (11) is UCO if and only if the
gC-PE condition (5) holds.

Proof (Sufficiency): The arguments used in the proof will
be similar to the ones in [9, Th. 1]. The main difference is
that, here we adopt a UCO based approach and perform the
analysis for M, instead of using the Laplacian, which is now
not necessarily symmetric. First, note that the Observability
Gramian of the pair (0, C) is

A= —(kiHc + koLo), C:= |:

+T
Q@ = f (2kiP-H.(7) + koM, )dr. (12)
t
Because each ¢; is uniformly upper bounded, it follows that
€ (1) is also uniformly upper bounded (details of the arguments
can be found in [15]). But, here, we will only need to compute
a uniform lower bound. To do this, using eigenvectors from
the proof of Lemma 2, we define the following matrices:

"7eﬂ.®vM]1

(13)

Vi=[eg®@mw,.. e ® VM, .

':eﬂ®1M]'

-9eﬂ®v27-'
1
F=—Jle1®1ly.e2® 1y, ..

VM
Note that the matrix [F, V] is orthogonal. For any vector x €
RMn e write x = Fb + Ve, where b € R” and ¢ € RM-Dn,
We show that under the gC-PE condition (5), xTQ(r)x >0
for all ¢+ = fp and all x # 0. Indeed, for ¢ # 0, we have
that xTQ(£)x > kyAyc'c > 0, where A, comes from (10). For
¢ = 0, we have that:

M t+T
XX =26b" Yowi [ @) drb. (14)
i=1 !
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Under the gC-PE condition (5) we obtain:
15)

Hence, €2(¢) is positive definite for all > fy. Since the graph is
time-invariant, we can apply the same contradiction argument
of [9, Proof of Theorem 1], to establish that under the gC-PE
condition (5), §2(f) is uniformly positive definite.

Necessity: Suppose, to the contrary, that the gC-PE condi-
tion does not hold, yet the pair (0, C) is UCO. Then, there
exists positive constants T, o > 0 such that €(f) in (12) satis-
fies Q(f) > oIpmp, for all > fy. Consider a vector X € span(F).
Then, (14) still holds and, moreover,

x' Q(O)x > 2kiwaib b > 0, for w = minw;.
1

X' Q@)x>ob'b, Vi> 1. (16)

By defining w := max;w;, the right hand side of (14)
is upper bounded by 2k;wh " S(f)b where S(1) is given by
S@) =Y M, [T ¢i(t)¢si(r) Tdr. Because the gC-PE con-
dition does not hold, we have that for all T, @1 > 0 there exists
t* > 1o such that S(r*) < a1l,. By choosing a1 = o/(2kiw),
we have x' Q(*)x < ob' b, which contradicts (16). ]

Let A be the pseudo inverse of M,. Then, we define a gain
matrix K as follows:

= [@P;%Hé, N/ LcAé]- (17

Next, we use this gain matrix K to show that the pair (A, C)
in (11) is UCO.

Lemma 4: The pair (A, C) in (11) is UCO if and only if
the gC-PE condition (5) holds.

Proof: Because each ¢; is uniformly upper bounded, it is
shown in [15] that the gain matrix K is locally integrable, i.e.,
there exists ¢3 = 0 such that fHJ |K(r)||2dr < Tca, for all
t > fp. Moreover, by computation, KC = —A. By Lemma 3,
(0, €C) is UCO if and only if the gC-PE condition holds. Thus,
by the output injection theorem [3, Lemma 2.5.2], we conclude
that the lemma holds. |

We will now prove Proposition 1:

Proof of Proposition 1 (Sufficiency): Let P, be the diagonal,
positive definite matrix introduced in Lemma 2. We consider
the following Lyapunov function V, = x;'—chC, which satisfies

Ve(t) = —xc(6) T [2ki P.H. () + koM, ]x.(f) < 0,

where we used Lemma 2 and Cogollary 2 to have M, > 0 and
P.H; > 0. Now, we show that V.(f) decreases exponentially
fast on average. In particular, we have

tHT ++T
f Ve(r)dr = —f xe(r) T CTCxe(v)dr,  (18)
t t

where C is defined in (11). Denote by W(z, f), the state tran-
sition matrix of the system (9a). Then, the right hand side
of (18) can be written as
t+T
—x(07 f W(r, 1) CTCW(r, HdTxc(t), (19)
t

where the integral defines the observability gramian of the
pair (A, C), defined in (11). Using the gC-PE condition, we
apply Lemma 4 to establish that (A C) is UCO. This implies
the existence of o = 0 such that _f V (t)dtr < cr|)cc(t)|2

Thus, by [3, Th. 1.5.2], the dynamics (9a) render the origin
UES.
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(Necessity): Suppose, to the contrary, that the gC-PE con-
dition does not hold, yet the origin of system (9a) is UES.
Consider the Lyapunov function V.. Using w from (15) and
W = max;w;, it follows that wix.(f)|> < V.(t) < wix.(0)|>.
Since the gC-PE condition does not hold, by Lemma 4 the pair
(A, C) is not UCO. Hence, forall T, ¢’ > 0 there exists t* > 1,
such that the observability gramian Q'(*) of the pair (A, C)
satisfies '(#*) < o'Iym. By substituting this in (19), we get

t Ty Ve (t)dt > —0 |)c,g(t”‘)|2 After further computation, we
choose o’ =w/2 to get

Vc(t*),"z < Vc(r* + 7).

Next, consider a solution x.(f) of subsystem (9a) start-
ing at (f*,x.p) and let x.o # 0. Since the origin of
subsystem (9a) is UES, there exists constant c¢y,c; > 0
such that |x.(f)] < c1|x.o0le~2—"). Using V.(t* + T) <
we? |xeol?e22T, we pick T sufficiently large such that
the inequality we? |x.ol2¢=22T < 0.5V,(r*) holds. Then,
V.(t* + T) < V.(t*)/2, which contradicts (20). [ ]

(20)

C. ISS of Subsystem (9b)

This subsection is dedicated to the following result.

Proposition 2: The dynamics (9b) render the origin ISS,
with respect to the input x., and UES when x. = 0.

Proof: Recall from Section II that Ly is the lower-right block
of the weighted Laplacian matrix L = [L,, 0; Ly, Lf] and it
is a non-singular M-matrix. By [21, Th 4.25], there exists a
positive diagonal matrix Py := dlag(L I a) such that L;Pf—l—
Pr¢Ls > nl for some n > 0. Now we deﬁne P, =1, ® Pr and
similar to Lemma 2, it can be shown that LT P,+P,L, = nl.
Using the Lyapunov function V,, =x,, waw, we obtain

V() = =7 [ 26 Py () + o (L Py + Py L)
- 2)'(2.[1 PyLeowxe < _klmxw |2 - Zk?.x}—l‘:Pchwxm

where we used the fact that P,,H,, > 0 (the proof of which is
similar to the proof of Corollary 2), and Ll—Pw +P,L, = nl.
Using Cauchy-Schwartz inequality we get

V(1) < —kon|x,,|? + 2ka %, | [Py Lol [xc-

By a standard Lyapunov Theorem [19, Th. 4.19], we conclude
that the proposition holds. |

D. Proof of Theorem 1

Sufficiency: Since subsystems (9a) and (9b) (resp. (7a)
and (7b)) are UES and ISS respectively when the
gC-PE condition holds, therefore, their cascade is UES
by [19, Lemma 4.7].

Necessity: Since subsystem (9a) (resp. (7a)) is not UES
when the gC-PE condition does not hold, the original cascade
system (7) is not UES.

V. SIMULATION RESULTS

Consider a network of 20 agents in Fig. 2. Each edge
weight is chosen uniformly randomly in the interval (0O, 1)
and each agent i measures a target output of y; = (x; — 1)2,
where x;(f) = exp(—0.01ir). Agent i chooses its regressor
#i(t) as, ¢i(H) == ¥ (x:i(H) = [1,x;,x?]" and aims to estimate
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Fig. 2. Convergence of cooperative parameter estimation.
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Fig. 3. Convergence time for different digraphs vs. number of nodes in
the graph.

the parameter 8 = [1, —2, l]T. We implement the individual
dynamics (3) (with ky = k2 = 1) for a normalized random
initial condition (i.e., uniformly drawn from the unit sphere).
In order to satisfy the gC-PE condition (5), agents 2, 3 are
excited with sin(201), cos(10f) respectively, and agents 4, 7,
and 10 are excited with sin(20f) + cos(10f) + sin(10f). In this
case, and as shown in Fig. 2, the norm of the error vector
X = [IT, . ,x}]T, for N = 20, goes to zero. However, if
we remove the excitation from agent 10, then the gC-PE con-
dition no longer holds, and Fig. 2 shows that the norm of
the estimation error does not converge to zero. This exam-
ple highlights the need of the gC-PE condition for weakly
connected digraphs. In Fig. 3, we investigate the convergence
time of system (3) for complete, cycle, and line digraphs
of different sizes. We approximate the convergence time by
To.01 = min{f : |x(f)] < 0.01}. We add the excitation signal
sin(20f) + cos(101) 4 sin(10f) to agent 1, as highlighted black
in Fig. 3. This makes the gC-PE condition (5) satisfied. For
each class of digraphs and different sizes, we simulated (3)
(with k1 = k2 = 1) for 20 random initial conditions uniformly
drawn from the unit sphere. The mean convergence time 75,
and its linear regression is shown in Fig. 3.

V1. CONCLUSION

In this letter, we have introduced a generalized cooperative
PE (gC-PE) condition for the cooperative gradient dynam-
ics (3) defined over weakly connected digraphs. Specifically,
we have shown that system (3) renders the origin UES if and
only if the gC-PE condition holds. A major technical chal-
lenge in establishing the result is the lack of symmetry of the
Laplacian matrix of the digraph. To tackle the challenge, we
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propose a Lyapunov function to show in Section IV that the
function decays exponentially fast by integrating the output
injection theorem and results from graph theory.
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