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Abstract

Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is
known for extreme hypoxia in the water column during dry season caused by NH,*-rich and
anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosys-
tem point to potentially elevated microbial activities; however, little is known about microbial
community composition and their functional roles in this area. In this study, we investigated
microbial community composition, distribution, and metabolic prediction along the coastal
hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected
microbial samples from surface (river and bay water) and subsurface water (groundwater
and coastal pore water from two SGD sites with peat and sandy lithology, respectively).
Salinity was identified as the primary factor affecting the distribution of microbial communi-
ties across surface water samples, while DON and PO, were the major predictor of com-
munity shift within subsurface water samples. Higher microbial diversity was found in
coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacter-
oidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea,
methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site
was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-
6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly
associated with trends in environmental parameters in surface and subsurface samples,
respectively. Microbial communities found in the groundwater and peat layer consisted of
taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This
finding suggested that microbial communities might also play a significant role in mediating
nitrogen transformation in the SGD flow path and in affecting the chemical composition of
SGD discharging to the water column. Given the ecological importance of microorganisms,
further studies at higher taxonomic and functional resolution are needed to accurately pre-
dict chemical biotransformation processes along the coastal hydrological continuum, which
influence water quality and environmental condition in Mobile Bay.
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Introduction

Submarine groundwater discharge (SGD) is defined as groundwater flow across the land-
ocean interface to the coastal water. SGD is known to transport chemical and biological con-
stituents, such as nutrients [1-3], trace metals [4, 5], and bacteria [6, 7]. In an environment
with high primary productivity, SGD is reported to cause eutrophication and harmful algal
blooms (HAB) [8-10]. In some cases, SGD influences the composition and abundance of
marine biota in the receiving coastal water, e.g. fish [11, 12], bacteria [13, 14], macrophytes
[15, 16], or phytoplankton [17, 18].

Subterranean estuaries (STEs), where SGD flows through before discharging to the coastal
water, are active mixing zones and biogeochemical cycling hot spots [19]. They are subjected
to both seasonal water table fluctuation and increased nutrient input from the groundwater
coming from the land side, as well as changes in oxygen saturation, quick redox switches and
organic matter inputs from tidal fluctuation and sea level fluctuation from the marine side
[20-22]. It has been found that STE could play a role as either a source [23] or sink of nutrient
species [24, 25]. The attenuation or changes of speciation of nutrients is attributed to chemi-
cally and biologically mediated reactions. For examples, microbial communities are found to
play a significant role in mediating nitrogen cycling in the STEs, such as nitrification and deni-
trification, and subsequently alter the chemical composition of SGD discharging to the overly-
ing water [26-28]. Alternative microbially mediated pathways for nitrate reduction, such as
dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation
(Annamox), were also observed in STEs [29, 30]. Archaea, while usually comprising a minor
fraction of microbial communities in aquatic environments, have been shown to play an essen-
tial role in the carbon and nitrogen cycle, particularly related to nitrification as well as methane
production and oxidation [31, 32]. The composition of microbial communities inhabiting the
STE is governed by physicochemical factors, such as, but not limited to salinity [33], redox
condition [34], temperature [35], or tidal fluctuation [36]. However, in comparison with sur-
face estuaries, the understanding of the subsurface microbial community and their response to
biotic and abiotic reactions is still limited.

Mobile Bay, a typical estuary in the northern Gulf of Mexico, is also the largest estuary east
of the Mississippi Delta. Due to extreme hypoxia in the water column during dry seasons,
large-scale fish and crustacean Kills, locally known as Jubilees often occur in this part of north-
east of the Gulf of Mexico [37-39]. More recent studies indicate that both the Jubilees and
HABs occur at specific locations of Mobile Bay and are associated with areas without direct
surface water inputs [40, 41]. Ultimately, SGD was investigated as one of the main contributors
to the hypoxia occurring in the bay. Indeed, Montiel, Lamore [24] indicated that anoxic SGD
delivered nearly a quarter of the total nutrient inputs to Mobile Bay during the dry season in
the form of NH," and DON. More importantly, the significant SGD-derived N fluxes that
occur exclusively to the east shore of Mobile Bay, whose coastal lithology is dominated by an
underlying peat layer. Montiel, Lamore [24] suggested that the identified organic-rich sedi-
mentary layer alters the composition of NO;~ dominated groundwater observed further inland
into NH," and DON-prevalent SGD discharging to Mobile Bay.

Microbial investigations have been conducted in Mobile Bay before; however these studies
were mostly related to surface water characterization [42-44], while studies on groundwater
are still limited [30]. Given that Mobile Bay is one of the most developed estuaries in the north-
ern Gulf of Mexico, and of the ecological importance of microbial communities for mediating
coastal biogeochemical processes in areas with nutrient-rich groundwater, it is fundamental to
better understand their distribution, diversity, and function. In this paper, we examined
microbial community composition and distribution along the coastal hydrological continuum
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of Mobile Bay affected by SGD using 16S rRNA gene sequencing. Microbial samples were col-
lected (a) horizontally along the coastal hydrological continuum, from groundwater to the
STE, river, and water column of the bay, and (b) along with vertical profiles at two SGD sites
with contrasting hydrogeological properties and SGD regimes. In addition, functional profiles
related to nitrogen cycling were predicted using Tax4Fun2 [45].

Materials and methods
Site description and sample collection

Mobile Bay has an area of 1.3 x 109 m?, an average depth of 3.5 m, and a total volume of 4.6 x
10° m’. During the dry season, when we conducted our sampling expedition, the average mean
temperature and precipitation rate were 27°C and 1670 mm, respectively. Although there was
no reported hypoxia during this specific sampling campaign, sample collection was conducted
during a period when anoxic events occur more frequently. Recent hydrogeological studies in
Mobile Bay have revealed two major points of groundwater discharge at the southeast shore
(which will be further abbreviated as TS-SE) and the northeast shore (which will be further
abbreviated as TS-NE) of Mobile Bay [24, 41] (Fig 1). Montiel, Lamore [24] reported that at the
TS-SE site, SGD is on average 0.15-0.25 m d "' annually, whereas the SGD-delivered NH,",
NO;’, DON, and PO, for the four-year duration of their study were 11-35 mmol m~d™,
1.2-5mmol m>d ™, 9-32.5 mmol m>d ", and 0-0.2 mmol m > d’, respectively. Sediment cores
recovered from the SGD hot spot consisted of a coarse beach sand layer of 0.5 m thickness and
3% organic matter content, underlain by a 1.5-m organic-rich black fine sand with an organic
matter content of up to 36% (peat layer), which was in contact with the Miocene-Pliocene Aqui-
fer with low organic matter content (Fig 1). For comparison, at TS-NE, SGD fluxes were
0.17-0.25 m d’!, and NH,", NO5", DON, and PO,* fluxes were 1-2 mmol m2d, 2.2-7.5
mmol m~d™, 2.7-8 mmol m? d ", and 0-0.1 mmol m™ d’, respectively. At this second site, the
piezometer was placed through the local STE where shallow groundwater percolates through
layers consisting exclusively of coarse sand without an indication of vertical structuring.

We declare that the research team who carried the field work in Mobile Bay, Alabama, USA
did not need permission for accessing the field site as described. The groundwater wells sam-
pled for this study were private properties and at the time of sampling the owners were present
and gave personally access for groundwater collection. In total, we collected 20 samples across
the coastal hydrological land-aquifer-ocean continuum of Mobile Bay (Fig 1): one sample of
inland groundwater (GW-1); one sample (TS-SE-A) from a 2 m-depth piezometer at the
TS-SE site; five pore water samples from a vertical profile collected in 0.5 m intervals from a
2.5 m-deep piezometer that is located in 3 m distance from TS-SE-A (TS-SE-B1, TS-SE-B2,
TS-SE-B3, TS-SE-B4, TS-SE-B5); two pore water samples in a vertical profile taken in 1.5 m
intervals from a 3 m-depth piezometer at the TS-NE site (TS-NE-A1, TS-NE-A2); one sample
(TS-NE-B) from a 2 m-deep piezometer located 15 m from TS-NE-A; three river samples from
the three main tributaries entering the bay (Mobile, Apalachee, and Blakeley rivers, abbrevi-
ated as MR, AR, BR, respectively), and Mobile Bay water column samples (MB1-7). Pore water
from SGD sites was collected from piezometers located in the intertidal areas, and all samples
were taken during the low tide when the SGD signal is the most pronounced. Samples from
the Mobile Bay water column were collected from different parts of the bay to cover a gradient
of salinity and river influence: samples MB1-4 were collected in the southern part of Mobile
Bay where the river influence is almost negligible, while MB6-7 were taken close to estuaries in
the northern part of the bay. The water sample for GW-1 was collected after pumping the well
with a submersible pump at a constant rate until conductivity, temperature, and DO values
were stable. Water samples from Mobile Bay and its tributaries were collected during boat
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Fig 1. Study site (A) and sampling points (B) in Mobile Bay, USA, and vertical lithological section of sediment cores from TS-NE and TS-SE (C). The geological map is
modified from a previous version prepared at the Geological Survey of Alabama [46], while groundwater flow and lithology profile are adapted from Montiel, Lamore
(24). TS-NE-B and TS-SE-A were sampled from different piezometer but similar depth with TS-NE-A2 and TS-SE-B3, respectively.

https://doi.org/10.1371/journal.pone.0235235.9001

surveys with a submersible pump from a depth of 0.3 m. Inland groundwater (GW-1) and
pore water from TS-SE and TS-NE are categorized as subsurface samples, while river and
Mobile Bay water column samples are grouped as surface water samples.

For microbial analysis, 250 ml of water samples were collected, filtered through a 0.2 pm
isopore membrane filter, and stored frozen in a sterile microcentrifuge tube until analysis.
Physical water parameters (salinity, temperature, and dissolved oxygen (DO)) and samples for
nutrient analysis (NO5’, NH,*, DON and PO,”) were also collected and measured alongside
the microbial samples. The physical parameters were recorded with a Pro2030 (YSI Inc.) hand-
held instrument with a Galvanic sensor. Nutrient samples were filtered in the field through
sterile 0.45 um cellulose acetate filters and stored in acid-cleaned 50 mL polypropylene vials.
Samples were kept on ice for a maximum of 6 hours until they were frozen pending analysis.
The analyses were performed at the Dauphin Island Sea Lab (DISL) using a Skalar San™" seg-
mented flow autoanalyzer with automatic in-line sample digestion (Skalar Analytical B.V).
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Microbial community analysis

The DNA extraction of the microbial samples was conducted at the Leibniz Centre for Tropi-
cal Marine Research (ZMT), Germany, based on procedures described in Nercessian, Noyes
[47]. The Primer set 515YF (5’ ~GTGYCAGCMGCCGCGGTAA-3" )/926R(5’ ~CCGYCAATT
YMTTTRAGTTT-3") [48] was used to obtain DNA sequences from the V4-V5 hypervariable
region of the 16S rRNA gene. Amplicon sequencing was implemented on the Illumina Miseq
platform at LGC Genomics (Berlin). Bioinformatic sequence processing was conducted using
the DADA?2 package [49]. Forward and reverse reads were quality trimmed to 215 bp at a max-
imum expected error rate of 4. Error learning and denoising were conducted using all
sequences of the data set and pooling sequences across all samples. Forward and reverse reads
were merged using default parameters and chimeras were removed with the method ‘consen-
sus’. Only amplicon sequence variants between 361 and 399 bp occurring at least twice in the
data set were retained and will further be referred to as operational taxonomic units (OTUs).
OTUs were taxonomically classified using the silvangs web service (https://www.arb-silva.de/
ngs/, date accessed 23.08.2018) with version 132 of the SILVA reference database. Unwanted
lineages (chloroplasts, mitochondria) and OTUs unclassified on the phylum level were
removed from the dataset.

The prediction of functional genes based on 16S rRNA gene sequences was conducted
using Tax4Fun2 [45], where OTUs were associated with specific KEGG orthologue functional
genes (KO) and their subsequent empirical metabolic pathways. As SGD studies suggested
NH,"-rich groundwater discharging from the eastern shore of Mobile Bay, KOs related to
nitrogen metabolism (i.e. nitrification, denitrification, DNRA, assimilatory nitrate reduction,
and nitrogen fixation) were chosen for further analysis and discussion. As methanotrophic
and methanogenic communities were found in the study site, KOs related to the methane
cycle were likewise investigated.

Primer-clipped sequences from this study have been submitted to the European Nucleotide
Archive (ENA) with the project accession number PRJEB33004, using the data brokerage ser-
vice of German Federation for Biological Data [50]. The OTU table and taxonomic classifica-
tions are available online (https://doi.pangaea.de/10.1594/PANGAEA.912763).

Statistical analysis

Statistical analyses were implemented in R version 3.5.2 [51] using the vegan package version
2.5-6 [52]. Number of OTUs, Shannon, and inverse Simpson indices were calculated to esti-
mate the alpha diversity of samples with more than 10000 sequences, randomly subsampling
the data set to this sequencing depth 100 times. Beta diversity was assessed based on Bray-Cur-
tis (BC) dissimilarities of relative sequence proportions and visualized using complete linkage
hierarchical clustering for all microbial samples.

Prior to any statistical analyses, samples were divided into surface and subsurface samples
because the relationships between environmental parameter in surface and subsurface samples
were fundamentally different. Principal component analysis (PCA) was used to cluster sam-
pling sites based on observed environmental parameters in surface and subsurface water sam-
ples. Missing data among the subsurface samples for the parameters salinity, temperature, and
DO were estimated based on observations from a previous sampling expedition at the same
sampling location. Non-metric multidimensional scaling (NMDS) was employed as ordination
method for surface and subsurface microbial community composition. Environmental param-
eters were mapped to the NMDS plot using envfit, and the 3% most frequent and the 90% best
fitted OTUs to environmental parameter were displayed in the NMDS ordination using the
function ordiselect of the goeveg package version 0.4.2 [53]. Permutational multivariate
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analysis of variance (PERMANOVA) using the function adonis2 was applied to relative OTU
proportions of surface and subsurface microbial samples to determine the contribution of
environmental parameters in explaining the variation in microbial community composition.
The best model was determined by forward model selection based on a significant (p < 0.1)
increase in explained variation (R?). Due to the unavailability of salinity, DO, and temperature
data for some of TS-SE and TS-NE samples, these parameters were excluded from the selection
of environmental predictors for the subsurface communities. Due to a high collinearity, PO,
DON, and NO3 were used to approximate the effects of salinity, DO, and temperature, respec-
tively (PO,> and salinity: Pearson r = 0.98, DON and DO: Pearson r = -0.74, NO;™ and tem-
perature: Pearson r = -0.63).

Results
Environmental characteristics

All measurements of environmental parameters of the collected water samples are listed in
Table 1. In the vertical profile of TS-SE, salinity increased with depth in the STE, while the
salinity profile in TS-NE was uniform. Salinity also varied laterally within the bay. The south-
ern part of the bay that was the furthest from the river entries had higher salinity (3.9-5.5 at
MBI1-4), whereas the northern part at the mouth of the rivers had lower salinity in the same
range as the river (0.1-0.4 at MB5-7). During this sampling campaign, all surface water sam-
ples were well-oxygenated (DO > 2 mg L"), while groundwater and pore water samples were
hypoxic (DO < 1 mg L™"). NO5™ concentrations varied across all samples, ranging from
0-13.6 uM in surface water samples, and 0-155.9 uM in groundwater and pore water samples.

Table 1. Physicochemical parameters at the study sites.

Sample
GW-1
TS-SE-A
TS-SE-B1
TS-SE-B2
TS-SE-B3
TS-SE-B4
TS-SE-B5
TS-NE-Al
TS-NE-A2
TS-NE-B
MB1
MB2
MB3
MB4
MB5
MB6
MB7
MR
BR
AR

Longitude
-87.88392
-87.87815
-87.87825
-87.87825
-87.87825
-87.87825
-87.87825
-87.90843
-87.90843
-87.90863
-87.85198
-87.79181
-87.75262
-87.77329
-87.92827
-87.90781
-87.99113
-88.01071
-87.92734
-88.00559

Latitude
30.4314
30.39243
30.39229
30.39229
30.39229
30.39229
30.39229
30.53017
30.53017
30.53016
30.24455
30.25622
30.28377
30.26144
30.62521
30.57037
30.53048
30.68467
30.66650
30.68133

Salinity DO (mg LY Temperature (°C) NO; (uM) NH," (uM) PO (uM) DON (uM)

0.0 0.3 21.1 155.9 0.8 0.1 83.0
0.0 0.1 29.3 0.7 125.2 0.1 98.0
0.0 0.6 29.9 81.9 54.5 0.6 33.0
1.8 0.6 29.4 63.9 4.5 2.7 32.0
1.8 0.0* 29.4* 3.3 119.3 2.3 57.0
1.8 0.0* 29.4* 2.8 92.0 1.8 60.0
1.8 0.0* 29.4* 2.3 51.8 0.6 92.0
0.1 1.3 25.5 78.0 0.5 0.2 10.0
0.1 1.4* 25.5 145.0 3.9 0.5 4.0
0.0 0.4 26.4 3.1 16.9 0.1 13.0
3.9 3.6 27.9 0.9 0.4 0.2 42.1
4.4 3.8 29 0.7 0.0 0.1 33.3
5.5 4.6 30.1 0.7 0.2 0.1 32.5
4.9 3.2 29.1 0.7 0.3 0.2 27.7
0.1 3.8 24.8 13.6 1.3 0.6 44.0
0.4 2.1 25.1 4.8 0.3 0.6 36.9
0.1 3.4 29.5 1.4 0.3 0.9 35.7
0.1 2.6 29.4 9.3 1.2 0.5 33.5
0.1 3.5 29.4 7.6 0.8 0.4 30.8
0.0 3.5 27.5 11.5 1.5 0.6 32.7

Asterisks (*) indicate recalculated values obtained from Montiel, Lamore (24) based on patterns from a previous sampling campaign at the same sampling location as no

observations were available during our expedition.

https://doi.org/10.1371/journal.pone.0235235.t001
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The highest NO3™ concentration (155 pM) was found in the inland well, which was located 2.5
km from the coastline. Low NH," concentration (0-1.4 uM) in surface water contrasted with
high NH," concentration in pore water, whereas the highest NH,* concentrations and the
highest range of NH," concentration was found in the vertical profile of TS-SE-B (4-125 uM).
PO,’ concentrations ranged between of 0 and 2 uM across all samples. DON concentration
displayed a higher range in the subsurface (4-98 uM) compared to surface water samples (27—
45 pM). Between two SGD sites, TS-SE had a considerably elevated concentration of DON
(32-98 uM) in comparison to TS-NE (4-13 pM).

The PCA for environmental parameters in surface water showed that PC1, which
accounted for 52.2% of the variation in the data, separated MB1-4 from the rest of the surface
water samples and was mainly associated with DO, PO,”", DON, and NH,* concentrations,
while PC2 was mainly determined by temperature, salinity, and NO5™ (Fig 2A). Different pat-
terns of association between environmental variables were found in subsurface samples, where
55.6% of the variability of subsurface environmental parameters was explained by PC1, which
separated TS-NE and the groundwater sample from the samples from TS-SE (Fig 2B). Among
subsurface samples, DO and NO; concentration were negatively associated with salinity, tem-
perature, PO,>", DON, and NH,".

Microbial diversity and community ordination

In total, 565,793 sequences represented in 7827 OTUs were obtained for further analysis with
an average of 28,289 sequences per sample. We identified 7687 bacterial OTUs contained in
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Fig 2. Principal Component Analysis (PCA) for based on the environmental parameters for surface water (A) and subsurface water (B). Nitrate: NO;; Dissolved
organic nitrogen: DON; Ammonium: NH,*; Phosphate: PO, Dissolved oxygen: DO.

https://doi.org/10.1371/journal.pone.0235235.9002
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558,435 sequences and 140 archaeal OTUs represented in 7358 sequences. There were three
samples with less than 10,000 sequences (i.e. TS-SE-B4, TS-NE-A1, and MB6), which we
excluded from the alpha diversity analysis due to insufficient sequencing depth. We observed
trends among the three investigated alpha diversity indices (Fig 3), where TS-SE-B2 and
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Fig 3. Alpha diversity of microbial communities across all samples assessed by number of OTUs (A), Shannon (B) and inverse Simpson indices (C). Samples
TS-SE-B4, TS-NE-B1, and MB6 were not included in the calculation due to insufficient sequencing depth.

https://doi.org/10.1371/journal.pone.0235235.g003
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TS-SE-B3 consistently had the highest number of OTUs, Shannon, and inverse Simpson indi-
ces compared to the other samples, while the lowest number of OTUs, Shannon and inverse
Simpson indices was found in TS-SE-B5. This pattern was not visible in GW-1, which exhib-
ited the second lowest number of OTUs, but average Shannon and inverse Simpson indices.
The remaining subsurface samples, as well as bay and river water samples were within a similar
richness and diversity range. The Spearman correlation analysis between subsurface taxo-
nomic diversity and observed environmental parameters indicated that DON had the highest
correlation to Shannon and inverse Simpson indices (Spearman p = -0.62), followed by PO,>"
concentration (Spearman p = 0.52) (S1 Table).

Bray-Curtis (BC) dissimilarities between samples ranged from 0.2 to 0.9 (Fig 4). Generally,
each surface water sample from the river and the Mobile Bay water column was quite similar to
each other in terms of microbial community composition (pairwise BC = 0.3-0.5). Microbial
community composition in MB5-7 was more similar to river samples than MB1-4. All samples
from the vertical SGD profiles were highly heterogeneous (pairwise BC > 0.6). Across the
TS-SE samples, microbial communities among TS-SE-B1 and TS-SE-B2 were more similar to
each other, while the deeper samples (TS-SE-B3, TS-SE-B4, TS-SE-A) displayed a higher hetero-
geneity. Within the TS-NE area, microbial communities of TS-NE-A2 and TS-NE-B were more
similar to each other than to TS-NE-A1 due to similar depth. Overall, the average dissimilarity
within subsurface samples (BC = 0.9) was higher than within surface samples (BC = 0.8).

Fitting environmental parameters onto the NMDS ordination for surface water samples
showed that microbial community composition in river and northern Mobile Bay (MB5-7)
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Fig 4. Complete linkage hierarchical clustering based on Bray-Curtis dissimilarities of relative OTU proportions.

https://doi.org/10.1371/journal.pone.0235235.g004
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water samples were associated with high nutrient concentration (Fig 5A), while the communi-
ties in the southern Mobile Bay (MB1-4) were positively associated with salinity. The patterns
in microbial community composition of the subsurface samples and their association with
environmental parameters were explored in separate NMDS ordination (Fig 5B), which
showed that TS-NE microbial samples were positively associated with DO and NO;". The
majority of TS-SE microbial samples were associated with NH,", PO,”", DON, salinity, and
temperature, except for TS-SE-B5. TS-SE-B5 and GW1 were located the furthest from the
other samples in the ordination, indicating their distinct microbial community composition.
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Fig 5. Non-metric multidimensional scaling (NMDS) plot depicting the association between microbial community composition and environmental data for surface
water samples (A) and subsurface water samples (B). The position and taxonomic affiliation of dominant OTUs most fitted to the observed environmental
parameters are shown.
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Salinity and NH," were identified as the strongest predictors of community shifts in surface
samples, in total explaining 58.5% of the variation in community composition (Table 2). Salinity
was determined as most significant parameter with a pure contribution of 26.9% to the change of
microbial community composition across all surface samples. Due to some collinearity, there was
a 17% overlap in explained variation between these two parameters. Among the subsurface sam-
ples, DON and PO,> were determined as best-suited parameters to explaining patterns in micro-
bial community composition with a total contribution of 25.4%. Both parameters had equal pure
contributions, and there was no overlap in explained variation. The selection of DON and PO,
as significant predictors implied a potentially similarly important role of DO and salinity, as any
effect attributed to DON and PO,” could also be explained by DO and salinity due to their high
correlation (DON and DO: Pearson r = -0.74, PO,>" and salinity: Pearson r = 0.98).

Microbial community composition across horizontal and vertical scales

We found that Gammaproteobacteria, Bacteroidia, Oxyphotobacteria, Actinobacteria, and
Alphaproteobacteria were the most dominant bacterial classes across all samples (Fig 6A).
Gammaproteobacteria were present in high proportions in the inland groundwater (70%),
river water, and TS-NE samples (average 20%). OTUs affiliated with the freshwater genera
Vogesella and Polynucleobacter of the Gammaproteobacteria occurred in high proportions in
the inland groundwater sample. OTUs related to Methylobacter (class Gammaproteobacteria)
and unclassified Thermodesulfovibrionia were the most dominant OTUs from TS-NE and
TS-SE, respectively. From subsurface to surface water samples, community composition
shifted from Gammaproteobacteria-dominated to a community with increased proportions of
Oxyphotobacteria, Bacteroidia, Actinobacterial and Alphaproteobacteria. Oxyphotobacteria
dominated bay water samples and the upper two layers of the TS-SE vertical profile
(TS-SE-B1, TS-SE-B2). The most dominant OTU of the Oxyphotobacteria was classified as
Cyanobium PCC-6307. Within the surface samples, this OTU was identified as the most domi-
nant and best fitted to salinity, NO;", NH,", and PO, (Fig 5A). Bacteroidia were mainly rep-
resented by a Flavobacterium OTU with the highest proportions in river samples (Fig 6B).
OTUs from Actinobacteria were almost exclusively detected in surface water samples, mostly
affiliated with the hgcl clade. Alphaproteobacteria were detected in high proportions across sur-
face water samples with an average of 15% and 8% in river and coastal samples, respectively.
OTUs of the SAR11 clade comprised 50% of the Alphaproteobacteria in surface water samples
with SARI1 clade IT predominantly found in MB1-4 and SAR11 clade IIT occurring mainly in
MB5-7 and river samples, respectively.

Table 2. Contribution and significance of observed environmental factors shaping microbial community compo-
sition based on PERMANOVA.

Source of variation Adjusted R? (%) Df F P-value
Surface samples
Final model 58.5 2 4.92 0.001***
Salinity 26.9 1 4.54 0.004**
NH,* 129 1 2.18 0.072.
Subsurface samples
Final model 254 2 1.19 0.022*
DON 12.9 1 1.21 0.044*
PO,> 12.6 1 1.18 0.063.

Significance codes: 0 “***0.001 “** 0.01 *’ 0.1 0.1

https://doi.org/10.1371/journal.pone.0235235.t1002
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At TS-SE, the microbial community composition differed notably between the upper
(TS-SE-B1 and TS-SE-B2), middle (TS-SE-B3, TS-SE-B4), and bottom sediment layers
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(TS-SE-B5). Cyanobium PCC-6307, which displayed high proportions in all bay water samples,
dominated TS-SE-B1 (9%) and TS-SE-B2 (17%). The TS-SE-B2 sample originated from an
intermediate layer between the oxic upper layer and anaerobic deeper layers, and was charac-
terized by e.g. aerobic cyanobacteria and anaerobic sulfate-reducing bacteria (SRB). The mid-
dle layers in TS-SE were dominated by a mixture of obligate anaerobic bacteria, fermentative
bacteria, SRB, and methanogenic archaea, indicative of a highly reducing environment.
Unclassified Thermodesulfovibrionia showed the highest proportion in TS-SE-A (13%), and
also notably contributed to TS-SE-B3 and TS-SE-B4 (5-6%). This taxon also had the highest
ordiselect score according to the ordination of the subsurface samples, indicating their domi-
nance and association with changes in environmental parameters, particularly to DON, DO,
and temperature. Another dominant genus comprising 2 to 25% in the peat layer was
SCGC-AB-539-J10 of the Dehaloccoccoidia, which is one of the most widely distributed taxa in
marine subsurface sediments samples. We also identified high proportions of SRB-related gen-
era of the class Deltaproteobacteria: unclassified Syntrophobacteraceae, Desulfobacca, Desulfati-
glans, Syntrophorhabdus, Syntrophus, and unclassified Desulfobulbaceae. Overall, the
aforementioned genera accounted for 12%, 9%, 4% of the sequences in TS-SE-B3, TS-SE-B4,
and TS-SE-B5 samples, respectively. Unclassified Anaerolineaceae of the class Anaerolinea, a
taxon consisting of obligate anaerobic and fermentative bacteria, contributed between 1 and
9% in these layers. The dominant taxa in the deepest sediment layer (TS-SE-B5), were found to
be distinctly different from the upper layers and comprised mainly of the following genera:
unclassified Pirellulaceae (18%), unclassified Gaiellales (15%), Nocardiodes (14%), and Mesor-
izhobium (11%).

At the TS-NE site, Gammaproteobacteria was the most dominant bacterial class in all layers,
followed by Deltaproteobacteria and Alphaproteobacteria. At genus level, most of the Gamma-
proteobacteria in these samples were related to type I methanotrophs of the genera Methylo-
bacter and Methylococcus. In total, methanotrophic genera accounted for 12% and 15% of the
sequences in TS-NE-A2 and TS-NE-B, respectively. Overall, the TS-NE vertical profile shifted
from a mixture of marine (e.g. unclassified env. OPS17 and Cyanobium PCC-6307) and facul-
tative anaerobic bacteria (e.g. Geothrix) in the uppermost sediment layer to a more methano-
troph-dominant community in the bottom layer.

Across all samples, archaea were identified in notable proportions at the anaerobic TS-SE
site, i.e. 4%, 4%, 11%, and 6% in TS-SE-A, TS-SE-B3, TS-SE-B4, and TS-SE-B5, respectively.
Methanomicrobia, Omnitrophicaeota, and Woesearchaeia were the dominant archaeal classes
found in the samples. Methanomicrobia were mainly represented by the genera Methanolinea,
Methanoregula and Candidatus Methanoperedens. Unclassified Bathyarchaeia were found in
TS-SE-B3 and TS-SE-B4 together with Methanomicrobia. To a lesser extent, archaea were also
found in TS-SE-A1, TS-NE-A2, and TS-NE-B with a sequence proportion of 1-2%. At these
sites, Thaumarchaeota was the dominant class, mainly represented by nitrifying genera Candi-
datus Nitrosopumilus and unclassified Nitrosotaleaceae.

Metabolic prediction

To accompany the result of the physico-chemical and microbial community analysis, we used
Tax4Fun2 to predict microbial metabolic functions in the subterranean estuary that may affect
the composition of SGD. Tax4Fun2 was able to use on average 54% of the sequences repre-
sented in 44% of the OTUs for metabolic prediction. The highest unused fraction for the meta-
bolic prediction was found in TS-SE-A. The highest proportions of KOs related to ammonia
oxidation (nitrification) were predicted in TS-NE-A2 and TS-NE-B and the lowest in
TS-SE-B5 and MB1-4 (Fig 7). Communities of inland groundwater and the deeper layers of
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Fig 7. Heatmap of the proportion of predicted KEGG Orthologs (KO) related to nitrogen metabolism based on Tax4Fun2. Dissimilatory nitrate reduction to
ammonium: DNRA.

https://doi.org/10.1371/journal.pone.0235235.9007

TS-SE were characterized by nitrogen cycling pathways usually occurring in anoxic environ-
ments, such as denitrification, DNRA, or nitrogen fixation. Except for assimilatory nitrate
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reduction, enzymes related to the nitrogen cycle were predicted in lower proportions in sur-
face waters compared to subsurface samples.

Discussion

Changes in microbial community composition along the freshwater-
marine water continuum

In this study, we observed significant variations in microbial community composition and
diversity across a horizontal (e.g. groundwater-river-bay) and vertical (e.g. pore water depth
profile) gradient in the STE of Mobile Bay, Alabama. Among the observed environmental
parameters, salinity was identified as the primary factor affecting the variation of microbial
community composition in the surface water samples. The importance of salinity in governing
the distribution and diversity of microbial communities across the hydrological continuum is
well studied [33, 35, 54]. Across the subsurface samples, DON and PO,> were identified as the
parameters explaining the observed patterns in community composition with similar amount
of contribution. DON is normally generated in TS-SE by peat mineralization where its concen-
tration was considerably higher in comparison to TS-NE, and likely resulted in the different
community composition between the two locations. The influence of DON in shaping micro-
bial community composition is also found in other study conducted in peatlands [55], while
PO, is also identified as a limiting nutrient for subsurface microbial communities in peat-
lands as inorganic orthophosphate tends to bond to organic compound; therefore restricting
its bioavailability [56]. Furthermore, in this case DON and PO4>” may act as a proxy for DO
and salinity due to their high correlation in subsurface samples. DO as a potential predictor of
microbial community composition in subsurface samples is expected due to the steep gradient
from aerobic to anaerobic conditions across these samples. Indeed, all of the TS-NE samples
were considered more oxygenated due to the higher hydraulic conductivity and coarser lithol-
ogy than TS-SE. DON and PO, concentration affecting the diversity of the subsurface micro-
bial communities was also supported by correlation analysis between alpha diversity and
environmental parameters. Nevertheless, as only 25% of community variation could be attrib-
uted to DON and PO, it is assumed that other environmental variables play additional roles
in this environment. Considering that we found high proportions of SRB, methanogenic and
methanotrophic bacteria and archaea, it is likely that the concentrations of various electron
acceptors strongly determine subsurface communities [34]. For example, in a subterranean
environment inhabited by both SRB and methanogenic archaea, their abundance is controlled
by available substrate concentration (e.g. acetate, hydrogen, methanol), organic loading [57,
58], and ion concentration [59], which were not measured in this study. In this case, further
studies, including measuring more environmental parameters, are needed to characterize the
drivers of community shifts with higher certainty.

In general, the overall proportion of explained variation in the subsurface samples was
lower compared to surface samples due to the high heterogeneity of subsurface microbial com-
munities. Pore water samples from the TS-SE consisted of a diverse mixture of fresh water and
marine microbes, as well as aerobic, facultative anaerobic, and obligate anaerobic bacteria,
thus increasing microbial alpha diversity, especially in TS-SE-B2 and TS-SE-B3. The higher
diversity of the communities in the anaerobic layers is also supported by the higher proportion
of archaea identified in these layers, which grow by fermentation or anaerobic respiration
using various electron acceptors. TS-SE-B1 exhibited a high number of OTUs but average
Shannon and inverse Simpson indices, indicating the presence of a large number of rare OTUs
in this sample. Inversely, GW-1 had average Shannon and inverse Simpson indices but low
number of OTUs, pointing to a more even community. The low diversity of OTUs in GW-1
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may also arise from limited substrate availability (e.g. organic matter), lack of photosynthesis,
or as a result of filtration processes through the aquifer material [60, 61].

In this study, the most notable difference between the inland groundwater microbial com-
munity and the rest of the samples is the high proportion of Gammaproteobacteria, particu-
larly from the families Chromobacteriaceae, Burkholderiaceae, and Pseudomonadaceae, which
are all common in fresh groundwater samples [62, 63]. The genus Pseudomonas, from the fam-
ily Pseudomonadaceae, is known for its denitrifying capabilities in almost all of its species [64].
The occurrence of denitrification in the aquifer is also supported by metabolic prediction.
Such a microbial contribution may be relevant considering that Montiel, Lamore (24) reported
denitrification as one major pathway of NO5™ removal in the coastal aquifer of Mobile Bay.

We observed a phylogenetic shift from subsurface to surface water communities, the latter
resembling eutrophic planktonic communities presumably due to high primary productivity
and frequent contact with anthropogenic activities and contamination [63]. The microbial
communities in surface water in this study were dominated by cyanobacteria and other bacter-
ioplankton taxa. In river samples, microbial community composition was characterized by a
high proportion of Actinobacteria and Bacteroidia, which are common lineages in surface
freshwater [65, 66]. In this study, they were represented by the hgcl clade and Flavobacterium,
respectively. The hgcl clade is a ubiquitous taxon and associated with N-rich environments or
organic compound utilization [67], while Flavobacterium is widely known to play an essential
role in the degradation of complex biopolymers in marine and freshwater environment [68].
The most dominant surface water genus from Gammaproteobaceria, Polynucleobacter, is often
found in surface water bodies impacted by urban activities [69, 70].

The microbial community composition of the river samples is indicative of a transition
zone between fresh and saline surface water as well as an active tidal cycle. There is a combina-
tion of brackish-marine taxa (e.g. CL500-29 marine group, SAR11 clade III) with freshwater
taxa that were not found in the more saline samples (e.g. Limnohabitans, Sediminibacterium,
Pseudocarcicella). We found that the extent of the river plume into Mobile Bay was traceable
by both salinity and microbial community composition. During the sampling campaign in
July 2017, the salinity increased from 0.2 in the northern part of the bay and increased into 4.7
in the southern part. Furthermore, beta diversity analysis suggested that the microbial commu-
nities of the tributary rivers (BR, MR, AR) were similar to those from the northern part of
Mobile Bay (i.e., MB5-7), indicating that the northern part of the bay was heavily influenced
by river discharge which was also reported by Ortmann and Ortell [42].

Water samples from Mobile Bay were characterized by OTUs related to the SARI1 clade,
Cyanobium PCC6307, and CL500-29 marine group. Cyanobium PCC-6307 is a freshwater cya-
nobacterium commonly found in warm water [71]. The distribution of SAR11 clade was dis-
tinctly associated with their salinity preference: while SARII clade II was dominant in the
southern part of Mobile Bay and the clade itself is commonly associated with coastal water, the
northern part of Mobile Bay had a higher proportion of SARI1 clade IIl known from brackish
water communities [72]. The dominance of SAR11 in the lower end of estuaries and low salin-
ity coastal water was also reported from other studies from Mobile Bay [42, 73, 74]. All of the
above bacterial taxa are associated with active primary productivity and carbon cycling [67, 72,
75]. CL500-29 is also known from algal blooms and eutrophic waters [76-78]. In an environ-
ment of high primary productivity, cyanobacteria and heterotrophic bacteria may be involved
in close interactions. The cyanobacteria release organic matter that attracts heterotrophic bac-
teria and inversely the heterotrophic bacteria may release inorganic nutrients which could be
recycled and reused by cyanobacteria [79, 80]. The occurrence of high primary productivity
suggested by microbial community composition in this study, in addition to vertical stratifica-
tion of the water column due to natural wind and tide pattern of Mobile Bay [39, 81] and
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elevated SGD-derived DON and NH," [24], may promote the occurrence of hypoxia events
during the dry seasons.

In general, we did not observe any occurrence of community coalescence between freshwa-
ter and marine bacteria except for the prevalence of marine taxa in river samples and the
uppermost layer of the pore water vertical profiles. These marine taxa are most likely brought
to the estuaries and the upper STE by the previous high tide, and their high proportion in a
zero salinity environment suggests a tolerance to a wide range of salinities [82]. Inversely,
freshwater bacteria are found only in low or even negligible proportions in the brackish and
saline samples. In the bay water sample collected close to groundwater discharge points (i.e.
MB6, which is located in the direction of flow discharge from TS-NE), we did not identify
freshwater taxa or taxa that are dominant in the TS-NE pore water. This finding contradicts a
study from Lee, Shin [36], which found subsurface bacteria in coastal water during ebb tide
characterized by high SGD rate. The different findings could be caused by the location of our
sampling point, which is too far from the land that freshwater taxa exported by SGD or surface
water might already be lost due to environmental and biotic filtering, considering that these
taxa have a lower resistance to salinity changes in comparison to marine taxa [82]. Neverthe-
less, this highlights the importance of implementing microbial studies over a more extended
time period (i.e. covering different tidal cycle or seasons).

Vertical distribution of microbial community composition in SGD sites

To describe vertical patterns in microbial community composition, we sampled vertical pore
water profiles from two SGD sites. A sediment core recovered from the TS-SE, that essentially
reflects the STE in this site, showed a lithological stratification. The uppermost layer consists
of medium sand, followed by organic-rich/peat layer, and medium sand at the bottom of the
core. The upper layers were dominated by aerobic bacteria and marine cyanobacteria, which
suggests the infiltration of surface bay water into the upper part of the intertidal zone. The peat
layer had distinctive anaerobic environment with a high proportion of SRB, fermentative bac-
teria, and methanogenic archaea, indicating the prevalence of syntrophic hydrocarbon degra-
dation. In a reducing environment, it is common to find syntrophic consortia of these three
types of bacteria [34, 57, 83-85]. Organic matter from the peat layer can be hydrolyzed and fer-
mented by fermentative bacteria, whose end products serve as the primary substrates for sul-
fate reduction or methanogenesis [86]. Even though the SRB and methanogens compete with
each other to utilize the organic substrates produced by the fermentative bacteria, their co-
existence in peatlands is not uncommon [58, 87, 88]. The three most dominant archaeal classes
in these reducing layers were Woesearchaeia, Bathyarchaeia, and Methanomicrobia. Woe-
searchaeia, commonly found in groundwater and sediment, are known for their symbiotic life-
style and role in anaerobic carbon cycling [31]. The predominant genera from class
Methanomicrobia, Methanolinea and Methanoregula, are commonly found in other reducing
environments such as peat bogs or anaerobic wastewater sludge [89, 90]. The co-occurrence of
Methanomicrobia with Bathyarchaeia in the anoxic layers is also reported from peatlands in
China [85] as well as from engineered anaerobic sludge systems [91]. In peatlands, the symbi-
otic association of Methanomicrobia and Bathyarchaeia plays a critical ecological role in the
production of acetate, an essential precursor of methanogenesis. The potential occurrence of
the productive methane production in the reduced layer of TS-SE is supported by the result of
methane-related metabolic prediction (S1 Fig). While methane concentration was not mea-
sured in this study, a previous study found methane fluxes were detected in some parts of the
Mobile Bay coastline, with stronger fluxes identified in lower salinity coastal areas [92].
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The bottom-most layer of the TS-SE vertical profile was characterized by typical soil or sedi-
ment bacteria (e.g. Mesorizhobium, Delgado, Casella [93]). The distinct change in microbial
community composition as well as the predicted metabolic function suggests that the bottom
sand layer is independent of the above peat layer.

At the TS-SE site, NO; ™ rich groundwater percolates through an organic-rich/peat sedi-
ment layer and the bulk nitrogen is transformed into NH," before discharging to Mobile Bay.
In addition to net NH," production by mineralization, the loss of NO;" in the peat layer may
be related to biological uptake (assimilatory nitrate reduction), denitrification or DNRA, as
supported by the metabolic prediction. NO;™ losses through denitrification in peat soils have
been observed elsewhere (e.g. Van Beek, Hummelink [94], Jérgensen and Richter [95]). Deni-
trification is regulated by the nirS/nirK subunits of the nitrite reductase gene in bacteria, which
is widespread among various taxonomic groups of bacteria except for gram-positive bacteria
and obligate anaerobes, with few exceptions [96, 97]. DNRA is mostly carried out by fermenta-
tive or chemolithotrophic bacteria recycling NO5™ to NH," facilitated by the genes encoded as
nrfA, nirD and nirB [98, 99]. These three genes work complementarily in reducing nitrate to
ammonia depending on the condition of low/high nitrate input [100]. The occurrence of
DNRA in Mobile Bay’s STE has been reported before in the adjacent smaller estuary Weeks
Bay [30]. The prevalent taxa found in this site, i.e. Dehaloccoidia, Bathyarchaeia, Thermodesul-
fovibrionia, Anaerolinaceae, Syntrophaceae, and Syntrophorhabdus were reported to be associ-
ated with DNRA processes in other studies conducted in sediments with similar
characteristics [101-104]. Deltaproteobacteria-affiliated SRB, whose proportion reached up to
12% in the peat layer, have the secondary capacity to implement DNRA due to their ability to
grow with nitrate as a terminal electron acceptor and reduce it to ammonium [105-107]. In
many cases, the coexistence of denitrification and DNRA processes is found in oxic-anoxic
coastal interfaces [102, 108], where oxidation status and C/N ratio often determine which pro-
cess dominates N cycling [96, 109, 110]. This finding also supports other microbial studies stat-
ing that STEs are a biogeochemical hotspot for nitrogen cycling and these complex processes
may alter SGD quality discharging to coastal waters (e.g. Santoro, Francis [28], Adyasari, Has-
senriick [35]).

At the TS-NE site, the lithology consists exclusively of coarse sand and is distinguished by a
high hydraulic conductivity. The microbial community at this site consisted of a mixture of
aerobic and facultative bacteria, with a high proportion of methanotrophic bacteria of the
genus Methylobacter. The Methylobacter lineage consists of some of the most abundant meth-
ane oxidizers in soil communities, which commonly utilize methane or other C1-compounds
[111, 112]. This was in accordance with the organic source analysis from the peat layer that
was close to, but not in contact with, the piezometer, and composed of C1 and C2 compounds
indicative of decaying plant material [24]. Methanotrophs usually contribute to biogeochemi-
cal cycling by oxidizing methane or ammonia using the enzymes methane monooxygenase
(encoded by the gene mmo) and ammonia monooxygenase (amo), respectively. Both amo and
mmo have similar homology and may interchangeably be used by the methanotrophs [112-
115]. Notably, the proportion of predicted ammonia oxidation pathways in TS-NE-A2 and
TS-NE-B was among the highest across all of the samples.

Opverall, the total sequence proportion of archaea across all of the samples only represents
1% of the microbial community. Archaea generally compose a minority fraction of the micro-
bial community in groundwater, however they are known to play a notable role in shaping the
biogeochemical cycle in their respective environment regardless of their low relative abun-
dance [28, 116], which is supported by the result of metabolic prediction. For instance, the
archaeal community seems to contribute to ammonia oxidation at TS-NE, indicated by the
prevalence of Thaumarchaeota, a ubiquitously distributed archaeal class known for their
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ammonia-oxidizing capability [32, 117]. Furthermore, the methane cycling processes at TS-SE
may likely be regulated by the methanogenic archaea. This finding is also consistent with other
studies reporting rare taxa to contribute disproportionately and perform essential biogeo-
chemical functions in the ecosystem [118, 119].

As a limitation of the metabolic prediction, it should be noted that the usage of short 16S
rRNA gene sequences to predict metabolic functions is severely constraint by the limited infor-
mation content of the amplicon, biasing the accurate assignment of functional genes to a spe-
cific 16S. Thus, we suggest using the results of this study as a primer for further metagenomic or
metatranscriptomic investigations, as well as quantitative polymerase chain reaction (QPCR)
assays targeting, e.g., methanotrophic, methanogenic bacteria and archaea, which displayed
notable sequence proportion in the coastal pore water samples. Methane is highly abundant in
peatlands [120, 121] and one of the main contributors of aquatic greenhouse gases emissions
[122, 123]. Thus, understanding its cycling may be valuable particularly in coastal areas with
dynamic sea-level change and a fast-changing anthropogenic landscape such as Mobile Bay.

Conclusion

In this study, we assessed microbial community composition and distribution in terrestrial
and coastal water of Mobile Bay, Alabama, where SGD-derived nutrient fluxes cause harmful
algal blooms and large scale fish and crustacean kills (Jubilee events) each summer. Microbial
community composition across the surface hydrological continuum was primarily governed
by salinity, while DON and PO, concentrations were the strongest predictors of community
shift within the subsurface ecosystems. Samples originating from the estuary and water col-
umn of Mobile Bay were dominated by bacterioplankton, particularly cyanobacteria, which
are typically found in environments with high primary productivity. We further observed that
microbial communities displayed different compositions along the two vertical profiles at
SGD sites due to contrasting sediment stratigraphy and presumed oxygen distribution. This
study suggest that microbial communities in these two sites are essential contributors to the
nitrogen and methane cycle, particularly related to denitrification and DNRA at the TS-SE
site, and ammonia or methane oxidation at the TS-NE site. Considering that the microbially
mediated elemental cycling in the STE influences the chemical composition of the submarine
groundwater discharging to Mobile Bay’s water column, these findings may be used as an
incentive for further studies involving a wide range of metabolic processes and their potential
impact on the ecosystem in terms of climate-related hydrological change on a regional scale.
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