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Abstract

Motivated by an application in condensed matter physics and quantum
information theory, we prove that every non-null even-hole-free claw-free
graph has a simplicial clique, that is, a clique K such that for every vertex
v € K, the set of neighbours of v outside of K is a clique. In fact, we
prove the existence of a simplicial clique in a more general class of graphs
defined by forbidden induced subgraphs.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A hole in
G is an induced cycle of length at least four. By a path we always mean an
induced path. For v € V(G) we denote by N(v) the set of neighbours of v
(so v € N(v)). G is even-hole-free if all holes in G have odd length, and G is
claw-free if G has no induced subgraph isomorphic to K; 3. A non-empty set
K C V(G) is a simplicial clique if K is a clique, and for every v € K we have

*Supported by NSF grant DMS-1763817.

fSupported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.

We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été
financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG),
[numéro de référence RGPIN-2020-03912] .



that N(v) \ K is a clique. The unique element of a simplicial clique of size one
is called a simplicial verter.

This paper is motivated by a question from condensed matter physics and
quantum information theory concerning so-called spin models, i.e. models of in-
teracting qubits (two-level quantum systems). Each spin model is defined by a
Hamiltonian operator, and to every such Hamiltonian one can associate a graph,
called its frustration graph. In [4] a new method is given that allows us to “solve
a model” (meaning in this case to find the spectrum and the eigenvectors of
the Hamiltonian) whose frustration graph is even-hole-free, claw-free, and has
a simplicial clique. This augments earlier results of [1] where it is shown that
models whose frustration graphs are line-graphs are solvable using certain clas-
sical tools. The solution method of [4] uses only the structure of the frustration
graph, and it is an extension of both [5] and [6]. The authors of [4] raised a
question:

1.1. Question: Does every non-null even-hole-free claw-free graph have a sim-
plicial clique?

In other words, does their new solvability result hold for all models whose
frustration graphs are even-hole-free and claw-free? In this note we answer their
question affirmatively (the “dome of an edge” is defined before the statement of
(2.2)); in fact we prove a stronger result:

1.2. Let G be a non-null even-hole-free claw-free graph.
1. If G is chordal, then G has a simplicial vertex.

2. For every hole H of G there is an edge ab of H such that the dome of ab
s a simplicial clique.

In particular, G has a simplicial clique.

We have an even stronger result, describing explicitly the structure of all
such graphs, but the proof is harder, and we do not present it here. The main
result of this paper is 2.2 which is a strengthening of 1.2, and we will explain it
in Section 2.

We remark that the answer to 1.1 becomes negative if we omit either the
assumption that the graph is even-hole-free or that the graph is claw-free. The
complement of a cycle of odd length at least seven is a claw-free graph with
no simplicial clique. Moreover, the square of a cycle of length at least nine is
an example of a Cy-free claw-free graph with no simplicial clique. (The square
of a graph G is the graph obtained from G by making every vertex adjacent
to all its second neighbours.) And here is an example of an even-hole-free
graph rather than just Cy-free. Let k be an odd positive integer. The following
is a construction of an even-hole-free graph Gy with 2k vertices and with no
simplicial clique. Let the vertex set of Gy be the union of k disjoint pairs
of adjacent vertices {a;,b;} where ¢ € {1,...,k}. Fori = {1,...,k — 1} add
the edges a;a;+1,a;biy1,b;a;41; add also the edges axai,arbi,bra;. There are



no more edges in G. It is easy to check that Gy is even-hole-free and has no
simplicial clique.

In [2] an algorithm is presented that finds a simplicial clique in a claw-free
graph if one exists. The authors of [4] also asked if that algorithm can be
simplified when the input is known to be even-hole-free. An easy corollary of
our main result 1.2 is such a simpler, but slower, algorithm 4.1. In fact 4.1
works under the more general assumptions of 2.2.

2 A strengthening

The goal of this section is to present our main result 2.2.

Let G be a graph. For X C V(G) we denote by G[X] the graph induced
by G on X. For A C V(G) and = € V(G) \ A, we say that x is complete to
A if x is adjacent to every element of A, and that x is anticomplete to A if x
is non-adjacent to every element of A. Two disjoint subsets A, B C V(G) are
complete to each other if every vertex of B is complete to A, and anticomplete
to each other if every vertex of B is anticomplete to A.

Next we define a few types of graphs. A graph is called chordal if it has no
holes. A jewel is a graph consisting of a hole H = hy-...-hg-hy with £ > 4 and
a vertex v € V(H) such that N(v) NV (H) = {hy, ha, hs, ha}. A line wheel is a
graph consisting of a hole H = hj-...-hg-hy with k > 6 and a vertex v ¢ V(H)
such that there exists i € {4,...,k—2} with N(v)NV(H) = {h1, ha, hi, hiz1}. A
short prism is a graph consisting of a hole hi-ho-h3-hs-hq and a path pi-...-pk
such that {p1,...,px} N{h1, ho, h3, hy} =0, p; is adjacent to hy and to hg, and
pr is adjacent to hs and to hy, and there are no other edges between {p1,...,pr}
and {hq, ha, hs, ha}. Finally, the seven-antihole is the complement of a cycle of
seven vertices. These graphs are depicted in Figure 1.

Figure 1: A jewel, a line wheel, a short prism and a seven-antihole (here dotted
lines represent paths).

In what follows, whenever graph containment is mentioned, we will mean
containment as an induced subgraph. We say that a graph G is clean if G is
claw-free and contains no jewel, line wheel, short prism or seven-antihole. Note
that clean graphs may contain even holes.

First we show:

2.1. If G is claw-free and even-hole-free, then G is clean.

Proof. Since G is even-hole free, and in particular Cy-free, G does not contain
short prisms or seven-antiholes. Since a jewel contains a hole H of length k,



and a hole hi-v-hg-hs-...-hg-hy of length k£ — 1, G does not contain a jewel.
Finally, at least one of the holes H, ho-...-h;-v-he, and h;y1-...-hi-v-h;y1 is
even, and so G does not contain a line wheel. This proves 2.1. O

We need one more definition. Let ab be an edge of a graph G. Let X (ab) =
{a,b} U(N(a) N N(b)). The dome of ab is the set of all vertices y € X (ab) such
that N(y)\ X (ab) is a clique. We call the set X (ab) \ Y (ab) the dome of ab. We

can now state our main result.
2.2. Let G be a non-null clean graph.
1. If G is chordal then G has a simplicial vertex.

2. For every hole H of G there is an edge ab of H such that the dome of ab
is a simplicial clique.

In particular, G has a simplicial clique.

In view of 2.1 we immediately deduce 1.2.

3 The proof of the main theorem

In this section we prove 2.2. We start with a lemma.

3.1. Let G be a clean graph, let H be a hole in G, and let v € V(G)\ V(H).
Then one of the following holds:

1. v is anticomplete to V(H).
2. |[V(H)| =5 and v is complete to V(H).
8. v has exactly two neighbours in H and they are consecutive.

4. v has exactly three neighbours in H and they form a path of H.

Figure 2: Outcomes of 3.1 (here dotted lines represent paths).

Proof. The outcomes of 3.1 are depicted in Figure 2. Write H = hy-... hg-h1.
We may assume that v has a neighbour in V(H), for otherwise 3.1.1 holds. If
v is complete to V(H), then, since G is claw-free and since G[V (H) U {v}] is
not a jewel, it follows that £k = 5 and so 3.1.2 holds. Thus we may assume
that v has a non-neighbour in V(H), say v is adjacent to h; and not to hg.
Since G is claw-free, v is adjacent to hg, and |[N(v) N V(H)| < 4. We may



assume that v has a neighbour in V(H) \ {hl,hg,hg}7 for otherwise 3.1.3 or
3.1.4 holds. Since G is claw-free, N(v) N (V(H) \ {hl,hg,hg}) is a clique, and
therefore |[N(v) N (V(H)\ {h1,ha,h3})| < 2. Let i € {4,...,k—1} be minimum
such that v is adjacent to h;. Since {v,h;_1,h;, hiz1} is not a claw, it follows
that either

e ;=4 and v is adjacent to hs, or
e visadjacent to h;+1 and v has no other neighbours in V(H)\{h1, ha, hi, hi+1}.

In the former case G[V(H) U {v}] is a jewel. Thus we may assume that the
latter case holds. Since |N(v) N V(H)| < 4, it follows that N(v) N V(H) =
{h1, ha, hi, hit1}. But now G[V(H)U{v}] is a line wheel, a contradiction. This
proves 3.1. O

Now we turn to the proof of 2.2.

Proof. If G has no hole, then G is chordal, and therefore has a simplicial vertex
[3], and 2.2 holds. Thus we may assume that G has a hole. For an integer k > 4
a subset W C V(G) is k-structured if (here the addition is mod k):

e W is the disjoint union of k non-empty cliques K, ..., Kg,

o for every i € {1,...,k} every v € K, has a neighbour in K;_; and a
neighbour in K11, and

o ifi,j€{l,...,k} and i # j £ 1 then K; is anticomplete to K.

We call the partition (K7, ..., Ky) a k-structure of W.

Let H be a hole of G. Then H has length k > 4, and V(H) is a k-structured
set. If possible, choose H with k > 5. Let W C V(G) be a k-structured set
with k-structure (K7, ..., K}), where each K; contains exactly one vertex of H,
and such that W is inclusion-wise maximal with this property. In what follows
addition and subtraction of indices of the k-structure is mod k.

(1) Leti e {1,...,k}. Ifa,b € K; and N(b) N K;11 € N(a) N K;41,
then N(b) NK;,_1 C N(a) NK;_q.

We may assume ¢ = 1. If for each j € {2, k} there exists a; € (N(b)\N(a))NKj,
then {b,ay,a,as} is a claw in G, a contradiction. This proves (1).

) Letie{1,...,k}. For every a,b € K; either N(a)NK;11 C N(b)N
Kiyq, or N(b) NK;+1 C N(a) NK;t1.
We may assume ¢ = 1. Suppose there exist o’ € (N(a)\ N(b)) N K3 and
b € (N(b)\ N(a)) N Ks. Since K; and K5 are cliques, a is adjacent to b, and o
is adjacent to b’. Now a-a’-b’-b-a is a hole of length four. Let C = N(a) N K},
and C' = N(a’') N K3. By (1) b is complete to C, and b" is complete to C”.
Switching the roles of a and b, we deduce that b is anticomplete to K} \ C, and,
similarly, b’ is anticomplete to K3\ C”. Since the graph G [Uf:3 K] is connected,



there is a path P = pi-...-p; in G[U?:3 K;] with p; € C and p; € C'; we may
assume P is chosen with ¢ minimum. Then po,...,p;_1 € CUC’, and therefore
V(P)\ {p1,p:} is anticomplete to {a,b,a’,b'}. But now Gla,a’,b,0',p1,...,p
is a short prism in G, a contradiction. This proves (2).

For every i € {1,...,k}, K; is complete to at least one of

3
3) Ki 1,Kit1.

We may assume 7 = 1. Suppose there exist u € K, v,w € K; and z € Ky
(where possibly v = w) such that u is not adjacent to w, and v is not adjacent
to z.

First we claim that v,w can be chosen in such a way that uv and wz are
edges. Suppose not; then we may assume that v is non-adjacent to both u
and z. Since (K7i,...,Ky) is a k-structure, there exist n,,n, € K such that
u is adjacent to m,, and z is adjacent to n, (possibly n, = w). Since v is
anticomplete to {u, z}, it follows from (1) that n, is non-adjacent to z, and n,
is non-adjacent to u. But now we can choose v = n,, and w = n,, and the claim
holds.

In view of the claim in the previous paragraph we assume that uv and wz
are adjacent (and in particular v # w). Let v’ € K} be a neighbour of w; by
(2) ' is adjacent to v. Now the set T' = Ui-:gl K, is non-empty and connected,
and both «’ and z have neighbours in T. Consequently, there is a path R from
u’ to z with V(R) \ {v/,2} C T. Let € V(R) be the neighbour of w’. Then
x € Ki—1, and by (1) x is adjacent to u. It follows from the definition of a k-
structure that V(R)\ {z, z, v’} is anticomplete to {u, v', v, w}. But now the hole
2-w-v-u-z-R-z together with the vertex u’ forms a jewel in G, a contradiction.
This proves (3).

Let j € {1,...,k}. For every i € {2,....,k —2}, a; € K; and

(4)  aitrj € Kjiy, there is a path P from a; to a;; with V(P) C Ugi; K,
and using exactly one vertex from each of Kj,..., Kji,;.

We may assume j = 1. The proof is by induction on i. Suppose first that
i = 2. Since by (3) K is complete to at least one of K, K3, it follows that aq
and ag have a common neighbour as € Ks. Now ai1-as-ag is the required path.

Now assume that ¢ > 2, let a;4;—1 € K;4;—1 be a neighbour of a;4;. By the
inductive hypothesis there is a path P from a; to aj1;_1 with V/(P) C UQJJ* K,
using exactly one vertex from each of Kj,..., K;1;_1. Now a;-P-a;1;_1-a;4; is
the required path. This proves (4).

Let v € V(G)\W. Fori € {1,...,k} let N; = K; N N(v) and
M; = K; \ N;. The following hold for everyi e {1,...,k}:

(5) 1. N; is anticomplete to at least one of M;_1, M;41.

2. Ifk > 4, then M; is anticomplete to at least one of N;_1, N;41.

We may assume ¢ = 1. By (3) we may assume that K is complete to K.



We first prove the first statement. We may assume that there exists mq €
My, for otherwise the claim holds (V7 is anticomplete to My because My = ).
Now if ny € Ny has a neighbour my € My, then {ni,v,mq,my} is a claw, a
contradiction. This proves that Nj is anticomplete to My, and (5).1 follows.

Next we prove the second statement. We may assume that there exist m; €
M, and ny € N> such that m; is adjacent to no. Let nyp € N, then ni €
N(my). By (4) there exists a path P from ns to ny with V(P) C Uf:z K;
with |[V(P)N K;| =1 for every i € {2,...,k}. But now we get a contradiction
applying 3.1 to the hole mj-no-P-ng-my and the vertex v. This proves (5).2
and completes the proof of (5).

Let v € V(G)\ W and fori € {1,...,k}, let N; = N(v) N K; and

e N; is non-empty for at most two consecutive values of i (mod
(6) k) or

o k =5, v is complete to W, and K; is complete to K;11 for
every i € {1,...,4}.

First we claim that we can choose j,1 with N; # (0 and N; # (), and such
that j = 1 +£2. If N; # 0 for every i € {1,...,k}, then the claim holds. If
N; =0 for every i € {1,...,k}, then the claim holds. Thus we may assume that
some N;s are empty, and some are not. By shifting the indices, we may assume
N; # 0 and Ny, = (). We may assume that N; # () for some t € {3,...,k—1} for
otherwise (6) holds with ¢ = 1. Let ny € Ny and n; € Ny. By (4) there exists
a path P from ny to n such that V(P) C UEZI K; and P uses exactly one
vertex from each of Ki, Ko, ..., K;. Also by (4) there exists a path @ from n,
to ny such that V(Q) C K; U U?:t K; and @ uses exactly one vertex from each
of K¢y, Kiy1...,Kg, Ky. Now F = ni-P-ni-Q-nq is a hole, and ny,n; € V(F).
Since t > 3 and N, = 0, applying 3.1 to F' and v we deduce that the fourth
outcome of 3.1 holds and t = 3. Now we can set j = 1 and [ = ¢. This proves
the claim.

By the claim of the previous paragraph (shifting the indices so that j = k
and | = 2) we may assume that N, and Ny are both non-empty. For i € {2,k}
let a; € N;. By (3) ar and as have a common neighbour a; € Kj.

Suppose Ui:gl N; = (. Since W is maximal, (K; U{v}, Ko,...,Kj) is not a
k-structure for W U {v}, and therefore there exists a} € M;. By symmetry we
may assume that K is complete to Ks. Let a} € K3 be a neighbour of as; then
as € Ms, contrary to (5).1. This proves that Uf;; N; # 0.

Suppose k = 4. Then there is symmetry between K; and K3, and we deduce
that N; # () for every ¢ € {1,...,4}. By (3) we may assume that K; is complete
to Ko, and K3 to Ky. Now 3.1 implies that there is no hole n1n,n3n,n; with
n; € N; for every i € {1,...,4}, and consequently either N; is anticomplete
to Ny, or N3 is anticomplete to N,. By symmetry we may assume that Nj is
anticomplete to Ny. Let n; € N; and ng € Ny, and let m; € K; be adjacent



to ny and my € Ky be adjacent to ny. Then m; € M; and my € My. By (2)
applied to m; and ni, we deduce that m; is adjacent to my. If there exists
mae € Ma, then {ni,v,mq,mys} is a claw, a contradiction. This proves (using
symmetry) that My U M3 = (. Let ny € K», and let n3g € K3 be adjacent
to ng. Then ny € Ny and ng € N3. But now Glv,my,na, ng,n1,ns, mq] is a
seven-antihole, a contradiction. This proves that k£ > 5.

By (5).2 it follows that a; € N;. We claim that k£ = 5 and v is complete to
W. Suppose v has a non-neighbour in W. Since {v, aj, a2, z} is not a claw for
any x € Uf;f K;, it follows that Ui:f N; =0.

We may assume that there is a3 € N3. Since {v, as, ax, a3} is not a claw, it
follows that ay is adjacent to as. By (4) there is a path P from a3 to ap with
V(P) C U?Z?) K; and using exactly one vertex from each of K3, ..., K. Now
F = ap-aq-as-az-P-ay is a hole, and 3.1 implies that k& = 5 and v is complete
to V(F). We have proved that N; # () for every i € {1,...,5} thus restoring
the symmetry of the 5-structure. Since for n; € Ny, ny € Ny and ng € Ny,
{v,n1,m2,n4} is not a claw, we deduce (using symmetry) that N; is complete
to Nt for every i € {1,...,5}.

Next suppose that both Ms and Ms are non-empty. By (3) we may assume
that K7 is complete to Ky. By (5).1, N7 is anticomplete to Ms5. Since every
vertex of M5 has a neighbour in K7, it follows that M; # (). By (5).2 M, is an-
ticomplete to N5, but now m; € M; and n; € Ny contradict (2). By symmetry
we may assume M; is non-empty for at most two consecutive values of i, and
that My U My U M3 = (. By (5).2 Ny is anticomplete to My, and similarly My
is anticomplete to N5. By symmetry we may assume that My # (). But now
my4 € My and ny € Ny contradicts (2). This proves that &k = 5 and v is complete
to W. To complete the proof of (6) assume for a contradiction that there exist
ie{l,...,4}, k; € K; and k;11 € K; 41 such that k; is non-adjacent to k;41.
We may assume ¢ = 1. Then {v, k1, k2, k4} is a claw in G, a contradiction. This
proves (6).

For i € {1,...,k} let K; ;41 be the set of all vertices of V(G) \ W that have a
neighbour in Kj;, a neighbour in K1, and no neighbour in W\ (K; U K;41).
The outcomes of (6) are summarized in Figure 3.

T

Figure 3: Outcomes of (6) (here wiggly lines represent possible adjacency, and
the dotted arc represents the remainder of the k-structure).



Assume that K; ;+ # 0. The following statements hold
1. K;UK;1 UK, 41 is a clique.

(7) 2. Ifu e V(G)\ W is complete to W, then u is anticomplete to
Kiit1.

3. K iv1 is anticomplete to K;_1 ;.

Let v € Ky 9. For i € {1,2} let N; = K; N N(v), and let M; = K; \ N;. By
(5).1 Ny is anticomplete to My, and Ns is anticomplete to M;. If there exists
my € My, then ny, m; contradict (2) for every ny € Ny. Thus M; = ), and by
symmetry My = (). This proves that K; o is complete to K7 U Ko.

Suppose k1 € K7 is non-adjacent to ko € Ks. Let P be a path from k5 to a
vertex ki € Ky, as in (4), such that |[V(P) N K;| =1 for every i € {2,3,...,k}.
By (3) K; is complete to Ki, and so F = ky-ki-v-ko-P-ky, is a hole. Let
ky € K1 N N(ks), then G[V(F) U {k{}] is a jewel in G, a contradiction. This
proves that K is complete to Ks.

Since {ki,kx,a,b} is not a claw for any k; € Ky, kp € Kr N N(k;) and
a,b € K, it follows that K is a clique, and therefore K; U Ko U K5 is a
clique. By symmetry, K7 U K3 U K 5 is a clique for every ¢. This proves (7).1.

Next suppose that u is complete to W and u is adjacent to w € K; 2. By (6)
k=5. Let ks € K5 and k5 € K5. Then {u,w, ks, ks} is a claw, a contradiction.
This proves (7).2.

Finally, suppose that wy, € Kj 1 is adjacent to wy € Ki2. Let k1 € K,
ko € Ko and ki € Ky, and let P be a path from ks to ki as in (4) such that
[V(P)N K;| =1 for every i € {2,3,...,k}. Then F = ko-P-kj-wi-wa-ko is
a hole and G[V(F) U {k1}] is a jewel, a contradiction. This proves (7).3 and
completes the proof of (7).

For i € {1,...,k}, let V(H)N K; = {h;}. Choose i € {1,...,k} such that
K, is complete to K;4+1 and, if possible, such that K; ;11 # 0; we may assume
i =1. Set a:h1 andb:h2, and let K:KluKQUKLQ.

By (6), every vertex of X (ab) = {a,b} U (N(a) N N(b)) either belongs to K
or is complete to W (and k = 5). Since if y € X (ab) is complete to W, then
y has two non-adjacent neighbours in V(G) \ X (ab), it follows that K contains
the dome of ab. By (7).1 K is a clique.

We prove that K is a simplicial clique, and therefore K equals the dome of
ab. Suppose K is not a simplicial clique, and let v € K and u,w € V(G) \ K be
such that v and w are adjacent to v, and u is non-adjacent to w. Suppose first
that w is complete to W. By (6) k = 5 and for every ¢ K; is complete to K.
By (7).2v ¢ Kq9. Forie{l,...,5} let k; € K;. We may assume that v = k;.
Since u is non-adjacent to w, it follows that w ¢ W. Since G[k1,u, ks, w, ka]
is not a jewel in G, it follows that w is not complete to W. By (5).1 (since
k1 is complete to Ky U K5) w has a neighbour in at least one of Ky, K5. By



(6) w € K12UK51. Since w ¢ K, it follows that w € K5 1. By (7).1 K; is
complete to K. Since K 5 # 0, and since K1, Ky where chosen with K 5 # ()
if possible, it follows that there exists k € K7 2. By (7).2 u is non-adjacent to
k, and by (7).3 w is non-adjacent to k. But now {k1,u, k,w} is a claw in G, a
contradiction. This proves that u is not complete to W. By symmetry, w is not
complete to W.

Now suppose v € Kj. Since u,w ¢ K, it follows from (6) that u,w €
K, U Ky 1. But then u is adjacent to w by (7).1, a contradiction. This proves
that v € K1, and, by symmetry, v ¢ K.

It follows that v € K, 3. Moreover, applying the previous argument to an
arbitrary vertex of KU K5 in the role on v, we deduce that no vertex of K1 UK,
is complete to {u,w}. Since {v,u,w,p} is not a claw for p € K; U K5 it follows
that every vertex of K7 U K3 has a neighbour in {u,w}. Since u,w ¢ K, (7).1
implies that each of w, w is anticomplete to at least one of K7, K3. By switching
u and w if necessary, we may assume that u has a neighbour in K; and is
anticomplete to K5. By (5).1 u has a neighbour in Kj, but now v € K}, ; is
adjacent to v € K7 o, contrary to (7).3. Thus we have found an edge of H whose
dome is a simplicial clique. This proves 2.2. O

4 The Algorithm

In this section we use 2.2 to design a simple algorithm that finds a simplicial
clique in a clean graph.

4.1. There is an algorithm with the following specifications.
Input: A non-null clean graph G.

Output: A simplicial clique in G.

Running time: O(|V(G)|%).

Proof. Let |V(G)| = n. First, for every vertex v € V(@) check if N(v) is a
clique. If the answer is yes for some v, then output a simplicial clique {v}. This
step can be done in time O(n?).

Now for every edge ab compute X (ab),Y (ab) and the dome of ab, and check
if the dome of ab is a simplicial clique. This step can be done in time O(n?).

We now use 2.2 to prove that the algorithm will return a simplicial clique of
G. If G is a chordal graph, then by the first statement of 2.2 the first step of
the algorithm will return a simplicial clique; otherwise there is a hole in G, and
so by the second statement of 2.2, the second step of the algorithm will return
a simplicial clique. This proves 4.1. ]

We remark that the algorithm of 4.1 can be used to produce, in time
O(|[V(G)]?), a list of at most |V (G)|? sets one of which is guaranteed to be
a simplicial clique. The rest of the running time is spent checking whether each
of the sets is a simplicial clique.
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