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Abstract—Structural variants (SVs) are rearrangements in the
DNA sequence of members within the same species. Detecting
SVs is challenging because most approaches suffer from high-
false positive rates. In this work, we improve the accuracy of
SV detection by exploiting familial relationships and the rare
occurence of these rearrangements. Mathematically, we pose
SV detection as a constrained optimization problem regularized
by a sparsity promoting term. Furthermore, we generalize our
previous methods in two ways. First, we consider a biologically
realistic scenario of a parent-child-trio, where each individual
may carry zero, one, or two copies of any potential SV. Second,
we employ a novel block-coordinate descent approach with
orthogonal projection to efficiently minimize the objective and
to enforce feasibility within the biological constraint space. Nu-
merical results using both simulated and real trios demonstrate
that our proposed approach improves our ability to separate true
SVs from false positives.

Index Terms—Sparse signal recovery, convex optimization,
next-generation sequencing data, structural variants, computa-
tional genomics

I. INTRODUCTION

The genome, the complete DNA sequence of an organism,
consists of one (or more) lengthy sequences of nucleic acids
represented by the letters A,C,G and T. Some species are
diploid and inherit a complete genome from both parents
whereas others (such as bacteria) are haploid with only a
single copy of their genome. It was originally thought the
genome was essentially identical, except for some single
letter differences (single nucleotide variants, SNVs), between
individuals. Today we understand that longer differences are
common and the term structural variant (SV) has come to
represent differences (typically > 50 letters) between genomes
of the same species [1]. While the role of most SVs is
unknown, many have been implicated in human disease [2].

SVs are typically identified through comparisons between
an unknown genome and a given reference through a two
phase process of sequencing and mapping. In the sequencing
phase, fragments are sampled from the unknown genome. The

types of samples drawn from the unknown genome depend
on the specific DNA sequencing technology. The ends of the
fragments are then sequenced, that is the DNA letters at either
end are determined. This mapping process attempts to find
the true position of the samples in the reference genome. SVs
are identified through analysis of the mapped arrangements.
For example, paired-ends which map too far apart in the
reference indicate potential deletions. Many tools have been
developed for SV identification, as reviewed in [3]. However,
such methods are prone to erroneous predictions from errors
in the sequencing and mapping process. When the sequenc-
ing coverage, expected number of samples containing each
genome position, is high erroneous SV predictions are more
easily separated from true SVs. However, increasing coverage
greatly increases the cost of the sequencing experiment. In
our work, we take an orthogonal approach to SV detection by
simultaneously predicting SVs in multiple related individuals.

In large scale studies, such as the 1000 Genomes Project,
the genomes of many related individuals are simultaneously
sequenced including a number of parent-child trios. Because
the de novo rate of formation of SVs is very low, it is expected
that the vast majority of SVs in the genome of a child will
be present in the genome of one of their parents. Moreover,
if the child’s genome does have an SV the number of copies
will depend on the number of copies in the genomes of their
parents because the child inherits a copy of their genome from
each parent. In prior work, we have simultaneously considered
the genome of parents and children [4], [5]. However, for
mathematical and computational simplicity we considered
approximations to the true biological system by assuming each
individual has only one copy of their genome [6] or when
allowing each individual to have two copies considering only
one parent [5]. In this work, we consider simultaneous SV
prediction in a diploid parent-child trio. We use a novel block-
coordinate descent approach to enforce biological feasibility
while minimizing our objective over a 6-dimensional solution



space and promote sparsity of SVs with an `1-norm.

II. METHOD

We consider a framework for refining structural variant (SV)
recovery signals for multiple related individuals. This work
considers diploid data from one father (F ), one mother (M),
and one child (C). We assume that each signal consists of
n locations in the genome where an SV may occur. Humans
have two copies of each chromosome, one inherited from each
parent. If both parents have an SV at the same location, this
impacts the probability that the child also has an SV at the
same location. For each individual i in our model, we consider
two signals that take on binary values: a heterozygous indicator
~yi 2 {0, 1}n and a homozygous indicator ~zi 2 {0, 1}n. The
heterozygous vector is an indicator that the individual has one
copy of the SV while the homozygous vector indicates that
the individual has two copies of the SV. If an individual is
heterozygous for an SV at position j, then ~y(j)i = 1 and
~z(j)i = 0. Similarly, if an individual is homozygous for an
SV at position j, then (~zi)j = 1 and (~yi)j = 0.

A. Observation Model

The observed data are the number of DNA fragments
supporting each potential SV. In particular, we denote the
observation vectors for the parents (father and mother) and
child by the vectors ~sF 2 Rn,~sM 2 Rn, and ~sC 2 Rn,
respectively. We assume the data follow a Poisson distribution
([7], [8]):
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where �C ,�F , and �M are the sequencing coverage of the
child, father, and mother, respectively, and ✏ > 0 (see [9]). The
parameter ✏ is reflective of measurement errors corresponding
to the sequencing and mapping process. These errors are a
large hindrance to accurate SV discovery methods and lead to
a high false-positive discovery rate.
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we note that ~f 2 {0, 1}6n. Our general observation model (1)
can be expressed as

~s ⇠ Poisson (Af + ✏1) ,

where 1 2 R3n is the vector of ones and A = [A1 A2] 2
R3n⇥6n is the coverage matrix with
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Here, In 2 Rn⇥n is the n⇥ n identity matrix.

B. Problem Formulation

Assuming a Poisson process to model the noise in the mea-
surements [10], the probability of observing the observation
vector ~s, given the true signal ~f , is given by

p(~s|A~f) =
3nY

j=1

((A~f)j + ✏)~sj

~sj !
exp (�(A~f)j + ✏). (2)

We use the maximum likelihood principle to determine the
unknown Poisson parameter A~f such that the probability of
observing the vector of Poisson data ~s in (2) is maximized.
Specifically, we minimize the corresponding convex negative
Poisson log-likelihood function

F (~f) =
3nX

j=1

(A~f)j � ~sj log((A~f)j + ✏). (3)

To minimize F (~f), we apply a continuous relaxation of the
variables and use gradient-based methods. Specifically, we let
that the values of ~f to lie between 0 and 1, i.e., 0  ~f  1,
or equivalently,

0  ~zi, ~yi  1, (4)

where 0 is the vector of zeros, i 2 {C,F,M}, and the in-
equalities are to be understood component-wise. We note that
since a variant cannot be both heterozygous and homozygous
simultaneously, we require further that

0  ~zi + ~yi  1. (5)

C. Familial Constraints

We incorporate additional constraints that exploit informa-
tion about the signal ~f to help improve the accuracy of our
SV predictions. The constraints control for biological realities
in each individual as well as constraints from the relatedness
of individuals.

First, if one of the parents is homozygous for an SV at
location j, i.e., (~zF )j = 1 or (~zM )j = 1, then the child must
be at least heterozygous, i.e., (~zC)j + (~yC)j = 1. This means
that

0  ~zF  ~zC + ~yC
0  ~zM  ~zC + ~yC .

These constraints indicate that if the child does not have an
SV in a particular location, then neither parent can have a
homozygous SV at that location.

Second, the child can only be homozygous, i.e., (~zC)j = 1,
if both of the parents are at least heterozygous, i.e., (~zF )j +
(~yF )j = 1 and (~zM )j + (~yM )j = 1. Furthermore, the child
must be homozygous if both parents are homozygous, i.e.,

max{~zF +~zM�1, 0}  ~zC  min{~zF + ~yF , ~zM + ~yM},

where max{·, ·} and min{·, ·} are to be understood compo-
nentwise.



Finally, the child can only be heterozygous if at lest one of
the parents is at least heterozygous, and the child cannot have
an SV if neither parent has an SV, i.e.,

0  ~yC  min{~zF + ~yF + ~zM + ~yM , 1}.

We denote the set of all vectors satisfying these constraints by
S , i.e.,

S =
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D. Optimization Formulation

A common difficulty with SV recovery is predicting false
positive SVs by mistaking fragments that are incorrectly
mapped against the reference genome. Since SVs are rare in
an individual’s genome, we enforce sparsity in our predictions
by incorporating an `1-norm penalty term in our objective
function (see [11]). Our objective function takes the following
form:

minimize
~f2R6m

F (~f) + ⌧ ||~f ||1

subject to ~f 2 S
(6)

where F (~f) is the negative Poisson log-likelihood function
shown in (3) and ⌧ > 0 is a regularization parameter. We
then use a second-order Taylor series approximation around
the current iterate ~fk to formulate a sequence of quadratic
subproblems. In this approach, we approximate the Hessian
matrix by a scalar multiple of the identity matrix, ↵kI , where
↵k > 0 (see [12] for details) for how to compute ↵k), and
define the function

F k(~f) = F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22, (7)

which we use as a surrogate function for F (~f) in (6). This
approximation leads to the following equivalent subproblem
formulation:

~fk+1 = arg min
~f2R6n

1

2
||~f � ~rk||22 + �||~f ||1

subject to ~f 2 S
(8)

where ~rk = ~fk � 1
↵k

rF (~fk) and � = ⌧
↵k

. This approach is
based on [13], [14]. Note that the objective function in (8) is
separable in f . Thus, (8) can be solved in batches. In particular,
at each candidate SV position, we solve

fk+1 = arg min
f2R6

1

2
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subject to f 2 S

(9)

where the vectors rk = [rkzC ; r
k
zF ; r

k
zM ; rkyC

; rkyF
; rkyM

] and f =
[zC ; zF ; zM ; yC ; yF ; yM ] correspond to the components of ~rk

and ~f , respectively, and the set S is similar to the feasible set
S but restricted to the particular candidate SV position.

E. Optimization Approach

Here we propose solving our problem using a block-
coordinate descent approach. Following methods used in
previous work (see [5]), we fix all but one individual and
solve (9) over both indicator variables for that individual. In
subsequent steps, the variables corresponding to some other
individual are minimized while the other individuals signals
are fixed. This block-coordinate descent approach continues
until the iterates satisfy a pre-determined convergence criteria.

Step 0: First, we compute the unconstrained minimizer of
(9), which is given by f̂ (0) = rk � �1. Then we initialize
the parent indicator variables by ẑ(0)I =| {0, rkzI � �, 1} and
ŷ(0)I =| {0, rkyI

� �, 1}, where I 2 {F,M} and mid{·, ·, ·}
takes on the value that is in the middle to ensure that the
constraint in (4) is satisfied. To ensure that the constraint in
(5) is satisfied, if ẑ(0)F + ŷ(0)F > 1, then we let ẑ(0)F = ŷ(0)F =

0.5. We adjust ẑ(0)M and ŷ(0)M similarly. To initialize the child
indicator variables we let ẑ(0)C = rkzC � � and ŷ(0)C = rkyC

� �.
We initialize the index with i = 1.

Step 1: Once we have obtained estimates for both parents’
diploid indicator variables, ẑ(i�1)

F , ŷ(i�1)
F , ẑ(i�1)

M and ŷ(i�1)
M ,

from the previous iteration, we project ẑ(i�1)
C and ŷ(i�1)

C onto
the feasible set S with fixed parent variables to obtain the
new child indicator variables ẑ(i)C and ŷ(i)C . This projection is
similar to the projections done in [5]. The feasible region for
this step is illustrated in Fig. 1(a).

Step 2: After obtaining the new estimates for the child’s
diploid indicator variables, ẑ(i)C and ŷ(i)C , from Step 1, we
project ẑ(i�1)

F and ŷ(i�1)
F onto our feasible set S with fixed

child and mother indicator variables to obtain the new father
indicator variables ẑ(i)F and ŷ(i)F . This projection is also similar
to the projections done in [5]. The feasible region for this step
is similar to that illustrated in Fig. 1(b).

Step 3: After obtaining the new estimates for the father’s
diploid indicator variables, ẑ(i)F and ŷ(i)F , from Step 2, we
project ẑ(i�1)

M and ŷ(i�1)
M onto our feasible set S with fixed

child and father indicator variables to obtain the new mother
indicator variables ẑ(i)M and ŷ(i)M . This projection is also similar
to the projections done in [5]. The feasible region for this step
is illustrated in Fig. 1(b).

Steps 1, 2 and 3 are repeated in an alternating cycle
until some convergence criteria are satisfied. In our numerical
experiments, we saw that iterates did not change after three
cycles. Thus, we terminated each cycle after three iterations.
Note that Steps 2 and 3 are equivalent and result in identical
feasible regions.

III. RESULTS
A. Simulated Data

Before applying our method to real human data, we first
tested the performance on simulated data to match our as-
sumptions. To do this we simulated two parent signals with a



(a) (b)

Fig. 1: The feasible set (shown above by the shaded region) for each step of the proposed block-coordinate minimization
approach. (a) In Step 1, we obtain the solution for the child’s variables zC and yC given fixed parent indicator variables
zF , yF , zM and yM . (b) In Step 3, we obtain the solution for the mother’s variables zM and yM given fixed indicator variables
zC , yC , zF and yF . The feasible set represented in Step 2 is similar to that in Step 3.

set number of structural variants and a set similarity between
the parent signals. The simulated true signals all consisted of
105 potential SVs. In the parent signals 500 locations were
chosen at random to be variants; the percentage of variant
sites the parents had in common was varied for testing. We
then formed the child signal using a logical implementation
of inheritance. If both parents were homozygous for an SV at
position j then the child is homozygous for an SV at position
j. If one parent was homozygous for an SV at position j and
the other parent was heterozygous for an SV at position j
then the child was at least heterozygous for an SV at that
position, and had a 50% chance of being homozygous for
an SV at position j. After forming the true signals for each
individual, the observed signals were created by sampling from
the Poisson distribution with a given coverage and error.

Analysis. Given an optimal ⌧ value, our method is better able
to reconstruct the homozygous signals for each individual. In
Figure 2 we show an ROC curve generated for a simulated
data set where the parents share 90% of their SVs and 30% of
their SVs are homozygous. The area under the curve for each
signal recovered from our method is greater than that of our
previous diploid model which only includes information from
one parent and one child [5]. We found that given optimal ⌧
we were able to better recover not only the child signal, but
also each of the parents as compared to our previous method.

B. 1000 Genomes Project Trio Data

We next apply our diploid method to the 1000 Genomes
Project CEU trio data [15]. The father-mother-daughter
(NA12891-12892-12878) trio was sequence at approximately

Fig. 2: ROC curves of two methods illustrating the false
positive rate vs. the true positive rate in the child reconstruction
broken into the heterozygous signal and the homozygous
signal, where ⌧ = 150, the parents share 90% of their SVs
and 30% of each parents SVs are homozygous. The coverage
values for each individual are as follows (�C ,�F ,�M ) =
(5, 10, 10).

4 ⇥ coverage and structural variants were experimentally
validaded for these individuals. To create ~z and ~y, we fil-
ter LowQual predictions and incorporated the genotype to
separate heterozygous from homozygous reported deletions.
Moreover, we only consider deletions longer than 250bp in
the experimentally validated set.



Analysis. For each CEU genome, there are n = 57, 078 candi-
date deletion locations. Of these GASV predictions, 686, 637,
and 724 are validated deletions (heterozygous and homozy-
gous combined) in the father, mother, and child, respectively.
Whereas our previous method fixes one individual at a time,
our new method simultaneously predicts all three individuals
while improving the heterozygous signal reconstruction for the
child (see Fig. 3). Moreover, we see comparable performance
for the reconstruction of both heterozygous and homozygous
signals for both parents. Fig. 4 is representative of the slightly
improved predictions for the parent signals for varying values
of ⌧ .

Fig. 3: ROC curves for the reconstruction of the heterozygous
child signal, ~yC , where �C = �F = �M = 4, ⌧ = 1 ⇥
10�4, and ✏ = 0.01. Since the validated set may not contain
all true deletions, we plot novel deletions against validated
true positives. We observe a considerable improvement in the
detection of true positives with our proposed method.

Fig. 4: ROC curves for the reconstruction of the homozygous
mother signal, ~zM , where the coverage is approximately 4
⇥ for all individuals, ⌧ = 1 ⇥ 10�4, and ✏ = 0.01. We
note a marginal improvement over our previous method in
this reconstruction.

IV. CONCLUSIONS

We present an optimization method to detect SVs in se-
quencing data from parent-child trios. This method lever-
ages relatedness between the individuals to improve signal
reconstruction of noisy data. This extends previous work that
focused on diploid signals from one parent and a child. We
present results for both simulated and real data from the
1000 Genomes Project. We demonstrate that we are able to
capture variants for which the individual possessed two copies.
In future studies we intend to apply this work to a multi-
generational framework with multiple offspring.
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