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ABSTRACT: When predicting bisolute adsorption, the adsorbed solution theory (AST) and real
adsorbed solution theory (RAST) either frequently show high prediction deviations or require
bisolute adsorption data. Emerging feedforward network (FN) models can provide high prediction
accuracy but lack broad applicability. To avoid those limitations, adsorption experiments were
performed for a total of 12 single solutes and 55 bisolutes onto two widely used resins (MN200 and
XAD-4). Different FN-based models were then built and compared with AST and RAST, based on
which a new modeling strategy coupling FN to RAST and requiring only single-solute data was
proposed. The root-mean-square error (RMSE) of predictions by the FN-RAST is 0.082 log units for
50 bisolute adsorption on MN200, much lower than that by AST (0.164) and slightly higher than that
by RAST (0.069) or the best FN model (0.068). The FN-RAST model further provided satisfactory
predictions for 5 bisolute adsorption on XAD-4 (RMSE = 0.10), which is comparable to that by
RAST (0.10) and much lower than those by AST (0.26) and FN model (0.38). Therefore, the FN-RAST enjoys both satisfactory
prediction accuracy and some broad applicability. The values of Abraham descriptors E and S were also founded to help assess/
compare the nonideal behavior in different bisolute mixtures.

■ INTRODUCTION

Predictive models are crucial for research and application of
adsorption in water treatment. Although predictive models for
single-solute adsorption have been extensively reported,1−5 bi-
or multisolute adsorption represents a much more realistic
scenario, but their predictive models are much less
investigated.6 In the natural environment or water treatment
processes, there are almost always multiple organic pollutants
coexisting;7−9 they allow competitive and/or synergistic
adsorption among the cosolutes to make their adsorption
behaviors much more complex than in single-solute
adsorption.10−12 Because of difficulty in quantifying the
complex adsorption behaviors, the prediction of the adsorption
capacity of bi- and multisolute mixtures suffers great
uncertainties. Building accurate predictive models for bi- and
multisolute adsorption is thus important for addressing these
uncertainties.
Various classical and emerging predictive models have been

developed for bisolute adsorption,13−15 among which the
adsorbed solution theory (AST), a thermodynamically
consistent model with a concrete theoretical foundation
(details in Text S2, Supporting Information),16 has been the
most successful and widely used. The most attractive feature of
AST is that it can predict the adsorption of bisolute mixtures
relying solely on single-solute adsorption data, which has
allowed it to be used in thousands of studies to predict the
adsorption of bisolute mixtures.17 Generally, AST achieves
good predictions for binary gaseous/aqueous adsorption when

the adsorbates behave ideally. An ideal behavior here means
that each of the solutes in the adsorbed phase behaves
independently under the control of spreading pressure with the
presence of the other solutes. In other words, there are no
considerable interactions between the molecules of the
bisolutes in the adsorbed phase.18 However, AST has shown
very high deviations when bisolute mixtures behave nonideally,
i.e., deviate from the ideal behavior.16,18 For example, AST
achieves accurate predictions for the bisolute adsorption of
toluene/ethylbenzene on an adsorption column19 and
acetone/propionitrile on a granular activated carbon
(GAC),20 but it has shown high prediction deviations on the
bisolute adsorption of p-chlorophenol/p-cresol, trichloro-
ethylene/tetrachloroethylene, and phenol/m-cresol on
GAC20−22 and phenanthrene/pyrene on natural sediments.23

These prediction deviations or the nonideal behaviors of the
solutes are largely associated with the lateral interactions
among the different adsorbed solutes.24 The more significant
the lateral interactions, the higher the nonideality and then the
prediction deviation by AST.25−28

Received: June 7, 2020
Revised: September 13, 2020
Accepted: November 1, 2020

Articlepubs.acs.org/est

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.est.0c03700
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

H
ui

ch
un

 Z
ha

ng
 o

n 
N

ov
em

be
r 1

4,
 2

02
0 

at
 0

4:
42

:1
2 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kai+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Huichun+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c03700&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c03700?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c03700?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c03700?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c03700?goto=supporting-info&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c03700/suppl_file/es0c03700_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c03700?fig=abs1&ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c03700?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


To reduce high deviation in AST predictions, the activity
coefficient (γi) as the correcting factor to account for the
nonideality has been introduced to AST to form the real
adsorbed solution theory (RAST).6,29 The γi can be calculated
from bisolute experimental data (details in Text S2, Supporting
Information) and then correlated with the fractions of the
solutes in the adsorbed phase by models such as the Wilson
equation and nonrandom two-liquid model (NRTL).24,30 The
obtained correlations can then be used by RAST to predict
bisolute adsorption. However, RAST requires bisolute
adsorption data to calculate γi, which means that RAST
cannot predict bisolute adsorption only based on single-solute
adsorption data like AST does.31,32 The fitting models for γi
also need experimental data of bisolute adsorption such as the
adsorbed amounts.6,29 These limitations have greatly restricted
the applicability of RAST. So, RAST is often employed in
retrospective modeling rather than predictive modeling.25

Other than the classical AST and RAST, feedforward
networks (FNs) have emerged as a useful tool to build
predictive models for single- or bisolute adsorption.33−35 FN
models typically use the properties of solutes/adsorbents as the
input and adsorbed amounts or adsorption coefficients as the
output. An FN model can be quickly built with suitable inputs/
outputs and then provide predictions for new inputs. So far,
single-solute adsorption modeling has taken advantage of this
easy-to-build feature of FN models to yield satisfactory
prediction results.36,37 Several studies have also employed
FN to build accurate predictive models for binary or ternary
adsorption.34,35,38 For example, one study on gaseous binary
adsorption uses the binary equilibrium concentrations together
with the corresponding single-solute adsorbed amounts as the
inputs and the corresponding bisolute adsorbed amounts as
the outputs.34 In another research, similar inputs are used for
building an FN model to predict aqueous bisolute
adsorption.35 A recent study compares the performance of
AST and FN models in predicting the adsorption of ternary
nitrobenzene, phenol, and aniline on GAC.38 The inputs and
outputs are the three equilibrium concentrations and three
adsorbed amounts of the ternary system, and the trained FN
model provides excellent predictions. Despite the good
prediction accuracy, one major limitation of the existing
bisolute FN models cannot be overlooked; that is, they are
generally a simple extrapolation of the single-solute FN models
by doubling the inputs/outputs on one or several bisolute
mixtures, so they lack the broad applicability provided by AST
and are only applicable to certain bisolute mixtures or
adsorbents that have been involved in the modeling process.
The adsorbed amount of any chemical mainly depends on

three sets of parameters including properties of the chemical,
equilibrium concentration, and properties of the adsorbent.
Solution properties such as pH would also affect adsorption,
but for the adsorption of neutral chemicals on nonionic resins,
effects of solution properties are not expected to be significant.
The adsorption of different bisolute mixtures under the same
equilibrium concentration can be very different even on one
adsorbent; similarly, the adsorption of one bisolute mixture
onto different adsorbents would significantly differ even under
the same equilibrium concentration. So, to accurately predict
the adsorbed amounts of various bisolute mixtures on different
adsorbents under changing equilibrium concentrations, all
those three sets of parameters need to be incorporated in the
predictive model. However, the existing bisolute FN models
only include one or two sets of those parameters, so they are

only applicable to the bisolute mixtures or adsorbent(s) that
have been included. For example, one bisolute FN model that
solely uses equilibrium concentrations as the input without
considering the properties of the chemicals/adsorbents fails to
identify differences among various bisolute mixtures.38 It
means that this type of FN model can only predict the
adsorption of the same bisolute mixtures on the employed
adsorbent. Similarly, another type of FN model using bisolute
equilibrium concentrations plus two single-solute adsorbed
amounts as the input also suffers from some limitation.35 It can
predict the adsorption of different bisolute mixtures, but the
predictions are limited to the employed adsorbent. The reason
is that the properties of the chemicals have been incorporated
implicitly by including the single-solute adsorbed amounts,
which depend on the properties of the chemicals and can help
quantify the differences in the lateral interactions between
various bisolute mixtures;35 however, this type of FN model
fails to incorporate the properties of the adsorbents. As a result,
the applicability of the existing FN models is restricted to one
or several bisolute mixtures on one adsorbent, and the
extrapolation to new bisolute mixtures or other adsorbents
would inevitably lead to high deviations. Unfortunately, it is
not practical to directly include properties of adsorbents in
bisolute FN models because, unlike single-solute FN models,
bisolute FN models require much more data. For example, for
the adsorption of 10 chemicals on 10 adsorbents, single-solute
adsorption needs a maximum of 100 isotherms, while bisolute
adsorption needs 450 bisolute isotherms. It is challenging to
conduct so many experiments when dealing with multiple
chemicals and adsorbents, and there are also limited
experimental bisolute adsorption data reported.
Because AST, RAST, and FN models all have their own

limitations, using any of them alone cannot fulfill the goal of
building broadly applicable predictive models for the
adsorption of different bisolute mixtures onto different
adsorbents within a wide range of solute concentrations. In
this work, we for the first time established a coupled modeling
strategy that can take advantage of both the broad applicability
of AST and the high accuracy of FN models. To this end,
comprehensive adsorption experiments for both single- and
bisolute adsorption were conducted on two widely examined
polystyrene-based polymeric resins MN200 (microporous)
and XAD-4 (macroporous). AST predictions were first made
based on the single-solute adsorption data and compared with
the experimental bisolute adsorption data for each resin. Four
FN models using different inputs were then built for MN200
and the prediction accuracies were compared with that of AST.
The limitation of the obtained FN models was discussed by
comparing their prediction for bisolute adsorption on XAD-4
with that on MN200. Note that the FN models here were built
based on the bisolute adsorption data on MN200. The bisolute
adsorption data for both MN200 and XAD-4 were then
modeled with RAST after obtaining activity coefficients based
on the bisolute experimental data, and the model performance
was compared with that of the best FN model. Finally, a
coupled modeling strategy named FN-RAST (see the flowchart
in Figure S1), which only required single-solute adsorption
data, was developed and validated based on the bisolute data
on MN200, the broad applicability of the FN-RAST was
validated by evaluating its prediction performance on the
bisolute adsorption on XAD-4, and a qualitative relationship
was obtained based on the FN-RAST model for assessing the
degree of nonideality of different bisolute mixtures.
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■ MATERIALS AND METHODS

Chemicals and Resins. Chemicals used in this research
included phenol (Acros Organics, 99%), mequinol (Acros
Organics, 99%), p-chlorophenol (Acros Organics, 99+%), p-
methylphenol (Acros Organics, 99+%), m-nitrophenol (Alfa
Aesar, 98+%), aniline (Acros Organics, 99.8%), p-methylani-
line (Acros Organics, 99%), p-chloroaniline (Alfa Aesar, 98%),
p-nitroaniline (Acros Organics, 99%), vanillin (Sigma-Aldrich,
99%), and caffeine (Sigma-Aldrich, 99%). All chemicals were
used as received without further purification. MN200 was
provided by Purelite and had a BET surface area and a total
pore volume of 1021 m2/g and 0.49 cm3/g separately. XAD-4
was purchased from Sigma-Aldrich and had a BET and a total
pore volume of 829 m2/g and 1.25 cm3/g separately.4 More
detailed information about the selection of chemicals and
resins can be found in Text S1 and Table S1. Before usage, the
resins were subjected to extensive washing with 0.1 M HCl, 0.1
M NaOH, and DI water to remove inorganic impurities. Then,
Soxhlet extraction with methanol was used to remove organic
impurities. The purified resins were air-dried and used for all
the experiments.
Adsorption Experiments. Of the 12 selected chemicals, 9

chemicals (aniline, m-nitrophenol, nitrobenzene, p-chloroani-
line, p-chlorophenol, p-cresol, phenol, p-nitroaniline, and p-
toluidine) have been extensively examined in wastewater
treatment research, 2 chemicals (caffeine and mequinol) are
used as pharmaceutical and personal care products, and 1
additive (vanillin) exists in some industrial eluents and is
related to color generating.39 All single- and bisolute
adsorption experiments were conducted in 20, 40, or 60 mL
glass bottles with PTFE-lined caps; each sample was prepared
in triplicates. After adding a suitable amount of resin (typically
10−15 mg of MN200 or 25−30 mg of XAD-4) and stock
solutions of target chemicals, the bottles were shaken on a 180
rpm shaker at 23 °C for 48 h for the adsorption to reach
equilibrium. In every bisolution adsorption experiment, the
fraction of the solutes in the adsorbed phase was carefully
controlled to vary between around 10 and 90% (more in Text
S1). The reason for such an arrangement is that the activity
coefficients are highly related to the fractions of solutes in the
adsorbed phase, a wide range of which can maximize the
application scope of the obtained models.
The concentrations of the solutes in the supernatants were

measured by an HPLC (Agilent 1260) coupled with a DAD
detector and Agilent Eclipse XDB-C18 column (4.6 × 250
mm; 5 μm; mobile phase, methanol:water: 67:33 with a flow
rate of 1 mL/min) at the beginning and end of the adsorption
experiments. Then, the adsorbed amounts of each solute were
calculated by mass balance according to the measured initial
and equilibrium concentrations. There were a total of 50
groups of bisolute adsorption experiments performed on

MN200 for the model development and another 5 on XAD-
4 to validate the developed modeling strategy.

■ MODEL DEVELOPMENT
AST and RAST Predictions. The single isotherms were

fitted with different adsorption isotherm models, including
Langmuir, Freundlich, and the quadratic equation used in our
previous research.40 The best-fitting model was selected as the
working isotherm, and the best-fitting parameters were then
used to calculate the adsorbed amounts in bisolute adsorption.
The AST equations (Text S2 and eqs S5−S9) were solved in
Matlab 2019a (details of the code and input data setup are
given in Texts S2 and S3). The inputs were 6 fitting parameters
for 2 single-solute isotherms (m1, n1, k1, m2, n2, and k2) and 2
equilibrium concentrations (C1 and C2) in the bisolute
adsorption system; the outputs are 2 bisolute adsorbed
amounts (q1 and q2).
The workflow for RAST includes the following three steps:

(1) the single-solute adsorption isotherms together with the
bisolute adsorption equilibrium concentrations were employed
to calculate qi using eqs S5−S9, (2) the experimental activity
coefficients for each solute were calculated by eqs S6 and S14,
and (3) the calculated activity coefficients were used to
perform RAST predictions by eqs S5−S9 (more details in Text
S2).

Polyparameter Linear Free Energy Relationships (pp-
LFERs). Polyparameter linear free energy relationships (pp-
LFERs) use Abraham descriptors (E, S, A, B, and V)41 to build
regression equations (eq 1) and have been widely used to
predict different specific partitions (SPs). One of the most
common applications is to build single-solute predictive
models for aqueous adsorption,42−44 in which multilinear
regression (MLR) is performed between the adsorption
coefficient logKd and the Abraham descriptors. With the
obtained MLR equations, adsorption coefficients of new
chemicals (with known Abraham descriptors) can be
calculated.2,45 Our recent work has also demonstrated that
FN with the Abraham descriptors can build powerful
predictive models for single-solute adsorption on carbon
materials and resins.36

= · + · + · + · + · +e E s S a A b B v V cSP (1)

where e, s, a, b, v, and c are the fitting parameters and SP is the
specific partition such as logKd of the chemicals under the
equilibrium concentration Ce. The Abraham descriptors E, S,
A, B, and V capture nonspecific interactions arising from
induced dipoles, stable polarity (i.e., dipole−dipole inter-
actions), H-bonding accepting and donating, and cavitation
energy and part of London dispersive forces beyond what is
captured by the E term, respectively.
In our previous research,40 pp-LFERs helped build MLR

models for the activity coefficients in bisolute adsorption under

Table 1. Input Compositions of Different FN-Based Models
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infinite dilute conditions and provided predictions for several
bisolute mixtures. The results indicated that pp-LFERs are
helpful in capturing interactions between different adsorbed
solutes. However, the predictions are limited to the selected
bisolute mixtures on one type of resin. In this research, pp-
LFERs were included in FN-based models to account for
interactions between the adsorbed solutes in bisolute
adsorption.

FN Models. Four FN models were built with different
inputs but all used the bisolute adsorbed amounts (q1 and q2)
as the output (Table 1). FN-model 0 only used two
equilibrium concentrations (C1 and C2) as the input. FN-
model 1 used C1, C2, and two single-solute adsorbed amounts
(qs1 and qs2, corresponding to the adsorbed amount of each
solute under C1 and C2 but in single-solute adsorption) as the
input. These two models have been used in the published

Table 2. Fitting Parameters for the Single-Solute Adsorption Isotherms (lnqi = mi · (ln Ci)
2 + ni · ln Ci + ki) on MN 200 and the

Abraham Descriptors of the Target Chemicals

quadratic equation Abraham descriptors

chemical abbreviation m n k R2 E S A B V

aniline ANI −0.0347 0.981 1.7477 1 0.96 0.96 0.26 0.41 0.8162
caffeine Caff −0.0313 0.704 3.396 0.998 1.5 1.82 0.08 1.25 1.36
mequinol MOP −0.0229 0.685 3.5531 0.999 0.9 1.17 0.57 0.48 0.9747
m-nitrophenol NP −0.0512 1.013 2.766 0.997 1.05 1.57 0.79 0.23 0.9493
nitrobenzene NB −0.0414 0.897 3.796 0.999 0.87 1.11 0 0.28 0.8906
p-chloroaniline CA −0.0471 0.964 3.194 0.997 1.06 1.13 0.3 0.31 0.939
p-chlorophenol CP −0.0366 0.789 3.633 0.994 0.92 1.08 0.67 0.2 0.898
p-cresol MP −0.0309 0.752 3.489 0.999 0.82 0.87 0.57 0.31 0.916
phenol PHE −0.0404 1.055 1.456 1 0.81 0.89 0.6 0.3 0.7751
p-nitroaniline NA −0.0492 1.005 3.029 0.998 1.22 1.91 0.42 0.38 0.991
p-toluidine MA −0.0328 0.798 3.493 0.997 0.92 0.95 0.23 0.45 0.9571
vanillin Van −0.0184 0.61 4.243 1 1.03 1.28 0.33 0.68 1.1313

Figure 1. Single- and bisolute adsorption isotherms on MN200 for mixtures of (a) p-nitroaniline (solid lines) and nitrobenzene (dashed lines) and
(b) caffeine (solid lines) and p-chloroaniline (dashed lines) based on either the experimental data (symbols) or model fits (lines), (c) RMSE heat
map for the AST model, and (d) RMSE heat map for FN-model 3. For any bisolute mixtures, each bisolute isotherm included 9 equilibrium
concentrations. Each square in (c) and (d) represents the adsorption of a bisolute mixture, and the color changes from blue to red indicate
increased RMSEs in the predictions. Note that the gray color indicates missing values.
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studies34,35,38 and hence were employed for comparison.
Following the strategy in our single-solute predictive models
where the Abraham descriptors were used in the input,36 two
additional models were built by extending single-solute FN
models to bisolute FN models. FN-model 2 added Abraham
descriptors for both solutes to the inputs. For FN-model 3, qs1
and qs2 were further added.
FN-RAST Models. The FN-RAST can be divided into two

consecutive modules including the FN module and RAST
module. The FN module is used to predict activity coefficients,
and the RAST module uses the obtained activity coefficients to
solve the RAST equations for bisolute adsorbed amounts.
Combining the two modules, three FN-RAST models (Table
1) were built based on the data of bisolute adsorption on
MN200, and the final outputs were still q1 and q2. Similar to
the FN models, FN-RAST 1 used C1, C2 , qs1, and qs2 as the
input, FN-RAST 2 used Abraham descriptors, C1, and C2 as the
input, and FN-RAST-3 further included qs1 and qs2 based on
FN-RAST 2 (Table 1). The best FN-RAST model was tested
on MN200 first and then on XAD-4. Note that the three FN-
RAST models only differ in the FN module and the RAST
module is identical except using different activity coefficient
values from the FN module.
We employed two training strategies to build the FN models

and FN-RAST models: one is to randomly split the whole
dataset into the training, validation, and test sets by a ratio of
0.6:0.2:0.2, and the other is the leave-one-out cross-validation,
where the “one” means entire paired bisolute isotherms

(referred as one “group” hereafter). The first strategy was to
tune the hyperparameters for the FN-based models, and the
second was to evaluate the prediction performance of the FN
or FN-RAST models (more details in Text S4).

Evaluation Metric. The root-mean-square error (RMSE)
was used to quantify the deviations of different model
predictions from the experimental values. The equation to
calculate RMSE is shown in eq 2, where xpred and xexp represent
the predicted and experimental values of x, respectively.

=
∑ −x x

n
RMSE

( )n
1 pred exp

2

(2)

■ RESULTS AND DISCUSSION

Single-Solute Adsorption Isotherms. For single-solute
adsorption on MN200 and XAD-4, three adsorption isotherm
models including Langmuir, Freundlich, and a quadratic
equation were used to fit the adsorption data (more discussion
in Text S1). The quadratic equation (Table 2) gave the best
fitting with all the R2 values higher than 0.99. The Freundlich
model could fit the adsorption isotherms within the low-
equilibrium-concentration regions, but the fitting curves
significantly deviated from the experimental data in the high-
concentration regions. The Langmuir model can only fit some
of the adsorption isotherms. So, only the fitting results by the
quadratic equation are shown here (Table 2 and Table S2).
Given the best fitting by the quadratic equation for all the

Figure 2. (a) Comparison among the four FN models for bisolute adsorption on MN200, (b) bisolute adsorption isotherms of p-chlorophenol
(solid lines) and p-chloroaniline (dashed lines) based on either the experimental data (symbols) or different model fits (lines), (c) RMSE heat map
for the RAST model, and (d) RMSE heat map for the FN-RAST 3. Note that the gray color indicates missing values.
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single isotherms, it was chosen as the fitting isotherm for AST-
related calculations (more details in Text S2).
Bisolute Adsorption Isotherms on MN200. Different

bisolute mixtures showed different adsorption patterns. As the
bisolute mixture of p-nitroaniline/nitrobenzene (Figure 1a)
taken as a typical example, both p-nitroaniline and nitro-
benzene showed significantly lower adsorbed amounts (black
circles) in the bisolute adsorption than in the respective single-
solute adsorption (green lines). The lower adsorbed amounts
suggest that some competitions happened in the bisolute
adsorption. Similar competitions in adsorption have also been
reported in other bisolute adsorption studies.11,12 However,
the results for the bisolute adsorption when caffeine was
involved were different (an example in Figure 1b). In the low-
equilibrium-concentration region for caffeine, which was the
high-concentration region for the other solute (such as p-
chloroaniline), the adsorption of caffeine was slightly sup-
pressed compared to that in the single-solute system, but in the
high-concentration region for caffeine where the other solute
was in its low-concentration region, there was a substantial
increase in the caffeine adsorption. Such phenomena suggest
that strong interactions may exist between caffeine and other
solutes to promote the adsorption of caffeine, similar to what
was believed to be synergistic effects in bisolute adsorption of
phenol/aniline on resin.10 Note that the impact of caffeine on
the p-chloroaniline adsorption was not much affected. The
adsorption data for all single- and bisolute mixtures are shown
in Tables S4 and S5.
AST and FN Model Predictions for Bisolute Adsorp-

tion on MN200. AST generally works well on many bisolute
mixtures but has high prediction deviations in some cases
especially when caffeine was one of the solutes (Figure 1a−c).
The lateral interactions between caffeine and the other solute
in the bisolute mixtures may be the reason for the nonideality
(more discussion later). The RMSE by AST for the adsorption
of 50 bisolute mixtures on MN200 varied between 0.035 and
0.37 log units with an overall RMSE of 0.164 log unit. For the
binary adsorption involving caffeine, the RMSE of AST varied
between 0.20 and 0.37 log units (Figure 1c).
Unlike AST, the four FN models showed significantly

different prediction accuracies (Figure 2a), indicating that the
input compositions have considerable influences on the
performance of the models. FN-model 0 achieved a good
prediction in the reported ternary adsorption research38 but
provided very poor prediction in this research. In the work that
used FN to build a ternary adsorption model,38 there is only
one ternary-solute mixture and the training and validation
datasets both have the same three chemicals; therefore, no
additional parameters are needed for the ternary-solute
mixture. In this research, diverse and distinctly different sets
of bisolute mixtures were allocated to the training and
validation datasets. Different bisolute mixtures can have
significantly different adsorption patterns even under the
same equilibrium concentration. FN-model 0 that uses
equilibrium concentrations as the only input treats different
bisolute mixtures equally, which is a clear oversimplification.
Although it has been proved to be straightforward and
powerful in the reported ternary adsorption prediction, it can
only be used to predict ternary adsorption that shares the same
chemicals with the training set. Therefore, the applicability of
FN-model 0 is very limited and its poor prediction in this work
is expected.

To improve the prediction accuracy of FN-model 0, the
single-solute adsorbed amounts qs1 and qs2 that serve as the
descriptors for distinguishing between different bisolute
mixtures were added to build FN-model 1, and the results
indicate that the prediction accuracy was significantly
improved (Figure 2a). qs1 and qs2 may help differentiate the
adsorption behavior of each chemical in bisolute adsorption
systems because different chemicals generally have different
adsorbed amounts under a certain equilibrium concentration.
Similarly, the two solutes in binary mixtures would generally
have different qs1 and qs2; thus, they can also help describe
differences between various bisolute mixtures. So, this model
can provide well-improved prediction for different bisolute
mixtures. However, qs1 and qs2 may fail to capture all the lateral
interactions between different adsorbed solutes in bisolute
adsorption; thus, there are still considerable deviations in the
predictions by FN-model 1.
Following the strategy used in the single-solute predictive

models,36 FN-model 2 was built by incorporating the Abraham
descriptors of both solutes in the bisolute mixtures as part of
the input. The results show that FN-model 2 can satisfyingly
predict the adsorbed amounts of each solute (Figure 2a),
suggesting that the powerful prediction capability of the
descriptors is also capable of relating to adsorption of bisolute
mixtures. The Abraham descriptors here may distinguish
between various bisolute mixtures as well as capture at least
part of the interactions between the adsorbed solutes.
Inspired by the above improvement in FN-model 2, qs1 and

qs2 were further introduced to build FN-model 3. The addition
of qs1 and qs2 also improved the prediction compared with FN-
model 2. This is because qs1 and qs2 together with the Abraham
descriptors may help capture more information about the
interactions among the adsorbed solutes, which in turn
provides further improvements. Overall, the predictions by
FN-model 3 for the 50 bisolute adsorption achieved RMSEs
between 0.021 and 0.12 log units with an overall RMSE of
0.068, and the predictions were significantly improved
compared with that by AST (Figure 1d).
Despite the success in the FN models, AST rather than FN

models is widely accepted and has become a benchmark
method for bi- or multicomponent adsorption prediction. This
is because AST can be used to predict either gas-phase or
aqueous-phase bisolute adsorption on different adsorbents
relying solely on single-solute adsorption isotherms. The
prediction accuracy of AST is also generally acceptable,
although it shows high prediction deviations in many cases.
In contrast, existing FN models or the newly developed FN
models in this research are only applicable to one or several
bisolute adsorption on one adsorbent even though their
prediction accuracy is high, and the extrapolation of FN
models to other adsorbents is largely unreliable and may be
very poor.

RAST and FN-RAST. To improve the prediction accuracy
by AST, we tested RAST that incorporates activity coefficients
on all the bisolute mixtures on MN200. The results suggest
that RAST achieved considerable improvements compared
with AST (Figure 2c), especially for the adsorption of bisolute
mixtures involving caffeine, and the prediction deviations were
slightly higher than those by FN-model 3. The RMSEs of the
predictions by RAST varied between 0.01 and 0.15 with an
overall RMSE of 0.069 log units.
However, RAST itself has a substantial limitation in the

predictive modeling because it requires bisolute adsorbed
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amounts to calculate the experimental activity coefficients,
which means that it is impossible to predict the adsorption of
other bisolute mixtures that do not have experimental bisolute
adsorption data. The activity coefficients determined for a
bisolute mixture onto one adsorbent also cannot be directly
applied to the same bisolute mixture on another adsorbent.
So far, we have demonstrated that AST, RAST, and FN

models have their own merits, but each method alone has
substantial difficulties in building predictive models for bisolute
adsorption that have both broad applicability and low
prediction deviations. Therefore, we would like to couple
these modeling approaches into the so-called FN-RAST
strategy to take advantage of their merits while avoiding the
limitations. In this new strategy, the FN module is first used to
predict activity coefficients based on only single-solute
adsorption data. The predicted activity coefficients are then
employed as the input into RAST to predict bisolute adsorbed
amounts. The underlying rationale for this strategy is that the
nonideality as reflected by the activity coefficients can be
largely attributed to the interactions among the adsorbed
solutes on an adsorbent,26,28 and the activity coefficient of one
solute in the adsorbed phase is highly related to its fraction in
the adsorbed phase.24,30 The existing FN models have been
able to accurately predict bisolute adsorption;32,33 thus, it is a
reasonable extrapolation that FN models can also predict the
fractions of solutes in the adsorbed phase and then activity
coefficients with considerable accuracy. If this is the case, then
well-improved predictions can be achieved by the FN-RAST
strategy. Moreover, the FN module for predicting activity
coefficients mostly focuses on capturing interactions among
the adsorbed solutes without being specific to certain
adsorbents. The obtained model based on some bisolute
mixtures can be applied to the adsorption of not only the same
but also new bisolute mixtures onto new adsorbents. So, the
predictive models using the FN-RAST strategy can achieve a
balance between accuracy and broad applicability.
Similar to the FN models, three FN-RAST models with

different input compositions (Table 1) were obtained. Not
surprisingly, FN-RAST 3 with the Abraham descriptors, C1, C2,
qs1, and qs2 as the input provided the best predictions (Figure
2d and Figure S4), which showed considerable improvements
compared with those by AST and were comparable or only

slightly inferior to the predictions by the RAST. The RMSEs of
the predictions by FN-RAST 3 varied between 0.03 and 0.15
log units with an overall RMSE of 0.082 log units.
Understandably, FN-RAST 3 did not perform better than
RAST because RAST relied on the experimentally determined
activity coefficients, whereas FN-RAST relied on the modeled
activity coefficients. Nevertheless, the FN-model predicted
activity coefficients can address a large portion of the
nonideality derived from interactions among the adsorbed
solutes in bisolute mixtures.

Validation of the FN-RAST 3 on XAD-4. To test the
applicability of the built models to other adsorbents, another
five bisolute adsorption experiments were conducted on XAD-
4, and the bisolute adsorption data were employed to evaluate
the prediction performance of the built models (Figure 3a and
Figure S5). The AST, FN-model 3, and FN-RAST 3 require
only single-solute adsorption data on XAD-4 as the input data,
while the RAST requires both single- and bisolute adsorption
data on XAD-4 to make predictions. The AST predictions for
XAD-4 followed a similar pattern as those on MN200, with
high deviations obtained for the bisolute mixtures involving
caffeine. The similarity in the prediction deviations confirmed
that the nonideality in the bisolute adsorption is largely due to
interactions among the adsorbed solutes (more discussion
below). Similarly, the predictions were significantly improved
by RAST. For FN-model 3 that was built based on the bisolute
adsorption data on MN200, its predictions for the bisolute
adsorption on XAD-4 have very high deviations, although its
predictions on MN200 have little deviations (Figure 1b). Such
a drastic difference in the prediction accuracy reveals the
limitation of the FN models as they only capture the bisolute
adsorption information specific to one adsorbent and cannot
be applied to other adsorbents.
To solve the limitation of FN-model 3, a series of bisolute

adsorption experiments need to be performed on various
adsorbents and a new FN model with the properties of
different adsorbents in the input has to be built. However,
compared with single-solute adsorption experiments, bisolute
adsorption experiments are much more time-consuming and
labor-intensive. Therefore, it is not realistic to build predictive
models for bisolute adsorption on each adsorbent.

Figure 3. (a) RMSEs of different models in predicting the bisolute adsorption on XAD-4. The x-axis indicates different bisolute mixtures, and y-axis
indicates different models. The color of each rectangular indicates the RMSE of the prediction for a bisolute mixture by one of the models. The
overall RMSEs for the adsorption of the five bisolute mixtures on XAD-4 are 0.51, 0.10, 0.10, and 0.28 log units for FN-model 3, FN-RAST 3,
RAST, and AST, respectively. (b) Mean absolute Shapley values for different input descriptors concerning the nonideality.
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Because the nonideality is largely derived from the
interactions among different adsorbed solutes, the FN-RAST
strategy is promising in capturing the dominant interactions to
achieve good predictions, as indicated by its prediction for the
bisolute adsorption on MN200. So, FN-RAST 3 was further
tested on XAD-4 to validate its broad applicability. The FN-
RAST 3 was used to obtain the activity coefficients and then
bisolute adsorbed amounts on XAD-4 with single-solute
adsorption isotherms, C1, and C2. Note that only the bisolute
adsorption data for MN200 were used to build the FN-RAST
3. The results for FN-RAST 3 (Figure 3a) showed that the
predictions were significantly improved (RMSE = 0.10)
compared with those by FN-model 3 (RMSE = 0.51) or
AST (RMSE = 0.28) and were also comparable with those by
RAST (RMSE = 0.10). This means that the FN-RAST 3 can
provide not only low deviations like RAST but also a broad
predictive ability like AST. It only needs single-solute
adsorption information but is applicable to various bisolute
mixtures on different adsorbents.
Qualitatively Determining the Nonideality and

Limitation of FN-RAST. Nonideal behavior has been
observed in the above bisolute mixtures as well as in other
gaseous/aqueous multicomponent adsorption; however, the
degree of the nonideality varies significantly among different
bisolute mixtures. As shown in the bisolute adsorption on
MN200, AST can well predict the majority of the bisolute
mixtures with high deviations only for several mixtures. It
means that not all bisolute adsorption requires further
correction for the AST predictions. Therefore, it is beneficial
to know the relative extent of the nonideality in different
bisolute mixtures and whether the activity coefficients are
necessary for correction.
Unfortunately, relationships or methods to determine the

nonideality or to compare it among different bisolute mixtures
are unavailable for aqueous bisolute adsorption, which makes
the nonideality in bisolute mixtures hard to track even
qualitatively, not to mention quantitatively. To better under-
stand sources of the nonideality concerning the input
descriptors in bisolute mixtures, the mean absolute Shapley
(MAS) value based on Shapley theory was examined.46,47 The
Shapley theory has been developed to fairly distribute the
“payout” among the descriptors based on the coalitional game
theory,48 where the payout refers to the nonideality calculated
as (1 − γi). This is especially suitable for quantifying the
contributions of all descriptors that are not equal, which is the
case here for the three sets of descriptors.46 A more positive or
negative Shapley value means that the descriptor has a larger
positive or negative contribution to nonideality and vice versa.
The Shapley values were first calculated for each descriptor at
every experimental data point and the MAS was then
calculated using the Shapley values (details in Text
S5).47,49,50 The results (Figure 3b) indicate that E, S, B, and
A have significant contributions to the nonideality, and the V
shows the least influence. Within a bisolute mixture, Ci and qs
also show considerable influences over the nonideality, which
is understandable because a high Ci or qs would inevitably lead
to a high possibility for interactions among the adsorbed
solutes and, hence, high nonideality. This finding agrees with
the results from previous research that molecular interactions
among the adsorbed solutes are the dominant contributor to
the nonideality.35 Taking the bisolute mixtures involving
caffeine as an example, caffeine has relatively high E, S, and
B values (Table 2), and those bisolute mixtures indeed showed

higher nonideality than those without caffeine. Similarly, for
the reported bisolute adsorption of toluene/ethylbenzene or
acetone/propionitrile,19,20 they all have relatively low values for
E, S, and B (Table S3). This means that the lateral interactions
among the adsorbed solutes are not very strong and the
nonideality is negligible. Indeed, AST achieved satisfying
predictions for both of the bisolute mixtures. On the contrary,
p-chlorophenol/p-cresol, trichloroethylene/tetrachloroethy-
lene, phenanthrene/pyrene, and phenol/m-cresol generally
have higher E, S, and B values, which suggests that stronger
lateral interactions possibly exist among the adsorbed solutes.
Thus, nonideality cannot be neglected and high prediction
deviations by AST are expected and indeed observed.20−23

With this simple rule that the E, S, and B terms of chemicals
play key roles in the nonideality in bisolute adsorption (either
in or outside the experimental range), we can now make a
qualitative assessment of the accuracy of AST-based
predictions for different bisolute mixtures, and this assessment
can help determine whether a further correction of AST is
needed.

Limitations of FN-Based Models. The FN algorithm
provides an attractive solution for adsorption prediction
because one can easily build predictive models by feeding a
certain amount of data to the FN. However, limitations
associated with FN cannot be neglected. One major limitation
is that the applicability of FN models highly relies on the
available source data. For example, FN-model 3 that was built
only using adsorption data on MN200 achieved good
prediction for bisolute adsorption on MN200 but poor
prediction for that on XAD-4. It can be expected that FN-
model 3 would not provide good predictions for other
nonionic resins. For comparison, AST can be reasonably
applied to bisolute adsorption on different resins and other
adsorbents, even though the prediction accuracy is not always
satisfactory. For FN-model 3, a series of bisolute adsorption
experiments on XAD-4 and/or other nonionic resins will be
needed to achieve satisfactory predictions for these resins. As
stated in Introduction, batch bisolute adsorption experiments
are labor-intensive, and it is impossible to perform bisolute
adsorption on every nonionic resin. Also, this problem is not
unique in adsorption prediction because other experimental
fields may also face this problem as far as FN-based predictive
models are concerned. Therefore, FN is not a universal
substitute for classical modeling methods, and it always
remains an important question about how to balance the
prediction accuracy and applicability when using the FN
algorithm.
Although the newly developed modeling strategy has

achieved a good balance between the prediction accuracy
and broad applicability, FN-RAST 3 and the qualitative
assessment for nonideality also suffer from limitations that
are inherent to activity coefficients. The activity coefficient is
not a perfect method for nonideality correction. It mostly
accounts for lateral interactions among the adsorbed solutes
but overlooks possible nonideality caused by heterogeneity of
the adsorbent surfaces.51 So, there are still prediction
deviations. A more comprehensive method that can incorpo-
rate both interactions between the adsorbed solutes and
heterogeneity of the adsorbent surfaces would help predict
bisolute adsorption better. Similarly, the qualitative relation-
ship only considers the interactions among the adsorbed
solutes. A quantitative relationship would lead to a better
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determination of the nonideality and understanding of the
origin of nonideality in bisolute adsorption.
Environmental Significance. The classical AST and

RAST models have shown incompetence in dealing with
complex adsorption scenarios, but it does not mean that they
are totally obsolete; the emerging FN models have received
some momentum but cannot cope with all the complexities
and their limitations cannot be overlooked. This research
demonstrates a promising path for future model development,
that is, to couple the emerging FN-based models to the
classical RAST. As shown in the results, the prediction
accuracy by FN-RAST 3 for the adsorption of 50 bisolute
mixtures on MN200 is comparable to the prediction accuracy
by RAST, but FN-RAST 3 only uses single-solute experimental
data, whereas RAST requires bisolute adsorption data. More
importantly, FN-RAST 3 can be easily applied to the
adsorption of bisolute mixtures on another resin (XAD-4)
while still based on single-solute adsorption data. Compared
with the existing models, the new strategy greatly extends the
prediction ability to the adsorption of various bisolute mixtures
onto different adsorbents and achieves a balance between the
prediction accuracy and applicability. Also, the proposed
models in this research can handle some more complex
scenarios such as adsorption in unknown backgrounds (Text
S6) after suitable modification(s). It is now possible to build
broad predictive models for bisolute adsorption on various
adsorbents relying on adsorption data onto only several types
of adsorbents. The burden of batch experiments will be greatly
reduced, while the applicability remains almost unchanged. In
addition, a comprehensive set of bisolute adsorption data
covering 55 different bisolute mixtures onto two resins were
experimentally obtained. Such a database not only assisted the
model development in current research but also will help
future model development with data from other studies using
this coupled modeling strategy.
Through the MAS method, factors that influence the

nonideality are semiquantified to explain the differences in
the AST prediction accuracy for different bisolute mixtures.
This finding can help qualitatively compare the degree of
nonideality among different bisolute mixtures and determine
whether additional corrections are needed when using AST in
the bisolute adsorption prediction. Our recent research has
built promising predictive models for single-solute adoption.36

The current research moves another key step forward toward
adsorption prediction of more realistic solute mixtures. In
summary, the new modeling strategy together with the
comprehensive bisolute experimental data will make a major
contribution to future research on the predictive modeling of
bi- and multisolute adsorption.
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