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ABSTRACT: The rapid increase in both the quantity and complexity
of data that are being generated daily in the field of environmental
science and engineering (ESE) demands accompanied advancement
in data analytics. Advanced data analysis approaches, such as machine
learning (ML), have become indispensable tools for revealing hidden
patterns or deducing correlations for which conventional analytical
methods face limitations or challenges. However, ML concepts and
practices have not been widely utilized by researchers in ESE. This
feature explores the potential of ML to revolutionize data analysis and
modeling in the ESE field, and covers the essential knowledge needed
for such applications. First, we use five examples to illustrate how ML
addresses complex ESE problems. We then summarize four major
types of applications of ML in ESE: making predictions; extracting
feature importance; detecting anomalies; and discovering new materials or chemicals. Next, we introduce the essential knowledge
required and current shortcomings in ML applications in ESE, with a focus on three important but often overlooked components
when applying ML: correct model development, proper model interpretation, and sound applicability analysis. Finally, we discuss
challenges and future opportunities in the application of ML tools in ESE to highlight the potential of ML in this field.

KEYWORDS: applicability domain, artificial intelligence, best practices, feature importance, machine learning modeling,
model applications, model interpretation, predictive modeling

1. INTRODUCTION

The rapid advancement in environmental analytical tools and
monitoring technologies has led to a corresponding explosive
expansion in both the quantity and complexity in data
generation, which demands more advanced and powerful
computational and data analytical approaches beyond tradi-
tional statistical tools. Data analytical approaches that have less
dependence on prior knowledge, such as machine learning
(ML), have shown promise in solving complex data patterns or
formats because of their powerful fitting abilities. As a result,
the past decade has witnessed a rapid growth of ML, especially
deep learning, in a variety of applications, such as image
classification and machine translation. These tools are
revolutionizing many scientific fields, from chemistry,1 material
sciences,2 and biomedicine,3 to quantum physics.4 Researchers
in the broad field of environmental science and engineering
(ESE) have also adopted ML enthusiastically, as demonstrated
by the explosive growth in the number of publications (5855
between 1990 and 2020) on the applications of ML in ESE
(Figure 1). These applications cover broad areas, including
assessing environmental risks, evaluating the health of water

and wastewater infrastructure, optimizing treatment technolo-
gies, identifying and characterizing pollution sources, and
performing life cycle analysis, among others.
The definition of ML is that “ML algorithms build a model

based on sample data, known as ‘training data’, to make
predictions or decisions without being explicitly programmed
to do so”.5 Example ML algorithms include random forest,
support vector machines, and artificial neural networks.6−8

Deep learning is one class of ML, in which “deep” refers to the
multilayered neural network structures,9 such as recurrent
neural networks and convolution neural networks.10−12 Every
ML algorithm can be decomposed into three key components:
the structure of the algorithm, such as random forest and deep
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neural networks; the goal to achieve, such as prediction
accuracy and squared error; and the training method to achieve
the goal, such as stochastic gradient descent.13 One major
advantage of ML algorithms is that they can easily identify
trends or patterns in data without human intervention. Their
predictive performance can be continually improved with more
available data. Multidimensional and multivariety data can also
be handled by ML even in dynamic or uncertain environ-
ments.14−17

Many complex ESE problems can be addressed by ML. Five
specific examples are explained in section 2, and a
comprehensive summary is included in section 3. A challenge,
and opportunity, is that even as ML algorithms are increasingly
applied to ESE problems, these algorithms are being
continuously improved and new ones are developed. ESE
practitioners passively benefit from increasingly advanced ML
methods, as they allow more challenging problems to be
addressed. ESE practitioners can also make an active
contribution to the development of more advanced ML
methods by identifying and communicating the encountered
limitations to ML researchers.
Despite the initial success of ML in ESE, many concerns

remain. First, ESE researchers may be eager to use ML in their
research but lack the knowledge of how to properly employ it,
which may lead to incorrect applications of ML to their data
sets. Second, increased data volume and complexity has
enabled the use of more advanced ML algorithms, such as deep
neural networks, capable of capturing sophisticated nonlinear
relationships. However, these types of models are often of a
“black box” nature; therefore, model interpretation is vital for
investigating whether ML model predictions are consistent
with the fundamental principles of the domain science.
Although there is a growing field of model interpretability,18

such interpretation is still commonly neglected in ESE.19−22

Alternatively, emerging approaches to building neural networks
that enforce physical symmetries or directly implement
differential equations that parallel chemical kinetic differential

equations,23,24 have not yet been adopted in ESE. Third,
applicability domain (AD) analysis of ML models is yet to be
practiced by researchers in ESE after model development,19−22

other than development of quantitative structure−activity
relationships (QSARs).25 To introduce ML to the general ESE
researcher’s toolbox, this feature aims to discuss the current
status, essential knowledge, shortcomings, challenges, and
future opportunities of ML in ESE to highlight the potential of
ML in the ESE field.

2. HOW DOES ML ADDRESS ESE PROBLEMS?

ESE applications often utilize supervised ML approaches,
which are essentially interpolationgiven a big enough library
of inputs (independent variables or “features”) matched with
outputs (dependent variables or “outcomes”), these algorithms
after training can take a new input and predict its
corresponding output. Where this differs from traditional
statistical tools is the ability to treat a large number of features
that have weak or nonlinear relationships with the outcomes.
ML can be more effective than traditional statistical tools in
handling various data formats, such as text, images, and graphs,
where the important information is not contained in a single
input variable, nor are the important variables known ahead of
time, but instead where some previously unknown combina-
tion of features are needed to determine the outcome. These
unique properties of ML are especially suitable for solving
complex environmental problems with rich sets of input
features.26 We, here, take five specific examples from different
environmental fields to illustrate how ML can address complex
environmental problems. We will have a comprehensive
discussion of current ML applications in ESE in section 3.

2.1. Prediction of Particulate Matter (PM2.5). When
predicting daily to yearly variations in PM2.5 for a region, the
major drivers include meteorological conditions, such as air
temperature, dew point temperature, visibility, pressure,
potential evaporation, downward longwave radiation flux,
downward shortwave radiation flux, relative humidity, and
wind; and land-use variables, such as limited access highway,
highway, local roads, and forest cover.27 In addition, there are
regional differences associated with meteorological conditions
and daily variations in PM2.5 levels. These factors interact with
each other to form complex relationships, which are
challenging to process using traditional statistical tools but
can be effectively handled by ML when sufficient training data
are given to learn their relationships. For example, whereas
multiple linear regression of PM2.5 prediction from these
factors only achieves an R2 of 0.60, an artificial neural network
using the same features and data can achieve a higher R2 of
0.74.28

2.2. Prediction of Water Resource Availability. Climate
changeincreasing average temperature, uneven shifting of
precipitation patterns, and frequent occurrence of extreme
climate events like floods and droughtscan substantially
impact the predictability and availability of water resources
across regions. To better manage and sustain future water
resources, it is essential to develop decision support tools that
can handle these variations and uncertainties, which arise due
to either interactions between natural and human systems or
from the variability of climate. Addressing such challenges
requires insights into past and future patterns, yet this insight
can be difficult to develop based on traditional statistical
approaches. In contrast, ML allows effective analysis and

Figure 1. Number of publications in ML applications in ESE based on
the Web of Science (access date 1/28/2021) with the keyword
“machine learning” combined with the categories of environmental
science, water resources, public environmental occupational health,
environmental engineering, and environmental studies. The inset
shows the subtopic results from 1990 to 2020 with the keywords
specified.
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prediction of future water availability through processing data
related to climate change and water system interactions.29

2.3. Data Collection and Interpretation Across Water
Facilities. An enormous amount and wide spectrum of data in
water utilities have been collected from in-place supervisory
control and data acquisition systems, including flow rate,
temperature, dissolved oxygen concentration, turbidity, and
chlorine content, to name a few, as well as data from ex situ
laboratory information management systems and computerized
maintenance management systems. Although these rich and
complex data sets have been around for years, the gathered
data sets from treatment facilities are often incomplete and not
connected to each other. The current approach to data
collection, interpretation, and utilization is not suitable for
rapid identification of malfunction, swift control and adjust-
ment under transient fluctuations, or efficient decision-making
regarding facility operations. This is because these traditional
models are mainly based on statistics,30−34 which are valid only
for a limited operating range and cannot capture the time-
varying or nonlinear behavior of dynamic systems. In contrast,
ML models can adapt to fast-changing situations and, because
they do not rely on predetermined rules, they can use varied,
dynamic data to update themselves for better predictions.35,36

2.4. Modeling of Biochemical Wastewater Treatment
Systems. Most wastewater treatment plants (WWTPs) use
activated sludge and other processes to remove contaminants,
primarily including organic carbon, nitrogen, and phosphorus.
There can be tens of thousands of different microbial species
present in each system. The abundance of different organisms,
as well as the time-varying and highly nonlinear characteristics
of the WWTP process, makes the relationship with process
performance a difficult one to investigate. Deterministic
models based on the fundamental biokinetics for activated
sludge processes are not particularly practical due to the
complex nature of biological reactions, highly multivariable
aspects of treatment plants, the expertise required to calibrate
activated sludge models, and system-specific calibration.37 The
influent wastewater flow and composition also vary over time
and follow dynamic patterns. However, ML techniques could
predict sludge bulking in wastewater treatment plants with

improved accuracies without the burden of calibration.38 ML
carries the potential to characterize the relationships between
microbial communities and parameters of the process based on
the fusion of sequencing data and model outputs. For example,
Zhu et al. compared the abilities of nine single or hybrid
models to predict the next day’s influent wastewater flow
rate.39 Compared to principal component regression (adjusted
R2 ≈ 0.66; mean absolute percentage error ≈ 18.2%) and
partial least-squares (0.70; 17.5%), the hybrid model using an
artificial neural network (0.83; 13.3%) achieved the best
results.

2.5. Prediction and Identification of Endocrine-
Disrupting Chemicals (EDCs). Currently, there are over
one hundred thousand chemicals available on the market,
many of which lack toxicity data, including data on their
endocrine disrupting activity.40 In screening and predicting
potential EDCs, many traditional tools, such as read-cross, are
based on the concept that structurally similar compounds carry
similar toxicity and these tools have been successfully
applied.41,42 However, focusing on a limited set of chemicals
or only structurally similar compounds makes it difficult to
apply these traditional tools to tens of thousands of untested
chemicals. Additionally, because of the complex molecular
mechanisms behind endocrine disruption, many traditional
tools that rely solely on structural information usually
experience “activity cliffs”, that is, a group of seemingly
structurally similar chemicals have different endocrine
disrupting activities.43,44 These problems stress the unsuit-
ability of traditional data analysis methods, and researchers
have tried many approaches to combine ML tools with big data
(including various biological, physicochemical information,
etc.) to solve them. For instance, a computational method was
developed to automatically extract useful biologically active
characteristic fragments of the estrogen receptor alpha (ERα)
and the androgen receptor (AR) based on more than 4000
chemicals and to built chemical fragment−in vitro relation-
ships (118 for ERα and 99 for AR) to illustrate new molecular
mechanisms of EDCs.45 Pathway activity prediction, such as
the AR-mediated pathway, used 1746 compounds from 11
high-throughput in vitro screening assays, considered multiple

Figure 2. Four common applications of ML in ESE. Different data formats can be used for inputs in ML to develop models for (I) prediction
purposes. By interpreting the ML models, the importance of features (II) can be obtained. By comparing the prediction with the historical data,
(III) anomaly detection can be achieved. ML can also be used to (IV) discover new materials.
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points (receptor binding, coregulator recruitment, gene
transcription, and protein production) and multiple cell
types, and showed extremely high prediction accuracy.46,47

Furthermore, combined with 16 different ML methods,
pathway activity information was used to build 91 predictive
models for EDCs’ activity on the AR. The final consensus
model showed a highly predictive performance on 87 914
chemicals.47 Similar research also can be found in an ER study
that used 19 different ML methods and 32 464 chemical data
sets to build 48 models for ER activity prediction.48

3. CURRENT STATUS OF ML APPLICATIONS IN ESE
Figure 2 shows four common applications of ML in ESE:
making predictions, identifying feature importance, detecting
anomalies, and discovering new materials or chemicals. Table 1
provides more detailed examples for each of the applications.
3.1. Making Predictions. Overall, making predictions is

one of the most popular applications of ML in ESE. This
application can be implemented through either regression or
classification modeling. The key assumption is that the
distribution of training examples provided to the algorithm is
representative of the examples that the model will be asked to
predict. In this sense, it does not matter if the problem is time-
dependent or -independent, as long as “past” observations are
predictive of “future” queries. In addition, if the predictions are
related to the location or sites, they can be seen as geographic
space-based predictions, such as predicting arsenic concen-
trations in groundwater at different sites.49 Most prediction
applications are in the realm of supervised learning, in which
the sample outputs are labeled. For example, ML methods
have been extensively employed to predict changes of various
wastewater variables, such as nitrogen, phosphorus, solids,
chemical oxygen demand (COD), biochemical oxygen demand
(BOD), and future flow rate;39,50−53 or atmospheric pollutants,
such as PM2.5 and carbonaceous aerosols.54−56

In addition to supervised learning, unsupervised ML
approaches have also emerged recently. In unsupervised
methods, the computer algorithm works on its own to find
patterns in the data, that is, in an “unsupervised” fashion
without intervention from the user. Most applications of
unsupervised ML have been used to automatically categorize
data into separate groups or “clusters” that have similar
characteristics. In the context of environmental studies, there
have been recent unsupervised ML applications, such as t-
distributed stochastic neighbor embedding (t-SNE) or k-
means clustering, on categorizing the carbon−fluorine bond
dissociation energies of per- and polyfluoroalkyl substances
(PFAS) to understand bond dissociation energies.57,58 These
algorithms allow the visualization of high-dimensional data as
two-dimensional “clusters” where data points grouped within a
cluster share similar characteristics with each other. It is
important to reiterate that these clusters were automatically
chosen by these unsupervised ML algorithms, without human
intervention. As such, these results demonstrate that these
algorithms can be useful tools for automatically classifying and
rationalizing chemical trends in environmental contaminants
that would otherwise have been difficult to detect manually.
3.2. Identifying Feature Importance. This refers to the

techniques of assigning scores to input features or independent
predictors to evaluate their relative importance to the outcome.
This is also referred to as “model interpretability,” “feature
extraction”, or the study of “latent spaces” in the ML
literature.18 For example, air pollution, as a complex global

environmental issue, is affected by many factors. ML
techniques such as support vector machines, neural networks,
and feature extraction methods can be especially useful to
determine the most significant factors for the modeling of
particulate matter.27 The prerequisite for model interpretation
is that the obtained ML model has satisfactory predictive
performance or ML has already correctly “learned” the
underlying relationship between the features and the outcome.
Thus, interpretation reveals the implicit knowledge “learned”
by the ML model and indicates whether the model is based on
a correct “understanding” of the underlying mechanisms,
which is important for validating the model. This process may
also yield new knowledge. For example, Mori et al. interpreted
ML models to provide evidence-based information on how
stressors and ecologically important environmental factors
interact and drive ecological processes and microbial
biomass.98 Such information cannot be obtained without
performing model interpretation. Similarly, there are several
attempts to interpret ML models to correlate factors with the
chemical activity of EDCs, including unveiling features that
make EDCs chemically active, determining the type of activity
on the ERα or the AR, and how these features exert their
functions.45 Using ML techniques, researchers also found that
the octanol−water partitioning coefficient (log Kow) plays a
dominant role in regulating plant uptake of organic
contaminants, while their molecular weight plays a secondary
role.99 In recent years, data-driven analytics such as ML have
become key tools for discovery in public health and ESE
research to find hidden patterns and causal relationships and to
identify key features, that is, chemical exposure or other social
economic parameters, that are linked with health out-
comes.84,100

3.3. Anomaly Detection. This refers to the identification
of historical or current abnormal events to avoid irregularities
or unreliable operations; this is widely used to prevent credit
card fraud.101 The basic principle is that new observations are
compared to the learned distribution of (mostly)-normal
historical data to determine statistically improbable deviations.
For instance, anomaly detection has been used to identify burst
locations of pipes and detect contamination events in water
distribution networks,90−92 with the former contributing to less
water loss and the latter important for reducing public health
risks. ML can also be used to make predictions for a future
event by comparing those predictions with current data to
identify potential outliers and then calculate the probability of
future contamination events.

3.4. Discovering Materials and Chemicals. Discovering
materials and chemicals based on ML is another rapidly
growing application in ESE, such as designing environmentally
friendly adsorbents and catalysts. Take biopolymers as an
example, researchers are developing biodegradable polymer
materials that can functionally replace plastics made from fossil
feedstocks, thus reducing plastic pollution in the environment.
Toward this goal, they apply an innovative ML approach to
bring together two adaptive codesign loops: (i) a chemical
loop, where the structure and function of possible chemical
combinations of the polymer backbone and side chains are
explored for their predicted properties96,102 and (ii) a synthetic
biology adaptive design loop, in which the biosynthetic
pathways involved in polymer production and the roles of
their component genes and proteins, are investigated and
targeted for improvement by genetic engineering methods.
Another example is to develop novel adsorbents, where two
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different strategies have been used: the generative adversarial
network (e.g., to discover new zeolite structures)103 and the
variational autoencoder (e.g., to obtain new structures for a
metal−organic framework).104 Such research typically has
three steps: (1) train a model based on one of the ML
algorithms, (2) generate new structures using the generator or
decoder, and (3) validate the new structures by experiments or
molecular simulation.

4. ESSENTIAL KNOWLEDGE REQUIREMENT AND
CURRENT SHORTCOMINGS IN ML APPLICATIONS
IN ESE

Although ML has shown great potential for solving ESE issues,
inexperience with ML may lead to unsatisfactory performance
or inappropriate applications of ML tools. This problem has
been recognized by the closely affiliated material science and
chemistry communities, which have felt the need to address
“best practices” for ML.105,106 For example, applying cross-
validation to the entire data set is one of the most common
mistakes made by inexperienced researchers. Cross-validation
should be applied to the training data set to screen ML
algorithms and tune the hyperparameters,107 and a completely
independent test data set should be reserved to test the
predictive performance of the obtained model.108,109 Re-
searchers may confuse the validation data set with the test data
set.110 Not doing this properly may have serious overfitting
risks.111 Seeking collaborations between researchers in the two
fields can resolve these issues, but ESE researchers should
acquire basic knowledge to fully benefit from the advantages of
ML. For example, feature engineering (e.g., which features to
use) and hyperparameters (e.g., the depth of trees in a random-
forest model or the number of layers in a deep neural network)
play important roles in the design of ML models, but often
draw upon domain expertise. Therefore, effective collaboration
will only be possible if ESE researchers understand
fundamental ML concepts.
Figure 3 shows a typical workflow of ML model develop-

ment and highlights key steps that should be carefully followed
to deliver meaningful results when applying ML to ESE. The
benefits of ML tools can only be realized if they are correctly
used. For example, a common assumption in ML applications
is that a larger volume of data will always generate better
predictive performance of the ML model. However, more
“representative” data rather than “big” data are more important
for obtaining robust, powerful ML models. The term
“representative” refers to the diversity of data. If a data set
has too many similar data points, that is, they are close to each
other in mathematical space, even though the sample size is
large the model will not necessarily have the desired predictive
performance. For instance, collecting chemicals with diverse
chemical structures is preferred for developing widely
applicable QSAR models. Once ML is deemed appropriate
for a given application, collecting a sufficient amount of
“representative” data is vital to the subsequent model
development. It is also important that all key input features
are considered in the input, as stated in a recent article that “if
a well-trained neural network provided with suf f icient data cannot
achieve the desired accuracy, it is likely that the data provided is
not entirely relevant to the task being predicted.”112 The same
statement may be true for other ML algorithms. Therefore, a
deep understanding of the ESE application is crucial for
developing correct and meaningful ML models.T
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Once a data set is ready, proper data preprocessing and
splitting are necessary to avoid possible data leakage. Data
leakage refers to cases where information used in model testing
is inadvertently present during the model training process, so
that the estimated prediction performance on the test set
overestimates the true predictive performance of the model.120

For example, duplicate samples may result in the same sample
in both the training and test data sets, and the model may
simply memorize these data without generalizing to new data
points. Data leakage problems can often be subtle. To avoid
data leakage, data standardization or normalization should be
conducted based on the training data set and then applied to
the test data set. For data splitting, the test data set should
always be set aside and never be used for model development
to ensure the independence of the test data set in evaluating
the model performance. Cross-validation should be applied to
the training data set rather than the entire data set, and the
purpose is not to deliver a final predictive model but to
evaluate the unbiased generalization ability of the ML
algorithms. Feature selection can improve prediction accuracy,
reduce model training time, and reduce the overfitting risk.
Better model performance is commonly observed when an
effective feature selection method is applied.39,50

During model training, different evaluation metrics are used
in different applications to evaluate the model performance;
but in general, multiple metrics should be employed for a given
model. For an imbalanced data set in which the number of
positive cases is more than the number of negative cases,
accuracy cannot be a reliable evaluation metric. Instead,
metrics such as the F1 score,121 AUC (area under the curve)−
ROC (receiver operating characteristics),122 or Matthews
correlation coefficient (MCC) should be employed.123 Tuning
hyperparameters is required to calibrate a successful
model.107,124 The optimum hyperparameters are determined
to be the ones that minimize the errors on the validation data

set. After model development, the predictive performance of
the model is evaluated on the test data set, which should never
be used in model training or hyperparameter selection. This is
consistent with a real application where the query sample is
“new” and not merely identical with a previously observed
training example. The model performance might be further
improved by developing ensemble or stacked models, applying
transfer learning, or performing domain knowledge modifica-
tion. For example, Xiao et al. has developed an ensemble
model that combines random forest, a generalized additive
model, and extreme gradient boosting to predict historical
PM2.5 concentrations in China based on satellite data.22

However, it is not guaranteed that ensemble models are always
better than single models, for example, when predicting the
concentrations of ultrafine particles in the air.19

Model interpretation is an indispensable step after model
development because it examines if the model predictions are
consistent with the domain science (i.e., ground truth). Certain
ML algorithms (e.g., ensemble methods, neural networks) are
less interpretable than traditional statistical models.125,126 It
will be problematic if a model with apparently high predictive
performance makes predictions that are physically impossible;
therefore, it is sometimes necessary to adjust the model and
“teach” the model the correct domain science to obtain results
that make sense. For example, based on the interpretation of
the results of an ML model, one may need to remove the
incorrectly identified features or adjust their weights and bias
and retrain the model. Additional benefits related to model
interpretation include (1) validating the reliability of the
model, that is, if the model makes predictions aligned with
domain knowledge; (2) unveiling implicit knowledge or even
new knowledge that the model reveals; (3) informing feature
engineering, such as selecting the most useful features; and (4)
informing data collection, such as selecting data containing the
desirable features during data collection.

Figure 3. Typical workflow for the development of ML models, where RMSE, MSE, MAE, and R2 refer to the root mean squared error, mean
squared error, mean absolute error, and coefficient determination, while AUC-ROC means the area under the curve−receiver operating
characteristic curve. For more details about specific ML techniques listed in Figure 3, please refer to the following references: data preprocessing,
data splitting, and model development;113,114 model interpretation, including SHAP,115 LIME,116 permutation feature importance,6 attentional
neural network,117 coattention mechanism,118 and partial dependence plots;119 and applicability domain determination.25
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Thus far, model interpretation has been largely overlooked
in ESE. An example from the biomedical field demonstrates
the necessity of model interpretation. McCloskey et al. used
the attribution method to interpret their model and discovered
that a deep neural network still learns spurious binding logic,
despite its perfect classification accuracy on the protein−ligand
binding data set.127 Zhong et al. recently used the Shapley
method to interpret how a deep neural network model and an
extreme gradient boosting model made predictions on rate
constants toward hydroxyl radicals (log kOH•).60 They found
that the former model assigned equal contributions of the same
atom groups to log kOH• no matter which compounds this
atom group was in, which contradicts the chemical principle
that the reactivity of a structural functional group is affected by
its chemical environment. By comparison, the latter model
correctly considered these contributions differently. Moreover,
there are many complex ESE issues for which identifying the
dominant drivers is extremely difficult. In these cases, if a
successful model is obtained, one may be able to extract some
implicit new knowledge that is otherwise unrecognized (see
section 3.2 for more details).
Applicability domain (AD) is a concept from QSARs. It

defines a domain in which the activity of a new compound can
be reliably predicted based on the calibrated QSAR.25 Recently
this concept has been applied to materials science problems.128

After model development, verifying the reliability of a
prediction is the key idea of applicability domain analysis.
However, studies seldom conduct AD analyses except for those
applying QSAR models.25 We propose expanding this concept
to other ML models after they have been successfully
developed and validated. There is no unified method to
determine the AD of a model because diverse data types are
used, such as image, text, and tabular data; and several
measures may be applicable, for example, chemical-physical or
structural domains for QSAR models.25 Nevertheless, AD
should be defined with a clear mathematic form, such as the
similarity calculation for QSAR models.25

Model deployment means how your model is shared with
others. Commonly used model deployment approaches
include sharing source code, providing executable files, and
web applications. Sharing source code allows others to reuse or
modify the models but requires expertise in coding; web
applications or executable files provide ready-to-use tools to
make predictions but limit the ability of other researchers to
modify or augment the tools. Deploying ML models in more
than one way may help ML models reach more users.

5. CHALLENGES
As an emerging tool for ESE, ML faces many challenges in
applying it successfully. The following challenges are listed
based on their order in the model development process, from
data collection to model application.
5.1. Data Scarcity and Quality. The first challenge is how

to effectively collect valid, high-quality data. For instance, since
the outbreak of the COVID-19 pandemic, over 20 000 peer-
reviewed papers have been published in a few months, among
which many efforts have been launched to detect this virus in
raw and treated wastewater.129−134 Ironically, the almost
unlimited accessibility of data makes it hard to obtain the
most relevant and qualified data. No generally agreed upon
guidelines are available to sample, transport, store, and analyze
the wastewater samples, leading to variations in the data
quality. These low-quality data cannot be easily used for

modeling. On the other hand, ML requires a large sample size
to build robust predictive models and make accurate
predictions.135−137 Unfortunately, there is often a lack of
mature databases for numerous environmental applications,
and the data are often either scattered or not available in the
literature. For example, researchers have systematically
summarized the modes of action (MOAs) for thyroid hormone
receptors (TRs)-related endocrine disruptions.138 Developing
high-throughput screening (HTS) in vitro assays based on
MOAs can quickly generate a large volume of valid and reliable
data for ML modeling. However, until recently, few in vitro
assays were available to examine MOAs. For instance, EDCs
can interact with one of 26 molecular processes to induce TRs-
related endocrine disruptions, but only 14 out of the 26
(53.8%) processes have assays that have demonstrated
reliability and are available for screening endocrine disrupting
potentials.138 Even when there are data, different researchers
often conduct experiments under different conditions of water
quality, soil/sediment properties, catalyst or adsorbent type
and loading, etc., which creates discrepancies among the
collected data. To develop predictive models that are truly
robust and widely applicable, we should first build a large,
consistent source data set.

5.2. Overfitting. Overfitting means that a model shows
excellent predictive performance on the training samples but
fails to accurately predict for new samples. This is especially a
problem for more complex ML algorithms which contain large
numbers of learned parameters. Concerns about overfitting
and a lack of interpretability hinder, for example, the further
optimization of automatic control processes in water/waste-
water systems via ML algorithms compared with first-principle
theoretical models.139 Detecting overfitting remains a
challenge, but methods that can reduce the overfitting risk
include feature selection,140 data augmentation,141 cross-
validation,108 regularization,142 model simplification/choice,143

dropout,144 and early stopping.145

5.3. Bias of ML Models. In a technical sense, bias refers to
systematic distortions of data sets and algorithms that result in
undesirable outcomes. Data set biases occur when the training
data are not representative of the planned use case and can
arise when training data are inadvertently contaminated with
the desired outcome information or when the training data are
missing relevant examples. Data contamination problems are a
more subtle form of the data leakage discussed above, and can
be difficult to identify without domain expertise. For example,
ML models trained to predict the severity of pneumonia from
patient X-rays can inadvertently learn to distinguish the type of
machine used to acquire the image (for example, the sickest
patients are scanned with a portable X-ray machine, whereas
healthier patients can be moved to a more sophisticated
machine), rather than the information in the intended image
itself.146 Missing data is a problem in scientific communities, as
peer-reviewed publications only report the most promising
positive results, omitting negative results and outliers, which
are crucial for ML model performance.147 Data can also be
missing because of choices by human scientists, such as habits
in using particular reagents, reaction conditions, or sampling
plans, or neglecting to collect data that violate a currently
accepted theory. These types of anthropogenic biases in data
sets also degrade ML performance.148 Algorithmic bias occurs
when the inherent structure of the model or loss function does
not correspond to the desired use case. For example, the
application of a linear classifier to data with nonlinear concave
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or convex boundaries cannot succeed; it is necessary to choose
a different type of ML model capable of describing the
complex relationship embedded in the data. Similarly, the use
of an inappropriate success metric (discussed above) during
the training process will result in unintended predictions. The
timely identification of the possible bias in an ML model is
crucial for its applications (beyond that of even environmental
issues). The issue of bias can be mitigated by improving the
interpretability of the ML model, where domain knowledge
can be incorporated to institute judgment on its validity. A
practical strategy to identify bias in ML models is via
convening an ensemble of ML models, which compares the
results of different ML models on the same set of problems.
This comparison will help identify the consistency in ML
model performance and allow bias associated with a particular
ML model to be identified.
5.4. Other Underlying Concerns. Besides the above-

mentioned challenges, there are still some broader concerns
that deserve to be further discussed. (1) We should not over
trust or overestimate ML tools. It is always necessary to verify
the findings either experimentally or based on the domain
knowledge or experience. (2) Traditional statistical tools may
be more appropriate than ML in some cases, such as when
there are small sample sizes. (3) Not every ESE problem can
be solved by ML tools directly. How to elegantly convert such
ESE problems to ones that can be addressed by ML requires
artful design.

6. FUTURE OPPORTUNITIES AND OUTLOOK
Although challenges lie ahead, there are still many oppor-
tunities, as described below.
6.1. Balance Model Fidelity and Interpretability.

Environmental systems are characterized by complex inter-
actions of various parameters and processes. Conventional
modeling is often based on significant simplifications and
assumptions relying on the domain knowledge of human
experts. Despite many challenges to adopting ML in ESE, ML
offers a unique opportunity to precisely predict the input and
output relationships for complicated systems without a priori
hypotheses. ML models are designed to make the most
accurate predictions possible by understanding the complex
relationships embedded in data. However, the complexity of
environmental problems leads to an added layer of challenge
regarding interpretation and bias for ML. The interpretation of
the modeling results is often difficult as ML models are like
“black box” networks in which the impact of inputs on the
output cannot be understood easily. Integration of an ML
model with a traditional mechanistic model may retain their
respective merits and can be used to solve comprehensive
problems. We encourage ESE researchers to think creatively
within their domains and use ML when appropriate.
6.2. Data Sharing. Data sharing should be a consensus in

ESE because a significant amount of time is spent on collecting
and cleaning data before model development. It is essential to
build an open-access data-sharing community in ESE where we
can help increase the size and diversity of data by adding more
experimental or observed data points, similar to ImageNet
(http://www.image-net.org/). In this way, more accurate
models with larger applicability domains can be developed to
better serve ESE. It is desirable for the obtained databases and
source codes for the models to be released to the public
through platforms, such as GitHub (http://github.com/), a
widely used web-based service for code sharing, review, and

management of open-source projects. Repositories such as
DLHub (http://dlhub.org) not only archive data and program
code, but also make it easy to use the models without the need
to install software. We recommend that journal editors and
peer-reviewers require that papers relying upon ML provide
complete data sets and analysis source code in an electronic
format (either in public repositories or as supporting
information) as a necessary condition for publication, unless
there are compelling privacy or legal nondisclosure reasons
that preclude data-sharing.

6.3. Data Collection from Trusted Sources. Similar to
other research areas, it is challenging to be inclusive of all valid
publications in ESE and extract necessary information from
different sources. Data can be obtained from stakeholders (e.g.,
water and wastewater utilities, government databases, etc.) or
directly measured using instruments. Another trusted source of
big data is the vast amount of literature available from scientific
articles and reports. These traditional data collections are
usually based on structured and homogeneous data, while
textual data from the literature consider unstructured and
structured texts with different formats and types using
linguistic and statistical techniques. Literature text mining is
a new area for ML and a void in ESE. Using ML methods to
analyze ESE literature data effectively can reveal trends and
patterns and underlying knowledge in complex and ever-
changing environmental systems. For example, Zhu et al.
proposed novel methods that analyze the complex publication
data across many domains using deep text preprocessing,149

such as acronym and abbreviation detection, chemical
expression identification, and synonym combination, which
has been beneficial in extracting the true value of big literature
data. We recommend the creation and adoption of formal data
and metadata schemas by the ESE community to facilitate data
reuse.

6.4. Applications of ML Models. Beyond providing
accurate predictions, one next step would be to create
additional knowledge; for example, new materials or
applications. On the one hand, ML models can help “discover”
new information from the existing data. For example, one
research group identified eight antibacterial compounds that
are structurally distant from known antibiotics from the
ZINC15 database (>107 million chemicals) based on an ML
model.150 On the other hand, ML can help create new
chemical spaces beyond manually defined heuristics, which
enables exploration of a vast landscape of possible material
chemistries and properties that would not be possible to
explore with an Edisonian trial and error approach.151 The
flexibility of adjustment and the capability of pseudoreal time
calculation and validation under varying conditions uniquely
enable ML to have precise control of diverse ESE systems. This
use of ML thus facilitates discovery and innovation.

6.5. Educational Opportunities. To take advantage of
the rapid development of ML and unparalleled computational
power, it is imperative that the next generation of ESE
practitioners are prepared to properly utilize these tools. We
recommend the creation of interdisciplinary certificates,
specializations, and degrees in, for example, Environmental
Data Science, which will train the next generation of
environmental engineers and scientists at the interface of
computer, data, and environmental sciences to prepare them
for these challenges. Environmental students in this track may
take several essential computer and data science courses, such
as Data Structures, Data Science, Intro to AI, Machine Learning,
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and Programming. Computer and data science students may
take courses from the ESE curriculum to receive a certificate or
minor in ESE.
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Brancelj, A. Modelling the effects of multiple stressors on respiration
and microbial biomass in the hyporheic zone using decision trees.
Water Res. 2019, 149, 9−20.
(99) Bagheri, M.; Al-Jabery, K.; Wunsch, D.; Burken, J. G.
Examining plant uptake and translocation of emerging contaminants
using machine learning: Implications to food security. Sci. Total
Environ. 2020, 698, 133999.
(100) Dong, Y.; Xu, L.; Yang, Z.; Zheng, H.; Chen, L. Aggravation of
reactive nitrogen flow driven by human production and consumption
in Guangzhou City China. Nat. Commun. 2020, 11 (1), 1209.
(101) Kou, Y.; Lu, C.-T.; Sirwongwattana, S.; Huang, Y.-P. In Survey
of Fraud Detection Techniques, IEEE International Conference on
Networking, Sensing and Control, 2004; IEEE, 2004; pp 749−754.
(102) Bejagam, K. K.; Iverson, C. N.; Marrone, B. L.; Pilania, G.
Molecular dynamics simulations for glass transition temperature
predictions of polyhydroxyalkanoate biopolymers. Phys. Chem. Chem.
Phys. 2020, 22 (32), 17880−17889.
(103) Kim, B.; Lee, S.; Kim, J. Inverse design of porous materials
using artificial neural networks. Science Advances 2020, 6 (1),
eaax9324.
(104) Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.;
Kumar, S. G. H.; Collins, S. P.; Burns, T.; Woo, T. K.; Farha, O.;
Snurr, R. Q. Inverse Design of Nanoporous Crystalline Reticular
Materials with Deep Generative Models. Nature Machine Intelligence
2021, 3, 76−86.
(105) Wang, A. Y.-T.; Murdock, R. J.; Kauwe, S. K.; Oliynyk, A. O.;
Gurlo, A.; Brgoch, J.; Persson, K. A.; Sparks, T. D. Machine learning
for materials scientists: An introductory guide toward best practices.
Chem. Mater. 2020, 32 (12), 4954−4965.
(106) Vishwakarma, G.; Sonpal, A.; Hachmann, J. Metrics for
Benchmarking and Uncertainty Quantification: Quality, Applicability,
and Best Practices for Machine Learning in Chemistry. Trends in
Chemistry 2021, 3 (2), 146−156.
(107) Claesen, M.; De Moor, B., Hyperparameter search in machine
learning. arXiv, 2015, 1502.02127. https://arxiv.org/abs/1502.02127.
(108) Varma, S.; Simon, R. Bias in error estimation when using
cross-validation for model selection. BMC Bioinf. 2006, 7 (1), 91.
(109) Iizuka, N.; Oka, M.; Yamada-Okabe, H.; Nishida, M.; Maeda,
Y.; Mori, N.; Takao, T.; Tamesa, T.; Tangoku, A.; Tabuchi, H.; et al.
Oligonucleotide microarray for prediction of early intrahepatic
recurrence of hepatocellular carcinoma after curative resection. Lancet
2003, 361 (9361), 923−929.
(110) Lastra-Mejias, M.; Villa-Martinez, A.; Izquierdo, M.; Aroca-
Santos, R.; Cancilla, J. C.; Torrecilla, J. S. Combination of LEDs and
cognitive modeling to quantify sheep cheese whey in watercourses.
Talanta 2019, 203, 290−296.
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