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ABSTRACT

We present a new catalogue of Damped Lyman-α absorbers from SDSS DR16Q, as
well as new estimates of their statistical properties. Our estimates are computed with
the Gaussian process models presented in Garnett et al. (2017); Ho et al. (2020)
with an improved model for marginalising uncertainty in the mean optical depth of
each quasar. We compute the column density distribution function (CDDF) at 2 <
z < 5, the line density (dN/dX), and the neutral hydrogen density (ΩDLA). Our
Gaussian process model provides a posterior probability distribution of the number of
DLAs per spectrum, thus allowing unbiased probabilistic predictions of the statistics of
DLA populations even with the noisiest data. We measure a non-zero column density
distribution function for NHI < 3× 1022 cm−2 with 95% confidence limits, and NHI .
1022 cm−2 for spectra with signal-to-noise ratios > 4. Our results for DLA line density
and total hydrogen density are consistent with previous measurements. Despite a
small bias due to the poorly measured blue edges of the spectra, we demonstrate that
our new model can measure the DLA population statistics when the DLA is in the
Lyman-β forest region. We verify our results are not sensitive to the signal-to-noise
ratios and redshifts of the background quasars although a residual correlation remains
for detections from zQSO < 2.5, indicating some residual systematics when applying
our models on very short spectra, where the SDSS spectral observing window only
covers part of the Lyman-α forest.
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1 INTRODUCTION

Damped Lyman-α absorbers (DLAs) are strong Lyman-α
absorption features discovered in quasar spectral sightlines.
At the densities required to produce neutral hydrogen col-
umn densities above the DLA threshold, NHI > 1020.3 cm−2

(Wolfe et al. 1986), the gas of DLAs is self-shielded from the
ionising effect of the ultra-violet background (UVB) (Cen
2012) but diffuse enough to have a low star formation rate
(Fumagalli et al. 2013). DLAs contain a large fraction of the
neutral hydrogen budget after reionisation (Gardner et al.
1997; Noterdaeme et al. 2012; Zafar, T. et al. 2013; Crighton
et al. 2015), which make them a direct probe of the distri-
bution of neutral gas.

Numerical simulations tell us DLAs are associated with
a wide range of halo masses, with a peak value in the
range of 1010− 1011 M⊙ (Haehnelt et al. 1998; Prochaska &
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Wolfe 1997; Pontzen et al. 2008; Rahmati & Schaye 2014).
Through cross-correlating the DLAs with the Lyman-α for-
est, Font-Ribera et al. (2012) measured a DLA bias fac-
tor bDLA = 2.17 ± 0.2. This implies a median host halo
mass of ∼ 1012 M⊙, assuming all DLAs arise from halos
of the same mass and. However, a model which assumes a
power-law distribution function of DLA cross-section as a
function of halo mass is only in marginal tension with the
data (Bird et al. 2015). Furthermore, a later measurement
from SDSS-DR12 (Pérez-Ràfols et al. 2018) found a bias
factor bDLA = 1.99 ± 0.11, and a median host halo mass
∼ 4× 1011 M⊙, in good agreement with simulations. Alter-
native measurements by cross-correlating with CMB lensing
data are broadly consistent with both simulated DLAs and
Lyman-α clustering (Alonso et al. 2018; Lin et al. 2020).

In the cosmology context, the Lyman-α forest is a suc-
cessful probe of matter clustering between 2 < z < 6 (Croft
et al. 1998; McDonald et al. 2000; Viel et al. 2004; McDon-
ald et al. 2005b; Iršič et al. 2017; Chabanier et al. 2019).
However, high column density absorbers such as DLAs will
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bias cosmological parameter estimates from Lyman-α and
thus need to be masked out (McDonald et al. 2005a). Sim-
ulations have been performed to study the effect of damped
absorbers on the Lyman-α 1-D and 3-D flux power spec-
trum (Rogers et al. 2018a,b), and a recent Bayesian fitting
method has been proposed to better understand how DLA
contaminants affect cosmological inference using the BAO
peak (Cuceu et al. 2020).

In this work, we present new estimates for the column
density distribution function (CDDF), the abundance of
DLAs, and the average neutral hydrogen density at z = 2−5
for DLAs in the Sloan Digital Sky Survey IV quasar cata-
logue from Data Release 16 (SDSS-IV/eBOSS DR16) (Daw-
son et al. 2016; Lyke et al. 2020). We compute DLA popula-
tion statistics using the Gaussian process (GP) model pre-
sented in Ho et al. (2020), a modified version of the machine
learning framework from Garnett et al. (2017). We retrain
our model on SDSS DR12 (Eisenstein et al. 2011; Dawson
et al. 2013; Alam et al. 2015; Pâris, Isabelle et al. 2018) and
generate a DLA catalogue from DR16Q (Lyke et al. 2020).
We compute DLA population statistics from the DLA cat-
alogue, which update the estimates we made in Bird et al.
(2017); Ho et al. (2020).

The pipeline presented in Garnett et al. (2017) pro-
vided for the first time probabilistic detections of DLAs in
each spectrum, which comes with a posterior distribution
on putative DLAs for the column density and the absorber
redshift. With the aid of a full posterior probability distri-
bution for the number of DLAs in each quasar spectrum,
“soft” detections in noisy data become available. We prop-
agate uncertainties from each individual spectrum into the
global population, without setting any hard threshold on the
minimum required probability for the presence of DLAs. We
are thus able to include even noisy spectra in our sample of
DLAs.

Ho et al. (2020) added an alternative model for sub-
DLAs, which regularised excessive detections at low column
density. We also included absorption from the mean optical
depth in the Lyman-α forest in the GP mean function. This
helped prevent the pipeline from using DLAs to compensate
for Lyman-α forest absorption in the spectrum, essential at
high redshift. In this work, we further improve this aspect of
our model. We marginalise out uncertainty in the effective
optical depth in each spectrum using the measured mean
optical depth as a prior when computing the evidence for
the null, DLA, and sub-DLA models.

Several other DLA search methods for SDSS spectra
have been implemented. These range from visual inspection
surveys (Slosar et al. 2011), visually guided Voigt profile fit-
ting (Prochaska et al. 2005; Prochaska & Wolfe 2009), and
template fitting (Noterdaeme et al. 2009, 2012), to machine
learning based methods such as a convolutional neural net-
work (CNN) approach (Parks et al. 2018) and an unpub-
lished Fisher discriminant analysis (Carithers 2012). The
CNN method (Parks et al. 2018) was also run to identify
DLAs as part of the SDSS DR16 quasar catalogue (Lyke
et al. 2020). We compare the DLAs detected by our GP
model and the DLAs in DR16Q in Section 6.

Machine learning methods have also been proposed to
classify broad absorption lines (BALs), including a line-
finder based convolutional neural network (CNN) (Busca

& Balland 2018) and a hybrid of a CNN with a principal
component analysis Guo & Martini (2019).

Section 2 will briefly outline our modelling decisions and
the changes to the model made in this work. Section 2.1 de-
scribes the cuts we applied to SDSS DR16Q. We recap our
modelling details in Section 2.2. We present our results in
Section 3, including the CDDF in Section 3.1 and the inci-
dence rate of DLAs and total HI density in Section 3.2. In
Section 4, we discuss the possible remaining systematics in
our method. Section 5 shows population statistics for DLAs
in Ly∞ to Lyβ. In Section 6, we briefly compare our DLA
catalogue to the DLAs presented in the SDSS DR16Q cata-
logue, which implemented a CNN model (Parks et al. 2018)
to classify DLAs. We conclude in Section 7.

2 METHODS

Here we briefly recap our Gaussian process (GP) based
framework for detecting DLAs using Bayesian model selec-

tion. We summarise the general approach, while more com-
prehensive mathematical details may be found in Garnett
et al. (2017); Ho et al. (2020). A quasar sightline has spec-
troscopic observations D = (λ,y), where λ is a vector of rest
wavelength bins, and y is a vector of observed flux at these
wavelength bins. Suppose we have built likelihood functions
for a set of models {Mi}. We can evaluate the posterior
probability of a model, M, given a quasar observation, D,
based on Bayes’ rule:

Pr(M | D) =
p(D | M)Pr(M)

∑

i
p(D | Mi)Pr(Mi)

, (1)

where p(D | M) is the model evidence of the quasar spec-
trum D given model M, Pr(M) is the prior probability of
modelM, and the denominator on the right-hand-side is the
sum of posterior probabilities of all models in consideration.

Concretely, we have the model without DLAs
(M¬DLA), the model with k DLAs ({MDLA(i)}

k
i=1), and the

model with sub-DLAs (Msub). We set k = 3 here, allowing
up to 3 DLAs per spectrum. We consider a posterior prob-
ability of a sub-DLA,Msub, not to be a DLA detection, as
in Ho et al. (2020). Section 2.2 describes the details of how
we compute the model evidence for each model.

Table 1 lists mathematical notation and definitions of
parameters used throughout the paper.

2.1 Data

Our GP model requires a training set without DLAs for
training the null model,M¬DLA. We use the DLAs in SDSS
DR12Q detected by Ho et al. (2020) as our true DLA labels.
Here we list the subset of DR12 quasars omitted from our
training sample:

• Quasars with zQSO < 2.15, which have almost no
Lyman-α forest, are removed.
• BAL: quasars with a broad absorption line (BAL) prob-

ability larger than 0.75 (BAL PROB > 0.75) are removed, as
suggested by Lyke et al. (2020). BAL PROB is derived from
QuasarNET (Busca & Balland 2018).
• CLASS PERSON == 30: quasars classified as BALs by hu-

man visual inspection are removed.
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Table 1. Mathematical notations and definitions

Notation Description

M¬DLA Null model, model without DLAs or subDLAs

MDLA Model with DLAs (20 6 log10 NHI 6 23)
Msub Model with subDLAs (19.5 6 log10 NHI < 20)

p(D | M) Model evidence, marginalised likelihood
Pr(M) Model prior

(βMF, τ0,MF) Parameters of power-law relation of effective optical depth model
τeff,HI(z;βMF, τ0,MF) Power-law model of effective optical depth
p(βMF) Prior of βMF, assumed to be a normal distribution
p(τ0,MF) Prior of τ0,MF, assumed to be a normal distribution
p(zDLA | zQSO,MDLA) Prior of redshift of DLAs, a uniform distribution
p(NHI | MDLA) Prior of column density of a DLA, a data-driven distribution
y Vector of normalised observed flux
λ Vector of wavelength pixels in restframe
ν Vector of instrumental noise variance
µ Vector of GP mean model

Σ Matrix of GP covariance
AF Matrix of mean flux suppression from the effective optical depth (diagonal matrix)

K Matrix to describe covariance of quasar emission spectrum (2281× 2281 matrix, 20× 2281 parameters)
Ω Matrix of Lyman series absorption noise (diagonal matrix)

• ZWARNING: spectra flagged with ZWARNING for pipeline
redshift estimation are removed, but extremely noisy spectra
with TOO MANY OUTLIERS are kept.

We have in total 89, 408 spectra without DLAs for training
the null model.

We also use the same above criteria to select the DR16Q
spectra for applying our model. In addition to the above
criteria, the DR16Q quasar sample to which our model is
applied is a subset of the full DR16Q sample chosen following
additional conditions:

• IS QSO FINAL == 1: We require this flag in the quasar
sample, specifying that a spectrum is robustly classified as
a quasar.
• CLASS PERSON == 3 or 0: This flag specifies that the

spectrum was classified by a human as a quasar (3) or was
not visually identified (0).
• SOURCE Z: as suggested in Section 3.2 of (Lyke et al.

2020), spectra with Z > 5 and SOURCE Z == PIPE have a
suspect redshift estimate and should not be used without
a careful visual re-inspection. We thus remove these spectra
from our analysis.

Integral to our method is a reliable quasar redshift esti-
mate. It is not trivial to reliably estimate quasar redshifts in
the large samples provided by DR16Q,1 and so we are care-
ful to use the redshift estimates suggested by Lyke et al.
(2020). To ensure our quasar redshifts are as homogeneous
as possible, we use Z PCA, the recommended redshift esti-
mate method for statistical analyses of a large ensemble of
quasars. We also remove the spectra where redshift mea-
surements disagree with each other by more than 0.1, which
means we remove samples with |zi − zj | > 0.1 for zi, zj ∈
{Z PIPE, Z PCA, Z, Z VI}. If Z VI is not present, we use only
the other three redshift estimates. Our final DR16Q sample
size contains 159 807 Lyman-α quasar spectra.

1 Indeed, we have extended our GP framework to provide a
quasar redshift estimate (Fauber et al. 2020).

2.2 Gaussian process model

Consider a distant quasar with a known redshift, zQSO. Each
spectroscopic observation gives us the observed flux, y, on
a set of wavelength pixels in observed-frame wavelengths,
λobs. Since the quasar redshift is assumed to be known, we
shift into the rest frame, λ = λobs/(1 + zQSO). Standard
errors are provided with each observed flux pixel, σ(λi), with
λi the ith pixel in λ, and we define the noise variance of each
observed flux pixel as νi = σ(λi)

2. Given the observed flux of
a quasar, we normalise all flux measurements by dividing the
median flux observed between [1425Å, 1475Å] in the rest-
frame, a wavelength range redwards of the Lyα emission
and avoiding major emission lines.

For each quasar observation, we have data D =
(λ,y,ν, zQSO). We want to build a likelihood function to
describe this data:

p(y|λ,ν, zQSO),

which is the likelihood of the flux y given all other observed
quantities. We model this likelihood as a Gaussian process:

p(y|λ,ν, zQSO) = N (y;µ,Σ),

where µ is the mean vector of the GP, and Σ is the covari-
ance matrix of the GP. We will use bold lowercase italics for
vectors and bold uppercase letters for matrices.

2.2.1 Learning the GP null model

A GP is fully specified by its first two central moments: the
mean function, µ(λ), and the covariance kernel, K(λ, λ′),
(Rasmussen & Williams 2005). Our task now is to learn the
mean function and the covariance function from the training
set. Suppose we have a set of quasar observations without
any intervening DLAs, {D1,D2, · · · ,DNspec}, where Nspec is
the number of quasars in the training set. We can then learn

MNRAS 000, 1–16 (2020)
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the mean function by taking a precision weighted average:

µj =

∑

i
yij 6=NaN (yij/νij)

∑

i
yij 6=NaN (1/νij)

, (2)

where the summation is over i index. j indicates jth pixel
in the observed flux, i represents ith spectrum, and we only
average over the non-NaN values. Note this differs from Ho
et al. (2020), where we used the mean rather than the pre-
cision weighted average. The precision weighted average can
be viewed as a result of using an uninformative prior on
µj and an independent Gaussian likelihood for each yij . If
we have a set of normally disturbed flux pixels with each
flux pixel follows yij ∼ N (µj , νij) with known variance νij
and an unknown µj with an uninformative prior, the poste-
rior will be a normal distribution with a new mean equals a
precision weighted average.

Instead of training on the raw observed flux y directly,
we follow (Ho et al. 2020) to train the mean function and
the kernel on the flux after removing the average effect of
the Lyman-α forest, the de-forest flux:

yij ← yij · exp(τeff,HI);

νij ← νij · exp(2 · τeff,HI) ,
(3)

which means we replace observed flux and its variance with
the flux and variance before the suppression of Lyman-α
forest. The effective optical depth is parameterised as:

τeff,HI(z(λobs);βMF, τ0,MF) =

N
∑

i=2

τ0,MF
λ1if1i
λ12f12

(1 + z1i(λobs))
βMF ,

(4)

where λ1i is the transition wavelength from Lyman-α to the
ith member in the Lyman series, f1i represents the oscillator
strength, z1i is the absorber redshift, and we set N = 31.
The absorber redshift is written as:

1 + z1i(λ, zQSO) =
λobs

λ1i

=
λ(1 + zQSO)

λ1i
.

(5)

We parameterise the effective optical depth by a power-law
relation with τ0,MF and βMF parameters. Here we specify
a subscript “MF” to annotate the parameters modified by
mean flux suppression. Fig 1 shows our new GP mean func-
tion, compared to Ho et al. (2020).

Taking this Lyman-α mean flux into account introduces
a dependence on quasar redshift into the mean function of
the GP for each quasar:

µ(λ, zQSO;βMF, τ0,MF) =

µ(λ) · exp(−τeff,HI(z(λ, zQSO);βMF, τ0,MF)) .
(6)

µ(λ) is the mean function we learned from Eq 2. We learn
the mean function on a dense grid of wavelengths on a chosen
rest-frame wavelength range:

λ ∈ [850.75 Å, 1420.75 Å] (7)

with a linearly equal spacing of ∆λ = 0.25Å. Ho et al.
(2020) only modelled the null model in the Lyman-α region,
[911.75Å, 1215.75Å]. We extend the red end of our model
to include a part of the metal line region until 1420.75 Å.
This empirically improved the column density estimation of

DLAs near the Lyman-α emission peak, as otherwise part of
the damping wing would go beyond 1215.75 Å when a large
DLA is very close to the quasar.

The mean function is thus written as a mean vector
µ(zQSO;βMF, τ0,MF) = µ(λ, zQSO; τ0,MF, βMF) and the ker-
nel is written as a matrix Σ(λ, λ′) = Σ. The covariance ma-
trix’s optimisation procedure is described in Garnett et al.
(2017); Ho et al. (2020). We factorise the covariance matrix
as in Ho et al. (2020):

Σi = A
⊤
F (K+Ω)AF + diag νi. (8)

The K matrix is a positive-definite symmetric matrix corre-
sponding to the covariance between each quasar flux pixel.
Ω is a diagonal matrix describing the absorption noise:

diag Ω = ω ◦ (1− exp(−τeff,HI(z;β, τ0)) + c0)
2 . (9)

ω is freely optimisable while the Lyman-α flux term, (1 −
exp(τeff,HI(z;β, τ0)) + c0)

2, includes the redshift dependent
noise variance with which we model the Lyman-α forest.
The optimised absorption noise parameters used here are:

τ0 = 0.000119 β = 5.15 c0 = 0.146. (10)

The AF is a diagonal matrix reflecting the mean vector
suppression for each spectrum corresponding to the mean
flux in the Lyman-α forest:

diag AF = exp (−τ eff,HI(zQSO;βMF, τ0,MF)) . (11)

The parameters of this matrix follow the values given in
Kamble et al. (2020), which used a power-law relation to
measure the effective optical depth in the Lyman-α forest in
SDSS DR12:

τ0,MF = 0.00554 βMF = 3.182, (12)

with associated uncertainty for each parameter:

στ0,MF
= 0.00064 σβMF

= 0.074. (13)

The instrumental noise is encoded in the diagonal ma-
trix diag νi, where i simply denotes the ith quasar observa-
tion: The final covariance matrix learned from our data is
shown in Fig 2. Comparing the kernel matrix we learned in
this work to Ho et al. (2020), the current kernel is less noisy
and contains several distinct features of emission lines. The
reduction in the noise is due to a larger training set, SDSS
DR12Q catalogue, is used for optimising the kernel.

After having learned the GP null model, we can write
down the null model likelihood function:

p(y |λ,ν, zQSO, βMF, τ0,MF,M¬DLA) =

N (y;µ(zQSO;βMF, τ0,MF),A
⊤
F (K+Ω)AF + diag νi),

(14)

where the notationM¬DLA specifies that our null GP model
is conditioned on a training set without DLAs.

2.2.2 Model evidence for the null model

Once we have trained our GP null model,M¬DLA, accord-
ing to Section 2.2.1, we need to integrate out the nuisance
parameters associated with Lyman-α forest absorption to
get the model evidence.

In Ho et al. (2020), we only took the mean values of the
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the meanflux parameters (βMF, τ0,MF). For convenience, we
denote the parameters which need to be integrated out by
θ = {{zDLAi}

k
i=1, {NHIi}

k
i=1, βMF, τ0,MF}.

For the model with a single DLA, we have four param-
eters θ = {zDLA, NHI, βMF, τ0,MF}. The model evidence is:

p(y | λ,ν, zQSO,MDLA) =
∫

p(y | λ,ν, zQSO, θ,MDLA)p(θ | zQSO,MDLA)dθ.
(20)

By assuming each parameter is independent of each other,
we factorise the parameter prior as:

p(θ | zQSO,MDLA)

= p(zDLA | zQSO,MDLA)p(NHI | MDLA)p(βMF)p(τ0,MF),

(21)

where we assign the Kamble et al. (2020) prior for the mean-
flux parameters as in Eq 17. We use the same prior for col-
umn density, p(NHI | MDLA), as Ho et al. (2020). This was
trained using kernel density estimation on the log10 NHI dis-
tribution from Lee et al. (2013) DR9 DLAs with an addition
of a 3% uniform prior.

The zDLA prior is uniform within the search range for
DLAs. We set this search range to be from Lyman-β to
Lyman-α. Removing DLAs detected in the Lyman-β forest
ensures the purity of DLA samples in deriving the statistical
properties of the DLA population. However, to generate a
complete catalogue, we also consider a search range from the
Lyman limit to Lyman-β.

We used the same model and priors for the sub-DLA
model as in Ho et al. (2020). The sampling range of the
redshifts of sub-DLAs is the same as for the DLA model.
Model priors are the same as Ho et al. (2020), based on the
DLA catalogue in SDSS DR9 (Carithers 2012).

2.3 Example spectra

In this section, we show some example spectra to demon-
strate our proposed model. Figure 3 shows an example with
prominent DLA features. As shown in the parameter space
(middle plot), the posterior distribution is peaked at the
maximum a posteriori (MAP) values of those two DLAs.
Our GP model estimates the parameters of the DLAs with
small uncertainties. As shown in the top plot, our MAP val-
ues agree with the column densities measured by the CNN
model reported in the DR16Q catalogue.

Figure 4 shows an extremely noisy spectrum, for which
our GP model is very uncertain about the effective Lyman-α
absorption in the spectrum. The DLA models are degener-
ate with the absorption from the Lyman-α forest. Without
modelling the uncertainty in the mean flux, the GP model
does not know that the drop in the spectrum can be ex-
plained by Lyman-α forest absorption. It instead fits a big
DLA with NHI = 1022.9 cm−2 as its preferred explanation
for the drop in flux.

2.4 Selection on the strength of Occam’s razor

As we use more parameters to compute the DLA or sub-DLA
model, the model selection will prefer to fit a Voigt profile
to the GP if all candidate models are poorly fit. Thus, the

DLA or sub-DLA model’s evidence is sometimes too strong
compared to the null model.

The most common poor fit situations are quasar spec-
tra with zQSO < 2.5 and with low signal-to-noise ratios
(SNR). As SDSS optical spectra have a fixed observing win-
dow, quasar spectra with zQSO < 2.5 have an incomplete
Lyman-α forest. The constraining power of the quasar be-
comes weaker as only part of the data fits into our modelling
window, [850.75 Å, 1420.75 Å]. Thus the DLA model and the
null model are closer in likelihood space.

To avoid this situation, we introduced an additional Oc-
cam’s razor in Ho et al. (2020), which is injected in the model
selection as:

Pr(MDLA | D) =

Pr(MDLA)p(D | MDLA)
1
N

(

Pr(MDLA)p(D | MDLA)
+Pr(Msub)p(D | Msub)

)

1
N

+ Pr(M¬DLA | D)

,

(22)

Here N is the Occam’s razor penalty, and we used N =
10 000 in Ho et al. (2020). We previously validated the Oc-
cam’s razor strength by matching it to the DR9 concordance
catalogue (Carithers 2012).

In this work, however, we modify our null model to con-
sider uncertainty from the mean flux measurement, which
means it has more parameters. Thus, the null model gains
more constraining power, so a weaker Occam’s razor may
be preferable. To make our model posteriors more consis-
tent with human identifications, we decided to conduct a
visual inspection on a small subset of the spectra.

We first train a model without Occam’s razor and se-
lect at random from this model 239 putative large DLAs
with NHI > 1022 cm−2 and 243 putative small DLAs with
1020 6 NHI < 1021 cm−2. We visually inspect each spectrum
and compute the model posteriors with a range of strengths
for Occam’s razor, N = {1, 10, 100, 1 000, 30 000}. We then
treat each spectrum as a multiple-choice problem: if we think
the model posterior of a given Occam’s razor describes the
given spectrum well, then we record one vote for this value
of Occam’s razor. Multiple selections are allowed for each
spectrum as the model posteriors are often very close. Af-
ter collecting votes, the winning value of Occam’s razor was
N = 1000, a ten times reduction from our earlier value.

For quasar spectra with zQSO > 2.5 there are enough
data points in the Lyman-α range that the strength of Oc-
cam’s razor has a small effect. We will discuss the effect of
Occam’s razor in Section 4. We suggest incorporating vari-
ations due to Occam’s razor into the uncertainty in popula-
tion statistics for conservative usage.

2.5 Summary of the modifications

Here we summarise the modifications we made in this work,
comparing to the model of Ho et al. (2020):

(i) Our training set is SDSS DR12 quasar spectra with
DLAs detected by Ho et al. (2020) removed. We considered a
DLA to be detected if the posterior probability of a spectrum
containing a DLA is larger than 0.9, P (MDLA | D) > 0.9.

(ii) The wavelength range modelled goes from λrest =
850.75 Å to λrest = 1420.75 Å.

MNRAS 000, 1–16 (2020)





















16 M.-F. Ho et al.

DATA AVAILABILITY

Our DLA catalogue is publicly available at http:

//tiny.cc/gp_dla_dr16q, including both MATLAB cata-
logue and JSON catalogue. A sub-DLA candidate catalogue
is available in JSON format. README files are included to
describe the data formats of both catalogues. The data files
for DLA population statistics are also included, including
CDDF, dN/dX, and ΩDLA with or without SNR cuts.
A tutorial for manipulating the MATLAB catalogue is
publicly available at https://github.com/jibanCat/gp_

dla_detection_dr16q_public/tree/master/notebooks as
a notebook file. Our GP code is also publicly available
at https://github.com/jibanCat/gp_dla_detection_

dr16q_public/.
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Table A1. Table of dN/dX values, integrated over all putative absorbers with NHI > 1020.3 in our catalogue.

z dN/dX 68% limits 95% limits

2.00− 2.17 0.0337 0.0330− 0.0345 0.0323− 0.0352
2.17− 2.33 0.0429 0.0421− 0.0438 0.0413− 0.0446
2.33− 2.50 0.0462 0.0452− 0.0472 0.0443− 0.0481
2.50− 2.67 0.0493 0.0482− 0.0505 0.0471− 0.0516

2.67− 2.83 0.0620 0.0606− 0.0634 0.0592− 0.0649
2.83− 3.00 0.0660 0.0643− 0.0678 0.0627− 0.0695

3.00− 3.17 0.0704 0.0683− 0.0726 0.0663− 0.0747
3.17− 3.33 0.0745 0.0719− 0.0774 0.0695− 0.0800
3.33− 3.50 0.0763 0.0729− 0.0800 0.0696− 0.0833
3.50− 3.67 0.0777 0.0735− 0.0821 0.0697− 0.0862
3.67− 3.83 0.0632 0.0586− 0.0688 0.0539− 0.0735
3.83− 4.00 0.0648 0.0585− 0.0720 0.0522− 0.0792
4.00− 4.17 0.0581 0.0507− 0.0670 0.0447− 0.0745
4.17− 4.33 0.0709 0.0620− 0.0842 0.0532− 0.0953
4.33− 4.50 0.1024 0.0896− 0.1216 0.0736− 0.1376

4.50− 4.67 0.0827 0.0689− 0.1057 0.0552− 0.1241
4.67− 4.83 0.1041 0.0818− 0.1413 0.0669− 0.1636

4.83− 5.00 0.0676 0.0507− 0.1184 0.0169− 0.1522

Table A2. ΩDLA values, integrated over all putative absorbers with NHI > 1020.3 in our catalogue.

z ΩDLA(10−3) 68% limits 95% limits

2.00− 2.17 0.582 0.550− 0.619 0.520− 0.659
2.17− 2.33 0.610 0.576− 0.651 0.548− 0.694
2.33− 2.50 0.691 0.664− 0.722 0.638− 0.755
2.50− 2.67 0.647 0.621− 0.676 0.596− 0.706
2.67− 2.83 0.770 0.738− 0.809 0.711− 0.855
2.83− 3.00 0.747 0.723− 0.773 0.701− 0.799

3.00− 3.17 0.789 0.758− 0.829 0.729− 0.896
3.17− 3.33 0.850 0.810− 0.909 0.773− 1.042

3.33− 3.50 0.908 0.855− 0.962 0.792− 1.019
3.50− 3.67 1.019 0.953− 1.087 0.866− 1.166
3.67− 3.83 0.664 0.604− 0.731 0.550− 0.806
3.83− 4.00 0.887 0.781− 1.000 0.683− 1.112
4.00− 4.17 0.562 0.508− 0.622 0.457− 0.684
4.17− 4.33 1.061 0.843− 1.337 0.708− 1.675

4.33− 4.50 1.507 1.252− 1.810 1.038− 2.182
4.50− 4.67 0.595 0.473− 0.737 0.373− 0.892

4.67− 4.83 0.913 0.657− 1.208 0.465− 1.498
4.83− 5.00 1.221 0.449− 1.995 0.127− 2.449
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Table A3. The column density distribution function integrated over all spectral lengths within 2 < z < 5.

log10 NHI f(NHI) (10−21) 68% limits (10−21) 95% limits (10−21)

20.0− 20.1 0.371 0.365− 0.378 0.358− 0.385

20.1− 20.2 0.235 0.230− 0.240 0.225− 0.244
20.2− 20.3 0.170 0.166− 0.173 0.162− 0.177

20.3− 20.4 0.128 0.125− 0.131 0.122− 0.134
20.4− 20.5 9.58× 10−2 [9.36− 9.80]× 10−2 [9.15− 10.02]× 10−2

20.5− 20.6 7.16× 10−2 [6.99− 7.33]× 10−2 [6.83− 7.50]× 10−2

20.6− 20.7 5.09× 10−2 [4.97− 5.23]× 10−2 [4.85− 5.35]× 10−2

20.7− 20.8 3.56× 10−2 [3.47− 3.66]× 10−2 [3.38− 3.75]× 10−2

20.8− 20.9 2.45× 10−2 [2.38− 2.52]× 10−2 [2.31− 2.59]× 10−2

20.9− 21.0 1.64× 10−2 [1.59− 1.69]× 10−2 [1.55− 1.74]× 10−2

21.0− 21.1 1.06× 10−2 [1.02− 1.09]× 10−2 [9.92− 11.29]× 10−3

21.1− 21.2 6.96× 10−3 [6.72− 7.22]× 10−3 [6.48− 7.47]× 10−3

21.2− 21.3 4.58× 10−3 [4.41− 4.77]× 10−3 [4.25− 4.94]× 10−3

21.3− 21.4 2.66× 10−3 [2.55− 2.79]× 10−3 [2.43− 2.91]× 10−3

21.4− 21.5 1.51× 10−3 [1.44− 1.60]× 10−3 [1.36− 1.68]× 10−3

21.5− 21.6 9.95× 10−4 [9.43− 10.56]× 10−4 [8.91− 11.08]× 10−4

21.6− 21.7 4.82× 10−4 [4.52− 5.23]× 10−4 [4.18− 5.57]× 10−4

21.7− 21.8 2.60× 10−4 [2.39− 2.84]× 10−4 [2.18− 3.08]× 10−4

21.8− 21.9 1.50× 10−4 [1.35− 1.69]× 10−4 [1.23− 1.83]× 10−4

21.9− 22.0 7.73× 10−5 [6.98− 8.86]× 10−5 [6.03− 9.81]× 10−5

22.0− 22.1 4.34× 10−5 [3.74− 5.09]× 10−5 [3.30− 5.69]× 10−5

22.1− 22.2 1.43× 10−5 [1.19− 2.02]× 10−5 [8.33− 23.80]× 10−6

22.2− 22.3 1.13× 10−5 [8.51− 15.12]× 10−6 [6.62− 17.96]× 10−6

22.3− 22.4 3.75× 10−6 [3.00− 6.01]× 10−6 [1.50− 8.26]× 10−6

22.4− 22.5 2.39× 10−6 [1.79− 4.77]× 10−6 [5.96− 59.63]× 10−7

22.5− 22.6 1.42× 10−6 [9.47− 28.42]× 10−7 [4.74− 37.90]× 10−7

22.6− 22.7 7.53× 10−7 [3.76− 15.05]× 10−7 0− 2.26× 10−6

22.7− 22.8 5.98× 10−7 [2.99− 11.96]× 10−7 0− 1.79× 10−6

22.8− 22.9 7.12× 10−7 [4.75− 14.24]× 10−7 [2.37− 16.62]× 10−7

22.9− 23.0 5.66× 10−7 [1.89− 9.43]× 10−7 0− 1.32× 10−6
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