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Abstract

The claw is the graph K 3, and the fork is the graph obtained from the claw K 3
by subdividing one of its edges once. In this paper, we prove a structure theorem
for the class of (claw, Cy)-free graphs that are not quasi-line graphs, and a structure
theorem for the class of (fork, Cy)-free graphs that uses the class of (claw, Cy)-free
graphs as a basic class. Finally, we show that every (fork, Cy)-free graph G satisfies

x(G) < [:swé(;)"‘ via these structure theorems with some additional work on coloring
basic classes.
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1 Introduction

All graphs in this work arc finite and simple. For a positive integer n, K, will denote
the complete graph on n vertices, and P, will denote the path on n vertices. For integers
n > 2, C,, will denote the cycle on n vertices; the graph C is called a square. For positive
integers m,n, K,,, will denote the complete bipartite graph with classes of size m and
n. The claw is the graph K 3, and the fork is the tree obtained from the claw K 3 by
subdividing one of its edges once. A clique (stable set or an independent set) is a sct of
vertices that are pairwise adjacent (nonadjacent). The cliqgue number w(G) (independence
number a(G)) of a graph G is the size of a largest clique (stable set) in G. A triad is a
stable sct of size 3. A k-vertez coloring of a graph G is a function ¢ : V(G) — {1,2,...,k}
such that for any adjacent vertices v and w, we have ¢(v) # ¢(w). A vertexr coloring of
a graph G is a k-vertex coloring of G for some k. The chromatic number of GG, denoted
by x(G), is the minimum number k such that G admits a k-vertex coloring. A graph is
(G1, Gy, ...,Gy)-free if it does not contain any graph in {Gy, Gy, ..., G} as an induced
subgraph.

Clearly, for every graph G, we have x(G) = w(G). In 1955, Mycielski constructed an
infinite sequence of graphs G,, with w(G,,) = 2 and x(G) = n for every n [9]. Thus, in
general, there is no function of w(G) that gives an upper bound for y(G); however, there
do exist such upper bounding functions for some restricted classes of graphs. To be precise,
if G is a class of graphs, and there exists a function f (called y-binding function) such
that x(G) < f(w(@)) for all G € G, then we say that G is y-bounded; and is linearly x-
bounded if f is lincar. The ficld of y-boundedness is primarily concerned with determining
which forbidden induced subgraphs G, G, . . . , G}, give y-bounded classes, and finding the
smallest y-binding functions for these classes. It is known that if none of G, G, ..., G
is acyclic, then the class of (G, Gs, . .., Gy)-free graphs is not y-bounded [11]. Gyérfds
6] and Sumner [12] both independently conjectured that for every tree T, the class of
T-free graphs is y-bounded. Gyérfas [6] showed that the class of Ky -free graphs is x-
bounded and its smallest y-binding function f satisfies w < f(w) € R(t,w), where
R(m,n) denotes the classical Ramsey number. A famous result of Kim [8] shows that the
Ramscy number R(3,t) has order of magnitude O(#?/logt). Thus for any claw-free graph
G, we have x(G) < O(w(G)?/logw(G)). Further, it is known that there exists no lincar
x-binding function for the class of claw-free graphs; see [11]. More precisely, for the class
of claw-free graphs the smallest y-binding function f satisfies f(w) € O(w?/logw). The
first author and Seymour [4] studied the structure of claw-free graphs in detail, and they
obtained the tight y-bound for claw-free graphs containing a triad [5]. That is, if G is
connected and claw-free with a(G) = 3, then x(G) < 2w(G).

The class of fork-free graphs gencralizes the class of claw-free graphs. The class of
fork-free graphs is comparatively less studied. Kierstead and Penrice showed that fork-
free graphs are y-bounded [7]. However, the best y-binding function for fork-free graphs
is not known, and an interesting question of Randerath and Schicrmeyer [11] asks for the
existence of a polynomial y-binding function for the class of fork-free graphs. Randerath,
in his thesis, obtained tight y-bounds for several subclasses of fork-free graphs [10]. Here
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we are interested in linearly y-bounded fork-free graphs. Recently the first author with
Cook and Seymour [2] studied the structure of (fork, anti-fork)-free graphs and showed a
lincar y-binding function for this class of graphs. Since the class of (3K, 2K,)-free graphs
does not admit a lincar y-binding function [1], if G is a lincarly y-bounded class of (fork,
H)-free graphs with |V (H)| = 4, then H € {P;,Cy, Ky, Ky—e¢, Ky 3, paw}. When H = Py,
then every (fork, Pj)-free graph G is again Pj-free, and it is well known that every such
G satisfies x(G) = w(G); when H € { Ky, K; — e, paw}, it follows from the results of [10]
that cvery (fork, H)-free graph G satisfics x(G) < w(G) + 1, and from a result of 2| that
every (fork, K 3)-free graph G satisfies x(G) < 2w(G). Thus the problem of obtaining a
(best) lincar y-binding function for the class of (fork, C,)-free graphs is open.

In this paper, we show that every (fork, Cy)-free graph G satisfies x(G) < [:swén)]_ To
do this, we need to achieve three major steps:

e First, we obtain a structure theorem for the class of (fork, C,)-free graphs that uses
the class of (claw, Cy)-free graphs as a basic class (Section 3).

e Next, we prove a new structure theorem for the class of (claw, Cy)-free graphs that
arc not quasi-line graphs (Section 4).

e Finally, we prove our [%‘"]—bmmd for the chromatic number via these structure
theorems with additional work on coloring basic classes (Section 5).

2 Notation and terminology

Given a vertex v € V(G), we say the neighborhood of v, Ng(v), is the set of neighbors
of v; the non-neighborhood of v, Mg (v), is the set of non-neighbors of v; and the degree
of v, dg(v) = |Ng(v)|; we may write N(v), M(v) and d(v) when the relevant graph is
unambiguous. We write N|v| to denote the set N(v) U {v}, and M|v| to denote the sct
M(v) U {v}. It S C V(G), then N(S) is the set U,esN(v) \ S, and M(S) is the sct
UpesM(v) \ S.

Given S C V(G), we define a(S) to be a(G[S]). A vertex v in G is important if for
allw e V(G), a(N(v)) = a(N(w)). A vertex v in G is a oot of a claw if v has neighbors
a,b,c in G such that {v,a,b,c} induces a claw in G. A vertex v in a graph G is good if
dg(v) < [w—‘ -1

Given disjoint vertex sets S, T, we say that S is complete to T if every vertex in S
is adjacent to cvery vertex in T; we say S is anticomplete to T if every vertex in S is
nonadjacent to every vertex in 7'; and we say S is mized on T if S is not complete or
anticomplete to T. When S = {v} is a single vertex, we can instead say that v is complete
to, anticomplete to, or mixed on 7. A vertex v is called universal if it is complete to
V(G)\ {v}. A vertex set S in G is homogeneous if 1 < |S| < |V(G)| and for every v & S,
v is complete to S or anticomplete to S. A homogeneous clique is a homogencous set that

is a clique. A clique cutset is a clique S in G such that G|V(G) \ S| has more components
than G.
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We say that disjoint vertex scts Y, Z arc matched (antimatched) if cach vertex in Y
has a unique neighbor (non-neighbor) in Z and vice versa. Note that if Y and Z are
matched or antimatched, then |Y| = |Z].

A graph H is called a thin candelabrum (with base Z) if its vertices can be partitioned
into nontrivial disjoint sets Y, Z such that Y is a stable set, Z is a clique, and Y and Z
arc matched. Candelabra, which were introduced by Chudnovsky, Cook, and Seymour
in [2|, are a generalization of thin candelabra. In this work we deal only with thin
-andelabra, and henceforth use “candelabrum” to mean “thin candelabrum.” One can
add a candelabrum to a graph G via the following procedure: Let H be a candelabrum
with base Z. Take the disjoint union of G and H, then add edges to make Z complete to
V(G). We refer to this construction procedure as candling the graph GG. We say that a
graph (G is candled if it can be constructed by candling some induced subgraph G, C G.

An anticandelabrum with base Z is the complement of a candelabrum with base Z.
We say that a graph G is anticandled if G is candled. We will refer to the analogous
construction procedure as anticandling. Anticandling can also be thought of as adding an
anticandclabrum H with base Z to a graph, so that Z is anticomplete to the graph and
V(H)\ Z is complete to the graph.

A graph G is a quasi-line graph if for cvery vertex v, the set of neighbors of v can be
expressed as the union of two cliques.

Figure 1: Icosahedron

The icosahedron is the unique planar graph with twelve vertices all of degree five; see
Figure 1.

A blowup of a graph H is any graph G such that V(G) can be partitioned into |V (H)|
(not necessarily non-empty) cliques @Q,, v € V(H), such that @, is complete to Q, if
wv € E(H), and @, is anticomplete to @, if uv ¢ E(H).

We say that a graph G is a crown (sce Figure 2) if V(@) can be partitioned into cleven
sets @1, ..., Q10 and M such that the following hold.

e Each Q; is a clique.
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Figure 2: Schematic representation of a crown. Each circle represents a set. Each @); is
a clique. A line between two sets means that the two sets are complete to cach other, a
dotted line between the two sets means that the edges between the two sets are arbitrary,
and the absence of a line between two sets means that the two sets are anticomplete to
cach other.

e For i € {1,2,...,7}, Q; is complete to Qiyr1; Q1 U Q2 is complete to Qs; Q4 is
complete to Qs; Q9 is complete to Q2 U Q3 U Q7 U Qs U Qro; Qo is complete to
Q3 U Q41U Qg U Q7; the sct of edges between () and Q5 is arbitrary; and there are
no other edges between @Q; and @, where j, k € {1,2,...,10} and j # k.

e The set M is anticomplete to (Uf,Q;) \ (Q1 U @s), and the set of edges between
1 U Qs and M is arbitrary.

3 Structure of (fork, Cy)-free graphs

In this section, we obtain a structure theorem for the class of (fork, Cy)-free graphs that
uses the class of (claw, C))-free graphs as a basic class.

Theorem 1. Let G be a (fork, Cy)-free graph. Then at least one of the following hold:

e (7 is not connected.
e (7 contains a universal vertex.
e (7 contains a homogeneous clique.
e (7 is candled or anticandled.
o (7 is claw-free.
Proof. Let G be a (fork, Cy)-free graph. Suppose that G is a connected graph which has
7
no universal vertex, no homogencous clique, and that GG contains a claw. We show that

G is cither candled or anticandled. Let v € V(G) be an important vertex. Then since G
is not claw-free, there is some claw rooted at v. Let L(v) € N(v) be the leaves of claws
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rooted at v and let @@ denote the set N(v) \ L(v). So if S is a maximum stable set in
N(v), then S C L(v). Since v is not a universal vertex, M (v) is not empty. Then we have
the following;:

(1) L(v) is anticomplete to M (v).

Proof of (1): Suppose z € M(v) has a neighbor a in a triad {a,b,c} C L(v). Since
{v,a,z,b} and {v,a,z,c} do not induce Cys, z is not adjacent to b or ¢. But then
{z,a,v,b,c} induces a fork, a contradiction. So (1) holds. ¢

Let @4(v) be the maximal subset of @ that is anticomplete to M(v), and let Q(v) =
NM(@w)NQ =0\ Q(v).
(2) If t € Q is complete to L(v), then t € Q(v).

Proof of (2): Suppose t € @ is complete to L(v). If ¢ has a neighbor z € M(v), then,
by (1), @(N(t)) > a(N(v)), a contradiction to the fact that v is an important vertex.
So (2) holds. ¢

(3) Q2(v) is a clique, and Q;(v) is complete to Qo(v).

Proof of (3): Suppose to the contrary that there are nonadjacent vertices t € Qo(v)
and #' € Q(v) U Qy(v). Let 2 € M(v) be a neighbor of . Then since {v,t,z,t'}
docs not induce a Cy, ' is not adjacent to z. By (2), t has a non-neighbor a € L(v).
By (1), a is not adjacent to z. Then since {z,t,v,t';a} does not induce a fork, ¢’ is
adjacent to a. Let b, ¢ € L(v) be such that {v, a,b, ¢} induces a claw. Again by (1), =
is anticomplete to {b, c¢}. Now since t,t" ¢ L(v), we sce that t and ¢ are cach adjacent
to at least two vertices in {a, b, c}. Thus ¢ is adjacent to b and ¢, and we may assume
that ¢’ is adjacent to b. Then since {¢,b,#, ¢} does not induce a Cy, t' is not adjacent
to ¢. But then {#',b,t, ¢, z} induces a fork, a contradiction. So (3) holds. ¢

(4) @ is a clique.

Proof of (4): By (3), it is enough to show that Q;(v) is a clique. Suppose to the
contrary that there are nonadjacent vertices in QQ1(v), say ¢t and #. Since M(v) # @
and since GG is connected, there exists a vertex # € M(v) which has a neighbor
w € Qz(v). By (3), w is complete to {¢,#'}, and by the definition of Q(v), = is
anticomplete to {¢,#'}. By (2), w has a non-neighbor a € L(v). Then by (1),  is not
adjacent to a. Now since {a,t,t',w,z} does not induce a fork and {a,t,w,t'} does
not induce a C'y, we see that a is anticomplete to {t,t'}. But then {v,a,t,t'} induces
a claw, contradicting ¢,#' ¢ L(v). So (4) holds. {

(5) If C is a connected component of M(v), every ¢ € N(v) is complete or anticomplete
to C. In particular, C' is a homogencous sct or a singleton.

Proof of (5): Suppose not. Then since G is connected, we may assume that there are
adjacent vertices z,y € V(C), and there exists a vertex ¢ € N(v) which is adjacent
to z and not adjacent to y. By (1) and by our definition of Q(v), t & L(v) U Q1 (v).
So t € Q3(v). Then since t € L(v), t is adjacent to at least two vertices in any given
triad {a,b,c} C L(v); we may assume a,b € N(t). Then {y,z,t,a,b} induces a fork,
a contradiction. So (5) holds. ¢
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(6) If C is a connected component of M(v), then V(C') is a clique.

Proof of (6): Since G is connected, there is some t € N(V(C')). As in (5), t € Q(v).
So, by (2), t has a non-neighbor a € L(v). Now if there are nonadjacent vertices z
and y in V(C), then, by (5), we sce that {a,v,t,z,y} induces a fork. So any two
vertices in V' (C) are adjacent, and hence V(C) is a clique. ¢

(7) M(v) is a stable sct.
Proof of (7): Since G has no homogencous cliques, the proof of (7) follows from (5)
and (6). O

(8) Each vertex in (Q2(v) has at most one neighbor in M (v).

Proof of (8): Suppose to the contrary that ¢ € @Q2(v) has two neighbors in ) say
x and y. Then by (7), z and y arc not adjacent. Since t € Q2(v), by (2), t has a
non-neighbor a € L(v). But then {a,v,t, z,y} induces a fork, a contradiction. So (8)
holds. ¢

(9) Every vertex in () has a non-neighbor in L(v).

Proof of (9): Suppose to the contrary that there exists a vertex ¢ € ) which is
complete to L(v). Then by (2), t € Q,(v). But then by (4), and by the definition of
Q1(v), {v,t} is a homogencous clique in G, a contradiction to our assumption that G
has no homogencous cliques. So (9) holds. ¢

We now prove the theorem in two cases. Suppose that [M(v)| > 1. Then we have the
following.

Claim 2. Any a € L(v) is either complete to Q2(v) or anticomplete to Q2(v).

Proof of Claim 2: Suppose to the contrary that there exists a vertex a € L(v) which is
mixed on QQo(v). Then by using (3), there are adjacent vertices ¢ and ¢ in Q2(v) such
that a is adjacent to ¢ and a is not adjacent to . Let z € M(v) be a neighbor of ¢
and let 2’ € M(v) be a neighbor of t'. If z # 2/, then by using (7) and (8), we sce that
{z/,t',t,z,a} induces a fork. So we may assume that z = z’. Then since |M(v)| > 1,
there exists a vertex y € M(v) (which is distinet from z and 2’), and so there exists a
vertex ¢ € @Q(v) which is adjacent to y. Then by using (7), (8) and (3), we see that
cither {z,t't", y,a} or {y,t" t, z,a} induces a fork, a contradiction. ¢

By Claim 2, we partition L(v) into two scts as follows: Let Ly(v) denote the sct
{a € L(v) | a is complete to Qa(v)} and let Lo(v) denote the set L(v) \ Li(v) :== {a €
L(v) | a is anticomplete to Q2(v)}. Then by (9), Lo(v) # 9. Fix a vertex z € M(v), and
let t € Q2(v) be a neighbor of z. Then we have the following.

Claim 3. Lg(v) is anticomplete to Li(v).

Proof of Claim 3: Suppose to the contrary that there are adjacent vertices ¢ € Ly(v) and
d € Ly(v). Then by definitions of Ly(v) and L, (v), we have ¢ is adjacent to ¢, and d is not
adjacent to . Let {a,b} C L(v) be such that {a,b,c} is a triad in L(v). Since t ¢ L(v),
we may assume that ¢ is adjacent to a. By (1), z is anticomplete to {a, b, ¢,d}. Then since
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{a,t,¢,d} does not induce a Cy, a is not adjacent to d. But then {d, ¢, t,z,a} induces a
fork, a contradiction. ¢

Claim 4. Ly(v) is a clique.

Proof of Claim 4: If there are nonadjacent vertices a and b in Lo(v), then {z,t,v,a, b}
induces a fork, a contradiction. ¢

Consider a maximum stable sct S C N(v); then S C L(v). We have |S N Lo(v)| = 1,
because Ly(v) is a clique component of L(v) (by Claim 3 and Claim 4). So |S N Ly(v)| =
S|—1. A maximum stable set in N (#) is (SN Ly (v)) U{z}, which has size |S| = a(N(v)).
Therefore, a(N(t)) = a(N(v)), so t is also an important vertex. So M(t) is a stable sct,
by (7). Since Lgy(v) is a nonempty component of M(t), it is a singleton, say Lg(v) := {I}.
Then we have the following claim.

Claim 5. Ly(v) = {l} is anticomplete to Q(v).

Proof of Claim 5: Suppose that there exists a vertex g € Q(v) which is adjacent to [.
Then by (3), ¢t and ¢ arc adjacent, and by the definition of Ly(v), [ and t are not adjacent.
Now by (9), ¢ has a non-neighbor, say a € L(v). Then a € Li(v), and hence a is adjacent
to t. Also by Claim 3 and (1), a is anticomplete to {I,z}. But then {l,¢,t,z,a} induces
a fork, a contradiction.

Claim 6. No two vertices in (Qo(v) share a common neighbor in M (v).

Proof of Claim 6: Suppose that there are vertices ' and t” in QQ2(v) which have a common
ncighbor 2/ € M(v). Then by (4) and (8), since {t',t"} is complete to (Q \ {#',t"}) U
Ly(v) U {v,2'}, and is anticomplete to Lo(v) U (M(v) \ {2'}), {#,t"} is a homogenous
clique, a contradiction to our assumption that G has no homogenous cliques. ¢

Now let Z denote the set {v} U Qo(v). Since M(Q2) € M(v) U {l}, we have M(Z) =
M(v) U {l}. Then by (4), we sce that Z is a clique. By (1) and (7), M(Z) is a stable
set which is anticomplete to V(G) \ (Z U M(Z)). By Claim 6 and (8), Z and M(Z) arc
matched. Thus we conclude that G is candled.

So we may assume that every important vertex in GG has exactly one non-neighbor.
In this case, we claim that G is anticandled. Let Y = Q2(v) U {v}. Then by (3), Y is a
clique. Let m be the unique vertex in M(v). Then there exists a vertex ¢ € Q2(v) such
that ¢ is adjacent to m. If S is a maximum stable set in N(v), then by (1), S U {m} is
a stable sct of size a(N(v)) + 1. Since t & L(v), t is adjacent to at least |S| — 1 of the
vertices in S, so a(N(t)) = |S| = a(N(v)). So every vertex t € Q2(v) is important and
hence by assumption has a unique non-neighbor.

Since {t,#'} is not a homogencous clique, for any t,# € Y, they do not share a
non-neighbor. Therefore, cach vertex in M (Y) has a distinct non-neighbor in Y, so in
particular M(Y') and Y arc antimatched.

Consider distinct m,m’ € M(Y) with respective non-neighbors ¢, € Y. Then since
{m/,m,t,#'} docs not induce a Cy, m and m' arc not adjacent. Thus M(Y) is stable.

Supposc m € M(Y) has a ncighbor u. Let £ € Y be a non-neighbor of m; then since
u is adjacent to the unique non-neighbor of ¢, we have by (1) that u € Q5(t). Then u is
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important, so by assumption u has a unique non-necighbor. Thus u & L(v), since it is not
part of a triad. Morcover, by (9), every vertex in (q(v) has a non-neighbor in L(v), so
has at least two non-neighbors. Then w € Q4 (v). Thus, u € Y. So M(Y) is anticomplete
to V(G)\ (Y UM(Y)).

Hence we conclude that Y UM (Y') induces an anticandelabrum with base M(Y'), with
G\ (YUM(Y)) complete to Y and anticomplete to M(Y).

This completes the proof of the theorem. U

Corollary 7. Let G be a connected (fork, Cy)-free graph. Then G is claw-free or G has a
universal vertex or G has a clique cutset.

Proof. Let G be a (fork, Cy)-free graph. Suppose that G has no universal vertex, and no
clique cutset. We show that G is claw-free. Suppose to the contrary that GG contains a
claw. Let v € V(G) be an important vertex. Let L(v) € N(v) be the leaves of claws
rooted at v and let @@ denote the set N(v) \ L(v). So if S is a maximum stable set in
N(v), then S C L(v). Since v is not a universal vertex, M (v) is not empty. Let @1 be the
maximal subset of () that is anticomplete to M (v), and let Q2 := N(M(v))NQ = Q\ Q1.
Then it follows from Theorem 1 (See item (3) and note that items (1)-(3) hold regardless
of whether GG has a homogencous clique or not.) that () is a clique. But then we sce that
()2 is a clique cutset separating {v} and M (v) which is a contradiction. This completes
the proof. O

4 Structure of (claw, Cy)-free graphs

In this section, we obtain a structure theorem for the class of (claw, C'y)-free graphs that
arc not quasi-line graphs. A graph is chordal if it does not contain any induced cycle of
length at least four.

Theorem 8. Let G be a connected (claw, Cy )-free graph. Then at least one of the following
hold:

e (& has a clique cutset.

e (& has a good vertez.

e (7 is a quasi-line graph.

e (7 is a blowup of the icosahedron graph.

o GG is a crown with |M U QU Qs| < |[V(G)|.
Proof. Let G be a connected (claw, Cy)-free graph. We may assume that G has no clique
cutset. Let v € V(G). First suppose that G|N(v)] is chordal. Then since G is claw-free,
G|N(v)] is a chordal graph with no triad. Since the complement graph of a chordal graph
with no triad is a bipartite graph, we sce that N(v) can be expressed as the union of two
cliques. Since v is arbitrary, G is a quasi-line graph. So we may assume that G|N(v)] is
not chordal and hence G[N(v)| contains an induced C, for some k = 5. Since a(C}) > 3
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for £ > 6, and since G is (claw, Cy)-free, we have & = 5. That is, G|N(v)| contains
an induced Cj, say C:= v1-v9-v3-v4-v5-v;. Let T denote the set {z € V(G) \ V(C) |
N(z)NnV(C)=V(C)}, let R denote the set {z € V(G)\V(C) | N(z)NV(C) = @}, and
for cach 7 € {1,2,...,5}, 2 mod 5, let:

A; = {zeV(G)\V(C)| Nx)nV(C) ={vi,vis1}},
B, == {ze€V(G)\V(C)| N(z)nV(C) ={vi1,vi,vit1}} U{vi}.

Let A:= A U---UAs and B := By U---U Bs. Note that v € T', and so T' # @. Then
the following properties hold for cach 7z € {1,2,...,5}, i mod 5:

(1) V(G)=AuBUTUR.
Proof of (1): Suppose that there is a vertex z € V(G) \ (AU BUT U R). Then for
some i, cither N(z) N V(C) = {v;} or {v;_1,v;11} € N(z) N V(C) with v; ¢ N(z).
But then {v;,v; 1,%,v;41} induces cither a claw or a Cy. O

(2) A; and B; UT arc cliques.
Proof of (2): Let ¢ = 1 and suppose that there are nonadjacent vertices z and y in one

of the listed scts. If z,y € Ay, then {vy, z,y,vs5} induces a claw, and if z,y € BiUT,
then {z, vs,y, v2} induces a Cy. ¢

(3) A, is anticomplete to 7.

Proof of (3): If there are adjacent vertices a € A; and ¢ € T, then {t,v; 1, v;49,a}
induces a claw. §

(4) A; is complete to A; 1 U A, UDB; U B;yy.

Proof of (4): By symmetry, it suffices to show that A; is complete to A;; U Biy .
Suppose that there are nonadjacent vertices z € A; and y € A, UB; . lfy e Ay,
then {z,y} is anticomplete to v (by (3)), and then {v;i1, v, z,y} induces a claw. So
y € Biy1. Then {v;,vi_1,z,y} induces a claw. §

(5) A; is anticomplete to Ajpo U A; 2 U Biya U B 1 UDB; o,

Proof of (5): By symmetry, it suffices to show that A; is anticomplete to A; ;o U B; U
B; 5. Suppose that there are adjacent vertices z € A; and y € A; o U B; o UDB; 5. If
y € Aj o UB; 5, then {z,v;,1,v;.2,y} induces a Cy. So y € B, 5. Now since z is not
adjacent to v (by (3)), and y is adjacent to v (by (2)), we see that {z, v;, v, y} induces
aCy O

(6) B; is complete to By U B; .

Proof of (6): By symmetry, it suffices to show that B; is complete to Biyy. If there
arc nonadjacent vertices # € B; and y € B;yq, then {z,y} is complete to v (by (2)),
and then {v,v; o, z,y} induces a claw. {
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(7) B; is anticomplete to B; o U B; 5.

Proof of (7): If there are adjacent vertices = € B; and y € B; 5 U B; 5, then cither
{z,v; 1,v; 2,y} or {z,v;11,V;12,y} induces a Cy. O

(8) If r € R, then N(r)N(BUT) = 2.

Proof of (8): If there is a vertex z € N(r) N (B UT), then for some i, {v; 1,v;41} C
N(z) N V(C), and then {z,v; 1,v;;1,7} induces a claw. ¢

(9) Any r € R which has a neighbor in A; is complete to A;1 U A; 4.

Proof of (9): Let 7 € R be such that r has a neighbor a € A;. If 7 is not adjacent
to a vertex b € A;; U A; 1, then since a is adjacent to b (by (4)), we see that cither
{a,r,v;,b} or {a,r,v;11,b} induces a claw.

(10) If A; and A;;; arc not empty, for some i, then any » € R which has a neighbor in
A;UA; 1 UA; | is complete to A; U A; U A; .

Proof of (10): This follows from (4) and (9). ¢

If R is empty, then by above properties we sce that G is a blowup of the icosahedron
graph, where we set @ = By, Qg := By, Qg := B3, Q5 := By, Q¢ == Bs, Q7 := T,
Q2 = Ay, Q3 .= Ay, Qq = Az, Q11 = Ay and Qy5 := As.

So we may assume that R # @. Then by (8), A # &. Since G has no clique cutset,
using (4) and (10), we may assume that there exists an index 7 such that A; and A; 5 arc
not empty, say i = 1. Now if Ay # &, then by (10) and since G is claw-free, any r € R
is complete to A. Morcover, since GG is Cy-free, R is a clique. So again GG is a blowup of
the icosahedron graph, where we set Q) := By, Qg := By, Qg := B3, Q5 := By, Qg := DBs,
Q: =T,Qs = A, Q3 := Ay, Qq:= A3, Q11 := Ay, Q12 := As and Qp := R. So we may
assume that A, = &.

Next suppose that Ay U A; = @. In this case, we show that one of the vertices v or
v5 18 good. Suppose not. Then since T'U By U B; and T'U B4y U Bs are cliques, we sce that
|B,| > wf) and |B,| > @ Since vy 18 not a good vertex and since Ay U By U By is a
clique, we have |T'U B3| > w(f). Then we see that T'U By U By is a clique of size > w(G)
which is a contradiction. Thus one of the vertices vy or v is good.

So we may assume that A5 # @ and Ay = &. Let R’ be the set {r € R | r has
a neighbor in A; U A5}, and let R” be the set R\ R'. Then by (10), R’ is complete
to Ay U As. Also if there are nonadjacent vertices 7,79 € R, then for any a € A,
{ry,79,v9,a} induces a claw, and so R’ is a clique. Now by above properties we see that
(7 is a crown, where we sct Qg := By, Q7 := By, Qg := B3, Q2 := By, Q3 := Bs5, Q9 :=T,
Qs = Ay, Q1 = A3, Qq := As, Q5 := R and M := R". Since A; # 9, it follows that
IMUQUQs| < |V(G).

This completes the proof of the theorem. U
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5 Coloring (claw/fork, Cy)-free graphs

In this section, we show that every (fork, C'y)-free graph satisfies x(G) < [#] We will

usc the following known result.
Theorem 9 ([3]). If G is a quasi-line graph, then x(G) < [-“wé(?)]_

Let [k] denote the set {1,2,...,k}. A k-list assignment of a graph G is a function
L :V(G) — 2F. The set L(v), for a vertex v in G, is called the list of v. In the list
k-coloring problem, we are given a graph GG with a k-list assignment L and asked whether
GG has an L-coloring, i.c., a k-coloring of GG such that every vertex is assigned a color from
its list. We say that G is L-colorable if G has an L-coloring. We say that a graph F' with
list assignment L is L-degenerate if there exists a vertex ordering vy, ..., v, of V(F') such
that cach v; has at most |L(v)| — 1 neighbors in {vy, ..., v; 1} for 1 < i < n. Clearly, if a
graph is L-degenerate, then it is L-colorable.

Lemma 10. Suppose that G is a crown and k = 1 be an integer. If ¢ - MUQ,U Q5 — S
ﬂ{f:h S| = P?ﬂ is a vertez coloring of GIM U QU Q5| and w(G — M) < k, then x(G) <
21

Proof. We prove the lemma by induction on k. If £ = 1, then any non-trivial component,
of G is an induced subgraph of G|M U Q; U Q5| and the lemma holds. We now assume
that £ > 2 and the lemma holds for any positive integer smaller than k. Let H =
G — (M UQ;UQs). Note that, for cach i € {1,2,...10} \ {1,5}, any two vertices in Q;
have the same degree in H. Let L be the list assignment of H such that

S\ o(Qy) ifveyUQs,
L(v) =4S\ 0(Qs) ifveQiUQs,
S if ve@sUQrUQgeU Q.

Note that if H is L-colorable, then x(G) < [3]. Since [Q:]+|Qa|+|Qs| < w(G—M) <k,
it follows that for any v € Q2 U Qs, |L(v)| = [S| = [Q1] = [F] — Q1] = Q2| + Qs + [5] -
Similarly, for any v € Q1 U Qs, |L(v)| = |Q4] + |Qs| + [5]. Next, we claim that:

We may assume that: Qg # @. Likewise, Q19 # 9. (1)

Proof of (1): Suppose that Qg = @. Since |Qs] + |Qs| < k, one of @, and Qg has
size at most g? say Q2 by symmetry. Then for any v € @3, it follows that dy(v) =
Q3 U QiU Qi —1+4Q2] < (k—1)+ Q2] <& — 1. If |Qs| < %, then dyy(v) < 3 —1
for any v € (7. This implies that H is L-degencrate with the ordering of the vertices
@2, Q1, Qs, Qs, Qo, @Q3,Q7. (It does not matter which vertex comes first in Q;.) So
|Qs| > £. This implics that |Q;| < %£. Then for any v € Q, it follows that dy(v) =
Q2] + |Qs| — 1+ |Q7] < |Q2] +|Qs| — 1+ £ < |L(v)|. So H is L-degenerate with the
ordering )2, Q1, Qs, Q1o, @7, Qs, Q3. This proves (1). ¢
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Next:
We may assume that ()3 # @. Likewise, Q7 # 9. (2)

Proof of (2): Suppose Q3 = @. If |Q7 U Qy| < %, then for any v € Q2 U Qs, it follows
that dy(v) < |Q2| +|Qs| — 1+ % < |L(v)|. Then H is L-degenerate with the ordering
Q1, Qs, Q10, Q7, Qo, Qs, Q2. So we assume that [Q7 UQq| > £. By symmetry, |Q7U Q1| >
%. This implies that cach of Qs, Qs, Qg, Q1o has size less than %. Since Q3 = &, for any
v € Qg, d(v) = |Qa| + |Qs| + Qo] — 1 < Q2| + Q5| + 5 — 1 < |L(v)|. By symmetry, for
any v € Qq, dy(v) < |L(v)|. Morcover, cach vertex in Qg U (019 has degree at most % —1
in H— (Q2UQ,). So H is L-degencrate with the ordering Qg, Qg, Q7, Q10, Qo, Q1, Q2.
This proves (2). ¢
Morcover:

We may assume that (o # @. Likewise, 4, QQg, Qg arc noncmpty. (3)

Proof of (3): Suppose Q2 = @. If |Qq| < %, then for any v € Qs it follows that dy(v) <
% — 1. Then as in the proof of (2), H — (3 is L-degencerate and thus H is L-degencrate.
So |Qo| > £. This implies that |Q; U Qio| < % for i € {3,7}. This implies that, for any
v € QrUQs, du(v) < |Qu|+|Qs| —1+% < |L(v)|. So H is L-degenerate with the ordering
Qs,Q7,Qg, Q10, Q3,Q1, Qs. This proves (3). O

By (1), (2) and (3), we conclude that for cach 7 € {1,2,...,10} \ {1,5}, Q; contains
at least one vertex, say ¢;. In particular, this implies that & > 3, |¢(Q,)| < k£ — 2 and
|6(Qs5)] < k — 2. Next we claim that:

There are three distinet colors ¢y, ¢y, c3 € S such that ¢; € 6(Qy), ¢ €
#(Qs), cither @, = & or [{eg, 3} Nd(Q1)| = 1, and cither Q5 = & or  (4)
[{c1,es} N(Qs)] = 1.

Proof of (4): Since |¢(Q1)| < k — 2 and |S| = P?ﬂ, there are at least P?ﬂ —k+22>214
colors in S that are not in ¢(@)). Similarly, there are at least 4 colors in S that are not
in ¢(Qs).

First suppose that ¢(Q1) N p(Qs5) # F. Let e3 € ¢(Q1) N @(Qs5). Now we choose a
color ¢; € S\ &(Q,), and then a color ¢; € S\ ¢(Qs5) with ¢y # ¢;. Clearly, ¢, ¢ and 3
are the desired colors. So we may assume that ¢(Q1) N G(Qs5) = 2.

If Q1 = Q5 = &, then any three colors ¢q, ¢z, ¢35 € S are the desired colors. If Q) = @
and Q5 # &, then we choose ¢3 € ¢(Qs5), and then choose a color ¢, € S\ ¢(Q5), and
finally choose a color ¢; € S\ {¢y, c3}. Clearly, ¢, ¢, and ¢3 are desired colors. If Q) # &
and ()5 = @, we can choose the three colors in a similar way. Finally, we assume that
Q1,Q5 # @. Then it is possible to pick a color ¢3 € ¢(Q) and a color ¢; € ¢(Q5). Since
d(Q1)N(Q5) = 9, it follows that ¢; # ¢3 and ¢; ¢ ¢(Q1). Morcover, |{cz, c3}NP(Q1)] = 1
and |{c1, 3} Nd(Q5)| = 1 by the choice of ¢; and e3. Since there are at least 4 colors in
S that are not in ¢(Q5), we can choose such a color ¢y € {c,c3}.

Thus, in all the cases, we have found the required colors, and the proof of (4) is
complete. ¢
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Now for cach j € {1,2,3}, let T; = {z € MUQ, U Q5 | ¢(z) = ¢;}. Let I :=
Ty U{qs, quo}, I := To U {qs, qo}, and I3 := T3 U {q3,q7}. Tt follows from (4) that I, I,
and I3 arc three pairwise disjoint independent sets. Moreover, ¢ restricted to (M U Q U
Qs) \ (Ty UT, UTy) maps to S\ {cy, ¢, 3} with

| 3k 3(k — 2)

S| —3= g 2B

i-a=[ 5] o= 25

Let G =G — (LLULUL), and M' = M — (T, UT, UT3). By (4), it follows that G' — M’

is obtained from G' — M by deleting {g2, g3, 46, 47, @0, q10} and at least onc vertex in Q); if
Q); # @ for cach j € {1,5}. Thercfore,

S\ e, 02,03} =

w(G = M) <w@G-M)—2<k—2.

Now by the inductive hypothesis,

| 3(k —2 3k
X(G) < x(G) +3< [(T)w +3= B w .

This proves Lemma 10. O

Lemma 11. Let G be a blowup of the icosahedron. Then x(G) < [#W

Proof. Let I be the icosahedron graph with vertex labels as in Figure 1. Let G be a blowup
of the icosahedron I. We prove the lemma by induction on |[V(G)|. Let w = w(G). We
may assume that w > 2. Let @; be the clique corresponding to the vertex ¢ € V/(I).
Let X be a subset of V(G) obtained by taking min{1, |Q;|} vertices from Q; for cach
i € {1,2,...,12}. Clearly, G[X]| is an induced subgraph of the icosahedron, and so
X(G[X]) < 4. First suppose that w(G — X) = w — 2. Then there are two indices
i,j € {1,2,...,12} such that Q; U Q; is a clique of size w. Since the icosahedron is edge-
transitive, we may assume that z = 10 and j = 11. Since Q,UQ1oUQ1; and Q0UQ 11 UQ 2
are cliques, we conclude that @, and Q15 arc empty. Then we sce that G is a crown (with
M = @, and @)1y and ()1 being Q1 and (05 in the definition of the crown), and the lemma
follows from Lemma 10. So suppose that w(G — X') < w — 3. Then by induction, we have

MG—X)QP%;ﬁ]gF@;ﬂ:(%—g.%mwﬂngxm—xj+ﬂawuwe

have x(G) < [%]. This proves Lemma 11. d
Theorem 12. Let G be a (claw, Cy)-free graph. Then x(G) < [#W .

Proof. Let G be a (claw, Cy)-free graph. By Theorem 9, we may assume that G is not a
quasi-line graph. We prove the theorem by induction on |V (G)|, and we apply Theorem 8.
If G has a clique cutset K, let A, B be a partition of V(G)\ K such that both A, B arc
non-cmpty, and A is anticomplete to B. Clearly x(G) = max{x(G[KUA]), x(G|KUB|)},
so the desired result follows from the induction hypothesis on G|K U A] and G|K U B|.
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If G has a good vertex u, then by induction, x(G —{u}) < [M] Now consider
3w(G)
2

a (possibly new) color that does not appear in its neighborhood.
If G is a blowup of the icosahedron graph, then the theorem follows from Lemma 11.
Finally, suppose that GG is a crown with |[M U Q; U Q5| < |V(G)|. By the inductive

any y(G — {u})-coloring of G — {u} and extend it to a { ]—coloring of G, using for u

hypothesis, let ¢ : M U Q1 U Qs — S with |S| = [% be a vertex coloring of G|M U
@1 U Qs]. Tt then follows from Lemma 10 that x(G) < {#] . O

Theorem 13. Let G be a (fork, Cy)-free graph. Then x(G) < [#]

Proof. Let G be any (fork, Cy)-free graph. We prove the theorem by induction on [V(G)].
If G has a universal vertex u, then w(G) = w(G — {u}) + 1, and by the induction

hypothesis, we have x(G) = x(G — {u}) +1 < [@] + 1, which implies x(G) <

3w(G)
=

If G has a clique cutset K, let A, B be a partition of V(G)\ K such that both A, B arc
non-cmpty, and A is anticomplete to B. Clearly x(G) = max{x(G[KUA]), x(G|KUB|)},
so the desired result follows from the induction hypothesis on G|K U A] and G|K U B|.

Finally, if G has no universal vertex and no clique cutset, then the result follows from
Corollary 7 and Theorem 12. O

We remark that we do not have any example of a (claw/fork, Cy)-free graph G such
that x(G) = [%w((}'ﬂ except Cs. However, for an integer m = 1, consider the blowup G of
the icosahedron graph I where |@Q,| = m, for cach vertex v in I. Then clearly w(G) = 3m,

V@I — 12m _ gy, — 2(6)

and since a(G) = 3, we have x(G) 2 T&0 = 5 = —5.
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