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Abstract—Structural variants (SVs) are short sequences of

DNA, larger than one nucleotide, that can vary between members

of the same species. Although SVs are relatively rare, compared to

single nucleotide variants (SNVs) they are an important source

of genetic variation and some SVs have been associated with

diseases and susceptibility to certain types of cancer. SV detection

is commonly performed by aligning sequenced fragments of

an individual’s genome to a high-quality reference genome.

Candidate SVs correspond to discordant mapped configurations

of fragments; however, errors in the sequencing also lead to

potential discordant mappings. Because of this error, many

candidate SVs are in fact false positives. When sequencing

coverage is high, SV detection is more accurate, but this comes at

higher sequencing cost. Sequencing at low coverage does reduce

cost, but increases error and complexity of SV detection. The

goal of our work is to use mathematical optimization to improve

SV detection in low-coverage DNA sequencing data. Previous

studies of SV detection have modeled coverage with a Poisson

distribution, but this assumes the mean and variance are the

same. In an effort more closely model the experimental data we

use the negative binomial distribution, which allows for the mean

and variance to differ, and contains the Poisson distribution as a

special case. Our approach also control false positive predictions

by simultaneously considering simultaneous SV prediction in a

parent and child. We assume that most SVs carried by a child

are inherited from a parent but a small fraction may be novel

to the child. We balance the rarity of novel versus inherited

SVs by enforcing sparsity through an l1-penalty and compare

this negative binomial reconstruction algorithm to the Poisson

reconstruction algorithm by testing both on the same simulated

data sets.

Index Terms—Sparse signal recovery, structural variants, non-

convex optimization, computational genomics, next-generation

sequencing data

I. INTRODUCTION

Structural variants (SVs) are regions of a genome (larger
than a single nucleotide) that vary between individuals in
the same species. SVs represent only one type of genomic
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Fig. 1. Illustration of a structural variant in a genome sequence. When
a fragment from an unknown genome does not map concordantly to the
reference genome, this is considered a signal for a structural variant. In this
illustration, a deletion (left) occurs when the fragment from the unknown
genome maps to a larger region in the reference.

variation and, though generally rare, they are an increas-
ingly important class of variation in humans as they have
been implicated in hereditary diseases and susceptibility to
certain types of cancer [1]–[3]. Detecting SVs involves the
sequencing and mapping of DNA fragments from a candidate
genome to an established reference genome and analyzing
the configuration of mapped fragments [4], [5]. Because SVs
correspond to differences in individual genomes, relative to
a reference, SVs are detected through identifying discordant
mapping configurations [6]–[8]. However, SV prediction is
far from perfect and true SVs can be challenging to separate
from discordant configurations due to errors in sequencing and
mapping. Furthermore, distinguishing true SVs from errors
is made even more challenging in low-coverage sequencing
settings [9]–[16]. In this work, we use a negative binomial
framework to model the expected number of fragments cov-
ering any position in a genome [17]–[19].

II. PROBLEM FORMULATION

We now present a general framework for predicting struc-
tural variants (SVs) within sequencing data from one parent (p)



and one child (c). For simplicity, we consider both individuals
to be haploid (only one copy of each chromosome).

Statistical model. Let the true signal ~f⇤ 2 {0, 1}n for an
individual be a binary-valued vector that indicates the presence
of a genetic variant, with ~f⇤

j = 1 if a variant is present at
location j and 0 otherwise [20]–[22]. Furthermore, let the
vectors ~yp and ~yc correspond to the parent and child observed
measurements, respectively, and be given by

~yp ⇠ NegBin(~µp,~�
2
p),

~yc ⇠ NegBin(~µc,~�
2
c ),

where the mean µi and variance �2
i , with i 2 {p, c}, of depth

of coverage are determined by the sequencing data of each
respective individual. Consider the stacked parent-child signal
~y = [ ~yp ; ~yc ] and corresponding mean and variance vectors, ~µ
and ~�2, where the notation ~�2 is to be understood component-
wise. Specifically, we have the following expressions for the
components of ~µ and ~�2:

(µ)j =
�
A~f⇤�

j
and (�)2j =

�
A~f⇤�

j
+

1

r

�
A~f⇤�2

j
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where A is a mapping that linearly projects the true signal
~f⇤ onto the set of observations, and r is the dispersion
parameter of the negative binomial distribution. Under this
model, the probability of observing ~y is given by the following
expression:

p(~y) =
nY
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To avoid using the gamma function, we assume that r 2 Z+.
In addition, we know �2

j = µj +
1
r µ2

j , where �2
j is maximized

when r = 1. Thus, ignoring constant terms, the negative log-
likelihood term, F (µ,�2), becomes

F (µ) ⌘
nX

j=1

(yj + 1) log (1 + µj)� yj log (µj) .

However, knowing that the mean µj = eT
i Af and adding the

small parameter " to represent sequencing or mapping error,
we arrive at our negative log-likelihood objective function:

F (f) ⌘
nX

j=1

(yj+1) log
�
1 + eT

i Af + "
�
�yj log

�
eT
i Af + "

�
,

where ei is the ith column of the n ⇥ n identity matrix. In
previous work, we assumed that a child will have an SV at a
certain location only if the parent also has the SV at the same
location. In this work, although we assume that the variants
in the child primarily come from the parent (which we call
inherited SVs), the child may also have variants not present
in the parent (which we call novel SVs). To account for these
two types of SVs, we decompose the SV signal for the child
as ~f⇤

c = ~f⇤
i + ~f⇤

n, where ~f⇤
i 2 {0, 1}m is the vector of SVs that

are inherited from the parent and ~f⇤
n 2 {0, 1}m is the vector

of SVs that are novel. In particular, the vector ~f⇤
i has either a
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Fig. 2. The parent SV signal ~fp and the child SV signal ~fc. The vector of
child SVs inherited from the parent is denoted by ~fi, and the vector of novel
SVs is denoted by ~fn. Note that ~fc = ~fi + ~fn.

1 at position j if an SV is inherited from the parent at position
j or a 0 otherwise. Similarly, the vector ~f⇤

n has a 1 if there is
an SV at position j that is not inherited from the parent and 0
otherwise. (For an illustration, see Fig. 2.) Note that for every
location, ~fi and ~fn cannot be both 1 simulatenously since an
SV cannot be both inherited and novel.

Familial constraints. In this work, we use gradient-based
optimization methods to minimize F (f). As such, we allow
f to take on real values instead of being binary valued.
In addition, we formulate the biological constraints on the
SV signals mathematically and incorporate them within the
optimization problem [23].

Since ~fi and ~fn cannot be both 1 simulatenously at each
location, the following must hold:

0  ~fi + ~fn  1,

where the inequalities are to be understood component-wise.
Furthermore, an inherited SV must come from the parent.
Therefore, if (~fp)j = 0, then (~fi)j = 0. Similarly, if (~fi)j = 1,
then (~fp)j = 1. In other words, ~fp and ~fi must satisfy

0  ~fi  ~fp  1.

Moreover, if there is an SV in the parent at location j, then
the child cannot have a novel SV at that location. Similarly,
if there is a novel SV present in the child at location j, that
SV cannot be present in the parent, i.e.,

0  ~fn  1� ~fp.

Finally, since ~f should take on the values of either 0 or 1, we
require that 0  ~f  1.

Combining all of these constraints, we define the set of all
vectors satisfying these constraints by S , given by

S =

8
>>>><

>>>>:

2

64
~fp
~fi
~fn

3

752R3m :

0  ~fi + ~fn  1,

0  ~fi  ~fp  1,

0  ~fn  1� ~fp,

0  ~fp, ~fi, ~fn  1

9
>>>>=

>>>>;

.



Parsimonious solutions. Genomes within the same species are
highly similar. Therefore, structural variants are very rare. We
incorporate this biological phenomenon in our mathematical
model by imposing an `1-norm penalty term in our problem
formulation, which is a common technique found in statistical
literature to promote sparsity in the solution [24]–[26]. We
further assume that novel SVs are even rarer. Thus, we
associate a different (larger) regularization parameter with the
novel SVs. Mathematically, we express this penalty term as

pen(~f) =
�
k~fpk1 + k~fik1

�
+ �k~fnk1,

where � � 1 is a penalty parameter that places greater weight
on ~fn to promote further sparsity.

Optimization approach. Assuming that these SVs are rare,
we express the SV prediction problem as the following sparse
signal constrained optimization problem:

minimize
~f2R3n

 (~f) ⌘ F (~f) + ⌧pen(~f)

subject to ~f 2 S,
(1)

where ~f = [~fp; ~fi; ~fn] and ⌧ > 0 is a regularization parameter
that balances the data-fidelity F (f) term with the sparsity-
promoting penalty term. We solve (1) using the Sparse Pois-
son Intensity Reconstruction ALgorithm (SPIRAL) framework
[27] by minimizing a sequence of quadratic models to the
function F (~f). First we first define the second-order Taylor
series approximation F k(f) to F (f) at the current iterate ~fk:

F k(~f) = F (~fk) + (~f � ~fk)>rF (~fk)

+ 1
2 (
~f � ~fk)>r2F (~fk)(~f � ~fk).

(2)

The gradient of F (~f) is given by

rF (f) =
nX

j=1

yj + 1

1 + eT
j Af + "

AT ej �
yj

eT
j Af + "

AT ej , (3)

where A 2 R2m⇥3m is the coverage matrix given by

A =


(�p � ✏)Im 0 0

0 (�c � ✏)Im (�c � ✏)Im

�
,

where Im 2 Rm⇥m is the m⇥m identity matrix, �p and �c are
the sequencing coverage of the parent and child, respectively,
and ✏ > 0 is the measurement error corresponding to the
sequencing processing. To simplify our quadratic model, we
approximate the second-derivative Hessian matrix with a scalar
multiple of the identity matrix ↵kI , where ↵k > 0 (see [28],
[29] for details). We define the quadratic model

eF k(~f) ⌘ F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22. (4)

Now, each quadratic subproblem will be of the form

~fk+1 = arg min
~f2R3m

F k(~f) + ⌧pen(~f)

subject to ~f 2 S.

This constrained quadratic subproblem is equivalent to the
following subproblem:

~fk+1 = arg min
~f2R3m

Q(~f) =
1

2
k~f � ~s kk22 +

⌧

↵k
pen(~f)

subject to ~f 2 S,

(5)

where

~s k =

2
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~s k

p

~s k
i
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n

3
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↵k
rF (~fk)

(see [27] for details). Note that Q(~f) separates into the sum

Q(~f) =
mX

j=1

Qj

�
(~fp)j , (~fi)j , (~fn)j

�
,

where Qj : R3 ! R and
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�
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⌧
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⇢
|(~fp)j |+ |(~fi)j |+ �|(~fn)j |

�
.

Note that the bounds for S are component-wise. Therefore,
(5) separates into subproblems of the form

minimize
fp,fi,fn2R

1

2
(fp � sp)

2 +
1

2
(fi � si)

2 +
1

2
(fn � sn)

2

+
⌧

↵k
|fp|+

⌧

↵k
|fi|+

�⌧

↵k
|fn|

subject to 0  fi + fn  1, 0  fi  fp  1,

0  fn  1� fp, 0  fi, fn, fp  1,

(6)

where {fp, fi, fn} and {sp, si, sn} are scalar components of
the vectors {~fp, ~fi, ~fn} and {~sp,~si,~sn}, respectively, at the
same location. The constrained optimization problem (5) can
be solved analytically by compling the square in the ojbective
function and orthogonally projecting onto the feasible set (see
[30] for details).

III. RESULTS

We implemented our method for variant detection using the
Negative Binomial-based SPIRAL method (SPNB), similar to
previous approaches [23]. We analyzed the results on simu-
lated data and compared the results to the Poisson based SPI-
RAL (SPP) method. Similar to previously published methods,
we observed the variant predictions in a one-parent/one-child
model [23], [31]. Our method contained a sparsity promoting
term ⌧ . This method has a second regularization parameter,
�, which is chosen to promote more sparsity within the novel
variants, fn. In every case, the SPIRAL algorithm was run with
the terminating criteria, if the relative difference between con-
secutive iterates converged to ||~fk+1 � ~fk||2/||~fk||2  10�8.



⌧ /� 2 10 20 50 100 200 500

0.01 0.905 0.906 0.906 0.906 0.906 0.906 0.906

0.1 0.906 0.906 0.906 0.906 0.906 0.906 0.906

1 0.906 0.906 0.906 0.906 0.906 0.575 0.575
10 0.895 0.797 0.758 0.906 0.906 0.906 0.906

100 0.880 0.880 0.880 0.880 0.880 0.880 0.880
1000 0.513 0.517 0.517 0.517 0.517 0.517 0.517

TABLE I
THE TABLE ABOVE SHOWS THE AUCS FOR THE CHILD WITH 5% NOVEL

VARIANTS USING THE SPNB ALGORITHM. THE VALUES ALONG EACH
COLUMN ARE � , WHILE THE VALUES ALONG EACH ROW ARE ⌧ . THE
HIGHEST AUC IS IN BOLDFACE. WE NOTICE A ROBUSTNESS IN THE

VALUES OF ⌧ AND � WHICH ACHIEVE THE HIGHEST AUC

⌧ /� 2 10 20 50 100 200 500

0.01 0.905 0.905 0.874 0.876 0.906 0.906 0.895
0.1 0.906 0.906 0.906 0.895 0.906 0.906 0.906

1 0.906 0.906 0.906 0.906 0.906 0.522 0.522
10 0.906 0.906 0.797 0.906 0.906 0.906 0.906

100 0.880 0.880 0.880 0.880 0.880 0.880 0.880
1000 0.517 0.517 0.517 0.517 0.517 0.517 0.517

TABLE II
THE TABLE ABOVE SHOWS THE AUCS FOR THE CHILD WITH 5% NOVEL

VARIANTS USING THE SPP ALGORITHM. WE NOTICE A LESS ROBUSTNESS,
WHEN COMPARED TO THE SPNB TABLE, OF THE HIGHEST AUC

A. Simulated Data

Similar to our previous approach, the model was developed
in the form of a one-parent and one-child with a haploid
genome assumption. Before applying it to real human data,
with diploid genomes that violate our assumptions, we studied
the performance on data we simulated that matches our
assumptions. We simulated the true signal for the parent and
child by creating the vector, ~f of size 106 and selecting 500
locations to be true variants for the parent and child. We con-
trol the number of novel SVs in the child by by first selecting
500 locations at random to be the true SVs in the parent. We
construct the child signal by randomly selecting b500pc (where
p is the percentage of novel variants), of the parent variants
to be inherited and then choosing (500� b500pc) locations of
the remaining (106 � 500) locations to be novel [27].

B. Analysis

We compared the performance of both SPNB and SPP when
reconstructing Negative Binomial distributed data and Poisson
distributed data. In most cases SPNB produced an area under
the curve that was equal to SPP. Figure 2 and Figure 3 illustrate
these findings. For the parent signal, we were able to find
higher accuracy in the AUC compared to the child. In few
cases we found that the AUC was different between both
methods. In regards to the value of the AUC, we observed the
highest of the highest AUCs for 2% novel data and the lowest
of the highest AUCs for 20% novel data in the reconstruction
of the child and parent. We highlight results for the parent
and child together as well as each of them individually. We
tested a variety of different values for ⌧ and � to determine
the regularization parameters’ effect on our results. We found
that for SPNB there was a more robust interval of ⌧ and � for

Child SV Reconstruction ROC Curves

Fig. 3. ROC curves for the child for 2% novel variants which illustrate the
true postive rate vs. the false positive rate. We observe for SPNB, the AUC
is 0.9049 and for SPP we have the same AUC. We have ⌧ = 1 and � = 50

Parent SV Reconstruction ROC Curves

Fig. 4. ROC curves for the parent for 2% novel variants which illustrate the
true postive rate vs. the false positive rate. We observe for SPNB, the AUC
is 0.9777 and for SPP we have the same AUC. We have ⌧ = 1 and � = 50

which the highest AUC was achieved when compared to SPP.
Notice in Table I, the block of boldface AUCs which represent
the highest AUCs for that percentage and individual. When
compared to Table II, we see slightly more variance of AUCs
and less robust intervals. We observed this mostly in cases
where the percentage of novel variants was small (< 10%).

IV. CONCLUSIONS

We propose a method which builds on our previously devel-
oped SPIRAL method, which reconstructs signals arising from
the Negative Binomial distribution rather than the Poisson
distribution. This method detects both inherited and novel
variants within the child. Both relatedness and sparsity are
incorporated into our method. We found a robustness of best
results (highest AUC) by considering various factors, including
the percent of novel structural variants, penalty parameters ⌧
and �, and the comparison of SPNB versus SPP.

ACKNOWLEDGMENT

The authors would like to thank Melissa Anisko for helpful
conversations regarding this work.



REFERENCES

[1] J. M. Kidd, G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas,
T. Graves, N. Hansen, B. Teague, C. Alkan, F. Antonacci, et al.,
“Mapping and sequencing of structural variation from eight human
genomes,” Nature, vol. 453, no. 7191, pp. 56–64, 2008.

[2] J. Weischenfeldt, F. Symmons, O.and Spitz, and J.O. Korbel, “Phe-
notypic impact of genomic structural variation: insights from and for
human disease,” Nature Reviews Genetics, vol. 14, no. 2, pp. 125–138,
2013.

[3] L. R. Pal and J. Moult, “Genetic basis of common human disease:
Insight into the role of missense SNPs from genome-wide association
studies,” Journal of Molecular Biology, vol. 427, no. 13, pp. 2271–2289,
2015.

[4] Genome of the Netherlands Consortium et al., “Whole-genome sequence
variation, population structure and demographic history of the dutch
population,” Nature Genetics, vol. 46, no. 8, pp. 818–825, 2014.

[5] H. Stefansson, A. Helgason, G. Thorleifsson, V. Steinthorsdottir, G. Mas-
son, J. Barnard, A. Baker, A. Jonasdottir, A. Ingason, V. G. Gudnadottir,
et al., “A common inversion under selection in europeans,” Nature

genetics, vol. 37, no. 2, pp. 129–137, 2005.
[6] D. M. Altshuler, E. S. Lander, L. Ambrogio, T. Bloom, K. Cibulskis,

T. J. Fennell, S. B. Gabriel, D. B. Jaffe, E. Shefler, C. L. Sougnez, et al.,
“A map of human genome variation from population scale sequencing,”
Nature, vol. 467, no. 7319, pp. 1061–1073, 2010.

[7] A. R. Quinlan, R. A. Clark, S. Sokolova, M. L. Leibowitz, Y. Zhang,
M. E. Hurles, J. .C. Mell, and I. M. Hall, “Genome-wide mapping
and assembly of structural variant breakpoints in the mouse genome,”
Genome research, vol. 20, no. 5, pp. 623–635, 2010.

[8] 1000 Genomes Project Consortium et al., “An integrated map of genetic
variation from 1,092 human genomes,” Nature, vol. 491, no. 7422, pp.
56–65, 2012.

[9] D. Iakovishina, I. Janoueix-Lerosey, E. Barillot, M. Regnier, and
V. Boeva, “Sv-bay: structural variant detection in cancer genomes
using a bayesian approach with correction for gc-content and read map-
pability,” Bioinformatics, p. btv751, 2016.

[10] S. Yoon, V. Xuan, Z.and Makarov, K. Ye, and J. Sebat, “Sensitive
and accurate detection of copy number variants using read depth of
coverage,” Genome research, vol. 19, no. 9, pp. 1586–1592, 2009.

[11] V. Boeva, A. Zinovyev, K. Bleakley, J.-P. Vert, I. Janoueix-Lerosey,
O. Delattre, and E. Barillot, “Control-free calling of copy number
alterations in deep-sequencing data using gc-content normalization,”
Bioinformatics, vol. 27, no. 2, pp. 268–269, 2011.

[12] P. Medvedev, M. Stanciu, and M. Brudno, “Computational methods
for discovering structural variation with next-generation sequencing,”
Nature methods, vol. 6, pp. S13–S20, 2009.

[13] S. S. Sindi and B. J. Raphael, “Identification of structural variation,”
Genome Analysis: Current Procedures and Applications, p. 1, 2014.

[14] F. Hormozdiari, C. Alkan, E. E. Eichler, and S. C. Sahinalp, “Combi-
natorial algorithms for structural variation detection in high-throughput
sequenced genomes,” Genome research, vol. 19, no. 7, pp. 1270–1278,
2009.

[15] K. Chen, J. W. Wallis, M. D. McLellan, D. E. Larson, J. M. Kalicki,
C. S. Pohl, S. D. McGrath, M. C. Wendl, Q. Zhang, D. P. Locke, et al.,
“Breakdancer: an algorithm for high-resolution mapping of genomic
structural variation,” Nature methods, vol. 6, no. 9, pp. 677–681, 2009.

[16] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O.
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