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Abstract
We consider the interaction of solitary waves in a model involving the well-
known φ4 Klein–Gordon theory, but now bearing both Laplacian and bihar-
monic terms with different prefactors. As a result of the competition of the
respective linear operators, we obtain three distinct cases as we vary the model
parameters. In the first the biharmonic effect dominates, yielding an oscilla-
tory inter-wave interaction; in the third the harmonic effect prevails yielding
exponential interactions, while we find an intriguing linearly modulated expo-
nential effect in the critical second case, separating the above two regimes.
For each case, we calculate the force between the kink and antikink when ini-
tially separated with sufficient distance. Being able to write the acceleration as
a function of the separation distance, and its corresponding ordinary differential
equation, we test the corresponding predictions, finding very good agreement,
where appropriate, with the corresponding partial differential equation results.
Where the two findings differ, we explain the source of disparities. Finally,
we offer a first glimpse of the interplay of harmonic and biharmonic effects
on the results of kink–antikink collisions and the corresponding single- and
multi-bounce windows.
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1. Introduction

The study of nonlinear Klein–Gordon models is a topic that has a rich history. Many of the
early developments on the subject have focused on the mathematically appealing theory of the
inverse scattering transform and integrable systems [1–3], such as the famous sine-Gordon
equation [4, 5]. However, more recently, the intriguing features stemming from non-integrable
dynamics have been at the center of numerous studies focusing on, e.g., the φ4 model [6]. The
latter has often been considered to be a prototypical system for phase transitions, ferroelectrics,
and high-energy physics among other themes [4, 6]. Moreover, it has been a central point
of both analytical and numerical explorations, involving kink interactions, collective coordi-
nates, resonant dynamics (including with impurities) starting from the 1970s and extending
over nearly 5 decades [7–18] and even reaching to this day [19–21]; see also the recent recap
of [22].

On the other hand, more recently, a diverse set of variants of the so-called nonlinear beam
(or biharmonic) wave equation have been considered also; a collection of relevant examples
includes, e.g., [23–26]. The correspondingmodels also span a diverse array of contexts, includ-
ing, e.g., suspension bridges and the propagation of traveling waves therein. Another setting
that has emerged very recently and has substantially promoted the relevance of biharmonic
models has been the form of generalized nonlinear Schrödinger (NLS) type models in nonlin-
ear optics in the context of the so-called ‘pure-quartic solitons’ [27]. Not only has this type of
dispersion engineering been realized in the lab, but it has also been used in the context of the
so-called pure-quartic soliton laser [28]. Mathematical studies of the existence and stability of
solitary waves of such equations are also ongoing [29–31].

It has, however, been recognized that the typical scenario involves (e.g., in the NLS experi-
mental settings discussed above) both regular quadratic and quartic dispersion and that exper-
imental settings have the ability to tune the interplay between the two [32]. This results in
the form of a generalized NLS equation incorporating both quadratic and quartic dispersion
and thus presenting the potential for engineering a situation involving competition between
the two [32]. While the generalized NLS setting is the most canonical one to consider in the
realm of nonlinear optics, in the present workwe opt to consider the slightly simpler, yet highly
informative, setting of a corresponding Klein–Gordon model. The rationale behind the latter
choice involves the fact that the two models share the same existence properties, at least in
one spatial dimension, yet the nature of the real field-theory renders the analytical calcula-
tions somewhat simpler, especially as regards the stability and dynamical implications of the
inter-wave interactions. Given the strong connection between the two models, including via
multiple scale expansions [33] (and the customary emergence in nonlinear optics of the NLS
model as a paraxial approximation of the Klein–Gordon one [33]), we believe that this analysis
of the simpler and prototypical nonlinear Klein–Gordon model will be insightful towards the
existence, asymptotic and interaction properties of the solitary waves of the generalized NLS
setting.

It is worthwhile to note in passing that in the context of NLS models, there have been
numerous interesting, very recent developments. In particular, various efforts have focused on
the identification of rogue waves in the form of Peregrine solitons and periodic generalizations
thereof including in nonlocal and inhomogeneousmedia [34, 35]. Furthermore, corresponding
efforts both for rogue waves [36], but also for solitary and periodic waves have been extended
to multi-component systems [36, 37].

Our aim in the present work is to formulate the existence problem of a single kink in amodel
incorporating quadratic and quartic dispersion in the presence of a φ4 potential (this part will
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be entirely analogous to the corresponding generalized NLS case). Subsequently, we intend to
explore the interaction of two such waves and identify their pairwise interaction force and how
it depends on the model parameters. Subsequently, conclusions of the analytical theory will
be tested against full numerical computations of the interaction dynamics. Lastly, collisions
between two coherent structures will be simulated, and the possible scenarios thereof will be
considered. Our aim is to reveal the possibility that either the biharmonic effect may dominate
(yielding oscillatory tails and forces, equilibrium steady states of alternating stability etc.) or
the harmonic effect will prevail (featuring exponential interactions and forces). The critical
case between the two and its own intriguing behavior will be revealed as well. In our study of
collisions and, in particular, in the case kinks and antikinks interact and eventually separate,
we create velocity-out versus velocity-in curves. These curves show windows of velocity-in
values for which we see different numbers of bounces before the coherent structures separate.
We compare this behavior to both the ‘pure φ4’ case of equation (1) and the ‘pure biharmonic’
special-case limits of the present model interpolating between them.

Our presentation hereafter will be structured as follows. In section 2, we provide the details
of the model setup, the fundamental kink/antikink solutions and their asymptotic behavior. In
section 3, we calculate the force of interaction between a kink and an antikink and develop an
ordinary differential equation (ODE) model for the temporal evolution of their separation. In
section 4, we test the predictions of the ODE against direct numerical computations of the full
model involving both the quadratic and quartic dispersion. In section 5, we explore the details
of kink–antikink collisions and the associated multi-bouncewindows. Finally, in section 6, we
summarize our findings and present our conclusions, as well as some directions for potential
future work.

2. Model setup & kink–antikink tail behavior

The standard φ4 Klein–Gordon theory yields the field equation

utt = uxx − V ′ (u) , (1)

where V(u) = 1
2 (u

2 − 1)2. In [30, 38], a variant of this equation was explored where the
harmonic spatial derivative term was replaced by a biharmonic term of the form:

utt = −uxxxx − V ′(u). (2)

Here, as indicated in the above section, motivated by the corresponding generalized NLS of
[32], we explore a model incorporating the competition of the features of the two models:

utt = αuxx − βuxxxx − V ′(u), (3)

whereα and β are assumed positive (to ensure the competition referred to above) and the poten-
tial function V(u) is taken as before. When we pick α = 1 and β = 0, we get equation (1) and
when we pick α = 0 and β = 1, we get equation (2). Notice that while one of the coefficients
could be scaled out via a rescaling of space, we maintain both coefficients, in order to main-
tain the tractability of the special case limits of (0, 1) and (1, 0), i.e., biharmonic and harmonic
respectively.
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A central consideration of the present work is to explore both the features of a single solitary
wave, but also to examine the interaction between two such waves, a kink and an antikink. We
will use a method developed by Manton (as in [38, 39]) to find the force between a separated
kink and antikink as a function of the separation distance. To do this we must first determine
the tail behavior for a single kink or antikink. Once the force is determined, we can use the
corresponding acceleration to generate an ODE, whose behavior can then be compared to the
soliton trajectories of equation (3), i.e., the corresponding partial differential equation (PDE).
As long as the separation distance between kink and antikink remains sufficiently large, the
agreement between ODE and PDE should be quite good. However, in cases where the kink
and antikink approach each other at distances comparable to their respective widths, then it
is no longer obvious that the ODE model should be an adequate description of the full PDE
dynamics and the exchanges of energy between the differentmodes present in the latter [6]. We
will explore both the former agreement (at large distances) and the latter deviations (at short
ones) in the numerical results below.

In order to determine the tail behavior of a single kink we proceed as follows. Substituting
φ(x) = u(x,t) into equation (3) we get the steady-state equation

αφ′′ − βφ′′′′ − V ′(φ) = 0, (4)

where ′ denotes derivative with respect to the argument. To examine the relevant asymp-
totics, we substitute φ = 1− εeλx into equation (4). Neglecting terms of ε2 and higher (i.e.,
linearizing), for the above mentioned φ4 potential, we get

−αλ2 + βλ4 + 4 = 0. (5)

It is easy to show that the roots of this equation are real for α � 4
√
β and complex for α <

4
√
β. In particular, for α < 4

√
β:

λ1 =
1
2

√
4
√
β + α

β
+ i

1
2

√
4
√
β − α

β
, λ2 =

1
2

√
4
√
β + α

β
− i

1
2

√
4
√
β − α

β

λ3 = −1
2

√
4
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β + α

β
+ i

1
2

√
4
√
β − α

β
, λ4 = −1

2

√
4
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β + α

β
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1
2

√
4
√
β − α

β

for α = 4
√
β (critical case), the degenerate roots are:

λ1,2 =

√
α

2β
, λ3,4 = −

√
α

2β

and for α > 4
√
β:

λ1 =

√
α−

√
α2 − 16β
2β

, λ2 =

√
α+

√
α2 − 16β
2β

λ3 = −

√
α−

√
α2 − 16β
2β

, λ3 = −

√
α+

√
α2 − 16β
2β

.
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Table 1. : Single kink tail behavior for different model parameter (α,β) in columns 1 and
2. Column 3 yields the corresponding (spatial) eigenvalues and column 4 the functional
form providing the optimal fit to the tail behavior. One can read off the values of a, b, c,
d in column 4 by referring to equations (6)–(8).

α β λ Tail behavior

0 1 1 − 1i 0.9700e−x cos (x − 0.4083)
1 1 1.1180 − 0.8660i 1.205e−1.118x cos (0.8660(x − 0.9909))
2 1 1.2247 − 0.7071i 1.793e−1.225x cos (0.7071(x − 1.824))
3 1 1.3229 − 0.5000i 3.614e−1.323x cos (0.5(x − 3.299))
3.5 1 1.3693 − 0.3536i 6.662e−1.369x cos (0.3536(x − 4.942))
4 1 1.4142 3.363e−1.414x (x − 0.9786)
4.5 1 1.1042, 1.8113 4.451e−1.104x − 12.92e−1.811x

5 1 1, 2 3.354e−x − 25.64e−2x

6 1 0.8740, 2.2882 2.679e−0.8740x − 157.4e−2.288x

1 0 2 2e−2x

For real λ, similarly to the pure φ4 case, our model for the tail behavior is

be−ax + de−cx , (6)

for the critical case with the double roots the model is

be−ax(x − d) (7)

(accounting for the relevant generalized eigenvector) and for the complex λ case (similarly to
the pure biharmonic one), the model is

be−ax cos(c(x − d)). (8)

We also know that in the real case a = λ1 =

√
α−
√

α2−16β
2β and c = λ2 =

√
α+

√
α2−16β
2β and in

the complex case a = Re(λ) = 1
2

√
4
√
β+α
β

and c = Im(λ) = 1
2

√
4
√
β−α
β

, while in the critical

case a =
√

α
2β . We use curve fitting to get the other parameters b and d. The results are in

table 1 for a sequence of prototypical case examples that we have considered.
In figure 1 we show the tail-behavior of a single kink, φK(x), for the cases α = 1, α = 4,

α = 5 with β = 1 (respectively, left to right). We graph the right tail of 1− φK(x) multiplied
by ekx as well as a model fitted to the tail of 1− φK(x), also multiplied by ekx (appropriate for
x sufficiently large). The value of k is equal to the real part Re(λ) in the complex case, λ in
the critical case, and the smaller (in absolute value) λ in the real case (corresponding to the
slow decay). We can observe an excellent agreement in the oscillatory case (especially factor-
ing in that we have multiplied the expression by an exponential, hence any deviation in the
exponent would lead to an exponential growth). Similarly, also a remarkable fit can be dis-
cerned even in the critical case, revealing the underlying linear dependence modulating the
exponential decay of the generalized eigenvector in this setting. The exponential case (origi-
nally doubly exponential turned into a single exponential upon multiplication by ekx) is found
to be less accurate. In the latter case of two real λ an improved fit can be obtained to the model
be−ax + de−cx if c is left as a free parameter in the curve-fitting process (rather than using
the value specified above which results from equation (5)). It is an interesting question for
future work, whether a weakly nonlinear theory can capture more accurately the correction to
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Figure 1. The panels show the behavior of the right-side tails of the single kink, φK(x),
for the cases α = 1, α = 4, α = 5 and β = 1 (respectively, left to right) by graphing
1− φK(x) multiplied be ekx , where k (positive) is Re(λ) in the complex case, λ in the
critical case, and the smaller (in absolute value) λ in the real case. Superimposed are the
fitted curves, also multiplied by ekx . In all cases the red solid curve is ekx(1− φK). The
blue dash-dotted curve is the fitted equation multiplied by ekx ; the specific equations
for each case are y = 1.205 cos(0.8660(x − 0.9890)), y = 3.274(x − 0.8606) and
y = 3.308–14.9e−x (right to left respectively).

the leading exponential dependence; however, for our present purposes, the current prediction
capturing adequately the leading order exponential tail behavior will suffice.

We now numerically calculate and illustrate several steady-state solutions, and investigate
the corresponding spectra, for a single kink and different combinations of α and β values. See
figure 2, upper left panel, for the single-kink shapes corresponding to β = 1 combined with
several values of α. We numerically calculate the spectrum for the single-kink case (which
would also apply to the single antikink). As occurs for the standard φ4 model, an isolated point
spectrum mode appears for each case considered, suggesting the possibility of internal vibra-
tions (that, in turn, are well-known to play a role in the outcome of kink–antikink collisions
[6]). In the upper right panel of figure 2 we see that the spectrum for these cases consists of
completely imaginary values, indicating stability. The bottom two panels of figure 2 illustrate
the eigenvalues of the isolated internal mode. The cases shown are for varying α when β = 1
(left panel; notice how theφ4 internalmode frequency limit of

√
3 is asymptotically approached

as α becomes large) and for varying β when α = 1 (right panel). When we investigate steady
states for kink–antikink combinations (below) we will also find similar modes.

3. The force between kink and antikink

In order to find the force or acceleration between kink and antikink, we use the approach of
Manton as in [38, 39]; see also [38] for details of the calculation in the case where α = 0
and β = 1. We now briefly review some of the details of this force calculation. Consider the
momentum P = −

∫ x2
x1
utux dx on the interval [x1, x2] (P is conserved when the integral is over

the entire real line). Differentiating under the integral and using equation (3) we find that the
force is given by

dP
dt

= F =

[
−1
2
u2t − α

1
2
u2x + βuxuxxx − β

1
2
u2xx + V(u)

]x2
x1

. (9)

For a field configuration that is static or almost so, we can ignore the first term in the right-
hand side bracket of equation (9). We consider a configuration

u(t, x) = φ(x) = φK(x + X(t))+ φAK(x − X(t))− 1, (10)

6



J. Phys. A: Math. Theor. 54 (2021) 225701 G A Tsolias et al

Figure 2. Top left panel shows the steady kink solutions and top right panel shows the
spectral plane (λr ,λi) of eigenvalues λ = λr + iλi of the linearized operator about the
corresponding steady kink solution for fixed β = 1 and α = 0.5 (blue circles), α = 1
(red x’s), α = 5 (green diamonds), α = 10 (magenta stars). The most right of the top
right panel is the zoomed in version that shows the internal modes for all cases. The
bottom left panel shows the internal mode ω0 versus α for fixed β = 1. The bottom
right panel shows the internal mode ω0 versus β for fixed α = 1.

where −X(t) is the position of the kink and X(t) is the position of the antikink, which rep-
resents a kink–antikink pair approaching each other (as t gets larger). The kink and antikink
positions are defined as the x-value of the intersection of eachwith the horizontal axis. Then, set
η = 1− φ, ηK = 1− φK and ηAK = 1− φAK (where φAK is an antikink solution to
equation (4)). Evaluating equation (9) from x1 = x to x2 →∞ results in

F = α(ηK)x(ηAK)x − β(ηK)x(ηAK)xxx − β(ηK)xxx(ηAK)x

+ β(ηK)xx(ηAK)xx − 4(ηK)(ηAK), (11)

where we assume that the kink–antikink separation 2X is large. We have also assumed that
|x| � X and have used the approximation V(φ) = V(1− η) ≈ 2η2. Note that only the cross
terms are left at this point.
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For the complex case the model for the tail behavior is ηK = be−ax cos (c(x − d), appropri-
ate for x sufficiently large.

Carrying out the derivatives in equation (11) and using a = Re(λ) = 1
2

√
4
√
β+α
β and

c = Im(λ) = 1
2

√
4
√
β−α
β we get the following expression for the force:

F = −2

√
16β − α2

β
b2e

−X
√

4
√
β+α
β cos

⎛
⎝
√

4
√
β − α

β
(X − d)+ θ

⎞
⎠ . (12)

Here, we have that θ ∈ [0, π2 ] is such that tan θ = α√
16β−α2

.

For the critical case the model for the tail behavior is be−ax(x − d). This, upon substituting

a =
√

α
2β and α = 4

√
β results in the force formula:

F = −8b2
√
2αe−2aX

(
X −

√
2α
4

− d

)
, (13)

once again featuring a functional form reminiscent of that of the kink tail.
For the real case the tail behavior is be−ax + de−cx and the force becomes

F = −b2e−2Xa
(
a2α− 3a4β + 4

)
− d2e−2Xc

(
c2α− 3c4β + 4

)
,

where:

a =

√
α−

√
α2 − 16β
2β

and c =

√
α+

√
α2 − 16β
2β

. (14)

Using these values the force formula can be written as

F =
α2 − 16β − α

√
α2 − 16β

β
b2e−2Xa +

α2 − 16β + α
√

α2 − 16β
β

d2e−2Xc. (15)

Notice that the coefficient of the slow term is always negative while the coefficient of the fast
term is always positive.

Dividing the above formulae for the force by the mass gives the results in the acceleration
column of table 2. The values for b and d are determined by curve fitting the tail of a single
kink, and are shown in table 1.

Next, we integrate the expressions for the force on a kink to get the potential energy for
each case, and also find all fixed points and their stability type. For the potential function in
the complex case we have

U = −b2
√

16β − α2

2
√
β

e
−X

√
4
√
β+α
β cos

⎛
⎝
√

4
√
β − α

β
(X − d)+ ϑ

⎞
⎠ (16)

for ϑ ∈ [0, π2 ] such that tan ϑ =

√
4
√
β+α√

4
√
β−α

. For saddle points we have

X∗(k) = d +
(π
2
+ 2kπ − θ

)√
β

4
√
β − α

,
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Table 2. Mass and acceleration as a function of the half-separation distance x of the kink
and antikink.

α β Mass Acceleration

0 1 1.1852 6.351e−2x cos(2x − 0.8166)
1 1 0.9540 11.79e−2.236x cos(1.732x − 1.464)
2 1 0.8052 27.66e−2.4494x cos (1.4142x − 2.0559)
3 1 0.7031 98.30e−2.6458x cos (x − 2.451)
3.5 1 0.6633 259.1e−2.7386x cos (0.7072x − 2.429)
4 1 0.6290 407.0e−2.828x (x − 1.686)
4.5 1 0.5991 166.2e−2.208x − 3769e−3.623x

5 1 0.5728 117.8e−2x − 27545e−4x

6 1 0.5287 92.75e−1.748x − 2194 577e−4.576x

1 0 4/3 24e−4x

and for centers we get

X∗(k) = d +
(π
2
+ (2k+ 1)π − θ

)√
β

4
√
β − α

.

For the critical case (repeated λ) the potential function is

U = −2b2αe
−4

√
2√

α
X

(
X − d −

√
2α
8

)
(17)

and the center is given by

X∗ = d +

√
2α
4

.

For the real case we have the potential function

U = −b2a
√
α2 − 16βe−2aX + d2c

√
α2 − 16βe−2cX, (18)

and the center:

1
2 (c− a)

(
log

c2d2

a2b2

)
,

with a and c as given in equation (14).

4. Comparison of ODE and PDE models

Using the expressions for the force we can nowwrite an ODE for the time evolution of the kink
and antikink position for any given (α, β) combination. In table 2 we have divided the force by
the numerically calculated mass and used the curve-fitted values for b and d to get an accelera-
tion expression for specific values of α and β. The corresponding ODE is then Ẍ = −dU/dX,
where the acceleration of the right-hand side is provided in table 2. This ODE for the position
of the one coherent structure (while the other one is symmetrically located) is amenable to a
phase portrait analysis, as shown in figure 3 and a comparison with the corresponding PDE

9
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Figure 3. α = 1, β = 1, phase portrait of the ODE equation (ODE) in comparison with
equation (3) (PDE). The blue solid curve corresponds to X(0) = 8, Ẋ(0) = −0.02. The
red dash-dotted curve: X(0) = 8, Ẋ(0) = −0.005 55. The light blue closed orbit: X(0) =
3.3, Ẋ(0) = 0. The green curve corresponds to X(0) = 8, Ẋ(0) = −0.003 56. The pink
solid closed orbit: X(0) = 7.4, Ẋ(0) = −0.0002.

Figure 4. α = 1, β = 1. Comparisons of the PDE contour plot of the displacement field
u(x, t) and the ODE trajectory. (blue solid curve). Left: x0 = 3.3, vin = 0. This corre-
sponds to the closed orbit (light blue) in figure 3. Right: x0 = 8, vin = −0.02. This
corresponds to the blue solid curve in figure 3.

results of equation (3) can be obtained both at that level and at the spatio-temporal evolution
one as shown in figure 4.

In figure 3 we show trajectories for the case α = 1 and β = 1 (complex case) that illustrate
behavior near the steady states of the PDE (the fixed points of the ODE). For these cases,
there is clearly excellent agreement between the ODE and PDE phase planes, which validates
our force calculations. The calculated force laws work well as long as the separation between
kink and antikink is sufficiently large. In the case of the PDE, we identify the motion of the
coherent structure by using the intersection of the kink or antikink with the horizontal axis as
the position, and also find the corresponding speed, and thus extract an effective phase portrait
to be compared with the ODE results. In figure 4 we show two of the trajectories from figure 3
as contour plots of the PDEwith theODE trajectory superimposed on top (in blue). The left one
among them is a robust oscillation around a stable fixed point in the form of a center (the light
blue curve in figure 4). The other is a trajectory that is scattered from the innermost potential
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Figure 5. The left panel shows the energy vs x0 for α = 1, β = 1. The blue curve is
twice the potential function of the ODE for the complex case (given in equation (16)).
The data points are the (normalized) potential energies of the steady states of the PDE at
x0 = 1.825, 3.56, 5.38, 7.19, 9.01 which are shown in the right panel. The need to multi-
ply the potential function of the ODE by two when comparing the ODE and PDE stems
from the fact that the energy calculation using a steady state of the PDE involves two
solitons—kink and antikink. The right panel presents the static, equilibrium solutions
corresponding to x0 = 1.825 (orange dash-dotted curve), x0 = 3.56 (blue solid curve),
x0 = 5.38 (red dashed curve), x0 = 7.19 (green dash—dotted curve) and x0 = 9.01
(purple dotted curve). Note that the steady state for the PDE occurs at x0 = 1.825 but
the fixed point of the ODE is at x0 = 1.75.

energy barrier due to the presence of the innermost saddle point, corresponding to a maximum
of the effective energy landscape and is thus reflected. In this case, we see that the kinks do
not make it to a collision but are rather reflected due to their interaction landscape before the
collision.

For another perspective on the quantification of the agreement between PDE and ODE
results, see figure 5. In the left panel of this figure, we show the potential energy plot of
the ODE, again for α = 1, β = 1, in blue (using equation (16)). The data points repre-
sent the potential energies of the steady states of the PDE calculated using the PDE energy
E =

∫
1
2αu

2
x +

1
2βu

2
xx +

1
2 (u

2 − 1)2dx of the associated steady state configurations. The corre-
sponding steady-states themselves are shown in the same figure, right panel. Note that since
the calculated potential energy curve of the ODE approaches zero as the separation distance
increases, the potential energies of the steady states of the PDE must also be normalized (i.e.,
calibrated) so that the limiting value is zero (by subtracting the potential energy of a steady
state with very large separation). Again, clearly, the local maximum and minimum values of
the ODE energy landscape coincide with the potential energies of the corresponding steady
states of the PDE. The local minima correspond to stable steady states of the PDE (centers
of the ODE) and the local maxima correspond to unstable steady states of the PDE (saddle
points of the ODE). Importantly, aside from the center-most potential energy maximumwhere
the kink structures are so close that we cannot identify them as independent entities (and thus
we do not expect the collective coordinate characterization to be as accurate), we observe that
the agreement is very good. We remind the reader that the presence of this oscillatory energy
landscape, its associated minima (centers) and maxima (saddles), and the respective stationary
PDE configurations are distinctive features of the prevalence of the biharmonic term and are
genuinely absent in the harmonic case (and more generally for α > 4

√
β, when the harmonic

contribution is dominant).
For the PDE, equation (3), we expect that the equilibrium solutions shown in figure 5 with

x0 = 1.825, x0 = 5.38 and x0 = 9.01 will be locally unstable and the ones with x0 = 3.56 and
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x0 = 7.19will be locally stable. This is consistent with figure 6, where the spectral plots (λr,λi)
are shown for the eigenvalues λ = λr + iλi of the linearized field equation, for α = 1 and
β = 1. Using the expansion u(x, t) = u0(x)+ εeλtw(x) around an equilibrium solution u0(x),
we solve for the eigenvaluesλ. For x0 = 3.56 and x0 = 7.19, we see that all the eigenvalues lie
on the imaginary axis, so we conclude that the equilibrium for those cases are stable. However,
for x0 = 1.825, x0 = 5.38 and x0 = 9.01, we get one eigenvalue pair on the real (resulting in
exponential instability) axis in addition to the ones on the imaginary. The eigenvalue that is
the lowest imaginary one in the stable cases, as well as the single nonvanishing real pair in the
unstable case are associated with the relative kink–antikink center motion. The nature of the
mode is associated with stable oscillations in the former case and with unstable sliding in the
latter setting. There also exists a vanishing pair of eigenvalueswhose eigendirection leads to an
energy-neutral rigid translation of the kink–antikink pair. The other nontrivial point spectrum
pairs of 2 near-identical modes are analogous to the internal mode that was discussed earlier
in the text for the single kink/antikink (for several combinations of α and β).

While in figure 3 we showed example phase portraits that resulted in very proximal corre-
spondence between PDE and ODE (for the complex case), in figure 7 we show phase trajecto-
ries for both the real and complex cases that illustrate at what point the PDE and ODE solution
curves may depart from each other (recall that the dash-dotted green line represents the posi-
tion X(t) of the antikink as measured by its intersectionwith the horizontal axis). In these cases,
the kink and antikink get too close for the force law to remain valid. One can see that in the
real case of the left panel this occurs at about X = 3, while in the complex case of the right
panel at about X = 2. Note also that the green curve indicates the formation of a bound state
which is losing energy (in a way somewhat akin to a stable spiral but keeping in mind that in
a bound state there are no longer an identifiable kink and antikink). Here, the important differ-
ences of the PDE dynamics from the conservative ODE of 1 degree-of-freedom (dof) become
evident. The latter being energy conserving can only lead to reflection (or transmission) in such
an example., while the former can transfer energy from the kink translational motion to other
degrees of freedom (internal ones or radiation ones [6]), thus leading to the effective trans-
lational energy dispersion and thus the apparent trapping of the kinks into a so-called bion
state. Successive ‘breathings’ of this bion state at the PDE level are mirrored in the progres-
sively inward green curves (carrying less and less energy). At the ODE level, we make two
more minor (in terms of the bigger picture of our story), yet technically relevant observations.
Given the absence of ODE–PDE correspondence in the right panel we stop the ODE evolu-
tion once the kink–antikink pair directly collides (i.e., at X = 0). On the other hand, the left
panel has another intriguing but non-physical trait: the double exponential force (of opposite
signs between the two exponentials) results in a landscape with a local minimum very close to
X = 0. We have found this feature to be an artifact of the theory and its lack of accuracy in the
immediate vicinity of X = 0. Let us reiterate, also in light of the above remarks, that the ODE
models are based only on the behavior of the tails of the kinks and antikinks. When a kink and
antikink are involved in an interaction, the model makes sense only when the structures are
well-separated. Therefore the ODEmodel should not be expected to reflect the actual behavior
of the system beyond the point where the waves are at a distance comparable to or smaller than
their width, at which time they essentially forego their individual character.

In figure 8 we show contour plots for the same values of α and β and the same initial
conditions as in figure 7, again with the ODE solution curves superimposed. I.e., these panels
represent the spatio-temporal contour plot representation of the failure of the ODE theory to
capture the PDE dynamics, as explained in the above discussion. As in figure 7 we can see
that the ODE tracks the PDE simulation until around the time that the collision occurs. As a
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Figure 6. The spectral plane (λr ,λi) of eigenvalues λ = λr + iλi of oscillations around
the equilibria at x0 = 1.825 (1st row left), x0 = 3.56 (1st row right), x0 = 5.38 (2nd row
left), x0 = 7.19 (2nd row right), x0 = 9.01 (bottom), for α = 1 and β = 1.

result of the latter, at the PDE level, a bound state emerges, while in the case of the ODE, the
conservative nature of the 1 dof system does not allow any scenario other than reflection.
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Figure 7. The left panel shows phase plots for the real λ case of α = 5 and β = 1 using
initial conditions X(0) = 8 and Ẋ(0) = −0.003 593. The right panel illustrates phase
plots for the complex λ case of α = 1 and β = 1 using initial conditions X(0) = 8 and
Ẋ(0) = −0.35. In both cases, the ODE is shown by the blue solid curve and the PDE by
the green dash-dotted curve. Insets show at what points the ODE model diverges from
the PDEmodel. The ODE trajectory in the right panel is stopped at the point when X = 0
because it becomes physically unrealistic beyond that point.

Figure 8. Contour plots of the PDE corresponding to the same parameter values and
initial conditions as in the corresponding panels of figure 7. The ODE trajectory is
superimposed in blue.

5. Velocity in versus velocity out curves and soliton collisions

We now investigate kink–antikink collisions in the context of escape velocity (vout) and multi-
bounce windows as a function of incoming velocity (vin), in line with the extensive literature
on the subject discussed in the Introduction (for a relatively recent summary in the φ4 case,
see, e.g., [6]). Summarizing the kink–antikink collision dynamics in the φ4 model, we note the
following. In this model, it has been shown that there exists a critical vin value, which we label
vcrit, such that for vin > vcrit, the kink and antikink interact once and then separate forever. For
vin < vcrit the kink and antikink can form a bound state, or can interact (bounce) any number of
times, depending on vin, before separating forever. Furthermore, it is well-established since the
work of [14] for the φ4 model, that the bounce windows corresponding to different numbers of
bounces are nested in a fractal pattern. For example, three bounce windows occur at the edges
of two-bounce windows, four bounce windows occur at the edges of three-bounce windows,
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and so on. Also, the vin − vout graph for a given window has the appearance of an inverted
parabola, with the vout values going to zero at the edges of the window.

For a model with only a biharmonic term (α = 0 in this paper) it was shown in [30] that
two critical vin values exist, with v1,crit < v2,crit. v2,crit is similar to vcrit for the φ

4 model in that
for vin > v2,crit the kink and antikink interact once and then separate. For vin < v1,crit the kink
and antikink repel elastically before interacting. For v1,crit < vin < v2,crit the kink and antikink
form a bound state. Near both critical values, we see oscillations in the vin − vout graph, where
the frequency of the oscillations rapidly increases as the critical values are approached. It is
important to highlight how dramatically different this behavior is from the above behavior of
the regular φ4 model, since essentially multi-bounce windows are fully absent in the bihar-
monic case, while the oscillations near the critical velocities are absent in the standard φ4

case.
Coming now to the case of the model considered herein, we note that it involves a mixture

of the two cases just described. More specifically, we find that by fixing β at β = 1 and let-
ting α increase from 0 to 6, we see a transition from one case to the other. As α is increased
(departing from the biharmonic case), more and more bounce windows begin to populate the
region between v1,crit and v2,crit. At first, these new bounce windows display oscillations in the
vin − vout graphs near the edges of the windows, similar to what is seen in the bound-state
region of the pure biharmonic case. With increasing α the oscillations diminish and the vout
values at the edges of eachwindow begin to approach zero as in the pureφ4 case.We will show-
case these features qualitatively in the results that follow. Nevertheless, the delicate nature of
the associated computations renders especially difficult the identification of effective ‘critical
points’ where the behavior changes from the one reminiscent of the pure biharmonic problem
to that reminiscent of the pure harmonic one. In the case of the critical velocities, by rescaling
we are able to relate the solutions to equation (3) for generalα and β = 1 to other combinations
of α and β, as is now shown.

Let u1,β be a solution to

utt = uxx − βuxxxx + 2u− 2u3.

and consider the coordinate transformation

x 
→ ξ =
x
a
.

In the new coordinate system the solution can be rewritten as u1,β(x, t) = ũ(ξ, t). Of course,
u1,βtt = ũtt and u1,βx = 1

a ũξ , therefore ũ obeys the equation

ũtt =
1
a2
ũξξ −

β

a4
ũξξξξ + 2ũ− 2ũ3.

For a4 = β we get

ũtt =
1√
β
ũξξ − ũξξξξ + 2ũ− 2ũ3

so, ũ(ξ, t) ≡ uα,1(ξ, t) or,

u1,β(x, t) = uα,1
(

x
β1/4

)

for α = 1√
β
.
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Figure 9. The blue circles on both panels are obtained by the numerical simulation of
equation (3) where left panel represents v1,crit vs α when β = 1 and the right panel rep-
resents v1,crit vs β when α = 1. The red solid curve on the left panel is obtained by
applying the formula vα,11,crit =

√
αv1,β1,crit where β = 1

α2
to the numerically obtained data

(blue circles) on the right. The red solid curve on the right panel is obtained by applying
the formula v1,β1,crit = β1/4vα,11,crit to the numerically obtained data (blue circles) on the left.

Therefore we can obtain solutions to the model for the parameters α = 1 and β, using the
solution for parameters α and β = 1. Then, using this coordinate transformation, we find that
the critical velocity v1,β1,crit of the solution u

1,β can be expressed in terms of the corresponding
critical velocity vα,11,crit of the u

α,1 solution as

v1,β1,crit =
dx
dt

= a
dξ
dt

= β1/4vα,11,crit, (19)

where α = 1√
β
.

Notice that when β becomes large enough, we get vα,11,crit ≈ v0,11,crit, so

v1,β1,crit ∼ β1/4v0,11,crit.

Similarly

vα,11,crit ∼
√
αv1,01,crit.

Furthermore, the above equations hold when vα,11,crit is replaced by v
α,1
2,crit.

In figure 9 we show graphs of v1,crit versus α for β = 1 (left panel) and v1,crit versus β
for α = 1 (right panel). Figure 10 is similar, but for v2,crit. The blue circles on all panels are
obtained by the numerical simulation of equation (3) where the left panels represent v1,crit vs
α when β = 1 and the right panels represent v1,crit vs β when α = 1. In the panels of both
figures, the red curves are obtained from the transformation given by equation (19) (plotted
without markers for the transformed points and with connecting lines in order to make the
graph more readable). The red curves are included to demonstrate the validity of equation (19)
in comparison with direct PDE simulations.

Having identified the critical point scaling relations, we now turn to a direct examination of
the collision features and associated multi-bounce windows. In figure 11 we show vin − vout
curves for α = 1 and β = 1. For fixed β = 1 we know that the force law changes from the
complex λ case to the real λ case at α = 4, so we expect the case α = 1 to be somewhat sim-
ilar to the pure biharmonic case of α = 0. In the upper left panel of figure 11 we see that the
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Figure 10. The left panel shows v2,crit vs α when β = 1 and the right panel shows v2,crit
vs β when α = 1. The blue circles and the red solid curves were obtained as described
in figure 9.

elastic collision region corresponds to 0 < vin < v1,crit ≈ 0.308 05 and the one-bounce region
corresponds to v2,crit ≈ 0.5902 < vin < 1. Note that we have chosen not to include vin values
greater than one. The region v1,crit < vin < v2,crit, which corresponds to a bound state when
α = 0, is beginning to be populated by two and three bounce windows, a byproduct of the
inclusion of the quadratic dispersion. The top right panel shows the first two-bounce window.
The bottom left panel shows the next two-bouncewindow,with three-bouncewindows appear-
ing just to the left. The bottom right panel shows the first three-bounce window in more detail.
All windows display the characteristic oscillations at the edges. Notice the important features
of this case: on the one hand, the multi-bounce windows (which did not appear in the pure
biharmonic case) are now present. On the other hand, they do not terminate as, e.g., in the
case of the standard φ4 model [6, 22], but rather have the oscillatory terminations (with pro-
gressively shorter periodicity) encountered previously in [30] for the pure biharmonic case,
Moreover, we have encountered a feature also absent in the standard (pure) φ4 case, namely
higher-bouncewindows appear only on one side (to the left) of the two bouncewindows, while
it is well-known [14] that they appear on both sides in the pure harmonic φ4 problem.

In figure 12 we show vin − vout curves for α = 5 and β = 1. For this case, since α > 4 we
have λ real, and expect some similarity with the case of the pure φ4 model (β = 0). Indeed, the
structure is similar to the fractal pattern we see in the φ4 case, with three-bouncewindows at the
edges of the two bounce windows. However, we were not able to find three-bounce windows
to the right of the two-bounce windows. These should, presumably, emerge as α gets larger,
or as β gets smaller. However, it is an open question requiring further systematic investigation
how the self-similar (on both sides) picture of the pure φ4 model arises.

We can begin to see how the system transitions from the α = 0, β = 1 (pure quartic dis-
persion) case to the α = 5, β = 1 (harmonic term dominant) case through some additional
(less detailed) vin − vout graphs; see, e.g., figure 13. The first two-bounce window for α = 2
(left panel, main figure, and see also figure 11 top left panel for α = 1) demonstrates a curious
behavior. It appears (out of nowhere) at about α = 0.711, persisting to about α = 2.8 where
it disappears. This is why it arises in the left panel, but not the middle one. Similarly, notice
how the transition shrinks progressively the size of the gray line interval of ‘no collision’ for
0 < vin < v1,crit. It can be seen that this interval eventually disappears for α = 4 in the right
panel of the figure, again showcasing how the transition between the two regimes (biharmonic
vs harmonic) emerges.
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Figure 11. The top left panel shows vout vs vin when α = 1 and β = 1 with v2,crit ≈
0.5902. The top right panel is the zoom-in about the first two-bounce curve. The bottom
left panel is the zoom-in about the two three-bounce windows right before the critical
velocity v2,crit. The bottom right panel is the zoom in about the leftmost three-bounce
window on the bottom left panel. In both top right and bottom panels, the tails and their
oscillatory behaviors are shown. One-bounce windows in the figures are in solid black.
Two-bounce windows are in blue and three bounce windows are in green. The gray solid
line on the top left panel is when the kink–antikink repel each other elastically.

While in the discussion above, we have focused on features that transition the phenomenol-
ogy between the two limits, it is important to realize that the wealth of the model considered
here transcends that of solely the limit cases. For instance, figure 14 illustrates a phenomenon
not seen in either the pure biharmonic or the pure harmonic φ4 case, with α = 2.05 and β = 1.
What we see here is an initial interaction between kink and antikink, followed by separation of
the solitons for a period of time, and then another approach of the pair. At this point one or more
elastic collisions can occur, resulting in the appearance of multiple bounces. In the first panel of
figure 14 we see a ‘pseudo’ two-bounce result, and in the second panel a pseudo three-bounce
result. This can occur when the speed at which the kink and antikink approach each other for
the second (or third) time is very small and thereforewhen we find ourselves in the small-speed
reflection window of the complex eigenvalue case. In short, this is an unprecedented type of
two-bounce since two-bounces cannot happen in the pure biharmonic case (where there is only
bion formation and single bounce events [30]), but it can also not happen for pure harmonic
φ4 where the small speed reflection scenario is absent. This is yet another manifestation of the
rich phenomenology of the model combining harmonic and biharmonic dispersion.
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Figure 12. vout vs vin when α = 5 and β = 1 with vc ≈ 0.7295. The one-bounce win-
dow is in solid black. Two-bounce windows are in blue and three-bounce windows are
in green.

Figure 13. Transition from dominant quartic progressively closer to dominant harmonic
behavior, by changing α from 2 (left) to 3 (middle) and finally the critical case of α = 4
(right panel).

Figure 14. Contour plots when α = 2.05 and β = 1 with vc ≈ 0.6222 for X(0) = 10.
Left panel is when vin = 0.622 and right panel is when vin = 0.621. The inset presents
the short time behavior of the kink-antikink collision over the first 100 time units.
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6. Conclusions & future challenges

In this work we have explored a model featuring the competition of a harmonic and biharmonic
linear operator in a quadratic-quartic φ4 model. We have argued that this model is of intrinsic
mathematical interest due to the distinct implications of the different linear operators and also
the unique features created by their interplay that neither of the ‘pure’ (quadratic or quartic
dispersion) models possesses. The harmonic part creates a saddle point in the spatial dynam-
ics and hence leads to exponentially decaying waveforms. On the other hand, the biharmonic
operator leads to complex eigenvalues and a spiral point in the corresponding spatial dynamics.
Here, we have seen the interplay of these two possibilities creating an effective competition
between the two tendencies. We have observed that this competition leads to a critical point
(with an intriguing behavior in its own right, i.e., a linearly modulated exponential) and on the
two sides of this criticality either the biharmonic oscillatory effect or the harmonic exponential
decay effect prevail respectively. This crucially affects the interactions between the kinkswhich
we have also explicitly identified and corroborated bymeans of detailed comparison of both the
single wave tails and of the two-coherent-structure interactions. We have also elucidated the
extent to which this collective coordinate approach can be reliably used and illustrated its fail-
ure when the kinks get too close to each other. Additionally, we have examined the collisions,
bounce and multi-bounce windows stemming from the kink interactions and have shown how
the critical velocities and corresponding windows are modified as a function of the quadratic-
quartic model parameters. A natural next step in this program (albeit a rather nontrivial one,
given the complications that have recently arisen even in the standard φ4 case [6]) is to attempt
to explore the role of the kink/antikink internal modes in these collisions and the interplay
between the kinetic energy stored in the kink translational modes, the vibrational energy of the
internalmodes and the dispersive radiation of the extendedmodes. This would be a particularly
interesting direction for future study.

These findingswill clearly have a significant bearing on the correspondingquadratic-quartic
NLSmodelwhich is a natural possibility for future work, given the recent developments in pure
quartic solitons [27, 28] and on optical media featuring quadratic and quartic dispersion [32].
This natural extension will have similar existence properties to the case considered herein,
however the stability of the dark solitons of the latter problem is an interesting open question.
Aside from this, both at the Klein–Gordon (real field-theoretic) level and at the NLS one, it will
be interesting to generalize considerations to higher dimensional settings, where it is natural
to expect, e.g., vortical and more generally topologically charged excitations. Corresponding
studies are currently in progress and will be reported in future publications.

Acknowledgments

This material is based upon work supported by the US National Science Foundation under
Grants PHY-1602994 and DMS-1809074 (PGK).

Data availability statement

No new data were created or analysed in this study.

20



J. Phys. A: Math. Theor. 54 (2021) 225701 G A Tsolias et al

ORCID iDs

G A Tsolias https://orcid.org/0000-0002-0616-4749

Tristram J Alexander https://orcid.org/0000-0001-8984-3108

P G Kevrekidis https://orcid.org/0000-0002-7714-3689

References

[1] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA:
SIAM)

[2] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse
Scattering (Cambridge: Cambridge University Press)

[3] Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University
Press)

[4] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982 Solitons and Nonlinear Wave Equations
(London: Academic)

[5] Cuevas J, Kevrekidis P G and Williams F L (ed) 2014 The Sine-Gordon Model and its Applica-
tions (From Pendula and Josephson Junctions to Gravity and High Energy Physics) (Heidelberg:
Springer)

[6] Kevrekidis P G and Cuevas-Maraver J (ed) 2019 A Dynamical Perspective on the φ4 Model
(Heidelberg: Springer)

[7] Kudryavtsev A E 1975 Solitonlike solutions for a Higgs scalar Field JETP Lett. 22 82
[8] Aubry S 1976 A unified approach to the interpretation of displacive and order–disorder systems. II.

Displacive systems J. Chem. Phys. 64 3392
[9] Getmanov B S 1976 Bound states of soliton in φ4

2 field-theory model JETP Lett. 24 291
[10] Ablowitz M J, Kruskal M D and Ladik J F 1979 Solitary wave collisions SIAM J. Appl. Math. 36

428
[11] Sugiyama T 1979 Kink–antikink collisions in the two-dimensional 4 model Prog. Theor. Phys. 61

1550
[12] Campbell D K, Schonfeld J F and Wingate C A 1983 Resonance structure in kink–antikink

interactions in φ4 theory Phys. D 9 1
[13] Belova T I and Kudryavtsev A E 1997 Solitons and their interactions in classical field theory Phys.-

Usp. 40 359
[14] Anninos P, Oliveira S and Matzner R A 1991 Fractal structure in the scalarλ(φ2 − 1)2 theory Phys.

Rev. D 44 1147
[15] Goodman R H and Haberman R 2005 Kink–antikink collisions in the φ4 equation: the n-bounce

resonance and the separatrix map SIAM J. Appl. Dyn. Syst. 4 1105
[16] Goodman R H 2008 Chaotic scattering in solitary wave interactions: a singular iterated-map

description Chaos 18 023113
[17] Weigel H 2014 Kink–antikink scattering in φ4 and φ6 models J. Phys.: Conf. Ser. 482 012045
[18] Takyi I andWeigel H 2016 Collective coordinates in one-dimensional soliton models revisited Phys.

Rev. D 94 085008
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