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acteristics of the single kink both in its standing wave and in its traveling wave form. A
point of emphasis is the study of kink-antikink collisions, exploring the critical velocity
for single-bounce (and separation) and infinite-bounce (where the kink and antikink trap
each other) windows. The relevant phenomenology turns out to be dramatically different

Ié?;vr:lords' than that of the corresponding nonlinear Klein-Gordon (i.e., ¢*) model. Our computations
Kink show that for small initial velocities, the kink and antikink reflect nearly elastically with-
Antikink out colliding. For an intermediate interval of velocities, the two waves trap each other,
Collision while for large speeds a single inelastic collision between them takes place. Lastly, we

briefly touch upon the use of collective coordinates (CC) method and their predictions of
the relevant phenomenology. When one degree of freedom is used in the CC approach,
the results match well the numerical ones for small values of initial velocity. However, for
bigger values of initial velocity, it is inferred that more degrees of freedom need to be
self-consistently included in order to capture the collision phenomenology.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Different variants of the nonlinear beam equation have been studied in the last decade both numerically and analyti-
cally; see, e.g., [1-4]. Such models have been considered chiefly in the context of suspension bridges and the propagation of
traveling waves therein (most notably for piecewise constant but also for exponential nonlinearities); see the relevant dis-
cussion in [2-4]. More recently, different venues of interest of such fourth-derivative settings have arisen both at the level of
applications where they have emerged in generalized nonlinear Schrédinger (NLS) settings involving so-called pure-quartic
solitons in nonlinear optics [5], but also equally importantly in the realm of mathematical analysis in connection to their
intriguing existence and stability properties [6].

One of the particularly interesting aspects of this class of models is that the standing and traveling waves of the
beam equation satisfy a fourth-order ordinary differential equation, whereas for other dispersive wave models, such as the
Korteweg-de Vries equation, traveling waves satisfy a second-order ordinary differential equation. The same is naturally true
for well established models such as the standard NLS equation and the Klein-Gordon family of models [7]. Since there is
no explicit formula for the standing and traveling waves, it is challenging to obtain the spectral information analytically. In
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[1], the existence of ground-state solitary traveling wave solutions was shown by using a constrained minimization tech-
nique. The corresponding Hessian was used to infer stability information in that work; e.g., traveling waves were found to
be stable at least in the vicinity of a critical value for power law nonlinearities of sufficiently low power. At the same time,
standing waves (for low enough nonlinearity powers) were found to be stable for a suitable frequency interval. In [8], the
existence and the stability of standing and traveling waves for the same setting as that of [1] was studied numerically for a
number of one-dimensional case examples. The authors of [4] showed the existence of traveling wave solutions for a large
class of nonlinearities by adapting the Nehari manifold approach; this approach, however, does not provide information for
the stability of the waves.

In this paper, we numerically explore the existence and the behavior of kink and kink-antikink solutions of a nonlinear
beam equation:

U = —Uxxx — V' (1) (1)

where V(u) = %(u2 —1)2. This potential function is a departure from the papers described in the previous paragraphs. In
particular, it represents a double-well potential, and therefore admits possible kink-antikink (topological soliton) solutions.
For example [1,4] and [8] address potential functions that include V(u) = —%(u2 —1)2 (and generalizations thereof) which
makes u = +1 unstable and u = 0 stable (the opposite of ours). We have chosen our potential function so that we can make
comparisons with the well studied ¢4 model, where uyyx in our model is replaced by —uyx.

The linear version of Eq. (1) without the potential, given by u = —uxxx, has long been used to model small vertical
vibrations of a thin transverse beam, and is often studied as such in undergraduate courses. Thus we can naively interpret
Eq. (1) as a model of a similar beam subjected to a (vertical) double-well potential. We are not aware of any experimental
attempt to impose a double-well potential on a system of this type; however there have been numerous and substantial
advancements in recent years in the field of nonlinear optics that warrant the study of this class of models. More specifically,
the theme of “pure quartic media” and of solitary waves in them (“pure quartic solitons”) have been an emergent topic
of study [5]. More specifically, the relevant experimental group has not only only engineered this type of higher-order
dispersion (to accompany the presence of a cubic nonlinearity), but they have also built a “pure-quartic soliton laser” in [9].
Going significant steps further, in their recent work, they have considered variations of the media featuring gain (and the
formation of similaritons) [10], but also they have engineered media with sextic, octic, decic dispersion [11], opening a
wide new direction of study of media with higher-derivative dispersion. To add to this feature, it is relevant to point out
that in additional work, the experimental developments have prompted the consideration of generalized dispersion models
involving both Laplacian (harmonic) and bi-harmonic contributions, e.g., terms involving oty — Buxxxx in the linear operator
above [12]. It is especially relevant regarding the generality of our findings to illustrate that key features of our results
below, such as the oscillatory nature of the decay of the solitary waves will be broadly applicable in subcritical settings of
this generalized form where o < 48 (and not only in the extreme setting of @ = 0 and 8 = 1). Further quantification of this
point is provided in Section 3.1 below. Moreover, while here we will focus on the real version of the field theoretic model,
rather than the complex nonlinear Schrédinger one of the above studies, it does not escape us that the steady state version
of the relevant problem is identical. Hence, the waveforms identified in what follows will be relevant to the optical problem
studied in the above mentioned works.

The nonlinear beam model (1) is similar to the ¢* model

Ut = U — V' (1) (2)

which has been studied intensely both analytically and numerically over three decades now [13,14]; see also the recent
book [15] summarizing the current state of understanding for such Klein-Gordon models. Our aim in the present work is to
present some of the basic features of the biharmonic analogue of the ¢* model, which we will hereafter term biharmonic
¢* or B¢ for short. In the present work, we first present numerical computations and simulations for a single kink at the
level of both standing and traveling waves. Next, we study the behavior of kink-antikink solutions which is well-known to
be particularly elaborate in the standard ¢* model [13,14,16-20]. The latter, per the recent work of [19,20] (see also [15])
is still an ongoing research theme. Here, we show that the interactions between kink and antikink are in some ways much
simpler, yet at the same time in other ways fundamentally more complex. The interactions up to speeds of the incoming
wave of about 0.5 are nearly elastic and, importantly, effectively repulsive, i.e., the kink and antikink never get to reach the
same location while interacting, where we define the location of a kink or antikink as the x-value of the point where the
kink/antikink profile intersects the horizontal axis. For large speeds between 0.6 and 1 the large kinetic energy of the co-
herent structures overcomes their interaction barrier leading to collision and separation, with the waves moving at speeds
lower than the incoming ones. In between, a delicate trapping window arises with edges featuring a very complex (oscil-
latory and logarithmic) dependence of the outgoing vs. the incoming velocity. We present the relevant dependencies, for
the first time to our knowledge, and expose some of the interesting questions arising from our numerical computations
worthwhile to address in future studies.

2. Numerical methods

In order to simulate Eq. (1) numerically we discretize the spatial domain on the interval x € [-100, 100] using 2000
discrete points with an increment of Ax =0.1. We use a Fourier-based spectral differentiation matrix D, as in [21] to
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approximate ¢” as D,¢ and to approximate ¢ as D%(p. This turns the PDE (1) into a system of ODE’s and we use Matlab’s
built in ODE solver ode45 to simulate the kink and antikink evolution therein.

3. Single kink solutions

A kink solution for Eq. (1) (or for Eq. (2)) is a solution for which u — +1 as x — 4oo respectively, as shown in Fig. 1
in the first panel. An antikink is a solution for which u — F1 as x — 400 respectively; an antikink can be obtained from a
kink by reflection about either the horizontal or vertical axis. In this section, we study the behavior of a single kink solution
numerically. We start with the steady state solution, and study its existence and stability numerically. Next, we consider the
moving single kink solutions, examining their corresponding properties. We also briefly touch upon energy and momentum
conservation considerations indicating the corresponding properties of the models and examining them as a numerical check
the validity of our direct simulations.

3.1. Steady state kink solutions

Steady state kink solutions u(x,t) = ¢q(x) of Eq. (1) satisfy
95" +V (o) = 0. (3)

We numerically solve this fourth order BVP using Matlab’s fsolve and choose as initial guess the explicitly known solution
to the steady-state ¢* model, namely, 1o (x) = tanh(x). The result of the corresponding computation is shown in the top left
panel of Fig. 1.

It is worthwhile to briefly consider the asymptotics of the relevant kink, i.e., how it approaches the homogeneous steady
states u = +1. Substituting ¢q(x) = 1 — €e** into Eq. (3), we obtain (as € — 0) A% +4 = 0; choosing the root A = —1+i, we
get ¢o(x) 1 —€ee*cos(x —xg) for small €, where xy denotes a suitable constant. In Fig. 1, the top right panel shows the
plots for |¢g — 1| and the fitted curve for the function in the form:

e | (bcos(c(x — d)))| (4)

where a,b,c and d are parameters. We use Matlab’s Isqcurvefit function to find the values and 95% confidence intervals
for a,b,c and d. The values and the intervals for those parameters are presented in Table 1. As seen in the Table, the
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Fig. 1. The top left panel shows the steady state kinks for the B¢* model (blue solid line) and ¢* model (red dashed line). Notice the oscillatory nature
of the former in comparison with the monotonic nature of the latter. The top right panel shows the curves |¢o — 1| (blue solid line) and the fitted curve
e~0-9998x| (0,965 c0s(0.9998 (x — 0.4086)))| (light blue dash-dotted line). The bottom panel is the space-time (i.e., x —t) contour plot of the (dynamically
robust) steady kink evolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

The table presents the values a, b, ¢, d from
Eq. (4) and the corresponding 95% confidence
intervals.

Parameters  Values 95 % CI

a 0.9998 [0.9978, 1.0019]
b 0.9650 [0.9525, 0.9775]
C 0.9998 [0.9984, 1.0013]
d 0.4086  [0.4015, 0.4156]
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Fig. 2. The left panel shows the spectral plane (A;, A;) of linearization eigenvalues A = A, + iA; corresponding to the steady state of the B¢* model. The
right panel shows the eigenfunction corresponding to the internal mode at A = £1.8458i. This is an internal, vibrational anti-symmetric mode in analogy
with the one at A = ++/3i of the regular ¢* model.

numerically obtained intervals support the theory where a and c (the exponential spatial decay rate and the wavenumber
of the spatial oscillation) are expected to be 1. Note that the fit in the top right panel of Fig. 1 is excellent with a divergence
occurring at around x = 22 due to the accuracy settings used in finding the numerical solution ¢q(x). The bottom panel of
Fig. 1 illustrates the dynamical evolution of the relevant coherent structure predisposing us through its robust dynamical
evolution for the spectral stability of the kink to which we now turn below.

Note that for the generalized model mentioned in the introduction, where —uxyxx is replaced by acuxy — Buxxxx, the equa-
tion A% +4 =0 is replaced by —aA? + BA* +4 =0. It is easily shown that complex A’s result when « < 4\/3, and hence
models of this more general form also feature similar tail behavior of kinks and antikinks as given by Eq. (4).

To study the stability of the steady state, we consider the linearization around the steady kink solution. Assume

ux, t) = o (x) +v(x. ), (5)

where v(x,t) is the perturbation assumed to be small when t = 0. When we substitute Eq. (5) into Eq. (1), we get the
linearized equation as

Utt = —VUxxxx — V”(QDO)U (6)

Defining w(x, t) = v (x, t), we can convert Eq. (6) into a first order linear system

lvl -3} ”

0 I
fo= [D —V"(go)l 0]' (®)

We solve the relevant spectral eigenvalue problem (of the operator £g) numerically. In Fig. 2, we show the eigenvalues
A = A +1iX; of this operator and the eigenfunction corresponding to the internal mode at A = +1.8458i. As seen in the
figure, the purely imaginary nature of all the eigenvalues indicates that the steady state kink solution is spectrally stable.
This is, indeed, in line with our numerical observations of Fig. 1. We can see that the continuous spectrum of the problem
arises for A; > \/V”(£1) = 2 (and symmetrically on the negative semi-axis). While Sturm-Liouville theory does not directly
apply to fourth order problems such as the one considered herein, relevant generalizations exist establishing the ordering of
the corresponding eigenvalues (which may be double); see, e.g., [22,23]. Relevant numerical examples illustrate (as is found
to be the case herein) the alternating (even-odd) parity of the adjacent eigenvectors.

where
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3.2. Moving single kink solutions

In this section, we examine the dynamical evolution of a single kink solution in the form: u(x,t) = ¢ (x — ct) where c is
the speed. For second order differential equations like the ¢* model, we can apply a Lorentz transformation to the steady
state kink solutions and obtain the moving ones. However, this is not the case for the B¢* equation because it is a fourth
order differential equation.

The equation that a traveling wave must satisfy can be found by assuming u(x,t) = ¢(x —ct) and substituting into
Eq. (1) to get

PW(E) + 9" () +V (p(§)) =0. (9)

where & = x — ct. Thus we solve Eq. (9) numerically in order to identify a numerically accurate traveling wave profile. We

use uc(x) = tanh(x/4/1 — c2) (the known ¢* traveling wave solution at t = 0) as an initial guess for fsolve in order to find
the moving kink solutions.

For the stability of these solutions, we study the spectrum of the linearized operator about these moving solutions.
Converting Eq. (1) to the new coordinates & = x — ct and T =t (a moving coordinate system), we obtain

Urr = —CPUgg + 2CUg, — Uggge — V' (U) (10)

Steady-state solutions of Eq. (10) are traveling wave solutions of Eq. (1) and are given by Eq. (9). To determine stability we
assume:

u€.t)=e(&)+né. 1) (11)

where 7 is the perturbation around the traveling solution ¢.(§) and assumed to be small. When we substitute Eq. (11) into
Eq. (10) and use Eq. (9), as well as the approximation V/(¢c(§) +n(&, 1)) ~ V' (¢c(§)) +n(&, 1)V (¢pc(£)), the linearized
equation is as follows:

Nee = (~¢*Dge — Digee )16, T) + 2cDene (5. T) = V" (¢ (E))N (&, T). (12)
Defining ¥ (£, ) = n¢ (£, 1), Eq. (12) can be rewritten as a first order linear system of the form:
I |n n
o)== 4] "
where
0 I
Le= [—CZDEE — foff — V//((pc)l 2CD§i| (14)

In Fig. 3, we show the moving kink solutions (obtained numerically) for three values of ¢ and also present the spectra
of the linearized operator £, around solutions of different speeds. Importantly, it can be seen that the relevant solutions
are spectrally stable. Additionally, it can be observed that the first three panels feature an internal mode with a frequency
outside of the continuous spectral band; however, in the rightmost panel associated with speed ¢ = 0.4 it is not obvious that
such a mode exists. In fact, upon closer inspection, this discrete internal mode does exist, but it ceases to exist somewhere
between ¢ = 0.41 and ¢ = 0.42.

We have also examined the dynamics associated with the relevant traveling waves. As a prototypical example, by using
the initial conditions:

ux,0) =@c(x);  ue(x,0) = —cp(x), (15)

we can simulate a moving single soliton moving with velocity ¢ where @.(x) is the solution to Eq. (9). The bottom panel
in Fig. 3 shows the contour plot of the moving kink traveling with the speed ¢ = 0.5. The relevant solution appears to be
robustly propagating for the time scales considered suggesting that the relevant traveling wave kink is a genuine stable
traveling solution of the original problem of Eq. (1). We have indeed confirmed that similar results can be obtained for
other speeds, in line with our theoretical analysis (data not shown here).

3.3. Conservation laws and numerical method validation

3.3.1. Conservation of energy
It is known that the Eq. (1) has Hamiltonian structure, therefore it conserves an energy (Hamiltonian) functional given
by
oo ] 1
H=7(ut)+V(ust) =/ <§u§+§u§X+V(u)> dx, (16)
where the kinetic 7 (potential V) energy contributions of the field, respectively, correspond to the integral associated with
the first (second and third, respectively) term in the right hand side of Eq. (16). Since dH/dt = 0, H is a given constant for a
chosen initial field configuration. In our simulations, the average value of H is of O(1), while the deviations from the mean

5
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Fig. 3. The top left panel shows the moving kink solutions for ¢ = 0.2 (blue solid), c = 0.5 (red dash), c = 0.8 (green dash-dot). The top right panel shows
the spectral plane (A, A;) of the linearization eigenvalues A = A, + iA; associated with the moving kink solutions for c = 0.2, ¢ = 0.3, ¢ = 0.35, ¢ = 0.4 from
left to right respectively. The bottom panel illustrates the contour plot of the solution to the PDE for speed ¢ = 0.5 and x, = 0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. An example of the evolution of the Hamiltonian and its deviations from its mean value for a single moving kink with ¢ = 0.3. The left panel shows
the total energy H and the right panel shows the deviation around the mean < H >.

are (for the numerous examples we considered) no more than 0(10~9). In this way, we use energy conservation as a partial
check of the validity of our numerical results. In Fig. 4, we show a moving single kink with the speed ¢ = 0.3. The bottom
left and bottom right panels show, respectively, the total energy H and the deviation from the mean value < H > (calculated
over the time horizon of our entire numerical computation).

3.3.2. Conservation of momentum

Similarly to the energy, another important conservation law of the B¢* equation is that of the linear momentum (asso-
ciated also with the invariance of the kink structures we discussed above with respect to translations). The momentum on
the interval (a, b) is defined as P = —f;’ uruxdx. Differentiating P with respect to time ¢, it is straightforward to infer that
the relevant quantity is conserved in the case where we integrate over the entire real line, that is, a = —co and b = cc. In
Fig. 5, we show the total momentum P and the deviation from the mean < P > for a moving single kink with the speed
¢ = 0.3. Once again the relevant quantity is of order unity, while the deviations from its mean value are of 0(10~1). As is
often done in relevant (e.g., Hamiltonian) problems with conservation laws, we utilize the adequacy of the preservation of
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Fig. 5. The left panel shows the total momentum P and the right panel shows the deviation around the mean < P > for a single moving kink with ¢ = 0.3.

our conserved quantities as an indication of the accuracy of numerical scheme over the time horizons of the simulations
conducted herein.

4. Kink-antikink collisions

Lastly, and most importantly for our study of the properties of the B¢* model, we now turn our attention to the topic of
kink-antikink solutions. Recall that such collisions have been the topic of intense scrutiny in the regular ¢* model [13,14,16-
20]. Importantly, the recent work of [19,20] and the summary of [15] suggest that the relevant topic is far from complete.
Hence, this is naturally a theme of principal interest within the (fourth derivative) model discussed herein, namely the B¢g*
equation.

For the separation half-distance we choose xy; = 20 and let the kink and antikink approach each other at various velocities
(vin), and then record the average velocity at which they separate after the interaction (voyt). To compute the latter, we find
the position of the kink x; after the kink-antikink separation occurs, but (well) before the waves reach the domain edges.
By fitting the kink position to a linear time dependence over different short time intervals, we find the associated speed,
ensure its nearly constant value and average the obtained values to identify voy:. To generate initial conditions, we follow
a technique that we developed in an earlier work [24]. In particular, we use Matlab’s Isqnonlin to find @, (x) which
minimizes the quantity ||@® + c2¢” +V/(¢)||2 (square of the ¢;-norm of the left side of Eq. (9)) subject to the additional
constraints that the kink position remain at x = —20 and the antikink at x = 20 (the initializer to Isqnonlin is given in the
next paragraph). This is necessary because Eq. (9), which applies to a traveling wave solution to Eq. (1), may not have a
solution when a kink and antikink are involved (for a single kink or antikink a solution is always possible). Thus a least-
squares approximation is the best one can do. In this way, we ensure that the initial conditions produce the “best” possible
approximation to a B¢* kink and antikink traveling towards each other, each with speed c, and consequently produces the
minimal possible radiation as a result of the coherent structure “superposition”.

As initializer to Isqnonlin, similar to Christov et al. [24], we use

@ (X) = @c(X+X0) + H(X) (@c (X — X0) — @c(x +X0))
where ¢¢(x) = tanh(—2—) is the traveling wave solution to Eq. (2) at t = 0. Here, H(x) is the Heaviside unit-step function.

V1-c2

Then the initial conditions that we use for moving kink-antikink system are:

U(X, 0) = (0min,c(x)
U (x,0) = —csign(X) @i, (%)

Note that without the “sign” function, the kink and antikink would move in the same direction. See Fig. 6 for a typical initial
position u(x,t = 0) profile and initial velocity u;(x,t = 0) profile.

It is relevant to recall here the particularly complex phenomenology of the regular ¢* model. There, for sufficiently large
velocities (v, > 0.2598), the kink and antikink always inelastically scatter, while for sufficiently small ones (v;, < 0.193) they
always trap each other into a breathing, so-called bion, state. In between, a remarkable wealth of fractal in nature multi-
bounce (2-bounce, at the edge of which there exist 3-bounce, at the end of which 4-bounce, and so on) windows arise.
In these, the coherent structures, despite the (kinetic) energy loss they incur during the first collision, manage to escape
each other’s attraction via a resonance mechanism involving the kink’s internal mode after multiple (respectively, 2-, 3-, 4-)
bounces.

The collision picture in the B¢ model turns out to be dramatically different and while in some ways it is quite simpler,
in others it turns out to also be rather complex. More specifically, for most initial velocities used we end up with three cases.
In the first case, where |v;,| € (0.001, 0.5108) (the no bounce window), the kink and antikink move towards each other, but
after some certain time they stop and move away from each other. In the second case where |v;,| € (0.5109, 0.5895) (the
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Fig. 6. Initial conditions for kink-antikink solution with xo = 20 for |v;,| = 0.55. The left panel shows u(x, 0) and right one shows the plot for u; (x, 0).
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Fig. 7. Space-time contour plots of the field u(x,t) in the case of a kink-antikink interaction in the beam model Eq. (1). The variation of the field values
here and in similar plots below is given by the adjacent color bar. The top left panel shows the repelling of the kink-antikink state (|v;,| = 0.2). The top
right panel depicts the case when the kink and antikink collide infinitely many times (|vj,| = 0.55). The bottom panel shows an example of the case where
they collide once and then escape from each other forever (|v;,| = 0.8).

infinitely many bounce window) the kink and antikink move towards each other and collide, but they do not have enough
kinetic energy to escape from each other. They end up with infinitely many collisions, i.e., trapping each other. In the third
case, where |v;,| € (0.5896, 1) (the one bounce window), the kink and antikink collide only once and they escape from each
other forever as seen in Fig. 7.

It is clear from the nature of the interaction of the top left panel of Fig. 7 that the kink and antikink effectively “repel”
each other when they get sufficiently close. That is to say if they do not possess sufficiently large speed, they will not be able
to overcome the energetic barrier that precludes them from colliding. In Fig. 8, we present the relation between |v;,| and
Vout- We observe that for small values of |v,|, there is a linear relationship with vy, such that to a very good approximation
Vout = |Vjn|. We do not see a linear relation for larger values of v;,. This suggests that small kinetic energies (smaller than
the one of the energetic barrier precluding the kink-antikink collision) will lead to direct reflection with minimal conversion
to a different form of energy. On the other hand, if the waves are incoming with sufficiently large speed, they will collide
and separate after a single bounce (bottom panel of Fig. 7). However, in that case, as shown in Fig. 8, the outgoing speed
will be significantly smaller than the incoming one signaling the conversion of the kinetic energy into internal energy and
also importantly small amplitude dispersive radiation wavepackets.
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Fig. 8. The relation between v,y and |vi,|. The blue solid line corresponds to the first case, where the kink and antikink repel each other. The red dashed
curve corresponds to the third case, where the kink and antikink collide only once and then escape from each other. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Oscillations near the edges of the infinitely-many bounce window. Upper left: original data and fitted model, left critical value. Upper right: original
data and fitted model, right critical value. Lower left: transformed data and fitted model, left critical value. Lower right: transformed data and fitted model,
right critical value.

The most interesting case naturally lies between the two above limits. Here the initial kinetic energy of the waves is
higher than the (repulsive) barrier, thus the structures will reach each other and collide. Our detailed numerical computa-
tions in the vicinity of the boundary of such a collision have revealed a surprising feature. This occurs near the boundaries
of the infinitely-many bounce window. Letting v; represent the |v;,| value of the left boundary of the infinitely-many bounce
window, and vg the right boundary of the same window, we see that there appear to be oscillations in the voy: versus |v,|
curve as |v;,| approaches v; from the left and as |v;,| approaches vy from the right. Closer inspection of these regions show
that this is indeed the case.
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Fig. 10. Kink-antikink solution with xy = 20 for |v;,| = 0.510799 on the time interval [0,55]. On the upper left panel, the red dashed line represents the
kink-antikink pair when t = 0 and the blue solid line represents the kink-antikink pair when t = 55. The upper right panel shows the space-time contour
plot of the field u(x,t) associated with the kink-antikink profile in the beam model of Eq. (1) on the time interval [0,55]. The lower panel is a zoom of
the upper right panel with the position of the kink superimposed (blue solid line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In Fig. 9 we show close-up views of these two regions (top two panels). In both cases we observe oscillations that get
more rapid as the critical point (v, or vg) is approached. Upon a systematic data exploration, it was found that the vout
versus |vy,| graph near these critical points follows a pattern similar to that of a y = y(x) curve [here by x and y, we solely
mean the independent and dependent variables of a function] of the form y = sin(log(1/|x|)) for x near O (the positive
side of the graph of y = sin(log(1/|x|)) resembles the |vj;| — Vour graph near vg and the negative side of the graph of
y = sin(log(1/]x|)) resembles the |vi,| — Vout graph near v;). Thus it appears that no limit for vy exists as |v;,| approaches
v, from the left or v from the right. This is in stark contrast to the corresponding ¢* model given in Eq. (2). For that model,
we know that vy always goes to zero at the boundaries of any n-bounce window.

We were able to verify (numerically) the above resemblance by fitting an appropriate model to the data. First, the vy
versus |v;,| data near each critical point (vg and v;) was translated to the origin. To accomplish this, vz and v, respectively
were subtracted from the |v;,| values, and quantities Voye g and vy ; were subtracted from the vour data values. vy, g and
Vout,, Tepresent the means of the voy values near vg and v respectively. Then 10g(1/|Vianslated|): Where Viangateq = the
translated |v;,| values, was plotted (horizontal axis) against the translated voy: data (vertical axis).

The results are shown in the bottom two panels of Fig. 9. Since the pattern of the data appears sinusoidal (consistent
with our conjecture about the functional form), a numerical fit to a sine function of the form asin(bx, +c) where x, =
10g(1/|V¢ransiated|) Was performed. The results appear in the four panels of Fig. 9. In the bottom two panels the transformed
data and fitted functions appear, and in the top two panels the original data and the model for the data (derived from the
fitted functions in the bottom panels). In all cases the models fit the data quite well (R?2 = 0.99 or higher). This suggests a
very delicate oscillatory regime of outgoing velocities both on the side of a of v; and on that of .

We end this section with a bit of a speculation about the source of these oscillations. While the regimes of individual be-
haviors of the B¢# model are far fewer and more well defined than in the second derivative ¢* analogue, these oscillations
are a source of unexpected complexity. In Fig. 10 we show the results of using the initial conditions |v;,| = 0.510799 and
Xo = 20 (the dashed red curve shows the initial position in the first panel) that result in a kink-antikink pair approaching
what appears to be a steady state (blue curve in first panel). The second panel is a contour plot showing that this apparent
steady state develops at approximately ¢t = 35 and persists to at least t = 55. Near the other critical |v;,| value of about
0.5896, we also observe that the kink-antikink solitions appear to reach a steady-state for some time (in a similar manner,
hence omitted here). In fact, the combined kink-antikink state is oscillating slightly about the steady state shown in the
left panel which can be seen in an enlargement of the contour plot in the region 35 <t < 55, shown in the lower panel in
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Fig. 10. Thus for very small changes in v;, near the critical values (but not entering the range between the two critical val-
ues), the oscillating solitons will separate at different points in their oscillatory cycles, resulting in the different (oscillating)
outgoing velocities voyt.

Finally we note that with very small perturbations in v;, which do enter the region between the critical values, we
observe that after the kink-antikink pair undergoes small oscillations about a steady state for a while, they get stuck with
infinitely many collisions (bion state). This suggests that in addition to the potential barrier discussed above, there exists also
a bound state in the form of a potential well that can trap the multi-kink dynamics. The oscillatory structure of the outgoing
velocities outside the region between the critical values is indicative of the possibility that multiple such equilibrium states
(saddles and centers) may exist. Exploring the structure and stability of these steady states (as dictated by the oscillatory
nature of the kink tails) will be a subject of future work.

4.1. Collective coordinates method (ODE)

One of the prototypical methods that have been used to attempt to understand the dynamics of the ¢* model is the
collective coordinate (CC) method. Here, the evolution of the kink and antikink is represented by a suitable superposition
ansatz featuring a finite number of time-dependent collective variables (such as the center and width of the kinks or the
amplitude of their internal mode) and the evolution of the ODEs for these variables is developed (typically) based on the
underlying Lagrangian of the PDE model. In this setting the original analysis of [25] was used later, e.g., by Anninos et al.
[16] and further in a quantitative fashion in [17,18]. However, recently, the work of [19,20] revealed a misprint in the original
ODE derivation of [25] -which, unfortunately, propagated in later works such as [16-18]- leading to the need for reconsid-
eration of the entire CC framework for the ¢* model.

Here, our scope is more modest, as we will only illustrate how to consider the setting with a single collective coordinate,
namely the center of the kink and antikink. As we will discuss further below, while partially useful in the B¢* model, this
approach has nontrivial limitations that are worthwhile to further explore and amend in future studies. Our aim is to reduce
the full PDE with infinitely many degrees of freedom to a simple model with only one degree of freedom and explore the
potential successes and the nontrivial limitations of such an approximation.

Assuming that we characterize the kink-antikink motion by utilizing the ansatz

u(x,t) = @o(x +X(t)) — po(x = X(t)) — 1 (17)

where ¢q(x + X (t)) is the steady state kink solution of Eq. (1) whose center is located at x = —X(t) and —¢gq(x — X(t)) is the
steady state antikink solution whose center is located at x = X (t). Here X (t) is calculated by finding the x-value of the point
of intersection of the antikink profile with the horizontal axis. Due to symmetry, 2X(t) represents the separation distance
of the kink and antikink. Note that the steady state solution centered at X(t) =0, i.e. ¢g(x) is shown in Fig. 1. Our aim is
to study the behavior of X(t) with the initial conditions X (0) = xy and X’(0) = v;, where X is the distance from the origin,
and v, is the initial speed of the kink. Using the Lagrangian of the PDE model in the form:

Lu;t) =T t)—V(ust)

:/_ (%uf—%ufx—V(u)) dx (18)
we substitute the ansatz of Eq. (17) to obtain:
L(u;t) = / (%uf - %ufx - V(u)) dx
= bo(X)X? — b1 (X). (19)
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Fig. 11. The figure shows the plots of the coefficient functions by (X) (left) and b; (X) (right).
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Here
1 = / / 2
bo(X) = 5 [ (@hx-+X(0) + gh(x - X () dx

biX) = 5 [ (@hx+X () - 9 (x =X () d

+/_°° V(go(x+X(6)) — go(x — X(t)) — 1) dx.

By applying the Euler-Lagrange prescription
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Fig. 12. The figure shows the ODE solution X (t) (in dashed red line) on top of PDE solution (in solid blue curve) for various values of v;,. For small values
Vin, We observe a good match, but as vy, increases, a divergence occurs after the collision. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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we obtain the dynamical evolution:
X=Y

V= _1600ya 150 (22)

1
T2 T 2Dbo(X)

We solve these equations numerically by using the initial conditions X(0) = xg and Y(0) = v;,. We numerically com-
pute the integrals on the interval [-200, 200]. We use MATLAB’s built-in fourth-order Runge-Kutta variable-step size solver
ode45 with built-in error control. In Fig. 11, we show the coefficient functions by (X) and b; (X).

4.1.1. Results

The CC method gives a very good match with the PDE results when v;, is small, that is when v;, € (0, 0.25). We observe a
difference when we start increasing v;,. This difference gets bigger as v;, gets closer to 0.51. The relevant deviation becomes
maximal when there is an infinite bounce window in the B¢* PDE simulations. It is important to appreciate that the CC
method cannot capture those bounces. Bearing a single degree of freedom (dof) and given the conservation of energy, the
CC method can at best capture a pair of kinks that interact and become outgoing ones with the same speed as they were
incoming. Hence, beyond this threshold where the phenomenology deviates from this symmetric scenario, the reduction of
the PDE to the 1-dof manifold is one that is too restrictive to capture the relevant dynamics. For bigger values of v;,, we
only see a good match until the kink and antikink collide. After the collision, in the CC method, as described above, the
kinks separate from each other with a speed practically equal to v;, whereas in the PDE the kinks separate from each other
with a speed that is smaller than v;,. This inelasticity of the collision is due to the additional dof's of the Bg* field theory
which are naturally not captured in this reduced CC formulation.

In Fig. 12, we plot the PDE and the ODE solutions (obtained using CC method) for various values of v;,. The PDE plot in
the figure is the position of the approximate center of the antikink solution as defined by its intersection with the x-axis.
As seen in the figure, we get a nearly perfect match for v;, = 0.2. When we increase v;, to 0.35, we see a slight difference.
That difference gets more noticeable when v;, is 0.5. When we take v;, = 0.55, we see a divergence after the collision. For
Vin = 0.75, we only see a good match until the collision.

5. Conclusions and future work

In the present work we have explored the biharmonic ¢* (B¢*) model and some of the central properties of its kink
solutions. We have illustrated that the model has kinks with tails that are fundamentally different than those of the standard
¢* model in that they bear an oscillatory structure (instead of the monotonic kinks in ¢*). We have also performed a
spectral analysis of both static and traveling kinks. The case of the latter is not as straightforwardly mappable to the former
in the B¢* model due to the absence of the Lorentz invariance. Both static kinks and traveling ones below a certain speed
appear to have an internal mode in the B¢* model. Lastly, we tackled collisions between a kink and an antikink. These were
found to be quite different than the complex fractal collision structure of the regular ¢* model. Here, the scenarios turned
out to be far more clear in their structure with elastic apparent repulsion between the wave occurring at small speeds,
collision into an infinite bounce capture for a short range of intermediate ones and eventually inelastic single bounces at
large speeds. Nevertheless, a different source of complexity was unveiled in the two transition regions between these three
regimes. Namely, a delicate oscillatory logarithmic dependence of the outgoing vs. incoming velocity was revealed that was
intuitively attributed to the more complex tail and associated interaction structure of the two waves, but which also merits
further elaboration in future work.

Lastly, we attempted the most simple version of the CC method towards characterizing the B¢* model kink-antikink
collisions. The CC method we have applied has only one degree of freedom, so it is expected not to fully capture the PDE
behavior. It is natural to expand this by attempting to take into consideration the internal mode of the kink and antikink.
Then, the corresponding ansatz that is relevant to consider becomes:

ux.t) = po(x +X(t)) — po(x = X(t)) = 1+ A(O)(S(x + X (t)) — S(x = X(1))) (23)

where X (t) which is the time-dependent displacement of the kink from the origin and A(t) is the amplitude of the internal
mode perturbation and S(x) is the eigenfunction corresponding to the lowest nonzero absolute eigenfrequency of the kink.
A question that arises, however, in this setting is which frequency it is suitable to consider, as the static and traveling kink
are not effectively equivalent and there is a dependence of the internal mode frequency on the corresponding speed. Using,
as is done in ¢* the frequency of the static kink and attempting to solve the corresponding ODE system, one obtains a
numerical instability around X = 0. This has been a common issue with ¢"-models, as discussed, e.g., in the recent review
of [15]: it has been dubbed the null-vector problem [26]. Reduced ODE systems were studied in the earlier works assuming
the terms with higher order derivatives of A(t) and X (t) stayed negligible. Our numerical computations suggest that this
is not a suitable assumption around X = 0. Hence, clearly there are some important challenges ahead, especially as regards
an understanding of the phenomenology of collisions and, more generally, of kink-antikink interactions and “bound states”.
These appear to us to certainly be worthwhile to consider in future studies and will accordingly be reported in future
publications.
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