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Decay of two-dimensional quantum turbulence in binary Bose-Einstein condensates
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We study two-dimensional quantum turbulence in miscible binary Bose-Einstein condensates in either a
harmonic trap or a steep-wall trap through the numerical simulations of the Gross-Pitaevskii equations. The
turbulence is generated through a Gaussian stirring potential. When the condensates have unequal intracom-
ponent coupling strengths or asymmetric trap frequencies, the turbulent condensates undergo a dramatic decay
dynamics to an interlaced array of vortex-antidark structures, a quasiequilibrium state, of like-signed vortices
with an extended size of the vortex core. The time of formation of this state is shortened when the parameter
asymmetry of the intracomponent couplings or the trap frequencies is enhanced. The corresponding spectrum of
the incompressible kinetic energy exhibits two noteworthy features: (i) a k−3 power law around the range of the
wave number determined by the spin healing length (the size of the extended vortex core) and (ii) a flat region
around the range of the wave number determined by the density healing length. The latter is associated with the
small scale phase fluctuation relegated outside the Thomas-Fermi radius and is more prominent as the strength
of intercomponent interaction approaches the strength of intracomponent interaction. We also study the impact
of the intercomponent interaction to the cluster formation of like-signed vortices in an elliptical steep-wall trap,
finding that the intercomponent coupling gives rise to the decay of the clustered configuration.
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I. INTRODUCTION

Turbulence is a complex dynamical behavior of a chaotic
dynamical system, which connects the two distinct physical
properties, namely, order and chaos [1]. In a two-dimensional
(2D) fluid, there are two notable predictions in the turbulence
theory: (i) the existence of a negative temperature regime and
the associated formation of clusters of point vortices predicted
by Onsager [2] and (ii) the existence of an inverse energy
cascade, an energy flow towards the largest spatial length,
predicted by Kraichnan [3,4]. These two predictions are focal
to the understanding of turbulence in 2D fluids.

The precise control over parameters such as the trapping
frequencies and atomic interactions renders Bose-Einstein
condensates (BECs) one of the widely used nonlinear systems
to study the turbulent dynamics in quantum fluids, where the
turbulence is referred to as quantum turbulence [5–12]. In 2D
quantum fluids, a topological excitation is a vortex with a
quantized circulation around the vortex core with a finite size.
A remarkable feature of the 2D quantum turbulence is the
existence of Kolmogorov’s k−5/3 law in the incompressible
kinetic-energy spectrum, which has a similarity to the energy
cascade in classical fluids [13–15], where k is the wave num-
ber. Furthermore, the spectrum shows a k−3 dependence for
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length scales smaller than the vortex core size determined by
the healing length [16]. While the initial stage of the turbulent
dynamics is driven by the annihilation of the oppositely circu-
lating vortices, the final stage goes to the negative temperature
state caused by the “evaporative heating” of the vortex system,
where the annihilation of oppositely circulated vortices ceases
[17,18] and exhibits a k3 scaling in the range of the small wave
number [19]. In the negative temperature state, and in the
presence of trap conditions that allow for this (e.g., steep-wall
traps allow for this, while parabolic ones suppress it [20]), the
like-signed vortices accumulate to form giant vortex clusters
(also known as Onsager vortex clusters). These clusters stay
on the two opposite sides of a bounded condensate. Recently,
by initiating the turbulent dynamics of the vortices, two land-
mark experiments reported in [21,22] have shown for the first
time the existence of the negative temperature state and the
Onsager vortex cluster. It has been proposed that the cluster
formation of single species vortices is also possible in the
dilute atomic gases [23], and relevant considerations have
been extended also to the finite temperature condensates [24].

The multicomponent BEC setting, either of the same
atomic species [25–29] or of different atomic species [30–33],
enriches significantly the phenomenology of vortices due to
the presence of two competing energy scales of intra- and
intercomponent interactions [34]. A highly notable feature is
that the core of the one vortex can fill with the density of
the other component, resulting in the formation of interlaced
vortex patterns or vortex-bright structures [35–37]. In the
miscible multicomponent case where the components coexist
(rather than phase separate), it is more relevant to refer to
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these states as vortex-antidark solitons [38]. Such vortices
have larger core size and nontrivial vortex-vortex interaction
[39,40] as compared with those in the single-component BEC.
Hence, it is natural to inquire whether the turbulent dynamics
in a binary condensate may exhibit unprecedented features.
Furthermore, the two-component system gives the freedom of
investigating the turbulence under both symmetric and asym-
metric setup of parameters involved, where the asymmetry
can represent the cases of unequal intracomponent strength
[29,41] and asymmetric trap frequency [21].

In this paper, we study the vortex turbulence in a 2D two-
component BEC. Depending on the strength of the intra- (g11

and g22) and intercomponent interactions (g12), the system
resides either in a miscible regime (

√
g11g22 > g12) or in an

immiscible one (
√
g11g22 < g12) [25–30]. Recently, studies of

turbulent dynamics in a binary condensate have been reported
in [42–45]. Han and Tsubota [44,45] found that different spa-
tial distributions of vortices in each component arose from the
initially phase imprinted vortices; the Onsager cluster forma-
tion takes place for the case of small intercomponent coupling
strength (compared to the intracomponent one), while for a
large intercomponent strength the system exhibits a phase sep-
arated state where the components (and hence their vortices)
may sit at two opposite poles [46,47]. Importantly, the tur-
bulent dynamics in two-component BECs may highly deviate
from this phenomenology for the following reasons.

(i) An initial state used in the simulations of [44,45], where
vortices and antivortices are distributed evenly and randomly
over the condensate, is difficult to obtain in experiments.

(ii) The asymmetry in the parameters is likely to manifest
itself in the experimental dynamics [29].

In this paper, we present turbulent dynamics in two-
component BECs induced via a stirring scheme, that is
commonly used in experiments [17,21,22,48–51]. It is worth
noting that [51] discussed experimental evidence for the
power law in driven BECs, while more recently turbulent
Na-K bosonic mixtures have been studied in [52]. Here,
we investigate the relevant phenomenology in miscible two-
component BECs with asymmetric parameter settings. Since
it is known that the trap geometry plays a significant role in the
vortex cluster formation [20,21], we implement the dynamics
in a harmonic trap and also in a steep-wall trap [20,48,53]. We
find that the initial turbulence generated via a stirring potential
decays to the interlaced vortex-antidark structures mentioned
above which, in turn, bear a large size of the vortex core. This
interlaced structure can be regarded as a quasiequilibrium
state, since the time development of inter- and intracomponent
energy relaxes and the density profile at a given moment is
similar to the interlaced vortex lattice [36]. The corresponding
incompressible spectrum develops a k−3 power law for the
wave numbers determined by the inverse of the spin healing
length, ξs and a flat region for the range of the wave number
determined by the density healing length, ξ .

It is unlike the well-known k−5/3 and k−3 power laws for IR
and UV regimes, respectively, of the two-dimensional Gross-
Pitaevskii (GP) turbulence [11,12,19]. The former k−3 power
law seen around ks = 2π/ξs is associated with the vortex core
properties [16], while the latter flat region is caused by the
bottleneck effect of the incompressible kinetic-energy flow,
where the small scale vortex fluctuations accumulate around

the condensate periphery. In the case of the steep-wall trap,
where formation of the Onsager cluster characterized by the
large dipole moment of the vortex charges is expected in a
single-component BEC [21,22], the presence of the intercom-
ponent coupling also causes the decay of vortices, preventing
the persistence of the cluster configuration.

The paper is organized as follows. After introducing the
formulation of the problem in Sec. II, we first study the
turbulent dynamics of miscible two-component BECs in a
harmonic potential in Sec. III. In Sec. IV, we consider the
turbulence in a steep-wall trap, discussing the cluster forma-
tion of vortices and antivortices. Section V is devoted to the
conclusion.

II. THEORETICAL MODEL OF BINARY BECs

We begin with the effective 2D GP energy functional
E [�1, �2] = ∫

E2D(r)d2r expressed in terms of the conden-
sate wave functions � j for the jth component ( j = 1, 2),
where the energy density is

E2D(r) =
2∑
j=1

[
h̄2

2mj
|∇� j |2 +Vj (r)|� j |2 + g j j

2
|� j |4

]

+ g12|�1|2|�2|2. (1)

Here, the wave functions obey the normalization∫
d2r|� j |2 = Nj with the particle number Nj in the 2D

system. The parameter mj represents the atomic mass of the
jth component. The 2D interaction strengths g jk are related
with a three-dimensional (3D) coupling constant g3D

jk as
g jk = g3D

jk

∫ |ψ (z)|4dz/ ∫ |ψ (z)|2dz with the longitudinal
component of the wave function being ψ (z). Here,
g3D
j j = 4π h̄2a j/mj is the intracomponent interaction strength

and g3D
12 = 2π h̄2a12(m1 + m2)/(m1m2) is the intercomponent

one with the corresponding s-wave scattering lengths aj

and a12. Throughout the paper we consider the case of
equal particle numbers N1 = N2 ≡ N and equal masses
m1 = m2 = m; for completeness, we also consider briefly the
case N1 �= N2 in Appendix B1. The mass equality suggests
our focus on a scenario of two hyperfine states of the same
gas, in particular 87Rb as discussed below [54].

The one-body potential Vj consists of two parts denoted as
VT j (r) and Vs(r):

VT j (r) = 1

2
mω2

r R
2
0

(√
(1 + εx j )x2 + (1 + εy j )y2

R0

)α

, (2)

Vs(x, y, t ) = V0 exp

[
− [x − x0(t )]2 + [y − y0(t )]2

σ 2
0

]
, (3)

where ωr is the radial harmonic frequency; εx j and εy j
represent the trap anisotropy along the x and y directions, re-
spectively; and R0 is the typical size of the potential. For α =
2, Eq. (2) represents a harmonic-oscillator potential, while
for a large α it can be considered as a steep-wall potential.
The additional potentialVs(r) of Eq. (3) represents a Gaussian
stirring obstacle having a strength V0 and a width σ0. This can
be created by a blue-detuned laser beam directed axially along
the trap [55,56].
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From Eq. (1) we get the time-dependent GP equation
(GPE)

ih̄
∂� j

∂t
=

[
− h̄2∇2

2m
+Vj (r) + gj j |� j |2 + g12|�3− j |2

]
� j .

(4)

In the following, we denote the physical quantities in units
of the radial harmonic oscillator; i.e., the length, time, and en-
ergy are scaled by a0, 1/ωr , and h̄ωr , respectively, where a0 =√
h̄/(mωr ) is the radial harmonic oscillator length. The wave

function is scaled as a−1
0

√
N , which leads to

∫
d2r|� j |2 = 1

and the dimensionless coupling constants g̃ jk = g jkNm/h̄2.
Then, the Thomas-Fermi radius is RTF = √

2μ/(mω2
r ) =√

2μ̃a0 and the healing length ξ = h̄/
√

2mμ = a0/
√

2μ̃ with
μ = μ̃h̄ωr . In Eq. (2), we take the scale of the trap potential
as R0 = RTF for convenience.

III. VORTEX TURBULENCE IN A HARMONIC TRAP

Our motivating example is that of a mixture of 2D
BECs of 87Rb atoms in the different hyperfine spin states,
e.g., |F = 1,mF = −1〉 and |F = 2,mF = 1〉. In a harmonic
trap (α = 2) with the frequency ωr = 2π × 15 Hz and the
aspect ratio λ = ωz/ωr = 10, choosing the s-wave scatter-
ing length a1 = 100aB [29] (aB is the Bohr radius), and
N3D ≈ 6.5 × 104, we get the parameter values as a0 ≈
2.7 μm and g̃11 = g11Nm/h̄2 = 4πN3D(a1/a0)

√
λ/(2π ) ≈

2000, where N = N3D
√

λ/a0 = 7.4 × 104/μm [20]. The in-
tercomponent coupling strength is chosen as 0 < g12 <√
g11g22, being repulsive and in the miscible regime [54].
In order to generate the vortices, we use a stirring technique

with the use of the repulsive Gaussian potential of Eq. (3)
[17,49,57–60]. It has a strength of V0 = 1.2μ ≈ 42.28h̄ωr

and a width σ0 = 0.1RTF. In Eq. (3), x0(t ) = r0 cos(vt/r0) =
r0 cos(2πt/T ) and y0(t ) = r0 sin(2πt/T ), where T is the
period and v is the velocity of the obstacle [58,60]. Since
it is found that for a harmonically trapped condensate the
maximum excitation depends on the position of the obstacle,
we fix r0 ≈ 0.4R0, corresponding to the location where the
energy required to form a vortex dipole is minimal [58,61].
We further fix v = 0.6cs, where cs = √

μ/m = √
μ̃a0ωr is the

velocity of the sound wave (Bogoliubov speed of sound).
The numerical simulations are performed as follows. We

first get the initial stationary solution through the imaginary
time propagation of the GPE (4) in the presence of the static
obstacle of Eq. (3). Next, the condensate is evolved via real
time simulations, being stirred by the potential of Eq. (3) for
two periods, where the obstacle strength is ramped down to
zero in the second period (see Appendix A). Just after that, we
set the time t = 0, corresponding to the end of the preparation
stage and the beginning of our evolution observations. We use
a split-step fast Fourier scheme for the numerical simulation
[62]. In the simulation, we consider the simulation domain
[−L/2 : L/2] × [−L/2 : L/2] with M × M grid points. We
take M = 1024 and L = 40, unless otherwise mentioned, and
the time step �t in such a way that the width of the spa-
tial grids �x = L/M < ξ/a0 and the time step satisfy �t <

(�x)2/2. The selection of the spatial and temporal discretiza-
tions and method has been made so as to ensure a relative

norm |N (t ) − N (0)|/N (0) and an energy |E (t ) − E (0)|/E (0)
less than 10−2, over the temporal horizon of our numerical
simulations.

The stirring potential can generate vortices via two mech-
anisms. One is the vortex-antivortex pair nucleation which
occurs at the low-density region induced by the repulsive
Gaussian potential. Although the considered impenetrable ob-
stacle with V0/μ > 1 is able to emit a single vortex into
the condensate, even when the coproduced partner (antivor-
tex) is well inside the obstacle-induced zero-density region
[58,63,64], a vortex and an antivortex are always emitted
simultaneously from the obstacle in our setting. The other
mechanism is the vortex entrance from outside of the con-
densate boundary due to the random distribution of phase in
the low-density periphery, where the energy cost for vortex
formation is minimal. Nevertheless, we confirmed in our sim-
ulation that the second scenario is less probable, as shown in
Appendix A [65].

Now, we analyze both the vortex dynamics and the energy
spectra. To calculate the spectra we take the average over
four different initial conditions and these initial conditions are
obtained by changing σ0 and V0 by small amounts.

A. Vortex dynamics in turbulent binary BECs

As a parametric example for our numerical demonstration,
we set g12 = 0.95g11 and g22 = g11 ≡ g; recall that in such
systems the ability to tune scattering lengths via Feshbach
resonances exists and has been used to move, e.g., from im-
miscible to miscible regimes [31]. For this set of gi j’s, we get
μ̃ = 35.23, ξ ≈ 0.119a0, RTF ≈ 8.39a0, and cs ≈ 5.93a0ωr .
By stirring the obstacle potential, the vortices and antivortices
are emitted from it and eventually form a turbulent state. For
this set of parameters, however, we noticed that the turbulent
dynamics and the energy spectra are similar to those of a
single-component case [20,58]. This is due to the fact that the
two components behave in the same manner under the sym-
metric choice of the parameters [see Figs. 1(k)–1(r)] and, as a
result, the vortices in both components are always co-located.
The incompressible kinetic-energy spectra exhibit the k−5/3

power law in the IR region kξ < 1 and k−3 power law in the
UV region kξ > 1; see, e.g., [12,16,17].

In reality, there are ingredients that can break the parameter
symmetry between the two components. In order to break this
symmetry, we introduce a small anisotropy in the trapping
potential of Eq. (2) within the first component as εy1 = 0.025
while the other is εx(y) j = 0. An introduction of the param-
eter anisotropy dramatically changes the dynamics as seen
in Figs. 1(i)–1(p), contrary to the symmetric case (a)–(h).
Here the snapshots of the density of the first and second
components are shown in the upper (i)–(l) and the middle
(m)–(p) panels, respectively. We see that an initial turbulent
structure undergoes gradual change into a so-called interlaced
vortex-antidark structure [38], where the density of one com-
ponent sits in the core of a vortex in the other component
[35,36,41,66,67] within our miscible configuration. In this
quasiequilibrium state of vortex-antidark solitary waves, vor-
tices continue to rearrange their positions as time evolves. On
the other hand, such vortex states are formed by minimizing
the intercomponent interaction energy (shown in the following
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FIG. 1. The first and second rows of the panels show the evolution of the density of the first component (first row) and the second one
(second row) for the isotropically trapping case of εy1 = 0 at t = 0 (a), (e), t = 10 (b), (f), t = 50 (c), (g), and t = 400 (d), (h). The third and
fourth rows of the panels show the evolution of the density of the first component (top) and the second one (bottom) for εy1 = 0.025 at t = 0
(i), (m), t = 10 (j), (n), t = 50 (k), (o), and t = 400 (l), (p). The parameters are g̃ = 2000, g12 = 0.95g, M = 1024, and L = 40.

paragraph) similar to the formation of a well-ordered inter-
laced vortex lattice state [36]. Hence, we hereafter refer to this
state as an interlaced vortex lattice state although the obtained
states are not genuinely crystallized. Moreover, the vortices in
this state are singly quantized ones with the counterclockwise
winding, as seen in Figs. 2(a) and 2(b). The size of the vortex
cores in the interlaced lattice state is determined by the spin
healing length

ξs = ξ

√
g+ g12

g− g12
(5)

instead of the mass healing length ξ = a0/
√

2μ̃ [39]. Thus,
the vortices have an extended core due to the spin healing
length when g12 is nearly equal to g. We also find that

the formation of the interlaced vortex lattice state is depend-
ing on the values of g12. To see this, we first calculate the
inter and intracomponent energy. For an interlaced vortex
structure, the intercomponent interaction energy is minimized
[36]. Figure 3 shows the evolution of the intracomponent en-
ergy Eintra(t ) = ∑2

j=1(g j j/2)
∫
dr|� j |4 and intercomponent

energy Einter(t ) = g12
∫
dr|�1|2|�2|2. It displays that initially

the intercomponent energy decreases with time; the intracom-
ponent interaction energy concurrently increases. This process
is associated with the effective phase separation due to the
relative displacement of the vortex positions of each com-
ponent. Subsequently, the intercomponent energy increases
and saturates close to its value at t = 0. We noticed that this
energy exchange process that leads to the phase separation
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FIG. 2. The phase profile, (a) and (b), corresponds to (l) and (p)
in Fig. 1, respectively.

is occurring only at higher g12 as shown in Appendix B3. It
indicates that the interlaced vortex lattice state is favorable
only at larger values of g12 and the increase in Eintra at the
earlier times reflects the large local-density variation during
the phase-separation process. To address the formation of the
interlaced vortex lattice state in more detail, we calculate the
energy spectra of the compressible and incompressible kinetic
energies as shown in the next subsection. It is noticed that even
for smaller values of the anisotropy (εy1 ∼ 0.005) the results
remain similar, yet the time required to form such interlaced
lattice varies. Indeed, as shown in Fig. 3, the relaxation time
of the energies toward the quasiequilibrium becomes longer
as the trap anisotropy εy1 becomes smaller, and presumably
goes to infinity in the limit of εy1 = 0. In order to get further
insight into the turbulent dynamics, we calculate the angular
momentum per particle

lzi = −ih̄
∫∫

dxdy�∗
i (x∂y − y∂x )�i (6)

of the ith component. Figure 4(a) shows the time evolution
of lzi for the components i = 1, 2 corresponding to Fig. 1.
The angular momenta of both components are monotonically
increased during the stirring process and the time of the

FIG. 3. The evolution of the intracomponent energy Eintra(t ) and
intercomponent energy Einter(t ) for εy1 = 0.025 by the solid curves
(corresponding to Fig. 1) and εy1 = 0.005 by the dashed curves. The
other parameters are the same as those in Fig. 1.

FIG. 4. The evolution of the angular momentum per particle
(a) in the presence of the trap anisotropy εy1 = 0.025 (corresponding
to Fig. 1) and (b) with a small difference between the intracomponent
coupling strengths as g11 = 0.975g22, but without the trap anisotropy
εx j = εy j = 0. The parameters are g12 = 0.95g11 and M = 1024.

vanishing stirring potential determines their value at t = 0.
Although the number of vortices and that of antivortices are
almost equal at t = 0, the nonuniform distribution of vortices
and antivortices results in finite positive angular momentum.
This is stemming from the counterclockwise rotation of the
obstacle during stirring. In this case, the (counterclockwise)
vortices are distributed on average in the inner region, where
the condensate density |�i|2 is high, while the (clockwise)
antivortices are in the outer region. In a similar vein, we ob-
served that the vortex distribution obtained from a clockwise
moving obstacle has a finite negative angular momentum.
The initial difference in the angular momenta between the
components is due to the trap anisotropy which breaks the
rotational symmetry. The two components can exchange their
angular momenta due to the presence of the intercomponent
mean-field coupling. At the same time, the magnitude of
the total angular momentum decays slowly as time evolves.
This is because the time derivative of the angular momentum
is nonvanishing when there are asymmetries in the trapping
potential or the nonlinear mean-field energy densities [68].
Both contributions are found to play a role. The nonlinear
one reflects the (radial) symmetry breaking induced by the
stirring, while the one associated with the confinement reflects
the possible deviation from radial symmetry of the trapping
potential. During the dynamical process, from turbulence to
the quasiequilibrium lattice configuration, the system either
ejects the antivortices through the periphery of the condensate
due to the initial stirring or annihilation of vortex-antivortex
pairs occurs, emitting small-amplitude (phonon) wave pack-
ets within the condensates. The energy dissipation via the
vortex-phonon interaction takes place and it eventually leads
to the quasiequilibrium configuration of vortices, although
the total energy is conserved during the time development
of the GPE. Similar relaxation dynamics can be seen in the
single-component BEC in a rotating potential [69,70]. When
the stirring period is increased such as three or four periods,
the initial net angular momentum at t = 0 is also increased, so
that the quasiequilibrium configuration possesses more vor-
tices than those in Fig. 1.

As another example of parameter asymmetry among the
components, we study the turbulent dynamics and the angular
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momentum evolution for the asymmetric intracomponent cou-
pling strength g11 = 0.975g22 [67,71] by setting εx j = εy j =
0; see again Eqs. (10) and (11) in [68]. The simulation result
shows that the dynamics is similar to Fig. 1, where the initial
turbulent state undergoes a dynamical transition into the in-
terlaced vortex lattice configuration (see Appendix B1). The
evolution of the angular momenta in Fig. 4(b) shows that the
exchange process of the angular momentum eventually causes
an imbalance of the angular momentum in the quasiequilib-
rium state, where the number of the remaining vortices in the
second component is more than that of the first component.
This is in line with the dynamical robustness of the vortices in
the second component when it bears a larger intracomponent
strength g22 > g11 [72,73].

Interestingly, such a dynamically turbulent stage and
the subsequent formation of large core vortices have been
observed in the JILA experiment of a two-component con-
densate [67], where the asymmetry among the components
exists due to the population difference and the different intra-
component strengths. In the experiment, a fraction of the first
component with a vortex lattice, which was initially prepared,
was coherently transferred to the second component. Then, an
interlaced vortex lattice emerged dynamically through a tran-
sient turbulent state. The transition time from the turbulence
to the interlaced lattice was about a few seconds, which is in
reasonable agreement with our numerical results, where the
lattice structure appears after t ∼ 100, i.e., t ∼ 1 s in physical
units.

Finite-size effects are also crucial for the interlaced vortex
lattice formation. To address the finite-size effect, we perform
a numerical experiment in a homogeneous system without a
trap by considering a periodic boundary condition, and by
keeping the parameters g11 = 0.975g22 and g12 = 0.95g11.
Due to the periodic boundary condition, the only mechanism
of energy dissipation is vortex-antivortex annihilation and,
as a result, equal numbers of vortices and antivortices are
expected to be maintained during the time evolution. The
result indicates that the vortices almost completely disappear
through the pair annihilation in the final quasisteady state (see
Appendix B2). Thus, the external trap plays an important role
in the formation of the interlaced vortex lattice structure.

B. Kinetic-energy spectra

In order to study the characteristics of the emergent quan-
tum turbulence (as a result of our preparation procedure),
we calculate the incompressible and compressible kinetic-
energy spectrum, E ic(k) and E c(k) [7,74,75], for the case
of εy1 = 0.025, g11 = g22, and the various values of g12 (see
Appendix C). The incompressible fluid part of the condensate
represents the divergence-free component of the condensate
velocity. The spectral behavior in the UV (large k) region
represents the contribution from the vortex core, while that in
the IR (small k) region indicates the largest scales involved (of
the order of the condensate size). Figure 5(a) shows E ic(k) of
the �1 component at several different times for a weak inter-
component coupling g12 = 0.1g11. The spectrum at each time
exhibits a behavior similar to a 2D single-component BEC
[76]. In the UV regime at k > ξ−1 determined by the mass
healing length, the spectrum exhibits the power law k−3 and

FIG. 5. The incompressible kinetic-energy spectrum of the first
component in a harmonic trap (α = 2) with a small anisotropy εy1 =
0.025 at several different times for (a) g12 = 0.1g11, (b) g12 = 0.6g11,
and (c) g12 = 0.95g11. The spectrum of the second component shows
a similar trend. The black dot-dashed and red dashed lines serve as
a guide to the eye for the k−5/3 and k−3 power laws, respectively.
The vertical maroon dashed lines (from left to right) represent kR,
ks(=2π/ξs ), and kξ ; the vertical brown solid lines (from left to right)
represent k = ξ−1

s and ξ−1. Here an average over four different initial
conditions is considered.
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FIG. 6. (a) The 2D spatial distribution of the density of the
incompressible kinetic energy E ic(r) = n(r)|uic(r)|2/2 at t = 200
for g12 = 0.95g11 and εy = 0.025, corresponding to the result in
Fig. 5(c). Circles represent the region involved in the calculation of
the incompressible energy spectrum E ic(k) in (b), where the radius
is R = 7.8, 9.8, 11.7, and 13.6 from the inner to outer circle. Panel
(b) shows E ic(k) calculated from E ic(k) within the region of the
different R. As a guide, k−3, k = ξ−1

s , and k = ks lines are drawn.

this scaling continues up to kξ ∼ 2π/ξ , which is determined
by the core profile of a single vortex [16]. In the regime of
kR < k < ξ−1, the spectrum clearly exhibits the Kolmogorov
power law ≈k−5/3, a characteristic of the inverse energy cas-
cade, where kR = 2π/RTF. In this regime, a vortex-antivortex
annihilation process strongly affects the spectral behavior due
to the sound wave emission [70,76,77].

It can be seen that in Fig. 5(a) the magnitude of E ic(k)
is slightly decreased for kR < k < ξ−1 while it is increased
for ξ−1 < k < kξ . This feature is more visible at higher g12

as shown in Figs. 5(b) and 5(c), where the spectrum exhibits
a plateau around k ∼ ξ−1. To see what happens, we plot in
Fig. 6(a) that the density of the incompressible kinetic energy
in the real space E ic(r) = n(r)|uic(r)|2/2, corresponding to the
energy spectrum at t = 200 of Fig. 5(c) (g12 = 0.95g11). The
energy density exhibits clear spatial separation of the large
scale structure at the central region and the small scale one in
the periphery. This small scale structure is the origin of the
plateau of E ic(k) for the high-wave number. The plateau can
be also seen in the turbulence in 3D condensates [78], known
as the bottleneck effect, and these small scale fluctuations can
be suppressed by using phenomenological dissipation [58,79].
When we truncate E ic(r) outside of a certain radius and cal-
culate the energy spectrum from it, the magnitude of E ic(k) at
the high wave number is suppressed, as shown in Fig. 6(b). If
we wipe out the small scale fluctuation in the periphery, the
spectrum shows the k−3 power law for ξ−1

s < k < ks, asso-
ciated with the extended vortex core in the quasiequilibrium
state, the core size being determined by the spin healing length
of Eq. (5). The absence of the k−5/3 power law at the later
evolution stage is consistent with our observation that the
turbulence decays into the quasiequilibrium state.

Next, we turn to the compressible energy spectrum, for
which typical results for the same parameters with Fig. 5 are
shown in Fig. 7. Here, the early-time stage of the spectrum
exhibits the k−7/2 power law for the UV region, which is
consistent with the turbulence in a single-component BEC
for a clustering regime [58]. As time evolves the spectrum
develops a k power law in the IR region corresponding to
the equilibration of the sound waves [74]. Though the k−3/2

(a)

(b)

(c)

FIG. 7. The compressible kinetic-energy spectrum of the first
component in a harmonic trap (α = 2) with a small anisotropy εy1 =
0.025 at several different times for (a) g12 = 0.1g11, (b) g12 = 0.6g11,
and (c) g12 = 0.95g11. The spectrum of the second component shows
a similar trend. The red dashed and cyan dot-dashed lines serve to
guide the eye for the k−7/2 and k power laws, respectively. The verti-
cal maroon dashed lines (from left to right) represent kR, ks, and kξ ;
(from left to right) the dash-dotted lines represent k = ξ−1

s and ξ−1.
Here averages over four different initial conditions are considered.
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FIG. 8. The evolution of the compressible E c (solid thick lines),
the incompressible E ic (solid thin lines), and the quantum pressure
Eq (dotted lines) energies. Here, the black (star), green (square), and
blue (ellipse) curves indicate the results for g12 = 0.95g, 0.6g, and
0.1g, respectively.

power law is reported for a single-component case in the IR
region [58,74] for a small region around k = ξ−1, the spectra
of the two-component system do not show clear evidence for
that, especially at higher intercomponent strengths

√
g12g21.

But, it is to be noted that the k−3/2 reported in [58] for a
single-component case in the clustered regime corresponds
to the limit

√
g12g21 → 0. We see the development of such a

power law for the wave numbers around k = ξ−1 in this limit,
but not highlighted in Fig. 7 as it is not prominent.

Finally, we show in Fig. 8 the development of the com-
pressible, incompressible, and quantum pressure energies, E c,
E ic, and Eq, respectively, with respect to time. Just after t = 0,
the incompressible energy is decaying, while the energy of
the quantum pressure, Eq (see Appendix C for the relevant
definition), and compressible energy are increased. This fast
process of the energy exchange at the initial stage indicates
the higher rate of the vortex-antivortex annihilation process.
At later times, both the E ic and E c nearly saturate with their
behavior being essentially independent of g12.

Further, the steep increase in Eq at the initial times for
higher g12 is consistent with the increase in Eintra discussed in
the previous section due to the large density variation. Since
the compressible energy dominates the kinetic energy of the
system for higher g12, the incompressible energy, responsible
for the vortex motion, can be relaxed by the bigger bath of the
sound waves.

IV. VORTEX CLUSTER FORMATION

It is well known that the systems having a bounded energy
spectrum with more than one conserved quantity exhibit a
negative temperature regime [80]. The existence of the neg-
ative temperature restricts the thermalization of an isolated
system. A well-known example for this case is a bounded 2D
fluid with a large number of point vortices as indicated by On-

sager [2]. In the negative temperature regime, the like-signed
vortices condense to form a giant vortex cluster. One of the
main contributions in the further development of Onsager’s
theory on the existence of the negative absolute temperatures
and the associated vortex cluster formation is from Kraichnan
[3,4], who conjectured that clusters of like-signed vortices
originate from the incompressible kinetic-energy cascade of
a 2D system. Hints of signatures of such clustered states of
like-signed vortices were reported in [17], in an experiment
conducted in a 2D trapped dilute atomic gas. Although many
theoretical investigations had connected this cluster formation
with the negative temperature, experimental evidence show-
casing the connection between the negative temperature and
the vortex cluster was absent until the recent discovery of such
states in the two remarkable experiments reported in [21,22].

It has been shown that the formation of clustered vortices
occurs depending on the initial vortex configuration [18] or
via an evaporative heating mechanism that removes the low-
energy vortex dipoles from the condensates through vortex
pair annihilation [20,76]. Here, we study the cluster formation
of the two-component BECs, especially the impact of the in-
tercomponent coupling g12. One of the main factors that affect
the cluster formation is the vortex-sound coupling. An effi-
cient way to reduce such coupling is to consider a noncircular
geometric trap with a noncircular obstacle [21,53,81,82].
Since it is found that a harmonic trap suppresses the cluster
formation [20], we consider an elliptical steep-wall trap with
εx j = 0.3, εy j = −0.3, and α = 50. The vortex nucleation is
caused by the noncircular shaped Gaussian obstacle, which
has the form

Vs(x, y, t ) = V0 exp

[
−d2

s [x − x0(t )]2 + y2

σ 2

]
, (7)

with ds = 3 and x0(t ) = 0.6RTF sin(2πt/T ), where RTF ≈
8.34a0. We sweep the condensate with an obstacle of strength
V0 = 15μ for a half of the period T with velocity v = 0.4vs.
Here we ramp down the obstacle to zero during the range from
t = T/4 to T/2.

Of the numerous measures of this clustered state listed
in [17,18,20,76,83–86], we use the vortex dipole moment to
detect such states [76]. The dipole moment is defined as

d = |d| =
∑
i

qiri, (8)

where qi = ±h/m and ri is the position of the vortex and
detected by measuring the Jacobian field [86–88]. Here, the
vortex positions of the wave function � are mapping to den-
sity of vortices ρv (r, t ) as

ρv (r, t ) = δ(�)D(r, t ), (9)

where the Jacobian determinant D is

D(r, t ) =
∣∣∣∣∂xRe� ∂yRe�
∂xIm� ∂yIm�

∣∣∣∣ = Im(∂x�
∗∂y�). (10)

The position of vortices can be determined from nonzero
values of the Jacobian field, while the rotational direction can
be determined from its sign. Here, +qi indicates the charge of
a vortex and −qi represents the charge of an antivortex.

Since we have already seen the formation of large-core
vortices in the harmonic trap resulting from the initial
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FIG. 9. Vortex dynamics of a binary BEC in an elliptic steep-wall trap with εx j = 0.3, εy j = −0.3, and α = 50. The snapshots of the
density of both the components are shown at (a), (e) t = 0, (b), (f) t = 10, (c), (g) t = 100, and (d), (h) t = 500. The red filled circles, blue
filled triangles, green squares, and black solid line represent the vortex cluster, antivortex cluster, dipoles (i.e., lines connecting the vortices in
a dipole), and dipole moment [see the definition in Eq. (8)], respectively. The corresponding phase profiles are shown in the lower two rows of
panels. The parameters are g11 = 0.975g22, g12 = 0.95g11, g̃22 = 2000, M = 512, and L = 30.

stirring for an anisotropic condensate in the previous section,
here we investigate the turbulent dynamics for g11 = 0.975g22

in an elliptical steep-wall trap. Figure 9 shows the vortex
turbulent dynamics at different times for the miscible case
with g12 = 0.95g11. The upper panel (a)–(d) represents the
density of the first component, while the bottom panel (e)–(h)
represents that of the second component. The corresponding
phase profiles are shown in (i)–(l) and (m)–(p), respectively.
Though cluster formation is apparent in the initial stage of the
dynamics through a large dipole moment (a) d ′ ∼ 0.37, (b)
d ′ ∼ 1.16, and (c) d ′ ∼ 0.63, in the final stage it again leads to
a quasiequilibrium vortex-antidark structure with d ′ = 0 that
persists throughout our simulations. Here d ′ = 2d/(NvR0),
where Nv is the sum of vortices and antivortices. Due to the

nearly zero angular momentum at t = 0, shown in Fig. 10(b),
the number of vortices is also nearly zero. On the other hand,
for g11 = g22 we see the vortex clusters even at larger times
(see Appendix D).

In Fig. 10, we show the evolution of the dipole moment
d ′ and the time dependence of the angular momentum per
particle for different values of g12. For higher values of g12 the
dipole moment goes to zero, corresponding to the quasiequi-
librium state without clusters as shown in Fig. 9. On the other
hand, for the lower values of g12 the dipole moment remains
finite even at larger times. The transition to the quasiequilib-
rium state for higher g12 can be further understood from the
angular momentum. Though initially both components have
the same angular momentum, the rate of angular momentum
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FIG. 10. The evolution of the dipole moment d ′ of the first com-
ponent and the angular momentum per particle for several values of
g12. In the lower panel, the solid lines represent the lz1, while the
dotted lines represent lz2. The other parameters are g11 = 0.975g22,
g̃22 = 2000, M = 512, and L = 30.

transfer among the components for larger g12 is higher. Since
g22 > g11 the final angular momentum (vortices) prefers to

remain in the �2 component, which is consistent with the ar-
gument of the dynamical stability of the corresponding states
[72,73]. This may lead to the long-time persistence of isolated
vortex-antidark structures.

The snapshots of the density of both the first (top panel)
and second components (bottom panel) at t = 500 shown in
Fig. 11 further elucidate the transition. The disappearance of
vortices at higher g12 is a crucial factor preventing the cluster
formation.

V. CONCLUSIONS AND FUTURE CHALLENGES

We have investigated the two-dimensional quantum turbu-
lence of miscible binary BECs, modeled by the GP equation.
We considered both the symmetric and asymmetric setup of
the system parameters where the asymmetry is introduced
through the difference of the trap frequencies or that of the
intracomponent interaction strength. We followed an analo-
gous stirring mechanism to the one that has been previously
used in the experiment of a single-component BEC to initiate
the turbulent dynamics [17,53].

The initially generated vortices that resulted from the stir-
ring are located at the same position in both components for
the symmetric situation throughout its dynamical evolution
and exhibit a similar type of energy spectra as that of a
single-component condensate [16]. In the asymmetric situa-
tion deviating slightly from the isotropic regime, however, as
time increases, we see the increased core size of vortices with
the same unit charge and the formation of vortex-antidark soli-
tonic lattices with the components mutually filling each other
(i.e., where one has a dip associated with a vortex, the other
has a bump). Before forming this vortex-antidark state the sys-
tem passes through a turbulent stage in which transferring of
angular momentum among the components occurs. This pro-
cess occurs at the cost of intercomponent energy. Interestingly,
a related dynamical turbulent stage may be directly connected
with the observations of the JILA experiment of a binary

FIG. 11. The snapshots of the density of both the first (top panel) and second components (bottom panel) at t = 500 for (a), (e) g12 =
0.75g11, (b), (f) g12 = 0.6g11, (c), (g) g12 = 0.3g11, and (d), (h) g12 = 0.1g11. The other parameters are g11 = 0.975g22, g̃22 = 2000, M = 512,
and L = 30.
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condensate [67], where the asymmetry among the components
was due to the population difference and the distinct intracom-
ponent interaction strengths [29,41]. Furthermore, the spectra
at the initial stage of turbulence dynamics feature similar
power laws, the k−5/3 power law for the small wave-number
regime (kξ < 1) and k−3 for the large wave-number (kξ > 1)
regime, as in the symmetric case. We found that the decay
of the turbulent state at the later quasiequilibrium stage is
caused by the spatial separation of the incompressible energy
density, where the small scale components are accumulated at
the periphery of the trapped condensate. Then the spectra are
characterized by the k−3 power law in the k range associated
with the spin healing length and the plateau in the range of the
wave number determined by the density healing length due
to the bottleneck effect. This feature is enhanced for larger
intercomponent coupling strength g12. We also found that the
decay behavior of the turbulence significantly suppresses the
evolution toward the vortex cluster formation in the case of
the steep-wall trap.

The measurement of the s-wave scattering lengths for a
binary condensate of 87Rb shows an asymmetry in the intra-
component interaction strengths [29,41]. Moreover, the ability
of designing not only anisotropic potentials, but, in princi-
ple, arbitrary confining conditions is within reach in BEC
experiments [89]. Hence, the dynamics discussed here for the
asymmetric case should be directly accessible experimentally.
Our results also point to the fact that the intercomponent
interaction strengths shift the infinite temperature line, beyond
which we expect the negative temperature. Similar results are
reported in [44,45]; this is a direction worth exploring further.
In yet another vein, recent work has started exploring further
solitary wave structures involving more than two components
[90,91]. Appreciating the possible scenarios in such a gen-
eralized setting involving also the spin degree of freedom
and associated magnetic excitations may be of interest in its
own right. Additionally, in a multicomponent system, there
exist two phonon branches, density (in-phase) wave and spin
(out-of-phase) wave [see Eq. (2) in [92]]. For an asymmet-
ric setup in the limit g12 → g, the energy of the spin-wave
mode is lowered and can thus be excited much easily. Hence,
it is interesting to see the contribution of the density-wave
and the spin-wave components to the compressible energy.
We are currently working on that and relevant results will
be presented elsewhere. Finally, the anisotropy between the

FIG. 12. Snapshots of the density of the first component (a),
(b) just after the obstacle starts to move and (c) for t = 0 after
completing the second period of the stirring. The positions of vortices
and antivortices are plotted by (red) circles and (light blue) triangles,
respectively. Here, the parameter values correspond to those in Fig. 1.

FIG. 13. The density of the first (top panels) and second (bot-
tom panels) components at (a), (c) t = 0 and (b), (d) t = 600. The
parameters are g11 = 0.975g22, g12 = 0.95g11, g̃22 = 2000, N1 = N2,
M = 1024, L = 40, and εx j = εy j = 0.0.

components can be introduced via mass of the components
too, and a preliminary study in this direction is reported in
[52], where Na-K bosonic mixtures are considered. Also, it
is to be noted that to incorporate the quantum effects such
as quantum correlations and associated fragmentation and the
finite temperature effects, a beyond-mean-field model has to
be considered. While here we have restricted our considera-
tions to large atom numbers and near-zero temperatures, so
that the mean-field setting provides a valid approximation, it
is relevant to extend earlier works such as, e.g., [93–96] in
these interesting directions for the multicomponent system.

FIG. 14. The density of the first (top panels) and second (bottom
panels) components at (a), (c) t = 0 and (b), (d) t = 400. The pa-
rameters are g11 = 2200, g12 = 1710, g21 = 2090, g22 = 1800, M =
1024, N1 = 1.1, N2 = 0.9, M = 1024, L = 40, and εx j = εy j = 0.0.

023301-11



MITHUN, KASAMATSU, DEY, AND KEVREKIDIS PHYSICAL REVIEW A 103, 023301 (2021)

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
National Science Foundation under Grants No. PHY-1602994
and No. DMS-1809074 (P.G.K.). P.G.K. also acknowledges
support from the Leverhulme Trust via a Visiting Fellowship
and thanks the Mathematical Institute of the University of
Oxford for its hospitality during part of this work. The work of
K.K. is partly supported by KAKENHI from the Japan Society
for the Promotion of Science Grant-in- Aid for Scientific
Research (KAKENHI Grant No. 18K03472). B.D. acknowl-
edges the Science and Engineering Research Board, Govern-
ment of India for funding, Grants No. EMR/2016/002627
and No. CRG/2020/003787.

APPENDIX A: VORTEX NUCLEATION DURING
THE STIRRING PROCEDURE

Figure 12 shows the snapshots of the density of the first
component during the stirring process in Sec. III, which is
before our t = 0. The obstacle induces counterclockwise ro-
tation centered at a radius r0 = 0.4RTF beyond the critical
velocities for vortex nucleation. The snapshots show that vor-
tices are nucleated at the zero-density region at the obstacle,
in the form of vortex-antivortex pairs. Note that, as shown
in Figs. 12(a) and 12(b), the vortices with counterclockwise
circulation are emitted into the inner region of the condensate,
while the antivortices with clockwise circulation are emitted
into the opposite outer side. This imbalance of the vortex and

FIG. 15. Snapshots of the time development for the homogeneous binary condensates after the stirring. The first and the second rows show
the density of the first component and that of the second component, respectively, at (a), (e) t = 0, (b), (f) t = 50, (c), (g) t = 100, and (d),
(h) t = 600 for M = 512 grid points. The third and fourth rows show the corresponding phase profiles. The parameters are g11 = 0.975g22,
g12 = 0.95g11, and εx j = εy j = 0.0.
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antivortex distribution is responsible for the nonzero angular
momentum at t = 0.

APPENDIX B: TURBULENT DYNAMICS FOR SEVERAL
DIFFERENT PARAMETERS

In this section, we show some numerical results not pre-
sented in the main text.

1. Turbulent dynamics for g11 �= g22 or N1 �= N2

Here, we show the turbulent dynamics and the subsequent
quasiequilibrium states for the cases of g11 �= g22 or N1 �= N2

without the trap asymmetry (εy1 = 0). The stirring procedure
is the same as before. Figure 13 shows the density of the
first and second components at (a), (c) t = 0 and (b), (d)
t = 600 for g11 = 0.975g22 and g12 = 0.95g11, g̃22 = 2000,
while N1 = N2. The dynamics exhibits a behavior similar to
Fig. 1 and leads to the formation of the interlaced lattice
state of vortices as in Figs. 13(b) and 13(d). We also show
the turbulent dynamics when the particle number is slightly
different, N1 �= N2; Fig. 14 shows the density of the first and
second components at (a), (c) t = 0 and (b), (d) t = 400.
Here, the dimensionless gi j’s assume the values indicated in
the caption. When the population difference is small, we have
observed similar dynamics as in the previous case.

2. Turbulent dynamics and angular momentum evolution
for the homogenous condensates

In this Appendix we demonstrate the turbulent dynamics
for the homogeneous system, where the stirring procedure is
made in a way similar to the trapped system. We evolve the
initial wave function ψi = √

μ/(g11 + g12), with μ = 34.78
by setting Vj = 0 in Eq. (4). We implement the periodic
boundary condition. Since there is no low-density region, as
seen in the outside of the Thomas-Fermi radius in the trapped
system, the vortex-antivortex annihilation is the only mecha-
nism of the decay of the vortex excitation, and as a result equal
numbers of vortices and those of antivortices are expected in
the final state.

Figures 15 and 16 show the vortex dynamics and the
corresponding angular momentum transfer, respectively. As
seen in the trapped system, the snapshots of the density ex-
hibit the transient dynamics from the turbulent state to the
vortex-antidark structure. Subsequently, the scale of the den-
sity variation is determined by the spin healing length given
by the formula [39]

ξ 2
s = 1

2

(
g22

μ1g22 − μ2g12
+ g12

μ2g11 − μ1g12

)
. (B1)

However, the phase profiles show that the vortices do not
survive in the long-time dynamics, due to the fact that equal
numbers of vortices and antivortices undergo pair annihila-
tions. This behavior can be understood from the evolution of
the angular momentum. There is a finite angular momentum
at t = 0, caused by the introduction of the stirring potential
that breaks the rotational symmetry of the system. After the
long-time evolution, the angular momentum eventually goes
to zero, although a small oscillation can be seen for the first

FIG. 16. The time development of the angular momentum per
particle corresponding to Fig. 15.

component, which is caused by the survived vortex and an-
tivortex seen in the phase profile of Fig. 15(d).

3. Vortex turbulent dynamics for several values of g12

Here we discuss the g12 dependence of the turbulent dy-
namics. We set g11 = g22 and εy1 = 0.025 and the vortices
are generated by the stirring potential in the same way as
before. Figure 17 shows the condensate density at t = 200
for different strength of g12. It shows the clear interlaced
lattice state of the like-signed vortices for higher g12. With
decreasing g12, the vortex-antidark lattice structure disappears
and the vortex structure resembles that in a single-component
condensate. Also, the vortices feature chaotic motions which
cannot be interpreted as an interlaced lattice state.

APPENDIX C: NUMERICAL CALCULATION
OF ENERGY SPECTRA

To calculate the energy spectra [5,13,74,97], we do the
decomposition as follows. The kinetic-energy term |∇�|2/2
in the Hamiltonian Eq. (1) can be written as

1
2 |∇�|2 = 1

2 (n|u|2 + ∣∣∇√
n
∣∣2

), (C1)

where the Madelung transformation � = √
neiφ yields the

condensate density n = |�|2 and the superfluid velocity u =
∇φ. We do not consider the index j to represent the compo-
nents. Here the first and second terms represent the density
of the kinetic energy (EKE) and the quantum pressure (Eq),
respectively, where the energies are given by

EKE = 1

2

∫
n|u|2d2r, Eq = 1

2

∫
|∇√

n|2d2r. (C2)

The velocity vector u now can be written as a sum over a
solenoidal part (incompressible) uic and an irrotational (com-
pressible) part uc as

u = uic + uc, (C3)
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FIG. 17. The density of the first and second components for (a), (d) g12 = 0.95g, (b), (e) g12 = 0.6g, (c), (g) g12 = 0.1g, and (d), (h) g12 = 0
at t = 200 for M = 1024 grid points.

such that ∇ · uic = 0 and ∇ × uc = 0. We next define the
scalar potential � and the vector potential A of the velocity
field which satisfy the relations

√
nuic = ∇ × A,

√
nuc = ∇�, (C4)

respectively. Taking the divergence of the equation for the
scalar potential we obtain

∇2� = ∇ · (
√
nuc) = ∇ · (

√
nu). (C5)

From this Poisson equation we numerically determine the
scalar potential � [75]. On applying the Fourier transform to
Eq. (C5) we get

�̃ = −F[∇ · √
nu]

k2
x + k2

y

. (C6)

After taking the inverse Fourier transform of �̃, we get
√
nuc

from Eq. (C4). Further we can find
√
nuic from Eq. (C3).

The compressible and incompressible kinetic energies are
then

E ic,c = 1

2

∫
d2r|√nuic,c(r)|2. (C7)

In the k space, the total incompressible and compressible
kinetic energy E ic,i

kin is represented by

E ic,c = L2

2

∑
j=x,y

∫
d2k|F j (k)ic,c|2, (C8)

where F j (k) is the Fourier transform of
√
nu j of the jth

component of u = (ux, uy). We can modify Eq. (C8) as

E ic,c(k) = k

2

∑
j=x,y

∫ 2π

0
dφk|F j (k)ic,c|2, (C9)

FIG. 18. The density of the first component at (a) t = 0, (b) t = 50, (c) t = 250, and (d) t = 500. Here, the exponent of the trap potential
is α = 50. The parameters are g22 = g11, g12 = 0.95g11, g̃22 = 2000, L = 30, and M = 512.
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where we consider the polar coordinates and k =
√
k2
x + k2

y .
We numerically integrate over the k shell (summing over the
grid points) to find E ic,c(k). Now to get the respective kinetic
energy, we integrate E ic,c(k) with respect to k.

APPENDIX D: SYMMETRIC CASE WITH g11 = g22
IN A STEEP-WALL TRAP

Figure 18 shows the vortex turbulent dynamics at differ-
ent times for the symmetric choice of the intracomponent

couplings g22 = g11 = 2000h̄2/m and the miscible regime
g12 = 0.95g11. Here, both the components behave in the
same manner; the dynamics mimics those of the single-
component BEC. The measured dipole moment (a) d ′ ∼ 0.31,
(b) d ′ ∼ 0.79, (c) d ′ ∼ 0.50, and (d) d ′ ∼ 0.90 shows that
even for the smaller time the magnitude of the dipole mo-
ment is much greater than zero. Here d ′ = 2d/(NvR0), where
Nv is the sum of the vortices and antivortices. The forma-
tion of the vortex cluster can be clearly discerned in the
figure.
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