GAMMA FACTORS AND CONVERSE THEOREMS FOR CLASSICAL
GROUPS OVER FINITE FIELDS

BAIYING LIU AND QING ZHANG

ABSTRACT. In this paper, we prove certain multiplicity one theorems and define GL-twisted
gamma factors for irreducible generic cuspidal representations of quasi-split classical groups G, =
Spay, Uzr, Uarg1, 302,41 over finite fields of odd characteristic, using Rankin-Selberg method. As
applications, we prove converse theorems for these groups, namely, GL,-twisted gamma factors,
n=1,2,...,r, will uniquely determine irreducible generic cuspidal representations of G (Fgq).

1. INTRODUCTION

Local gamma factors play essential roles in the theories of automorphic forms and represen-
tations of p-adic groups, especially in the local Langlands correspondence conjecture, Langlands
functoriality conjecture, and local converse theorems. Local gamma factors can usually be defined
using Langlands-Shahidi method or Rankin-Selberg method, at least for generic representations.
In this paper, we prove multiplicity one theorems of certain Fourier-Jacobi models (analogs for
Bessel models were proved in [GGP12b]) over finite fields and define the finite fields analogue of
local gamma factors for irreducible generic cuspidal representations of quasi-split classical groups
G, = Spy,, Uy, Ugyry1,5029,4+1, using the Rankin-Selberg method. We also obtain explicit formulas
for these gamma factors in terms of corresponding Bessel functions. These gamma factors provide
important invariants for generic cuspidal representations and are expected to play important roles
in the representation theory of these groups over finite fields. There are interesting questions that
how these invariants are related to the Deligne-Lusztig theory on virtual characters ([DL76, L84]),
and to the finite fields analogue of the Gan-Gross-Prasad conjecture ([GGP12b]).

Over p-adic fields, the uniqueness of Bessel and Fourier-Jacobi models for classical groups were
proved in [AGRS10] and [Sul2| respectively. But over finite fields, the general statement of unique-
ness of Bessel and Fourier-Jacobi models is not true for all irreducible representations of G, (F), see
[GGP12b, §4,5] for example. This suggests that we cannot have a uniform proof using distribution
theory as in the p-adic fields case. To conquer these difficulties, we link the finite fields case with the
p-adic fields case. To do so, we need to restrict our representations of G, (F,) to irreducible cuspidal
representations and use the theory of depth zero representations of G, over p-adic fields. The Bessel
model case has been carried out in [GGP12b]. The main difficulty in the Fourier-Jacobi model case
is to connect the Weil representations over finite fields and p-adic fields. To make this connection,
we use the generalized lattice models for Weil representations.

Over finite fields, the Bessel and Fourier-Jacobi models are special cases of Generalized Gelfand-
Graev models considered by Kawanaka, see [K85, K86]. There are many results on the computation
of such multiplicities in more general settings, for example see [L92, Gec99, GeHO08]. See also
[LZ18, LZ19] for certain uniqueness results of Fourier-Jacobi models for Sp,, Uy, and the split
exceptional group of type G5 over finite fields.

As applications of the gamma factors defined above, we prove the converse theorems for these
groups, namely, GL,-twisted gamma factors, n = 1,2,...,r, will uniquely determine irreducible
generic cuspidal representations of G,(Fy). Therefore, these GL,-twisted gamma factors form com-
plete sets of invariants for irreducible generic cuspidal representations of G, (F,).
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Over finite fields, gamma factors and converse theorems have been defined and considered for
general linear groups and the split exceptional group of type G3. Roditty [Ro10] defined gamma
factors for cuspidal representations of GL,, X GL,, over finite fields. Nien in [Nil4] proved the converse
theorem for cuspidal representations of GL,,(IF,), using special properties of Bessel functions and the
twisted gamma factors defined by Roditty. The authors defined the GL,-twisted gamma factors for
n = 1,2 and proved the converse theorem for generic cuspidal representations of the split exceptional
group G2 (F,) in [LZ18]. Gamma factors over finite fields were defined in a more general context in
[BKOO].

Similar to local fields cases, it is expected that GL,-twisted gamma factors for irreducible generic
cuspidal representations of G,(F,) can also be defined using Langlands-Shahidi method. In future
work, the authors plan to define GL, -twisted gamma factors using Langlands-Shahidi method and
verify the consistency with those defined in this paper using Rankin-Selberg method.

In [NZ21], Nien and Zhang verified that the GL;-twisted gamma factors will uniquely determine
irreducible cuspidal representations of GLx (Fy), for N < 5, and irreducible generic representations of
GLy(Fy), for N < % +1 in the appendix by Zhiwei Yun. Note that on the dual groups side we have

embeddings G, (C) — GLy(C). Hence, by Langlands philosophy of functoriality, it is expected that
irreducible generic cuspidal representations of G, (F,) would also be uniquely determined by GL;-
twisted gamma factors when ¢ is large. In future work, the authors plan to check this expectation
directly by analyzing GL;-twisted gamma factors for irreducible generic cuspidal representations of
G, (F,). The authors also plan to consider related functorial lifting and descent problems using the
GL-twisted gamma factors defined in this paper.

This paper does not include the case of SOs,,, which is a work in progress of a student of the first
named author. The converse theorem for SOs,, is expected to be more subtle.

Following is the structure of this paper. For G, = Sp,,., we prove a multiplicity one theorem in
Section 2, define the GL-twisted gamma factors in Section 3, and prove the converse theorem in
Section 4. Cases of G, = Us,, Ug;11, 502,41 will be considered in Sections 5, 6, 7, respectively.

Acknowledgements. The authors would like to thank James Cogdell, Clifton Cunningham, Dihua
Jiang and Freydoon Shahidi for their interest, constant support and encouragement. The authors
also would like to thank the anonymous referee for careful reading and many useful suggestions.

2. A MULTIPLICITY ONE THEOREM FOR Spy,.

Let F be a p-adic field with odd residue characteristic. Let o be the ring of integers of F', p be the
maximal ideal of 0, and @ € p be a fixed generator. Let k = o/p be the residue field. Let IT, : 0 — k
be the natural projection. Let ¢ be a fixed unramified additive character of F, and let ¢ be the
character of k defined by

P(IL(1) = y(tw™),t € 0.

2.1. The group §f)2r(F) and the Weil representation. Let r be a positive integer and (W, ( , ))
be a symplectic space over F' of rank 2r. Let H (W) be the Heisenberg group of W. As a set,
H(W) =W & F and its product is given by

1
(wl,tl)(wg,tg) = (w1 + wg,tl +t2 + §<w1,w2>),w S W,t e F.

By the Stone-Von-Neumann theorem, there is a unique irreducible representation (py,S) of H(W)
with central character 1. Let Sp(W) be the isometry group of (W, (,)), i.e.,
Sp(W) = {g € GL(W) : (w19, w2g) = (w1, w2), Ywy, w2 € W},

where elements in W are viewed as row vectors and Sp(W) acts on the right. The group Sp(W)
acts on H(W) by
(w,t)? = (wg,t),w € W,t € F,g € Sp(w).

For each g € Sp(WW), we can define a representation pZJ of H(W) by

pZ;(w7 t) = py((w,1)7).
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Since Sp(W) acts trivially on the center of #(W), the central character of py, is still ¢. Thus
by the uniqueness in the Stone-Von-Neumann theorem, we have pfb = py. Fix an isomorphism
Mlg] : pj, — py. Then (Mlg],S) is a projective representation of Sp(W). It is known that it
can be defined as a real representation on a double cover é\f)(W) of Sp(W). The corresponding
representation is denoted by wy and is called the Weil representation of §1/)(W) It is well-known
that, up to equivalence, there is a unique symplectic structure on W, and thus Sp(W) (resp. §1;(W))

is usually written as Sp,,.(F') (resp. %QT(F))

2.2. Generalized lattice model of the Weil representation. Let (W, (,)) be a symplectic
vector space over F' of dimension 2r with symplectic form ( , ). Let e;,¢ = £1,...,+£r, be a basis of
W with

(ei,e5) =0,({e_i,e_j) =0,{e;,e_;) =6 ,Vi,j > 0.
Let B C W be the lattice
B =per +pea+...pep +o0e_ +oe_(,_1y)+...0e_1,
and let
B*={veW: (v,b) €o,Vbe B}.
Then one can check that

B* =o0e; +0es+...06, + 0 toe_p+ -+ toe_s+ loe_y.

Let b* = B*/B, which is a lattice over k of rank 2r. Let IIg« : B* — b* be the natural projection.
We can define a symplectic form ( , )p« : b* X b* — k by
(- (w), Mg+ (w'))p+ = TTo((w, w')w).

Let H(W) (resp. H(b*)) be the Heisenberg group of W (resp. b*) with the given symplectic
structure. Let H(B*) := B* x p~!, which is a subgroup of the Heisenberg group H(W). We then
have a homomorphism

g+ : HB*) — H(b")
by
(b,t) = (- (b), o (tw)).
Let Kp = {g € Sp(W) : gB = B} and
Kg={9€Kgp:(g—1)B" C B}.
One can check that

Kp — {(é g) € Spy, (F), A, D € Mat, (0), B € Mat, (p), C € Matr(pl)} .

Then K is a normal subgroup of Kp and Kp/Kg is isomorphic to Sp(b*).

Let Py be the representation of H(b*) corresponding to the character v, and Wy the Weil rep-
resentation of Sp(b*). Let S be the space of P> and hence of wy- The representation o (resp.
wy) can be inflated to a representation of H(B*)(resp. Kg), which is still denoted by py; (resp.
GE) by abuse of notation. Let .(B) be the space of locally constant, compactly supported maps
f: W — S such that

Flb-+ w) = (5w, )P (B).(F (), Voo € Wb € B,

The Weil representation wy, of §1;(W) can be realized on .#(B), which is called the generalized

lattice model, see [Wp90] and a survey in [Pan02]. Note that Sp(W) — Sp(W) splits over Kg and
thus wy |k, makes sense.

Proposition 2.1. As a representation of KB, one has (wy| ) 8

This is a special case of [Pan02, Proposition 5.3].
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2.3. Genuine induced representations of %QT(F). For a € F*, let 9, be the character of F
defined by 1, (z) = 1 (az). Let (1)) be the Weil index of x + 1(2?), and let

V(¢a)
(o) (W)’
see [Rao93, Appendix|. It is known that vy (a)vy(b) = vy (ab)(a,b)p, where (a,b)r is the Hilbert
symbol. Moreover, under the assumption that the residue characteristic is odd, it is known that
ypu) =11if u € 0*.
We fix the order of basis of W by e1,...,¢e.,6_p,...,e_1, and then fix an embedding Sp(W) =
Spy, (F) — GLa,(F'). Define J, € GL,(F) inductively by

szr(F)—{g€GLzr(F):tg (—Jr JT)Q_ (—Jr J’“)}.

The upper triangular subgroup of Sp,,.(F') is a Borel subgroup. Let P = M N be a fixed standard
parabolic subgroup with Levi subgroup

M = GL,, (F) x -+ x GL,_(F) x Spy,,(F),
where 1y + - - - +ng +m = r. Let GL,,, (F) be the double cover defined by the Hilbert symbol ( , )p,
ie., GL,,(F) = GL,,(F) x {£1} with product
(al,el)(ag,Q) = (a1a2,€1€2(det(a1) det(ag)) )
for ay,as € GL,, (F) and €1,€5 € {£1}. Let M be the preimage of M in SpQT( ) under the quotient
map Spy,.(F) — Sps,.(F). Then the map GLm( ) X GLns( ) X Sme( ) — M defined by
((alv 61)a AR (asa Gs)a (bv 6)) = (diag(alv ooy as, b, asa ) a;)’ EHQ)
with a; € GL,,, (F), €;,€ € {£1},b € Sp,,,,(F') is a projection with kernel p3, where ps = {£1}.

It is known that the double cover Sp,, (F) — Sps,.(F) splits over N. Let P = MN. Let 7°
be an irreducible cuspidal representation of GL,,(F') and let & be a genuine irreducible cuspidal

ae€F*,

Then

representation of Sp,,, (F). Let 7% = 7 @ (y, o det), which is a representation of GL,, (F). Consider
the representation 7 := 7' ®- - -@7°®0, which is a representation of GLy,, (F)X. .. GLy, (F)xSpy,, (F)
and descends to a representation M. We then can consider the induced representation

() = md®> P (F o 1y).

Let 7¢ be a cuspidal representation of GL,, (k) and oo be a cuspidal representation of Sp,,, (k).
Under the projection map GL,,(0) & GLy,,(0)/(In, + My, (p)) = GLy,(k), 7¢ can be inflated to
a representation of GL,,(0). By abuse of notation, we still denote this representation by 75. Let
B: C B be the sub-lattice of rank 2m which is corresponding the embedding Sp,,,(F') C Sp,, (F)
and let Kg,, K]’31 be the corresponding open compact subgroups defined by the lattice B;. Then
one has the isomorphism K, /Kp = Spy,, (k). One then inflates oq to a representation of Ky, and
still denote it by oyp.

Consider an irreducible supercuspidal representation of GL,,, (F')

i . (GLy,(F) ”
T i=indp.gr, (o)(To) ® |det[*,

for some t; € C, where F* is identified with the center of GL,,, (F') and 7¢ is viewed as a representation
of F*GLy,(0) such that its action on F* is trivial. Note that ind?I;GI(JF)(U)
depth zero supercuspidal representation of GL,, (F). Let 7% = 7° @ (7 o det). Similarly, let & be an

(78) is an irreducible

irreducible depth zero supercuspidal genuine representation of Sp,,, (F') which contains oy as a type.

szm( )(

Such a representation is constructed in [HMO09] and can be taken as the form ind 2 oo ® sgn),

where KB1 = Kp, X uz and sgn is the unique nontrivial character of po. Let 7 = 7t ® ...7T°®0 and
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form the induced representation I(7) as above. Note that, for generic choice of 7, the representation
I(7) is irreducible.

On the other hand, let P(k) = M (k)N (k) be the Siegel parabolic subgroup of Sp,, (k). We can
form the induced representation I () = Indip(z)(k) (70 ® 1n(k)), where 79 = e ®- - ®75 ®0p. Under
the projection map Kp — Kp/Kpg = Sp,,.(k), we can view I(7y) as a representation of Kg. Note
that in general, I(7) is not irreducible.

Proposition 2.2. As Kg-modules, there is a surjective map
(I(7)| k) B = I(19) — 0.

Proof. Recall that 7% = mdgftgf))(ré) ® | det

L @ (yyp o det) and o = ind?{pQ’"(F) (00 ® sgn). An
By

clement f € I(7) is a function f : §f)2r(F ) — T, which can be viewed as a function
f + 8Da, (F) X GL, (F) X+ X GLn, (F) X Spgya(F) = 7o

satisfying the invariance property

f(m(a/la ceey Qg b)ng7$1a e 7xsay) = H(’yw(det(al)” det(ai)|ti)f(ga T1a1,y ... >$sa/s7yb)a

K2

for a;,x; € GLy, (F),b,y € S\ﬁgm(F),n € N,g e S\I/)QT(F), where

m(ai,...,as,b) = diag(ay,...,as,b,a%,...,a]) € M,

and
f(g7xla1a e axsasayb) = 7'0(((11, e 7a87b))(f(gvxla e 7xsay))7

for g € Spy,.(F), z; € GL.(F),a; € GLy,(0),y € Spy,,(F),b € Kg,.

For f € (f(?)|KB)K1/3, define ¢y : Kg — 79 by ¢5(k1) = f(k1,1,...,1,1), k1 € Kg. Then ¢y
is also Kg-invariant and thus defines a map Sp,,.(k) = Kg/Kg — 7o, which is still denoted by
¢y by abuse of notation. One can check that ¢y € I(ry). The assignment f — ¢; gives a map
(I(7)|ks)%B — I(7y). Tt is clear that the map respects the Kg-action. To show that it is surjective,
for ¢ € I(7p), we need to define a function f € (I(7)|kg)5® such that f(ki,1,...,1,1) = ¢(k). We
consider the function f which satisfies the following properties:

(1) If f(k1,21,...,25,b) #0, then ky € Kg, and x; € GLy, (0),b € Kp, ;
(2) f(ky,21,... 24, (y,€)) = sgu(e)p(m(zy,...,xs,y)k1), for k1 € Kp,x; € GLy,(0), (y,€) €

Ks,.
One can check that f € (I(7)|kg)%® is well-defined and ¢ = b5. O

2.4. A multiplicity one result.

Proposition 2.3. Let k be a finite field of odd characteristic. Let P(k) = M (k)N (k) be a para-
bolic subgroup of Spo,.(k). Let my be an irreducible cuspidal representation of Sp,.(k) and 19 be an
irreducible cuspidal of M (k). Then we have

dim Homgy, () (7o, 1(10) ® ) < 1.

Proof. Let F be a p-adic field with residue field k. Let P = M N be the corresponding Levi subgroup
of Sp,,.(F). Let T be an irreducible depth zero supercuspidal representation of M as constructed
in Section 2.3 from 7. Consider the induced representation I (7), which is irreducible for a generic
choice of 7. Through the projection map, Kg — Kp/Kp = Sp,,.(k), we can inflate mp to a
representation of Ky, which is still denoted by mg. Let m = indif;"‘(F) (o). It is known that 7 is an

irreducible supercuspidal representation of Sp,,.(F'). We have dim Homg,,, (m) (7, I(T) ® wy) < 1 by
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the main theorem of [Sul2]. By Frobenius reciprocity law, we have

Homsph(p)(mf(?) ® wy) = Hompy (70, 1(T) | kg @ wy|Kg)
D Homgey (70, 1(70) ® wy|ks)
= Hom gy (7o @ I(70)", wy| k5)
> Homgy, 1) (m0 @ 1(10)", (wy| ks ) <P)
= Homg,, (1)(mo ® I(TQ)V,EJ)
= Homygy, (x)(mo, I(70) ® Wyp),

where the second containment is implied by Proposition 2.2. Hence, dim Homgy,, (x)(mo, (T())@EE) <
1. This completes the proof of the proposition. |

2.5. Fourier-Jacobi models. Let n be a positive integer with n < r — 1. Let P(k) = M (k)N (k)
be the parabolic subgroup of Sp,, (k) with Levi subgroup

M(k) = {diag(al, . ,ar_n,g,ar__ln, . ,al_l), a; €Ek™,g € San(k)} >~ GL1(k)"™™ x Spy, (k)

and unipotent subgroup N(k). We view Sp,, (k) as a subgroup of Sp,,.(k) via the embedding
Spa, (k) < M(k) < Sps,.(k). Let

H(k) = Sp, (k) x N(k) C P(k).

Let
1 w z
Hp = Ly, w*] € Sp2n+2(k)7w € knaz €k
1

The group H,, can be viewed as the Heisenberg group of dimension 2n + 1, i.e., H,, = H(k?"), where

—J,
wy; of the semi-direct product Spy, (k) x H,. Note that Spy,, (k) x H, can be viewed as a subgroup
of H(k) via the natural embedding. We now consider the representation v of H(k) defined by

k2" is endowed with the symplectic form defined by ( J") . Then there is a Weil representation

vg(uhg) = ¥y (u)wy(hg),
where h € H,,, g € Sp,y,, (k),
z U1 V2
U = 12n+2 ’UT S N(k),
Z*
and ¥y (u) = P(30_1" " uiit1). Note that Spy, (k) is a quotient of H (k) and thus a representation
o of Sp,, (k) can be viewed as a representation of H(k). Let o be a representation of Sp,,, (k), then
the tensor product o ® v is also a representation of H(k).
Let P, (k) = M, (k)N, (k) be the Siegel parabolic subgroup of Sp,,, (k) with Levi M,, (k) = GL,, (k).
Let P'(k) = M'(k)N'(k) be the parabolic subgroup of Sp,, (k) with Levi subgroup

a
M'(k) = g ,a € GL,_,(k),g € Spy, (k)

a/*
Proposition 2.4. Let 79 be an irreducible representation of GL, (k) and let I(mo) be the induced

representation Indjs\;)m(’gj)v (k)(ro). Let 1) be an irreducible cuspidal representation of GL,_, (k) and

let 1(1(,70) be the induced representation

Spa, (k
Ind]\/l[[)’z(k()sz’(k)(Té ® I(10)).

Let mo be an irreducible cuspidal representation of Sp,,.(k), then we have

(1) Homgy, (x)(mo,I(7),70) ® w%) = Hompx)(mo, I(70) ® v5), where wy; denotes the Weil rep-
resentation on Spa,. (k);

(2) dim Hompy)(mo, I(70) ® v5) < 1.
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Proof. The proof of (1) is the same as that of [GGP12a, Theorem 16.1].

Note that there exists a parabolic subgroup Q(k) = L(k)V (k) of Sp,,. (k) with Levi L(k) and a
cuspidal representation o of L(k) such that I(7{, 7o) is a subrepresentation of Indzp(";g)(k) (0@ 1y (1))

The assertion of (2) then follows from (1) and Proposition 2.3. O

For finite unitary groups, a slightly different version of Proposition 2.4 (1) was proved [LW21,
Proposition 3.3], where 7 is not necessarily cuspidal, while 7y is required to be unipotent. For
unipotent representations of finite unitary groups, an explicit branching law was given in [LW21].

3. GAMMA FACTORS FOR Sp,,.(k) x GL, (k)

3.1. Generic representations and Bessel functions. In this subsection, we introduce the notion
of Bessel functions for generic representations of Sp,,.(k). In [PS83], Bessel functions was used to
study representations of GLo(k) over a finite field k& as an analogy of representations of GLy over
p-adic fields. See [Col4] for a nice survey. Many constructions were extended to GL,, in [Ro10].

Let U = U"(k) be the upper triangular unipotent subgroup of Sp,,.(k). Let 1, be the generic
character of U defined by

Yy(u) =9 (Z Uz‘,z‘+1> Ju = (u;;) € U.
i=1

Let 7 be an irreducible 1,-generic representation of Sp,,.(k). Recall that 7 is ¥y, -generic means that
Homys (7, %,) # 0. A nonzero element in Homys (7, ;) is called a Whittaker functional of mg. It is
well-known that Whittaker functional is unique up to scalers. Let [ = I, € Homy (7, ;) be a nonzero
Whittaker functional. For v € 7, let W, (g) = I(7(g)v), g € Spa,.(k). Let W(m, ;) = {W,,v € n},
which is called be the 1;;-Whittaker model of 7.

Let 7(U,1;;) be the subspace of m generated by 7(u)v — ¢y (u)v,u € U,v € m and let TUby =
7/7(U, 1) be the twisted Jacquet module. Since 7 is irreducible 1) ,-generic, we have dim Tug, = L

Let v € m and v ¢ 7(U, ;) and consider the average
1 ——1
vo = Il E Yy (u)m(u)v.
uelU

Then vy # 0 by Jacquet-Langlands Lemma, see [BZ76, Lemma 2.33]. Thus I(vg) # 0. Such a
vector vg satisfies m(u)vg = Py (u)v for all u € U, and is called a Whittaker vector of m. Let

B, 5(9) = 1ra5l(m(9)vo). Then B, € W(m, ¥yy).

Proposition 3.1. We have

and
B, 7(u1gus) = EU(U]_UQ)BW’E(Q),VU]_, ug € U, g € Spo,. (k).

We call B, 7 the (normalized) Bessel function of 7 associated with Dy

3.2. Some notation. Let n < r be two positive integers and we view Sp,,, (k) as a subgroup of
Sp,,. (k) via the embedding

g diag(lrfnaga Ir7n>7g € Sp2n(k)
An element of Spy, (k) will be viewed as an element of Sp,, (k) under the above embedding. Let
P.(k) = M,(k)N,(k) be the Siegel parabolic subgroup of Sp,,.(k) with Levi subgroup
M, (k) = {m,(a) := diag(a,a”),a € GL,(k)},
and unipotent subgroup N,(k). Here a* = J,la='J,. Similarly, we have the notations P, (k) =

M, (k)N (k), the Siegel parabolic subgroup of Sp,, (k), and m,(a) for a € GL, (k). Under the
embedding Sps,, (k) < Sp,,.(k), we have

mn(a) = m, (L“—” a) Ja € GL, (k).
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Denote
I._,
I, I,
Wy —n,n = I € Sp27-(k)a Wn = —I € Sp2n(k) — Sp27(k)
I._,
Let
I,
(31> ﬂjn = wrffln’nwnwrfmn = I2(7‘—1’L)

-1,
Let Q) = L}V, be the parabolic subgroup of Sp,, with Levi subgroup
L7 = {m,(diag(a, ani1,-..,a.)),a € GL,,a; € GL1,n+1<i <r}.

Note that w:_lannwr_n,n C Lg,w:_lnminr_n,n C @5 . In fact, we have

-1 _ a r
Wy, ~ o M (@)W = Ty ( Lﬂ) elL;.

For a € GL,(F), we write

t,(a) = m, (a Irn) erL;.
Let B"(k) = A"(k)U" (k) be the upper triangular Borel subgroup of Sp,,. (k) with maximal torus
Ar<k):{diag(a17a27"'7ar7a 1 '7a;1)7al€kx71§i§r}7

e
and maximal unipotent U". In the following, once 7 is understood, we will omit r from the notation
for simplicity. Thus, we will write B = AU as the upper triangular Borel subgroup of Sp,, with
maximal torus A and maximal unipotent U.

For an integer ¢ with 1 <4 < r, let «; be the simple root defined by

ai(diag(as, ag, ..., a.a ... ,afl)) =a;/ai41,1 <i<r—1,
and
ar(diag(ay, ag, ... ara; b . a7 t)) = a2
Let A" = {a;,1 < i <r} be the set of simple roots. For a root 8 of Sp,,, let Ug C U be the root
space of 3 and xg : k — Ug be a fixed isomorphism.
Recall that #H(k?") is the Heisenberg group of k2" where k2" is endowed with the symplectic form

defined by (—J Jn> . We can embed H(k*") into Sp,,, 5 by
1 x vy z
L, In’ n
[(2,9), 2] = L@y ekt 2 e k),
1

The image of H(k*") in Spy, (k) is denoted by H,. Denote X,, = {[(z,0),0] : z € k"} and Y, =
{[(0,y),0],y € k"}. For 1 < n < r, we will identify X,,,Y;, with a subgroup of Sp,, (k) under the
above identification and the embedding Spy,, 5 < Spy,. There is a Weil representation wy; of the
semi-direct product Sp,, (k) x H,, on the space S(k™).

3.3. Weyl elements supporting Bessel functions. Let W(Sp,,.) be the Weyl group of Sp,,.. For
each a; € A(Sp,,.), let wy, be the simple reflection determined by the root «;. The group W (Sps,.)
is generated by wa,,1 <@ < 7. Let B(Sp,,.) be the set of Weyl elements w € W(Sp,,.) such that for
any «; € A(Sp,,.), wa; is either negative or simple.

Lemma 3.2. Let m be an irreducible generic representation of Sp,, with the Bessel function B_ 7
For w € W(Sp,,.) but w ¢ B(Sp,,.), we have

B, 5(g9) =0,Vg € BuwB.
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Proof. By Proposition 3.1, it suffices to show that B, 7(tw) = 0 for all ¢ € A. Since w ¢ B(Sp,, ),
there exists a simple root o; such that wa; is positive but not simple. Let € k and let Xo, (T)
be an element in the root space of a;. We have twx,, () = Xya, (@')tw for some =’ € k. Since
Vi (Xa, (7)) = ¥(z) and ¥ (Xwa, (z')) = 1. By Proposition 3.1, we have

@(x)BF,J(tw) =B, 5(tw),Vz € k.
Thus we get B, 7 (tw) = 0. O

We say that Weyl elements w € B(Sp,,.) support the Bessel function B,
Given w € B(Sp,,.), set

0, = {58 € A(Spy,) : wp > 0}.

The assignment w — 6,, defines a bijection from B(Sp,,) to P(A(Sps,.)), the power set of A(Sp,,.),
i.e., the set of all subsets of A(Sp,,.). For a subset 6 C A(Sp,,), let wy be the corresponding element
in B(Sp,,.). For example, we have wa(sp, ) = 1 and wy = wy, where wy is the longest Weyl element.

Lemma 3.3. We have 0z, = A(Spy,.) — {an}.

Proof. This follows from a simple calculation. |

For 1 <n < r and a € GL,(k), recall that ¢,(a) = m, “ I as in §3.2. We then embed

W(GL,,), the Weyl group of GL, (k), into W(Sp,,.) via the embedding a — t,(a).

Let Bo(Spy,.) = {1}. For 1 <n <r, let B,,(Sp,,.) be the subset of B(Sp,,.) such that each element
w € B, (Sp,,.) has a representative of the form ¢, (w’)w, where w’ is a representative of some Weyl
element of GL,,. Let P, = {6 C A(Spy,.)|ws € By (Sps,.)}. By [Zh18, Lemma 4.5], we can check that

(32) Pn = {9 c A(SPQT) : {an+17an+27 AR a'r‘} - 0 - A(SPZT) - {an}} .
Let Py = {A(Spy,)}- Then we have

which implies that

n=0

Corollary 3.4. If w € W(GL,) C W(Sp,,.), w # 1, we have m,(w) ¢ B(Spy,.). In particular, if
a € GLy(k) which is not in the upper triangular subgroup of GL.(k), we have B, 7(m;(a)) = 0.

Proof. In fact, for w € W(GL,) and w # 1, if m,.(w) = t,(w’)w,, for some n with 1 <n < rand w’ €
W(GL,,), we would have w,, € W(GL,), which is impossible. Thus we get w ¢ [[ _,Bn(Spy,) =
B(Sp,,.). The second assertion follows from Lemma 3.2. O

Lemma 3.5. For t € A, the mazimal torus of Spy,.(k), if B, 7(t) # 0, then t is in {£I>.}, the
center of Spa, (k).

Proof. Given any z € k and any 8 € A(Sp,,), we consider the element xg(x) € U. We have
txg(z) = x5(B(t)x)t. Thus by Proposition 3.1, we have

b(2)B, 5 (t) = Y(B(t)x)B, 5(1).

Thus if B, ;(t) # 0, we have 1(x) = ¥((t)x), for all € k and all § € A(Sp,, ). Since ¥ is nontrivial
and x is arbitrary, we get G(t) = 1 for all 8 € A(Sp,,). Now it is easy to see that t € {+Is.}. O
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3.4. Induced representation on Sp,,, (k). Let 7 be an irreducible generic representation of GL,, (k)

and let I(1) = Indﬁ?j’ggj)vn(k)r An element & € I(7) is a function & : Sp,,, (k) — 7 such that

§(mn(a)ug) = 7(a)(§(9)), Va € GLy(k),u € Nn(k),g € Spyy, (k).

Let Z, (k) be the upper triangular unipotent subgroup of GL,, (k) and let EZ be the character of
Z, (k) defined by

n—1
J;i (Z) e a_l <Z Zi,i+1> 2 = (Zl,j) S Zn(k)
=1

Let A = A, € Homg, (7, @Z) be a fixed nonzero Whittaker functional of 7. For £ € I(7), let
fe : Spay, (k) x GL,, (k) — C be the function defined by

fe(g,a) = A(7(a)é(9))-

Let Z(, EZ) be the space of functions f¢,§ € I(7). Note that for f € Z(r, EZ), z € Zn(k), we have

F(z9) = 0. (2)F(9)-

Let 7* denote the representation of GL,, (k) defined by 7*(a) = 7(a*), where a* = J,la"1J, €
GL, (k). Note that 7* is isomorphic to the contragredient representation of 7.

There is a (standard) intertwining operator M (7, @71) ACH @Z) — I(T*,@Z) defined by
— 1 . N
M(r, 0 ) f(ga)= Y flw, ug,dna),
uwEN,, (k)

where d,, = diag(—1,1,...,(—=1)") € GL, (k).

3.5. Zeta “integrals”. Let 7 be an irreducible 1/ ;-generic representation of Sp,, (k), and 7 be an

irreducible generic cuspidal representation of GL,, (k). For W € W(,¢y), f € Z(r, EZ), ¢ € S(k™),
we consider the following

(3.4)
U(W, o, f)
_ ) Zgermsp,, Duerrn Dwex, Wy o (urg)wy—n ) @g-1(9)9)(2) f (9, In), 1< n <,
ZgEU“"\Sp2T W(g)(wafl(g)(ﬁ)(e’r)f(ga IT‘)dg, n=r.
Here
Irfnfl Y
RM" = My 1 € Sp2r(k) )
L,

and e, = (0,...,0,1) € k". Over local fields, these integrals have a rich history and were defined
in [GePS87] when n = r, [GiRS97] when n = 1 and [GiRS98] in the general case. See [Kalh| for a
nice survey. Over finite fields, these integrals are analogues of those in p-adic fields. Moreover, these
integrals provide nonzero elements in appropriate Fourier-Jacobi spaces as shown in the following
Proposition 3.7 and Proposition 3.8.

For the group GL,, Roditty first adapted the local zeta integrals to finite fields in [Ro10], and
defined gamma factors for GL, x GL,. Nien showed that these gamma factors can characterize
representations of GL, in [Nil4]. In the rest of this section and the next section, we will show the
integrals defined in (3.4) can be used to define gamma factors for Sp,, x GL,, and these gamma
factors can uniquely determine cuspidal representations of Sp,,.(k).
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3.6. Non-vanishing of zeta integrals. The purpose of this subsection is to show that we can
choose datum W, ¢, f such that the zeta integral ¥ (W, ¢, f) is non-vanishing.

We first construct some section of the induced representation of Sp,,.(k). Let 7 be an irreducible
cuspidal generic representation of GL,, (k). For a vector v € 7, we consider the element £, € I(7)
defined by supp(&,) = M, (k)N,, (k) and

&(mp(a)u) = 1(a)v,Va € GL, (k),u € N, (k).

Let f, = fe, be the corresponding C-valued function in Z(r, D), e, fulg,a) = A(r(a)éu(g)).
Recall that A is the fixed nonzero element in Homy, (7, EZ) Let f, = M(r, @71)]”71. Let W, (a) =
A(7(a)v) and W} (a) = A(7(dpa*)v).

Lemma 3.6. ﬁ, has the following properties.

(1) If folg, 1) # 0 for g € Spy,,(k), then g € Py(k)wn Pa(k) = Po(k)w,No (k).
(2) If # € Ny, (k), we have fy(wnz) = Wy (1).

(3) For a € GL,(k),z € Ny,(k), we have f,(my(a)wpz,I,) = Wi (a).
Proof. (1) We have

ﬁ)(gvln) = Z fv(w;1u9adn)

uw€ Ny (k)
> foldnwy tug, 1)
wEN,, (k)

Note that if f,(d,w;, ‘ug,I,) # 0 for some u € N,(k), we must have d,w,'ug € P,. Thus
g € vw, P, C Py(k)w, Py (k).
(2) For x € N,,(k), we have

fv(wnx,In): Z fv(dnwgluwnx,ln).

wEN,, (k)

Note that w;, *uw,z € P, (k) if and only if u = I5,. Thus we get
ﬁ)(wnm, I,) = fo(dpx, 1) = Wy (1).

(3) This directly follows from a similar calculation as (2). O

Proposition 3.7. Let © be an irreducible 1y -generic cuspidal representation of Spy,. (k) and T be
an irreducible generic representation of GL,(k) with 1 < n < r. Let B,y € W(rm,¢y) be the
Bessel function, §g € S(k™) be the characteristic function of 0 = (0,...,0) € k™, 6] € S(k") be the
characteristic function of e, = (0,...,0,1) € k" and f, € Z(r, ﬂ_l) be the function constructed as
above for v € . We have
U(B, 700, fo) = Wy(1),1 <n <,
and
\II(BW,$751‘7 fv) = Wv(1)7n =T

In particular, there exist choices of v € T such that
\II(BW,E7 607 fv) 7é 07 \II(BW’Ea 5{3 fv) 7é 0.

Proof. We first consider the case 1 <n < r. We compute the integral W(B_ 200, fv) for general v.
By definition, we have

\IJ(BmEaévav) = Z Z Z Bﬂ’a(w;—ln,n(uzg)wT*n,n)wE_l(g)éo(m)fv(g’ITL)'
geU™\Sp,,, uER™™ z€ X,
From the definition of f,, we have f,(g, ) # 0 if and only if g € M, (k)N, (k). If g € M, (k) N, (k),
we write g = my(a)u’ for a € GL,(k),u" € N, (k). We have f,(my(a)u’,I,) = W,(a). Thus we get

\Ij(Bw,Ev(Svav) = Z Z Z Bw@(w;—ln,n(uxmn(a))wrfn,n)wg—l(mn(a))(sO(x)Wv(a)'

a€Z,\GL, (k) u€R™™ x€X,,
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By the Weil representation formula, see [GH17, p.219] for example, we have
w1 (mn(a))do(x) = e(det(a))do(za),

where the right side is nonzero if and only if x = 0. Here € is the unique nontrivial quadratic
character of k*. Thus we get

‘II(B‘IT,E7 607 fv) = Z Z BW,E(wr:ln,n(umn(a))wrfn,n)e(det(a))WU(a)_
a€Z,\GLy, (k) u€ R™"

Write u € R™™ as

Irfnfl Y
U =My 1
I,
A simple matrix calculation shows that
a
w;—lnmumn(a)wrfn,n = my 1
ya Ir—n—l

By Corollary 3.4 and Lemma 3.5, if Bﬂ@(wr__lnmumn(a)wr_nm) # 0, then a € Z,, and y = 0. Thus
we get

(35) \IJ(BW,E7607fv) = Wv(l)

We can choose v € 7 such that W, (1) # 0. This proves the conclusion when 1 <n < r.
We next consider the case n = r. By the definition of f,, we have

VB, 5,00 f) = Y By glme(a))mg-1(me(a)5i(er) Wola).
9€Z,.\GL (k)

By Corollary 3.4, if a is not in the upper triangular subgroup of GL,.(k), we have Bﬂ@(m,« (a)) = 0.
For a diagonal element ¢ in GL,(k), if t # +I,, we have B, 7(m,(t)) = 0 by Lemma 3.5. If t = —I,,,
we get

T (~L)6 ) = 0
by the definition of §]. Thus we get

(3.6) (B, 7,01, fo) = Wu(1).

It is clear that we can choose v such that W, (1) # 0. O

3.7. The gamma factors.

Proposition 3.8. Let 7 be an irreducible 1y -generic representation of Sps,.(k) and T be an ir-
reducible generic cuspidal representation of GL, (k) with 1 < n < r, then there exists a number
~v(m X T,7) such that

W(W, 6, M(1, %)) = (m x 7, 8)U(W, 6, ),
for all W € W(x, Dy), f € I(r,§7.),6 € SK").

Proof. If 1 < n < r, we can check that (W, ¢, f) — U(W, ¢, f) and (W, ¢, f) — U (W, ¢,M(T,E_1)f)
define two elements in the space Homg (7T ® I(7) ® Vs C), which has dimension at most one by
Proposition 2.4. Thus by the non-vanishing result of ¥(W, ¢, f), Proposition 3.7, there exists a
number (7 x 7,%) such that

— 1 —
YW, 0, M(7, ¢ )f) =~ x 7,4)¥(W, ¢, f),
for all W € W(m,vy), f € Z(, @Z), ¢ € S(k™). When n = r, this follows from Proposition 2.3. O
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Remark 3.9. Let 7 be an irreducible generic representation of Sp,,.(k) and 7 be an irreducible
generic representation of GL, (k) as usual. If n > r, following [GiRS98], we can still define local

zeta integrals W(W, ¢, f) for W € W(m, ¥y), f € Z(T, i;l),q’) € S(k™) and hence gamma factors
y(m x 7,%). However, in Theorem 4.1 next section, we will prove that the set

{y(m x 7,4) : 7 irreducible generic representation of GL,(k),1 <n <r}

will uniquely determine an irreducible generic cuspidal representation m. Therefore, in this paper,
we do not include the gamma factors v(m x 7,1) when n > r.

4. A CONVERSE THEOREM FOR Sp,,.

In this section, we still let k& be a finite field with odd characteristic. The purpose of this section
is to prove the following

Theorem 4.1. Let m and 7' be two irreducible 1;-generic cuspidal representations of Spy,.(k) with
the same central character. If

y(m x 7)) = (" x 1,9)
for all irreducible generic representations T of GLy, (k) and for all n with 1 <n <r, then 7 = 7.

Notice that in the above theorem 7 and 7’ are assumed to be generic with respect to the same
generic character. A p-adic version of Theorem 4.1 was proven in [Zh18].

4.1. An auxiliary lemma.

Lemma 4.2 ([Nil4, Lemma 3.1]). Let H be a function on GL, (k) such that
H(ug) =y, (w)H(g),Yu € Zn, g € GLy (k).

If

9€Z,\GL,, (k)
for all W, € W(r, EZ) and all irreducible generic representations T of GL,(k), then H(g) = 0.

4.2. Proof of Theorem 4.1. In the following, we fix two irreducible generic cuspidal representa-
tions m,m with the same central character w, = wy/. Recall that Bw@ and Bﬂ,ﬂ are the Bessel
functions of m and 7', respectively, and B = AU is the upper triangular Borel subgroup with torus
A and maximal unipotent U.

Theorem 4.3. Let n be an integer with 1 <n < r. If y(m x 7,4)) = y(n' x 7,%) for all irreducible
generic representations T of GLy,(k), then

B —(tn(a)@n) = B., =(tn(a)@n),Ya € GLy (k).

P ™)

a

Recall that t,(a) = m, ( ) as in §3.2, and Wy, is defined in (3.1).

Ir—n

Proof. We first assume that 1 <n <r.

Recall from Proposition 3.7 that for f, € Z(r, @71) as in §3.6, and dp € S(k™) the characteristic
function of 0 = (0,...,0) € k™, we have

\II(BW,Ev 507 fv) = Wv(]-) = \II(BW/,ﬂa 5Oa fv)
By the assumption on the gamma factors and the functional equation, we can get that
(4.1) U(B, 7,00, fo) = W(B,, 560, fu),
where ﬁj = M(r, @71)fv. On the other hand, we have
VB 50 = Y 3 Y Byt (wrg)we )y (9)d0 () olg, In)

geU™\Sp,,, uER™™ z€X,
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By Lemma 3.6, if g & P, (k)w,N,(k), we have f,(g,1,) = 0. If g € P,(k)w,N,(k), we can write
g = uampy (a)wpuy with uy,us € N, (k) and a € GL,, (k). We have f,(g,I,,) = Wy (a). Thus

\I’(Bm@ﬁo,ﬁ;) = Z Z Z Z Bﬂﬂ(w;}n’n(uwmn(a)wnul)wr,n,n)

a€Zp\GLy (k) uy €N, (k) uER™™ zEX,,

W (mp(a)wnuy)do(x) W (a).

It is easy to check that Wy (u1)dp = 0 for uy € N, (k), and we have

I, u)
wr__lnmulwr_nm = Iyr—p) € N,.(k) cU.
By Proposition 3.1, we get

1

B, 5(w Lz, () wnuy )W, ) = B, 5w, Z o (uzmn (@)wn)wr—n n).

7‘77n,n(
Thus we get

\I/(Bﬂ@vSO»fv) = [Ny (k)] Z Z Z Bﬁ,ﬂ(w;—ln,n(ummn(a)wn)wrfn,n)
a€Z,\GL, (k) u€R™™ z€X,,

@ (ma(@)w, )30 (2) W ().

Note that for u € R™", x € X,,, the element ux is of the form
Ir—n—l Yy

my 1 =z
I,

with y € Mat(,_,,_1)xn(k),z € Matyx, (k). For simplicity, we write

Irfnfl Yy
u(y,z) = 1 =z
I,

By conjugation, we have
uzmp(a) = my(a)u(ya, za).

Note that t,(a) = w,* My (@) Wr—p 1, and W, = w Wy Wr—p,n. We have

r—n,n r—n,n
wr__lmn(ummn(a)wn)w,._mn = tn(a)ixjr__ln,nu(yct7 Q)W Wr—p 5 = by (@)Wt (ya, za),
where v/ (ya, xa) = w;_ln7nw;1u(ya, TA)WpWy—p, . Plugging these calculations into the expression of

\II(BW7E7 60a ﬁ))? we get

(B, 300, Fo) = [Nu(K)| Z Z Z Bw@(tn(a){ﬁnu'(ya, xa))

a€Zn\GLn (k) yEMat (r_pn_1)xn (k) zEMat1xn (k)

W (Mg (@)wp)do(2)W,) (a).

Note that

Wy (my(@)wy)do(z) = e(det (a))@a_ 1(wy)do(xa).

By changing variable, we can get
U(B, .00, fo) = INa(R)] > > > B p(ta(@)@nu(y, x))
a€ Z\GLy (k) yEMat (1) x (k) 2E€Mata (k)

. e(det(a))@aq (wn)do ()W, (a).



GAMMA FACTORS AND CONVERSE THEOREMS FOR CLASSICAL GROUPS OVER FINITE FIELDS 15

We can check that
I, It Tty de_n_1
Iy Y
i(y,2) = ) & Spy. (k).
Iyt
I,
In particular, we have u/(y,x) € U. By Proposition 3.1, we have
B, 5(tu(a)w, (y, ) = B, 5 (tn(a)wn).
Thus we get

(42) W, 00 f) =Ch Y Bwan(a)an)(wa1<wn>ao<x>) e(det(a)) WV (a),

a€Z,\GLy, (k) 7 TE€EXn
where Cy = [Ny (k)| - [Mat(,._,_1)xn(k)| is a nonzero constant related to & (and also r,n).
By the Weil representation formula, see [GH17, p.220] or [LZ19, p.76], we have

1
U—1(wy)dg(x) = ——,
T

where ¥(In, 1) ) =Y, cpn (xJn'z), which is nonzero. Thus we get

z€X, 'V(Invw )
Let
Cr.=Ck Y W1 (wn)do(x) #0
z€Xn
Thus (4.2) becomes
(43) VB, 500, fo) = Ch Y Byg(ta(a)@n)e(det(a) W (a).
a€Z,\GL, (k)

The above equation is also valid if we replace m by 7’. By (4.1), we get
Z (Bﬂ@(tn(a)ﬁn) - Bﬂ,ﬂ(tn(a)ﬁn)) e(det(a))Wy(a) = 0.
a€Zpy\GL, (k)

Note that this is true for all v € 7 and all irreducible generic representations 7 of GL, (k). By
Lemma 4.2, we have

B, 5(tn(a)wn) = B, 5(tn(a)wn),Va € GLy (k).
This concludes the proof when 1 <n <.

We next consider the case when n = r. Recall that §7 € S(k") is the characteristic function of
e, =(0,...,0,1) € k". Let v € 7 and f, € I(T,E_l) still be the function considered in §3.6. By
(3.6), we have

V(B 7,071, fo) = Wu(1).
In particular, we have
\I}(Bﬂ—)aa 5;‘7 fv) = \II(BT‘—/,E7 6{7 fv)

By the functional equation and the assumption on gamma factors, we then get
\I,<BT(,E7 L fv) = W(BT(/7E’ {7 fv)a
where f, = M(r, @_1) fo. From the definition, we get
VB 5. f) = Y Bog(9)og- (9)8 (e fulo. 1),

geU\Sp,,.(K)
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By Lemma 3.6, if g ¢ P.(k)w,N,(k), we have f,(g,1,) = 0. For g € P.(k)w,N,(k), we write
g = urmy(a)wyuz. We have f,(g,I,) = W (a). Thus we have
V(B, 7 fv) = Z Bﬂﬂ(mr(a)wrug)wafl(mr(a)wruQ)éf(er)W;(a).
a€Z,\GL, (k)
By the Weil representation formula (see [GH17, p.220]),

—1
QE—I(UQ)(S{ = ’(/)U (UQ)(S{
And by Proposition 3.1,

Bwya(mr(a)wruﬂ = wU(ug)Bﬂ@(mr(a)wr).
We thus get
U(B, 507, f) = INc(R) Y By g(me(@)w, )@y (my(a)w,)d] (e,) W (a).
a€Z,\GL,(k)

Write a = (a;;) € GL, (k). By the Weil representation formula (see [GH17, p.220] or [LZ19, p.76]),
we have

Wy (e (a)wr)d7 (er) = e(det(a))wy-1 (w,)dy (e,a)

= L (aet(@) 3 B 2era) 100 ()
~v(I, zek”
_ %_le(detm)w‘l@aﬂ)-
Y( Lyt
Hence,
(4.4) V(B .07, f) = (0l Yo B pme()w)d (2am)e(det(a) W (a).

YL, ¥ ) aezNGL (k)

There is a similar equation for (B, 7,47, f»). The condition

W(Bﬂ,w>6{7ﬁ)) = ( USUR) fv)
thus implies that
S (B, gme(a)w,) — B 5(me(0)w,)$ " (2am1)e(det(a)) Wy (a) = 0.
a€Z,\GL, (k)

Note that this is true for all v € 7 and all irreducible generic representations 7 of GL,.(k). Therefore,
by Lemma 4.2,

(B, 7(m(a)w,) — By, 2(my(a)w,))P (2ar1) = 0,¥a € GL, (k).
Since @71(2%1) # 0, we get
B, z(m.(a)w,) = B_, z(m.(a)w;).

i

This concludes the proof. (Il

Proof of Theorem 4.1. Denote B(g) = Bﬂ@(g) — Bﬂ,@(g). By assumption and Theorem 4.3, we have
that

(4.5) B(tn(a)w,) = 0,Ya € GL,(k),V1 <n <r.

For w € B,,(Sp,, ), we show that B(tw) = 0 for all t € A. Let i > n+1, we consider the unipotent
element x,, () in the root space of «;. By (3.2), we can check that

WXq, (T) = Xq, (z)w.

Hence,
twXy,; () = Xq, (a4 (t)z)tw.
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Thus by Proposition 3.1, we have

() B(tw) = (ai(t)) B(tw).

If a;(t) # 1 for some i > n, we get B(tw) = 0 since z is arbitrary in the above equation and v is
nontrivial. We next assume that a;(t) = 1 for all ¢ > n. Then ¢ has the form

t = zm,(diag(a,...,an, 1,...,1)) = zt,(diag(as,...,an)),
for some z = +1I5, in the center of Sp,,.(k). By (4.5), we get
B(tw) = w(z)B(t,(diag(as, ..., a,))t,(w)w,) = 0.

Here w = w; = w, is the central character of 7 and 7n’. Therefore, we have proved that B(tw) = 0
for all t € A and all w € B,,(Spy,.) with 1 <n <r.

If w =1, we have B(t) = 0 for all t € A by Lemma 3.5 and the assumption w; = wy/. Then we
get B(tw) = 0 for all ¢ € A and all w € B(Sp,,.) by (3.3). By Lemma 3.2, we get B(g) = 0 for all
g € Spy,(k), Le., B, 5(g9) = B, 7(g) for all g € Sp,,.(k). By the uniqueness of Whittaker model, we
get m = /. This completes the proof of Theorem 4.1. O

4.3. Computation of the gamma factors. As a corollary of the proof of Theorem 4.3, we can
obtain an expression of the gamma factors v(7 x 7,1). Let 7 be an irreducible generic representation
of GLy(k). Let B_ 51 be the (normalized) Bessel function of 7, which is the unique function in

W(r, EZ) such that

—1
BT’Efl(ZngQ) = ’lﬁZn(ZlZQ)BT’E—l(g),VZ]_, 29 € Zn,

and

B, ;1) =1

The existence of B_ 51 can be proved similarly as in the Sps, case, see §3.1.

Proposition 4.4. Let © be an irreducible 1y, -generic cuspidal representation of Spy,. (k) and T be
an irreducible generic representation of GL,, (k).

(1) If 1 <n <r, we have
o q(2rn7n2+n)/2 _
Vrx )= —oeg— > B, 5(tn(a)wn)e(det(a)B, 51 (dna®).
YLy ¥ ) acz\GLn (k)
(2) If n =r, we have

r(r+1)/2 J—
qifl Z B, 5 (m;(a)w, )y 1(2ar1)6(det(a))87 E_l(dra*).

Y x 7)) = ——— ,
YULrs % ) aez\GL.(k)

Proof. (1) For v € 7, let f, € I(r,% ) be the section defined in §3.6. From the calculation in the
proof of Proposition 3.7 or (3.5), we get

\II(BmE? 50a fv)
From the proof of Theorem 4.3, in particular from (4.3), we get

(B, 700, f) =Cl > B g(ta(a)i,)e(det(a))W; (a),
9€Z,\GL,, (k)

= W,(1).

where
_ k"
Ollc =Cy Z ngl(wn)(so(m) = |Nn(k)| : ‘Mat(r—n—l)xn(k”‘il_l-
rz€e€X, 'Y(Invw )

—1
Now we fix a Whittaker vector v € 7, i.e., a vector v such that 7(z)v =9, (2)v for all z € Z,,. We

also assume that the Whittaker functional A € Homy_ (T, EZ) is chosen such that W, (1) = A(v) = 1.
The Bessel function B_-1 is the Whittaker function associated with v, i.e., B -1 (a) = A(7(a)v).
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From the functional equation, we get

o q(2rn—n2+n)/2 ~ )
’Y(Tl' X T, ¢) = ——1__ Z 67\—7E(tn(a’)wn)€(det(a))Wv (a’)a
YL,V ) gez\GLn (k)

where Wy (a) = A(7(dna™)v) = B_ Pl

(2) The proof is similar as the above case. For v € 7 and f, € Z(r, Eil) be as the above. Let
07 € S(k™) be the characteristic function of e,. By (3.6), We have

@(Bﬂyﬂv 5Ia fv) = Wv(l)

(dna*). The assertion follows.

By (4.4), we have

0B, .07, F) = S B (0w ane(det(a) W (@)
Y% ) ez \GL (k)

Now we pick v € 7 to be the Whittaker vector and A € Homy, (7, EZ) also be as above. Then we
have B_ E—l(ﬂz) = Wy(a) = A(7(a)v). The assertion then follows from the definition of (7 x 7,1))
directly. 0

Remark 4.5. If » > 1, n = 1 and x a character of GL;(k) = k*, then the formula in the above
proposition reads
(4.6) Y x X, 8) = — 2 3 B, s(ti(@)@)e(a)x (a).

’7(11 ’l/} ) ackX
Formula 4.6 shows that the GL; twist gamma factor of 7 is the Mellin transform of the Bessel
function B, 7;(t1(a)w:) against the character ex~!. Here the Mellin transform of a function on k*
against a character is just the “integral” of the product of this function with the character on k*.
Similar formulas have been proved for GLy(k) in [PS83], see also [Col4, §2], GL,, (k) in [Ro10], and
Ga(k) in [LZ18]. Tt is desirable to express gamma factors as certain Mellin transform of Bessel
functions for more general groups, see [Col4, §6].

5. GAMMA FACTORS AND A CONVERSE THEOREM FOR U,

The technique used in the previous sections can also be used to define gamma factors for Us,.(k) x
GL,,(k2) for 1 < n < r and then give a proof of the local converse theorem for Us,.(k), where k is
a finite field of odd characteristic, ko is the quadratic extension of k, and Us, (k) is the quasi-split
unitary group of size 2r associated with the extension ks /k. Since the proof is quite similar, we just
give a sketch in this section and highlight the differences in the proof.

Let F be a p-adic field with odd residue characteristic, and let E be a fixed unramified quadratic
extension of F. Denote by x — z* the unique nontrivial element in Gal(E/F). Let op (resp. og)
be the ring of intergers of F' (resp. E), pr (resp. pg) be the maximal ideal of o (resp. 0g). Let
wg/r be the class field character of I’ associated with the extension F /F. We assume FE and
F are chosen such that &k = op/op and ks = og/pg. We also denote by & — z* the nontrivial
Galois element in Gal(kz/k). For x € ko, let Try, p(2) =  + 2", Let I, : op — k be the natural
projection. Let 9 be a fixed unramified additive character of F' and let ¥ be the character of k
defined by (I, (t)) = ¥(twp"), where wp is a fixed generator of pp.

5.1. Weil representations. Let (V,(,)) be a skew-Hermitian space of dimension 2r over E. We
fix an isomorphism V 2 E?" and assume the skew-Hermitian form is given by

R — (JT JT) (0s).

Let Usg,.(F) be the isometry group of (V,(, )). Similarly, we can define the group Us,(k) for the
extension ko /k.

Let V' 2 E be the one dimensional Hermitian space with Hermitian structure defined by (v, v2) =
v1vs,v1,v9 € V'. Let Uy(F) = U(V’') be the isometry group of V’. Then the tensor product
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W =V ®g V' is a skew-Hermitian space and its underlying space over F' is a symplectic space with
the symplectic structure

(01 @], 02 @) = Trg p((v1,v2)01(v5)").

In this way, Us,.(F) x Uy (F) is a reductive dual pair in the group Sp(W) = Sp,,.(F'). Thus we have
an embedding Uy, (F') x U(V') < Spy,(F). Let wy be the Weil representation of %47.(17). Let u
be a character of E* such that its restriction to F'* is wg,p. Then it is known that the projection
%4T(F) — Spy,.(F') splits over Uy, (F) x U(V’). More precisely, there is a group homomorphism s, :
Uy (F) x U(V') = Sp,,.(F) which depends on y, such that the composition U, (F) — Sp,, (F) —
Spu, (F) is the embedding, see [HKS96, §1]. Thus we get a Weil representation wy ,, of Ua, (F) x U(V”)
via the embedding s,. Via the embedding Us,.(F) — Uy, (F) x U(V'), we also view wy , as a
representation of Uy, (F).

Over the finite field k, the group Us,.(k) can be embedded into Spy,.(k) naturally. Recall that we
have a Weil representation @y of Spy,. (k). Let € be the unique non-trivial quadratic character of
ki ={z € ko : zz* = 1}. We view € as a character of Uy,(k) via the determinant map. For the finite

unitary group Us,.(k), the Weil representation D’E associated with the character ¢ is defined to be
E/J = € ® Wy;, where wy; is the pull-back of the Weil representation of Spy, (k) to Ua,(k), see [GeT7,
Theorem 3.3]. Note that the space of Wy can be identified with S(k3).

5.2. General lattice model of the Weil representation. Let e;,i = £1,...,+£r be a basis of V
with
<€i,6]’> =0= <6,i76,j>, <6i7€,j> = (Si’j,Vi,j > 0.
Let L C V be the lattice
L =pge1 +ppe2+ -+ pge, +0ge_p +o0pe__1)+ -+ oge_1.
Let L* ={v eV :(v,b) € 0g,Vb € L}. Then we can check that
L*=o0ge; +---+oge, + wgloEe_T + -+ ZUElUEB_l,
i.e., wgL* = L. Set
Grp={9€ Uy (F):9.L =1L},
GL’0+ = {g e G : (g — 1)[/4< C L} .
Then we can check that G /Gp 04+ = Usr (k).

Recall that V' = FE is the one dimensional Hermitian space defined in the above section. Let
L' = o, viewed as a lattice in V’. Then L™ = {v € V' : (v,b) € 0p,Vv € L'} = L'. Similarly as G,
and G o4, we can define Gr and G+ o4. Then we have G /G o4+ = Uy (k).

Let

B=L"QLNLL*=LxoL,
which is a lattice in W, the underlying F' space of V ® g V'. As in Section 2.2, we can define the
group Kp and Kp. We have that Kg/Kg = Sp,,.(k). Moreover, the Weil representation of wy, of
Spy,(F) and the Weil representation wy; of Spy, (k) have the relation

)b =5

(ww | ke L

see [Pan02, Proposition 5.3] or Proposition 2.1.
Lemma 5.1. There exists a character i such that the natural homomorphism

w¢7#|GL — wlﬂ
is surjective between representations of U, (k).
Proof. Consider the dual pair U(V) x U(V”) as above. Let u be any character of E* such that p|px
is the class field theory character associated with the extension E/F. Such a p determines a map
B, : U(V) — C* such that

s, U(V) = UV)
9+ (9,B8u(9))
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is a group homomorphism, where U(V) is the inverse image of U(V) in é\f)u(F ) via the inclusion
U(V) — Spy,.(F), see [HKS96, (1.14), (1.15), p.952]. Moreover, the Weil representation wy , of
U(V) is exactly (wy)|g () © su- By [Pan01, Theorem AJ, there exists a choice of y such that 8,lc,
is a nontrivial quadratic character, say €. We fix such a character p. As a representation of G, we
have wy ulc, = (Wylkp)la, ® € =€ @ wy|q,. Note that for g € G 04, we have det(g) = 1. Thus
€|g,, = 1. Thus € defines a character of Uy, (k) = G /G, 0+, which must be € by the uniqueness of
quadratic characters on Us,.(k). By [Pan02, Proposition 5.3] or Proposition 5.1, there is a surjective
map wy|rx, — Wy of Sp,,.(k) representations. By restriction, we get a surjective map

/

w¢7M|GL =¢ ®wd}|GL - ww

of Uy, (k)-representations. O

26@)@%

5.3. Uniqueness of Fourier-Jacobi model.

Proposition 5.2. Let k be a finite field of odd characteristic and ko be the unique quadratic extension
of k (in a fized algebraic closure). Let P = MN be a parabolic subgroup of Us,.(k). Let my be an
irreducible cuspidal representation of Ua.(k) and 19 be an irreducible cuspidal representation of M.
Then we have

dim Homy,, (&) (7o, I(70) ® w/@) <1
where I(1) = Ind%f}v(k)(m)-

Proof. Applying Lemma 5.1, the proof is similar to that of Proposition 2.3 and can be reduced to
the uniqueness of Fourier-Jacobi models over p-adic fields for unitary groups proved by Sun [Sul2].
Note that, we also have an analogue of Proposition 2.2. O

Similarly, as in the Sp,,. case, the above result can also be extended to more general settings. See
§2.5 for the Sp,, case.
Assume that n <r —1. Let P = M N be the parabolic subgroup of Us,.(k) with Levi subgroup
M = {diag(al, ey Qs G,y yaY), a0 €KY g € Ugn(k:)} > (k)" x Ugn(k)

and unipotent subgroup V. Let
H =Usy,(k)x N CP.

Let
1 =z z
H, = I, 2" |,z €kl z€kp CUypio(k).
1

Note that H,, can be embedded into N. Note that, the group H,, is indeed the 4n + 1 dimensional
Heisenberg group. There is a Weil representation w’a of Uy, (k) X Hy,. Note that Uy, (k) X Hy, is a

subgroup of H, and any element h € H is of the form h = uhog with hg € H,,, g € Usg,.(k) and
z (%1 (%)

u= Iopnyo 07
z
where z is in the standard upper triangular subgroup of GL,_,_1(ks). Let vy be the representation
of H defined by
vg(uhog) = ¥ (u)wi(hog),
where hg € Hy, g € Us(k) and
z V1 (%)
u = Inpyo 7
z

r—n—1
@(u) = @ (T‘rk‘g/k‘ < Z Zi,i+1>> .

as above, and
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The representation v is well-defined, see [GGP12a, §12]. Let o be a representation of Uz, (k). We
can view o as a representation of H via the quotient map H — Usg, (k). Thus we can form the
representation o ® vy of H.

Proposition 5.3. Let 7g be an irreducible representation of GL, (ko) and mo be an irreducible cus-
pidal representation of Ua, (k). Then we have

dim Hom (7o, I(70) ® v) < 1.
The proof is similar to that of Proposition 2.4 Part (2) and we omit the details.

5.4. The gamma factors. Over a p-adic field extension E/F, the local and global zeta integrals
for generic representations of Us,.(F') twisted by generic representations of GL,,(E) for n < r were
studied in [BAS09]. In this subsection, we consider their finite fields analogues (in fact, integrals
over finite fields are finite sums). These integrals are quite similar to those defined for Sp,,.(k), see
§3.5.

Let 7 be an irreducible generic representation of GL,, (k2) and let I(7) := IndIUDfL"(k) (7). Recall that
P, is the Siegel parabolic subgroup of Uy, (k). Let Z,, be the upper triangular unipotent subgroup

of GLy,(k2) and let @Z be the character of Z,, defined by

n—1
@2(2) = Eil (Trkg/k (Z Zi,i+1>> , 2 = (Zij) c Z,.

i=1
Fix a nontrivial Whittaker functional A = A, € Homy_ (T, EZ) Let Wy (a) = A(7(a)v) and W (a) =
A(7(dna*)v) for a € GL,(kz). Here d,, = diag(—1,1,...,(-1)") € GL,,. For £ € I(7), let fe(g,a) =

A(1(a)é(g)),a € GLy(k2), g € Uap (k). Let Z(, EZ) be the space of all f¢ as & € I(7).
Let 7 be an irreducible cuspidal representation of Us,.(k). Let w’w be the Weil representation of

Uz, (k). Let U™ be the upper triangular unipotent subgroup of Us, (k) and ¢, be any fixed generic
character of U". For W € W(r,¥y.), f € I(7, @Z), ¢ € S(k}), we can define
(5.1)

Y(W, 9, f)
o ZgEU"\UQn(k) ZUERT»" erXn W(wr_—ln,n(vxg)wrfn,n)wlafl (g)¢(x)f(gv In)a 1 <n< T,
| ZsevnUan) W(g)w'@—l (9)p(er) f(g,1)dyg, n=r.

Here X,,, R™" and w,_,, , can be defined similarly as in the Sp,, case, see §3.5.
Similarly, as in Proposition 3.7, we can pick W, ¢, f such that U(W, ¢, f) # 0. Following Propo-
sition 5.3, analogous to Proposition 3.8, we have the following

Proposition 5.4. Let k be a finite field with odd characteristic and ko/k be a fized quadratic ex-
tension. Let m be an irreducible generic cuspidal representation of Us,.(k) and T be an irreducible

generic representation of GL,,(ks) with n < r. Then there exists a complex number (7 x T,%) such
that

— —
YW, ¢, M(7,¢p ") f) =~(m x7,)¥(W, D, f),

for all W € W(m,¢yr), ¢ € S(k%) and f € I(r, @Z) Here M (T, Eil) is the intertwining operator

defined similarly as in the Sp,, case.

5.5. A converse theorem. Similarly, as in the Sp,,. case, the gamma factors defined in Proposition
5.4 are enough to determine the representation 7 itself, i.e., we have the following

Theorem 5.5. Let 7,7 be two irreducible generic cuspidal representations of Ua, (k). Assume that
m, 7 are generic with respect to the same additive character ¥ and

Y x 7)) = (1’ x 7,9)
for all irreducible generic representations T of GLy,(ka) and for alln with 1 <n <r. Then m = 7'

Since the proof of the above theorem is similar to that of Theorem 4.1, we omit the details.
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5.6. Computation of the gamma factors. Although we omitted the details of the proof of
Theorem 5.5, we would like to include the computation of gamma factors for Usa,.(k), which will be
useful for applications.

Let m be an irreducible 1,.-generic cuspidal representation of Ug,.(k) and 7 be an irreducible
generic representation of GLy,(k2). Let B, 7 (resp. 87@_1) be the Bessel function of 7 (resp. 7) as

usual. Let ¢ = |k|. Thus |ks| = ¢. Recall that we have the Weil representation formula
Do (wa)g(@) = eo(@)a " D P(Triy (@ n'y))d(y),

yeky
where ¢(7)) is certain Weil index associated with ).

Proposition 5.6. (1) If 1 <n <r, we have
A A —n?—n =~ *
v(m x 7, 0) = eo ()" Y. B y(ta()@n)B, 51 (dpa”),
aEZn\GLn(k2)
where t,(a) = diag(a, Isy_opn,a*), and a* = J,'a*J,,.
(2) If n =r, we have
—_ —_ 2—T - *
y(m X 1,9) = eo(h)q" Z Bﬁ@(mr(a)wr)w(Ter/k(arl))BT,E_l(dna ),
a€Z,\GL(k2)

where a = (a;j) € GLy(k2),1 <4,5 <.

Proof. The proof is similar to that of Proposition 4.4 and we only sketch some details for (1). Let

v €7 and &, € I(7) be the section such that supp(&,) = P, = M, N,, and &,(my(a)u) = 7(a)v,
where a € GL,(k2),u € N,, and m,(a) = diag(a,a*) € Uan(k). Let f, = fe, be the corresponding

function in Z(r, E;) and f, = M(r, a_l)fv. Let 09 € S(k%) be the characteristic function of 0 € k3.
Similarly as in Proposition 3.7, we can compute that
\II(Bﬂ—7ﬂa 607 fv) = W'U(l)
Similar to the calculation in the proof of Theorem 4.3, we have
VB, 5.0 f)=Ch Y Buglta(a)@) W (a),
a€Z, \GLn (k2)
where the notations are similar to the Sp,,-case, and
Cio = INu (k)] Mat(r—n1ysn(k2)| Y W1 (wn)do ().
reX,
Note that in our case

No(k) = {(1 )1() L X € Matpsn(ka), X" = JnXJn}.

Thus we get |Ny, (k)| = ¢"*. On the other hand, we have
W (wn)So(x) = €o(P)g " D (T ji(2a'y*))d0(y) = €o()g "
yeky

Thus
Z w’a_l(wn)éo(x) =eo(¥)q".
TEXn
We then get
Ch. = eo(@)q" T,
Thus if we take v € 7 to be the Whittaker vector such that W, (1) = 1, we can get
WX B ) =@ YT B g(ta(@)@) W (a)

a€Z, \GLy (k2)

=@ " B g(ta()@a)B, -1 (dna®).
a€Zp\GLy, (k2)
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This concludes the proof. O

6. GAMMA FACTORS AND A CONVERSE THEOREM FOR Ug,41(k)

Let k be a finite field of odd characteristic and ko be the quadratic extension of k. Let = +— x*
be the nontrivial Galois element in Gal(ka/k). Let k3 = {x € ko : x2* = 1}. As in previous sections,
for a positive integer m, set

Ty = <Jm1 1) € QL (k), J1 = (1).

Let

Upn (k) = {9 € GLin(k2) : gJm'g" = g} -
Note that, if m = 2r is even, then the definition of Us, is a little bit different from that defined
in §5. In fact, the unitary group Us, in §5 was defined by a skew-Hermitian form and the group
Usgy (k) considered in this section is defined by a Hermitian form. One can check that they are
isomorphic. Here by abuse of notation, we use the same notation to denote the “Hermitian” version
of the unitary group.

6.1. Notations. The notations used here follows from that of [BAS09, Zh18] closely. For m = 2n
even, we denote by P, = M,, x N,, the Siegel type parabolic subgroup of Us,, where

M, = {mn(a) — (“ a*) € Ugn(k),a € GLn(kg)}, N, = {u(x) — <I" f) E UQn(k)}.
Here a* is determined by a such that m(a) € Uy, (k). In fact, we have a* = J,%(a™')"J,. Denote

Wy, = ( I In) € Usy,. Let B, = A,,U,, be the upper triangular Borel subgroup with maximal

torus A,, and maximal unipotent U,,.

The center of Ug,.1(k) is consisting of elements of the form diag(z,z,...,2,2),2 € ki. We will
identify ki with the center of Ug,.. (k) via the map z ~ diag(z,z,...,2,2). A typical element
t € Ag,41 has the form

t = zdiag(as,...,ar, 1, (a; 1Y) ..., (a7 1)), 2 € k3 an,. .., ap € K.

Define characters «;,1 <7 <17 on Ag,41 by
a;(t) = ai/aiy1,1 <i<r—1a.(t) = ay,
where t = zdiag(ay, ..., a1, (a 1) ..., (a7 h)"). Denote A(Usz,y1) = {y, 1 <i < r}, which is the

set of simple roots of Ug,41(k).

For n < r, we consider the embedding Us,, (k) — Ug,41(k)
I,

a
(a Z) — 1
¢ c d
I’l‘*’ﬂ

Through this embedding, we will identify Us, (k) as a subgroup of Us,1(k) without further notice.
Thus the element w,, € Us, can be viewed as an element of Ug,.;; for n < r.
For a € GL,(k2), following [BAS09], we denote

a
a” = 1
a*
I AN
For n < r, denote wy, y—n = (I ”) . Note that w;}r_n = Wy_p,n. Denote
r—n
I,
~ -1
Wn = Wn,r—nWnWy r_p = 12(7'_'”)"‘1

I
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6.2. Uniqueness of Bessel models. We review a special case of Bessel models considered in
[GGP12a).

Fix a pair of integers n,r with n < r. We denote P = M N the parabolic subgroup of Usg,1(k)
with Levi subgroup

M = {diag(alv vy Qp_n, g, (a;—ln)bv CII) (al_l)b)a a; € k;ag S U2n+1(k)} )

and unipotent subgroup N. Consider the character 1 defined by

r—n—1

Uy (ui) =9 ( > Trpgw(uiisn) + Trkz/k(ur—n,r+l)> su = (uij)i<ij<2r+1 € N.

i=1
Denote by H the following subgroup of P:
H = Uy, (k) x N.

Recall that we always identify Us,, with a subgroup of Us,;; and with this identification, Us, is a
subgroup of M. In matrix form, we have

u * * * *
a b x b
H= 1 s |ueZ (“ d) € Uan,a,b,c,d € Mat, xn(k2)
c d * ¢
,LL*

Here Z,_, is the upper triangular unipotent subgroup of GL,_,(k2). There exists a representation
v of H such that v|u,,x) =1, and v|y = ¥ y. See [GGP12a, §12]. Then, we have the following

Proposition 6.1. Let P’ = M'N’ be a parabolic subgroup of Uan(k) and o be an irreducible
representation of the Levi M'. Let w be an irreducible cuspidal representation of Us,.11(k) and
7 =ndV" (6 © 1x). Then
(1) If n =r, we have
dim Homy,, () (7, 7) < 1.
(2) For1<mn<r. We have
dim Hompg (7,7 @ v) < 1.

Proof. If o is cuspidal, the assertion is [GGP12b, Propositions 5.1 and 5.3]. If o is not cuspidal, then
there exists a parabolic subgroup Py = MyNy of M’ and an irreducible cuspidal representation o of

My such that o C Ind%;NO (co®1p,). Since Indtﬂjffl\(/f) (Ind%;No (00 ®@1n,)®@1N/) = IndUMQO”I\(,IﬁV, (o0 ®
1n,N7), the assertion follows from the case that o is cuspidal. O

6.3. Gamma factors. As an analogue of the p-adic fields case, we define gamma factors for generic
representations of Ug,41(k) x GL,, (k2).
Let 7 be an irreducible generic representation of GL,(k2). We view 7 as a representation of

M, = GL,(k2) and consider the induced representation I(7) = Indgi"(k)(r ® 1n,). Let Z, be
the upper triangular unipotent subgroup of GL, (k2) and let Ez be the character of Z, defined

similarly as in §3.4, and let A = A, € Homg, (7, EZ) be a fixed nonzero Whittaker functional. Let
Wy(a) = A(m(a)v) and W (a) = A(r(dpa*)v), where d,, = diag(—1,1,...,(=1)"). For £ € I(7), let
fe : Uy (k) x GLy,, (k) — C be the function defined by

fe(g,a) = A(7(a)é(g))-
Let Z(r, @2) be the space of functions f¢, & € I(7). Similarly, as in §3.4, we have a standard
intertwining operator M (r, a_l) s I(T, @Z) — I(T*,@Z).

Recall that U, is the upper triangular subgroup of U, (k). For simplicity, write U™ = Us, for
1 <n <rand write U = Ugpq1. Let ¢y be the generic character of U defined by

Yy(u) =9 (Z Ui,i+1> Ju = (u;;) € U.
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Let 7 be an irreducible t;-generic cuspidal representation of Usg,.y1(k). Let W(m, ) be the
Whittaker model of 7. .
For W € W(rm,¥y), f € Z(1,v 4, ), we consider the “integral”

UMDY > W<wn” (IT” f)hw) F(h, 1),

heU™\Uzy, (k) zEMat(y_pn)xn(k2)

The above “integral” is the finite fields analogue of the corresponding integral over p-adic fields, see
[BAS09].

We first show that the above integral is non-vanishing for some choices of W, f. Let 7w be any
irreducible v;-generc cuspidal representation of Usa,.y1(k). Let B, 7 be the (normalized) Bessel
function with the following properties

and
Bw’a(ulguﬁ = EU(WUQ)BW,E(QLVQ (S U2r+1(k)7U1,U2 eU.
The existence of such function can be proved similarly as in the Sp,, case, see §3.1. Given v € T,

a fixed irreducible generic representation of GL,,(kz2), we consider the section &, € I(7) such that
supp(&y) = P, = M, N,, and

&(mp(a)u) = 7(a)v,a € GL,(k2),u € N,,.
—1 ~ —1
Let f, = fe, € I(1,70 5, ) and f, = M(1,9 ) fo.
Lemma 6.2. There exists a choice of v € T such that
\II(BW,$7 fv) 7é 0.

Proof. The proof is similar to that of Proposition 3.7 and we give a sketch here. By the definition
of f,, we have

\IJ(B‘"@’ fo) = Z Z )BW,E (wn,r—n (Ir_n Ii) mn(a)w;,lr—n> Wy (a)

a€Zn \GLyp (k2) zEMat(r_ ) xn (k2

oy ag((,))me

a€Zn\GLyp (k2) zEMat (. _pn)xn (k2

By similar results as in Corollary 3.4 and Lemma 3.5, we get

AN
B —|(* =0, unless x =0, and a € Z,.
™ €T Ir—n

V(B 7, fo) = Wu(1).
We can pick v € 7 such that W, (1) # 0 and the assertion follows. O

Thus we get

Proposition 6.3. There is a constant v(w x 7,1) € C such that
— 1 —
YW, M(r,¢ ") f) =~(m x7,9)¥(W, f),
for all W € W(rm,¥y), f € I(T,ﬂgi).

Proof. One can check that both (W, f) — ¥(W, f) and (W, f) — U(W, M (7, Eil)f) define linear
functionals in Hompy (7 ® I(7),v). Thus the result follows from Proposition 6.1 and Lemma 6.2
directly. 0

Similarly, as in the Sp,, and Us, cases, the gamma factor v(m X 7, E) can be expressed in terms
of Bessel functions B_ 7 and BT 7 of m and 7 respectively. For 1 <n <r and a € GL,(k2), denote

tn(a) = diag(a, Ior—p)+1,a") € Uzpi1(k).
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Proposition 6.4. We have

Y x @) =g 3 B (ta(@)@n) B, 51 (dea”),
a€Z,\GL,, (k2)

Proof. For v € T, let f, € Z(T, EZ) be the section as in the proof of Lemma 6.2. We have
W(B, 5, fu) = Wul1).
We now compute \IJ(BW@,]};) where fv = M(r, E_l)fv. By an analogue of Lemma 3.6, we have
supp(fy) = Mpw,N,, and for a € GL, (k2),u € N,,, we have
Folmn(@)wpu, I,) = Wy (a).
Thus we get
V(B, 7, fo)

A
> > B, (wnn (Ir_n f) hwn;n> fo(h, L)
) n

heU™\ Uz, (k) 2EMat () xn (k2

Irfn " — *
|N’n| Z Z BW,E <w"v7"—” < f) m"(a)w"wn;'—n> Wv (a)

a€Zp\GLy (k2) zEMat (- n)xn (k2)

=INa) D > B, 5 (tn(a)wnu (z)) Wy (a)

aEZn\GLn (kg) xEMat(,,.,”) «n(k2)
= |No[[Mat(pysn(ka)l Y B g (ta(a)@n) W (a),
a€Z, \GL,, (k2)
where
I, T
I x’
Uy (.T) = 1 S U2T+1.
I’r’—n
L,
Note that | N, | = q”2 and [Mat(,_p)xn(k2)| = qz’""’2"2. Thus we get
ra 'I"'I'L*TL2 —~ *
(6.1) (B, 5 fo) = ¢ Yo Beg(tal@)@,) Wia).

a€Z,\GL, (k2)

By taking v € 7 the Whittaker vector and applying the functional equation, we get the result. O
6.4. A converse theorem. Similarly, as in the Sp,, and Us, cases, we also have the following

Theorem 6.5. Let 7,7 be two irreducible 1;-generic cuspidal representations of Us, 11 (k) with the
same central character. If

V(mx7,4) =(r" x 7,9)
for all irreducible generic representations T of GLy(ka), for all n with 1 <n <r, then 7 = 7’.

Note that in the Usy.y1 case, there is only one class of generic characters of U. Thus if 7 is
1 r-generic, then it is generic with respect to any generic character E/U of U. A p-adic version of
Theorem 6.5 was proven in [Zh19].

The proof of Theorem 6.5 is quite similar to that of Sp,, case and is sketched below.

Write B = Bg,y1 and A = Agry1. Then B = AU is the upper-triangular Borel subgroup
of Ugpq1(k) with torus A and maximal unipotent U. Recall that 7,7’ are the two irreducible
1 r-generic cuspidal representations in the assumption of Theorem 6.5, let Bw,@ and Bﬂ,@ be the
corresponding (normalized) Bessel representations. The idea is to prove that

(62) Bma(g) = Bﬂ/@(g),Vg € BwB,Yw € W(U2r+1),
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where W (Ug,.1) is the Weyl group of Usg,41(k). Since Ugryq(k) = HweW(UQTH) BwB, the above
equality implies that m = 7’ by the uniqueness of Whittaker models of m, 7.
Let

B(Ugrt1) = {w € W(Usg,y1) : wey; is either simple or negative, Va; € A(Ugpiq)}.
The same proof as in Lemma 3.2 will show that, if w ¢ B(Usg,.41), then
B, 5(9) =B, 5(9) = 0,Vg € BwB.
Thus it suffices to show that
(6.3) B, 5(9) =B, 5(9), Vg€ BwB,Vw € B(Usg41).

Given w € B(Ugyry1), set 0, = {8 € A(Ugpi1),w(5) > 0}. As in the Sp,, case, the assignment
w +— 6, defines a bijection from B(Us,11) to P(A(Uz.41)), the set of all subsets of A(Usg,y1).
For simplicity, we will write A(Usg,41) as A in the rest of this section. Given a subset § C A, let
wp € B(Usgp41) be the corresponding element such that 6,,, = 6. As Lemma 3.3, We can check that

(6.4) wy, is a representative of wa_(q,},1 <n <7
In the following, we don’t distinguish a Weyl element and its representative and just write that
@n = wA_{an}.

The main step towards a proof of (6.3) is the following analogue of Theorem 4.3.

Proposition 6.6. The condition (7 x 7,%) = (7' x 7,v) for all irreducible generic representations
7 of GL, (k) implies that

Bﬂ@(tn(a)ﬁn) = Bﬂ/@(tn(a)@n)ﬂa € GL, (ko).

. . . . ——1 .
Proof. For an irreducible generic representation 7 and v € 7, let f, € Z(7,1 ;) be the section used
in Proposition 6.4. We have

U(B, 5 fo) = U(B, 5, f) = WalL).
By the condition y(m x 7,%) = (7’ x 7,), we get that
V(B 5, fo) = V(B 3. f).
By the calculation of ¥(B, 7, fu) in (6.1) and its analogue of V(B 7, f.), we get that
> Beg (tal@)in) = By g (ta(a) ) Wi (a) = 0.
a€Z,\GLy, (k2)

Since the last equation is true for all irreducible generic 7 and all v € 7, by Lemma 4.2, we get

B, 7 (tn(a)wn) — B 7 (tn(a)wn) = 0,Va € GLy (k2).

L

This concludes the proof. O

Following Proposition 6.6, the rest of the proof of Theorem 6.5 is similar to that of Theorem 4.1
and we omit the details.

7. A CONVERSE THEOREM FOR SOg,1(k)

In this section, let k be a finite field without any restriction on the characteristic.



28 BAIYING LIU AND QING ZHANG

7.1. Notations. The notation we adopt here follows from the analogous notation in the Us,. 1 case
as in §6, see also [BAS09, Zh18|, which is slightly different from the original context [S093] and
[Kal5].

For a positive integer m, we still denote

Ty = <Jm_1 1) = (1),

SO (k) = {g € GLy(k) : ‘g mg = Jm} .
For m = 2n even, we denote by P,, = M,, X N,, the Siegel type parabolic subgroup of SO,,,, where

M, = {mn(a) - (“ a*> € SOum(k),a € GLn(k)}, N, = {un(x) - (I“ ;;) c SOQn(k)}.

Here a* is determined by a such that m,,(a) € SOs,. One can check that a* = J,%a"1J,. Denote

I") € SOuy (k).

Let

Wy =

L,

Let B,, = A,,U,, be the upper triangular Borel subgroup of SO, (k) with maximal torus A,, and
maximal unipotent U,,. In this section, we will mainly consider the case that m is an odd positive
integer, i.e., m = 2r + 1. A typical element t € Ay, has the form

t = diag(as,...,a,, 1,0t ... a7Y),a1,...,a, € KX,
Define characters a;,1 <i <, on Ag.11 by
a;i(t) = a;/ai+1,1 <i <r—1;a.(t) = ap,

where t = diag(ai,...,a,,1,a:,...,a;"). Denote A(SOq,41) = {;, 1 <4 < r}, which is the set of
simple roots of SOg;.41.
For n < r, we fix an embedding SOs,, (k) — SOg,11(k)

Ir—n
a
(Z Z) —> 1
c d
IT—’I’L

An element of SOy, (k) will be viewed as an element of SOg,.41 through this embedding without
further notice.
For a € GL,.(k), we denote

a’ = 1 € SOQT+1 (k‘)

a*

I,

A
) . Note that w;lr_n = Wy_p,n. Denote
Irfn ’

For n < r, denote wy, y—n, = (

L,
1

Wy = wn,7'—nwnw;7r_n - IQ(r—n)—i-l

n
7.2. A multiplicity one result. Bessel models for SOg,1; are similar to those in the Ug,11 case

considered in §6. We state the definition here for completeness.
Let P = M N be the parabolic subgroup of SOs,.;1 with Levi subgroup

M= {diag(al, Uy goat o aT) e €KX g € SOQn+1(k’)} ,
and unipotent subgroup N. Denote by Z,_, the upper triangular unipotent subgroup of GL,_,(k),
which is embedded into N in the natural way. Denote by 15 the character on N defined by

r—n—1

U (ugj) = ( Z U i1+ urn,r+1> Ju = (uij)i<ij<ort1 € N.

i=1
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For example, if n = 1,7 = 2, we have

1 21 zo 23 24

B 1 xh B
Yy 1 zh [ | = v(x2).
1 2
1
Denote by H the following subgroup of SOg;41:
H= SOQn x N.
In matrix form, we have
Uk ox k%
a b x a b
H= 1 x | ,u€ Zr_p, (c d> € SOay, a,b, c,d € Mat, xn (k)
c d
u*

There is a representation v of H such that v|y = ¢, and v[so,, ) = 1, see [GGP12a, §12]. The
pair (H,v) is called a Bessel data of SOg,11(k).

Proposition 7.1. Let P’ = M'N’ be a parabolic subgroup of SOa, (k) and o be an irreducible
representation of the Levi M'. Let w be an irreducible cuspidal representation of SOg.y1(k) and
T= Indi(?z“(k)(a). Then
(1) If n =r, we have
dim Homsozr(k) (7‘(, 7') S 1.
(2) For1<n<r. We have
dim Hompy (7,7 ® v) < 1.
Proof. The proof is similar to that of Proposition 6.1. We omit the details. O

7.3. The gamma factors. Twisted local gamma factors for SOs,- 1 X GL,, over a p-adic field have
been defined by Soudry in [S093]. We consider their analogues over finite fields.
Let 7 be an irreducible generic representation of GL, (k). We view 7 as a representation of

M, = GL,(k) and consider the induced representation I(7) = Indi(:Z”(k) (7). Let @2 be the
character of Z, (k) defined as in §3.4, and let A, € Homg, (T, @;1) be a fixed nonzero Whittaker
functional. For & € I(7), let fe : SOg2,(k) X GL, (k) — C be the function defined by
fe(g,a) = A-(7(a)é(9))-

Let Z(r, EZ) be the space of functions f¢, & € I(r). Similarly, as in §3.4, we have a standard
intertwining operator M (r, ﬂ_l) 2 I(r, @Z) — I(T*,@Z). Let W,(a) = A(r(a)v) and Wi(a) =
A(7(dpa*)v) for a € GL,(k), where d,, = diag(—1,1,...,(—1)") € GL,, as usual.

Recall that Uy, is the upper triangular subgroup of SO, (k). For simplicity, write U™ = Us, for
1<n <rand U = Usryi. Let ¢; be the generic character of U defined by

Yy(u) =9 (Z ui,i-i—l) Ju = (u;;) € U.
i=1

Let 7 be an irreducible 1 -generic cuspidal representation of SOaq,11(k). Let W(m, ¥y) be the
Whittaker model of 7. .
For W € W(rm,¥y), f € Z(1,v 4, ), we consider the “integral”

=Y ) W<wn,rn (IT” f)hw) F(h, 1),

heUn\SOzy, (k) xEMat (;_pn)xn (k)

Similarly, as in the Usg,;; case, analogous to Lemma 6.2, we can show that there exist choices W, f
such that ¥(W, f) # 0.
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Proposition 7.2. There is a constant v(m x 7,v) € C such that

—1
YW, M(r,4p ) f) =~(m x7,9)¥(W, f),
for all W € W(m, %), f € T(1,%7.)-
Proof. This follows from Proposition 7.1 directly. ]

Similarly, as in Proposition 6.4, we can express v(m X T,%) in terms of Bessel functions. Let
7 be an irreducible generic cuspidal representation of SOg,+1(k) and 7 be an irreducible generic
representation representation of GL,, (F) with 1 <n < r. Let B_ 7 and B 7 be the corresponding

(normalized) Bessel functions of 7 and 7 respectively.

Proposition 7.3. We have

Y x ) =g RN B (ta(@)a) B, o1 (daa”)
a€Z,\GL, (k)

The proof is similar to that of Proposition 6.4 and we thus omit the details.
7.4. A converse theorem. Similarly, as in the Sp,, and Us, cases, we also have the following
Theorem 7.4. Let m, 7' be two irreducible 1y -generic cuspidal representations of SOop 11 (k). If

Y(m x 7 ) = (' x 7,9)
for all irreducible generic representations T of GLy,(k), for all n with 1 <n <7, then m = 7’

Note that in the SOg,41 case, there is only one class of generic characters of U. Thus if 7 is

1 -generic, then it is generic with respect to any generic character E/U of U.
The proof of Theorem 7.4 is similar to that of the Ug,11 case and is thus omitted.
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