
Fooling Edge Computation Offloading via
Stealthy Interference Attack

Letian Zhang, Jie Xu
Department of Electrical and Computer Engineering, University of Miami, FL, USA

Abstract—There is a growing interest in developing deep
learning methods to solve many resource management problems
in wireless edge computing systems where model-based designs
are infeasible. While deep learning is known to be vulnerable
to adversarial example attacks, the security risk of learning-
based designs in the context of edge computing is not well un-
derstood. In this paper, we propose and study a new adversarial
example attack, called stealthy interference attack (SIA), in deep
reinforcement learning (DRL)-based edge computation offloading
systems. In SIA, the attacker exerts a carefully determined level
of interference signal to change the input states of the DRL-
based policy, thereby fooling the mobile device in selecting a
target and compromised edge server for computation offloading
while evading detection. Simulation results demonstrate the
effectiveness of SIA, and show that our algorithm outperforms
existing adversarial machine learning algorithms in terms of a
higher attack success probability and a lower power consumption.

I. INTRODUCTION

Edge computing is an emerging computing paradigm that
enables in-situ processing of computation workloads locally at
the network edge without moving them to the cloud, achieving
lower latency, better privacy protection and reduced traffic
burden on the core network. A central research problem in
edge computing is how mobile devices’ computation tasks
should be offloaded to the edge servers. As the wireless
network becomes increasingly complex and future applications
pose diverse requirements, there is a growing trend to employ
machine learning, especially deep learning, to address many
resource management and scheduling problems in wireless
edge networks, where model-based designs become infeasible
[1]–[3]. For example, a particular machine learning method,
namely deep reinforcement learning (DRL), has been widely
adopted to solve computation offloading problems in edge
computing for various design objectives [3]–[5], as it is able
to deal with large state and action spaces and capture the
temporal dependency of offloading decisions.

Although deep learning has achieved a huge success in
various application domains, new security risks have also been
exposed. It has been shown in many existing works [6]–[8] that
adversarial examples can be crafted to fool machine vision
systems to make wrong decisions. Such adversarial example
attacks are possible because a minor modification in the input
data to the deep learning algorithm may lead to a dramatic
change in the output. While a significant amount of effort

This work is supported in part by the Army Research Office under award
W911NF-18-1-0343 and by the National Science Foundation under awards
2029858, 2033681 and 2006630.

has been dedicated to studying adversarial example attacks in
areas like machine vision, speech recognition and computer
gaming, the understanding of adversarial example attacks in
learning-based wireless edge system designs is very limited.

In this paper, we study a new type of adversarial example
attack, called stealthy interference attack (SIA), in DRL-
based edge computation offloading systems. The goal of the
attacker is to fool the mobile device in selecting a target and
compromised edge server for computation offloading, thereby
stealing the mobile device’s private data. Unlike images in
machine vision, the adversarial input to the DRL-based com-
putation offloading policy is crafted by carefully exerting an
appropriate level of interference signal. Unlike conventional
jamming attacks in wireless networks, the interference power
is made as low as possible to evade detection by the system.

Specifically, we consider a stochastic edge computation
offloading system where a mobile device decides which edge
server to offload the computation task to, considering time-
varying system dynamics and handover costs. We then for-
mulate this problem as a Markov decision problem (MDP)
and design a double deep Q-network (DDQN) [9] to learn the
optimal computation offloading policy to minimize the long-
term offloading cost. Based on the obtained DRL policy, we
design the stealthy interference attack to fool the mobile device
in offloading the computation task to the target edge server
and optimize the amount of interference power exerted by the
attacker. Simulation results are provided to demonstrate the
effectiveness of SIA and show that our algorithm outperforms
existing adversarial machine learning algorithms in terms of
a higher attack success probability and a lower interference
power consumption.

II. DRL-BASED EDGE COMPUTATION OFFLOADING

We consider an edge computation offloading problem of a
representative mobile device. Because of its limited computing
power, the mobile device has to offload its application data to
an edge device for processing. We assume that there are a set
M = {1, 2, . . . ,M} of candidate edge servers (ESs) in the
transmission range of the mobile device, which, for example,
can be co-located with base stations. We adopt a discrete-time
model for this MEC system, where time is divided into time
slots of equal length κ0, which are indexed by t = 1, 2,

A. System model

In each time slot t, the mobile device generates a computa-
tion task rt = (μt, νt), where μt is the data size of the task and

20
20

 I
E

E
E

/A
C

M
 S

ym
po

si
um

 o
n

E
dg

e
C

om
pu

tin
g

(S
E

C
)

| 9
78

-1
-7

28
1-

59
43

-0
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/S

E
C

50
01

2.
20

20
.0

00
62

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 24,2021 at 00:48:55 UTC from IEEE Xplore. Restrictions apply.

νt is the required total number of CPU cycles to accomplish
the task. We assume that μt is bounded in [μmin, μmax] and
νt is bounded in [νmin, νmax]. We consider delay-sensitive
applications where the execution time of the computation task
rt has to be no longer than the time slot length κ0. At the
beginning of each time slot t, the mobile device has to take
an offloading control action ct ∈ {{0} ∪M} to decide which
ES to offload the computation task to. The mobile device is
allowed to process the task locally without offloading, in which
case c0 = 0. Otherwise, it picks one of the ESs in M.

Local processing: The energy consumption for processing
the task on the mobile device itself during the time slot t (i.e.
ct = 0) can be written as

El
t = f2 · e · νt (1)

where f is the CPU frequency of mobile device, e is the ef-
fective switched capacitance that depends on chip architecture
of the mobile device. With the allocated CPU frequency f ,
the computation time of local task execution is given by

dct = νt/f (2)

Edge offloading: The transmission rate between the mobile
device and ES m ∈ M can be written as

τmt = W · log2
(
1 +

gmt · ptx
N + α

)
(3)

where W is the bandwidth allocated to the MEC system,
gmt is the channel state between the mobile device and ES
m in time slot t, ptx is the transmission power, N is the
noise power and α is the background interference power.
Therefore ψm

t = gmt ptx/(N +α) is the signal-to-interference-
plus-noise ratio (SINR). We assume that the SINR comes
from a continuous space B = [ψmin, ψmax], where ψmin

and ψmax are the minimum and maximum possible SINRs,
respectively. Thus, the transmission delay and the transmission
energy consumption are given as

dtxt = μt/τ
m
t , Etx

t = dtxt · ptx (4)

Handover: We assume that in each time slot t, the mobile
device can only connect with one ES. Let ρt denote the ES
that the mobile device is connected with in time slot t, which
evolves depending on the current time slot offloading decision
ct and the previous time slot connection ρt−1 as follows:

ρt = m · 1{{ct=m}∨{{ρt−1=m}∧{ct=0}}} (5)

where the symbols ∨ and ∧ mean logic OR and logic AND,
respectively, and 1{∗} is the indicator function. Specifically, if
the mobile device chooses to offload the computation task to
ES m, then the connected ES must also be m. If the mobile
device chooses to process the computation task locally, then
the connected ES remains the same as that in the previous
time slot. In the case that the connected ESs are different
between two consecutive time slots, a handover occurs and an
additional delay cost is incurred, which is denoted by

dht = η · 1{ρt−1 �=ρt}} (6)

Thus, the total task execution delay dt and energy consump-
tion Et are as follows:

dt =

{
dct if ct = 0
dht + dtxt if ct ∈ M (7)

Et =

{
El

t if ct = 0
Etx

t if ct ∈ M (8)

Task failure: Since we focus on delay-sensitive tasks, task
execution must be finished by the end of time slot t. This
may be because (1) the computation task is offloaded to some
ES but the result cannot return before the deadline or (2) the
computation task is locally processed but the mobile device
cannot finish processing in time. In both cases, the task fails
and is dropped and hence, the mobile device incurs a failure
penalty, which is denoted by

φt = 1{dt>κ0} (9)

B. MDP Formulation
We formulate the edge computation offloading problem as

a Markov decision process (MDP) problem and derive the
optimal offloading policy based on DDQN.

State: The state of the mobile device can be described
by st = (rt, ρt,Ψt) ∈ S , which is observed at the be-
ginning of each time slot. Among the three state elements,
the computation task rt and the SINR Ψt = {ψm

t }m∈M
are exogenous states independent of computation offloading
decision ct, while the connection state ρt evolves depending
on ct. In the MDP formulation, we assume that rt and Ψt

evolve as Markov chains, but this Markovian assumption does
not need to hold when applying our algorithm in practice.
Importantly, the mobile device has no a priori knowledge about
how these system states evolve.

Action: Based on the current state st observed at the
beginning of time slot t, an offloading action at ∈ A is taken
where A = {{0} ∪M}.

Cost: According to our system model, different actions of
the mobile device can cause the different execution delays and
energy consumptions. The mobile device aims to minimize the
computation cost consisting of both the delay and the energy
consumption, while satisfying the delay constraint. Therefore,
we define a cost function u(st, at) in time slot t as

u(st, at) = ω1 ·min{dt, κ0}+ ω2 · φt + ω3 · Et (10)

where min{dt, κ0} is the task execution delay, φt is the task
failure penalty, Et is the energy consumption. ω1, ω2, ω3 are
the weights trading-off different elements of the cost function.

Policy: A computation offloading policy is a mapping: π :
S → A. We focus on optimizing the policy to minimize the
mobile device’s expected long-term cost, which is defined as
the expectation of the discounted sum of the mobile device’s
one-slot cost.

V (s0, π) = E

(∞∑
t=1

ζtu(st, at)|s0)
)

(11)

where s0 is the initial mobile device state, and ζ ∈ [0, 1)
is a constant discount factor, which models the fact that a

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 24,2021 at 00:48:55 UTC from IEEE Xplore. Restrictions apply.

0 500 1000
Time slot

0

1

2

Ac
cu

m
ul

at
io

n
of

 c

om
pu

ta
tio

n
co

st

104

Local
Edge

Greedy
DDQN

Fig. 1. Average accumulation of
computation cost.

Local
Edge

Greedy
DDQN

0

100

200

300

N
um

be
r o

f f
ai

lu
re

s Local
Edge
Greedy
DDQN

Fig. 2. Average numbers of task
failures.

higher weight is put on the current cost than the future cost.
The mobile device aims to design an optimal task offloading
policy π∗ that minimizes the expected long-term computation
cost V (s0, π), for any given initial state s0 ∈ S , which can be
formally formulated as follow

π∗ = argmin
π

V (s0, π) (12)

C. DDQN-based Policy Design

We use DDQN [9], a state-of-the-art DRL algorithm, to
learn the optimal task offloading policy. It includes two neural
networks, namely the generated Q-network and the target Q-
network. The generated Q-network is utilized to compute the
Q-value Q(s, a, θ) for each time slot while the target Q-
network aims to produce the target Q-values Q(s, a, θ̃) to train
the parameters of the generated Q-network. We use θ and
θ̃ to denote the parameters of the generated Q-network and
target Q-network, respectively. At the beginning of time slot
t, the system state st is observed and a control action at is
selected by the ε-greedy strategy [10], which with probability
ε randomly selects an action and with probability 1−ε follows
the current task offloading policy. Then, with the system state
st and the selected control action at, the computation cost
u(st, at) is realized. In the next time slot t+1, the new system
state st+1 can be observed and hence we get a state transition
h(t) = (st, at, u(st, at), st+1) and store it into the database
for experience replay. In order to train the parameters, we
must collect enough transitions to provide the training samples.
Specifically, the experience replay with transition size Nre

can be represented as Hre = {h1, h2, ..., hNre
}. To train the

parameters of the DDQN model, we randomly select a mini-
batch of Nba transitions from Nre as the training samples.
For each training sample h(t) = (st, at, u(st, at), st+1), we
feed the system state st into the generated Q-network to
compute the Q-value Q(st, at, θ). Then, we feed the system
state st+1 into the target Q-network to compute the Q-value
Q(st+1, at, θ̃). Following the principle of DDQN, the target
value Y with this training sample can be expressed as

Y = u(st, at) + ζ ·Q(st+1, argmin
a

Q(st+1, at, θ), θ̃)

We minimize the Huber Loss function [11] to train the
parameter θ of generated Q-network. The parameters θ are
copied to θ̃ every Tu updates.

To illustrate the performance of the DDQN-based task
offloading policy, we compare it with three baselines: 1) Local

execution: all computation tasks are executed on the mobile
device; 2) Edge execution: all computation tasks are offloaded
to the ES with the best channel state; 3) Greedy execution: In
each time slot, the mobile device processes locally or offloads
the task to one edge server to minimize the current time slot
cost. Fig 1 shows the average cumulative computation costs
and Fig 2 shows the average number of task failures of the
DDQN-based policy and the three baselines. As can be seen,
the DDQN-based policy outperforms the the baselines in terms
of both the computation cost and the number of task failures.
This demonstrates the power of DRL in solving the considered
edge computation offloading problem.

III. STEALTHY INTERFERENCE ATTACK

A. Attack Model

We consider an attacker that deploys and controls L ad-
versarial mobile devices in the MEC system, which send
interference signals to the ESs, thereby changing the SINR
inputs for the mobile device. We call these devices “interferer”.
Note the difference between “interferer” and the conventional
“jammer”: whereas a jammer aims to block a wireless channel
to make it unusable, an interferer aims to change the SINR by
adding hopefully unnoticeable interference signals.

Let the channel state between interferer l and ES m in time
slot t be glmt . With a transmission power plt of interferer l, the
SINR ψ̃m

t at ES m becomes

ψ̃m
t =

gmt · ptx
N + α+

∑
l g

lm
t plt

(13)

For simplicity, in this paper, we assume that L = M and
inferferer m can only interfere ES m. In addition, we assume
that gmm is normalized to 1 for all m and hence focus on the
normalized interference power. With these assumptions, the
SINR reduces to

ψ̃m
t =

gmt · ptx
N + α+ pmt

(14)

where pmt is the interference power of interferer m.
We assume that the attacker knows the optimal policy π∗ of

the mobile device obtained by DDQN and the true system state
at the beginning of each time slot t. The goal of the attacker is
to induce the mobile device to offload its computation task and
data to a target ES (e.g., an ES that has been compromised by
the attacker), denoted by aΩ, by changing the state observed
by the mobile. In particular, the attacker sets the transmission
power of the interferer to affect the SINRs at the ESs for the
mobile device. The attack is expected to be stealthy and hence
the resulting SINRs should still be in a valid and rational value
range. This represents a major difference from conventional
jamming attacks. Formally, the attacker solves the following
interference power minimization problem in every time slot t:

min
M∑

m=1

pmt

s.t. π(s̃(st, {pmt }m∈M)) = aΩ

s̃(st, {pmt }m∈M) ∈ [smin, st]

(15)

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 24,2021 at 00:48:55 UTC from IEEE Xplore. Restrictions apply.

where π(·) is the offloading policy learned by DDQN,
s̃(st, p

m
t) is the state after the SINRs are changed, and smin

is the lower bound of the current state st to ensure a stealthy
attack. Clearly, if π(st) is already aΩ without changing the
SINRs, then no interference attack is needed and hence the
total interference power is minimized at 0.

B. Stealthy Interference Attack (SIA)

The added interference power on the SINR essentially
causes a perturbation to the input to the DDQN. However,
searching for the minimum perturbation is non-trivial due to
the non-linear and non-convex properties of the deep neural
networks. Since it is difficult to solve the power minimization
problem (15) directly, we instead to solve a different problem
following techniques in [12].

Let the optimal policy be given by conditional probability
mass function (pmf) Π∗(a|s). We introduce intermediate vari-
ables δmt =

ψm
t pm

t

N+α+pm
t

for each m ∈ M. Specifically, δmt is the
difference in the SINR before and after adding the interference
power, i.e.,

δmt = ψm
t − ψ̃m

t =
ψm
t pmt

N + α+ pmt
(16)

The new problem that we aim to solve is as follows:

L(st,Π∗, δt) = min
δt

M∑
m=1

δmt − ξ · log Π∗(aΩ|s̃(st, δt))

s.t. δmt ∈ [0, ψm
t − ψmin], ∀m ∈ M

(17)

where ξ is a positive constant. Essentially, the above problem
aims to minimize δmt and the cross entropy loss function,
which approximates the constraint π(s̃(st, pmt)) = aΩ.

In order to ensure that the optimization result yields a valid
interference power, δ is constrained as: 0 ≤ δmt ≤ ψm

t −ψmin

for all m. To handle these box constraints, we further introduce
a new variable �t.

δmt =
ψm
t − ψmin

2
(tanh(�m

t) + 1) (18)

Since −1 ≤ tanh(�m
t) ≤ 1, it follows that 0 ≤ δmt ≤ ψm,s

t −
ψmin, so the solution will automatically be valid. We can think
of this approach as a smoothing of clipped gradient descent
that eliminates the problem of getting stuck in extreme regions
[6]. Thus, the objective function is converted to

L(st,Π∗, �t) = min
�t

M∑
m=1

ψm
t − ψmin

2
(tanh(�m

t) + 1)

− ξ · log Π∗(aΩ|s̃(st, �t))
(19)

The objective function in (19) allows us to use conventional
optimization algorithms that do not support box constraints. In
our implementation, we used four different solvers: 1) Powell
[13]; 2) BFGS [14]; 3) Conjugate Gradient (CG) [15]; 4)
Newton-Conjugate Gradient (N-CG) [16]. We found Powell
to be the most effective, which finds the adversarial solution
more quickly than others (see the analysis in section IV).

TABLE I
RESULTS OF SIA WITH FOUR DIFFERENT OPTIMIZATION SOLVERS

Power consumption (W) Success prob Runtime (s)
BFGS 6.47× 10−6 42% 85.02
CG 6.98× 10−6 44% 240.34
N-CG 5.81× 10−6 36% 162.24
Powell 4.66× 10−6 44% 0.22

TABLE II
RESULTS OF SIA AND OTHER ADVERSARIAL ATTACKS

Power consumption (W) Success prob Runtime (s)
SIA 4.66× 10−6 44% 0.22
Carlini [6] 4.98× 10−6 44% 63.52
L-BFGS [7] 4.25× 10−6 38% 96.01
EA [17] 5.33× 10−6 44% 18.10
FGS [18] 1.42× 10−5 37% 28.69
Naive 3.01× 10−5 12% 0.003
Random 7.24× 10−7 10% 0.01

IV. SIMULATIONS

We consider that there are M = 5 ESs in the network
system. According to [5], the channel state Ψ and computation
task arrival state r are modeled as Markov chains. We use
two single hidden layers with 64 neurons for the design of the
DDQN and choose tanh and relu as the activation functions,
respectively. Other parameters used in experiments are Nre =
2000, Nba = 32, Te = 500, Ts = 300, κ0 = 5s, μmax =
65MB, μmin = 40MB, νmax = 9 · 109, νmin = 7 · 109,
gmax = −2.08dB, gmin = −38.23dB, f = 1.7 · 109Hz,
e = 4·10−28, η = 1.2s, W = 6·105Hz, ptx = 2W , ds = 0.1s,
N = 10−8W , α = 0.5 · 10−8W , ω1 = 1, ω2 = 20, ω3 = 1,
ζ = 0.95, ξ = 20.

A. Performance of SIA

We firstly compare different optimization solvers for solving
the proposed stealthy interference attack. Then, we compare
the proposed attack with other attacks. We set ES 4 as the
target ES, and run each attack 50 times.

1) Determining the optimizer in SIA: Table I shows the re-
sults of SIA using four different optimization solvers, namely
Powell, BFGS, CG and N-CG. From the results, Powell
outperforms other three optimization solvers in terms of lower
interference power, higher attack success probability and faster
runtime. Therefore, we use Powell as the optimizer in SIA.

2) Comparing SIA with other attacks: Table II compares
SIA with four popular adversarial ML algorithms and two
representative attack benchmarks: 1) Naive attack: The at-
tacker brings the SINRs of the non-target ESs to the minimum
allowed level by sending the interference signal; 2) The attack
uses random interference power to reduce SINR of the non-
target ESs. As can be seen, SIA can obtain the highest suc-
cessful attack probability with the lowest interference power.

B. Impact of task parameters

In this section, we investigate the impact of computation
task (i.e. data size μ and demand CPU cycles ν) on the attack
performance. Fig 3 shows the attack success probability for
different μ and ν. For a small task data size, the attack success
probability increases with the data size. This is because a larger

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 24,2021 at 00:48:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Impact of arrival task on
attack success probability.

Fig. 4. Impact of arrival task on
average attack power consumption.

1 2 3 4 5 6
Channel state

0

0.1

0.2

0.3

0.4

Su
cc

es
s

pr
ob

ab
ilit

y

0

2

4

6

8

Po
w

er
 c

on
su

m
pt

io
n

(W
)10-6

Success probability
Power consumption

Fig. 5. Impact of channel state.

3 5 8 10
Number of ESs

0

0.2

0.4

0.6

0.8

Su
cc

es
s

pr
ob

ab
ilit

y

0

1

2

3

4

Po
w

er
 c

on
su

m
pt

io
n(

W
)10-5

Success probability
Power consumption

Fig. 6. Impact of number of ES.

data size means an increased transmission delay, and hence it
is easier for the attack to initiate a successful attack. However,
for sufficiently large data size (i.e., μ ≥ 55MB), the attack
success probability decreases because further increasing the
transmission time results in the delay requirement violation,
causing the mobile device to stay with the previous slot
ES. The attack success probability is less sensitive with the
CPU cycle demand. The attack success probability is slightly
decreased with a smaller CPU cycle demand (see the area in
the red rectangle) because the mobile device is more likely to
choose to execute the task locally.

Fig 4 shows the attack power consumption for different
task parameters. As we can see, the required attack power
consumption increases firstly and then decreases with the data
size. According to the attack success probability in Fig 3, the
attacker needs more interference power to modify the channel
state to achieve a high attack success probability.

C. Impact of channel states

Fig 5 shows the effect of channel states by changing the
target ES channel gain in {−38.23dB , −31dB, −23.77dB,
−16.54dB, −9.31dB, −2.08dB}. As can be seen, the attack
success probability and the average attack power consumption
increase with the channel gain. This is because a better
SINR means a lower task transmission delay, and hence the
mobile device tends to choose the ES with the better channel
condition. Moreover, as the SINR of the target ES improves,
there are more successful attack cases even if the non-target
ESs’ SINRs are also high. Because more interference power
is needed to bring down the high SINR of the non-target ESs,
the average power consumption also increases.

D. Impact of the ES number

Fig 6 shows the influence of difference numbers of ESs on
SIA. As can be seen, with more ESs, the attack success prob-
ability decreases while the average attack power consumption

increases. This is because the channel state becomes more
complicated with more ESs in the network, and the attacker
needs more attack interference power to change more channel
states to induce the mobile device to select the target ES.

V. CONCLUSION

In this paper, we studied a new adversarial example attack in
the context of edge computation offloading and demonstrated
its effectiveness in misleading the offloading decision. Future
research directions include (1) black-box attacks where the
attacker has no information about the mobile device’s policy
or input, and (2) defense strategies to protect the edge system
from adversarial machine learning attacks.

REFERENCES

[1] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning
based resource allocation for v2v communications,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[2] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel
assignment for noma with deep reinforcement learning,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 10, pp. 2200–2210,
2019.

[3] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, 2018.

[4] Z. Wei, B. Zhao, J. Su, and X. Lu, “Dynamic edge computation
offloading for internet of things with energy harvesting: A learning
method,” IEEE Internet of Things Journal, 2018.

[5] Z. Ning, P. Dong, X. Wang, J. Rodrigues, and F. Xia, “Deep reinforce-
ment learning for vehicular edge computing: An intelligent offloading
system,” ACM Trans. Intell. Syst. Technol., vol. 25, p. 1, 2019.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[8] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE transactions on neural networks and
learning systems, 2019.

[9] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[11] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[12] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary,
“Robust deep reinforcement learning with adversarial attacks,” in Pro-
ceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2018, pp. 2040–2042.

[13] M. J. Powell, “An efficient method for finding the minimum of a function
of several variables without calculating derivatives,” The computer
journal, vol. 7, no. 2, pp. 155–162, 1964.

[14] R. Fletcher, “A new approach to variable metric algorithms,” The
computer journal, vol. 13, no. 3, pp. 317–322, 1970.

[15] R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” The computer journal, vol. 7, no. 2, pp. 149–154, 1964.

[16] D. A. Knoll and D. E. Keyes, “Jacobian-free newton–krylov methods:
a survey of approaches and applications,” Journal of Computational
Physics, vol. 193, no. 2, pp. 357–397, 2004.

[17] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 24,2021 at 00:48:55 UTC from IEEE Xplore. Restrictions apply.

