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ABSTRACT: Accurate force fields are necessary for predictive molecular
simulations. However, developing force fields that accurately reproduce
experimental properties is challenging. Here, we present a machine learning
directed, multiobjective optimization workflow for force field parametrization
that evaluates millions of prospective force field parameter sets while
requiring only a small fraction of them to be tested with molecular
simulations. We demonstrate the generality of the approach and identify
multiple low-error parameter sets for two distinct test cases: simulations of
hydrofluorocarbon (HFC) vapor−liquid equilibrium (VLE) and an
ammonium perchlorate (AP) crystal phase. We discuss the challenges and
implications of our force field optimization workflow.

■ INTRODUCTION

Molecular modeling and simulation use computational
methods to describe the behavior of matter at the atomistic
or molecular level.1 The veracity and predictive capability of
molecular simulations depend critically on the accuracy of the
atomic-level interaction energies, and whether the appropriate
time- and length-scales are properly sampled. On one hand is a
class of techniques broadly termed as ab initio or first-
principles methods, where atomic interactions are determined
from highly accurate quantum chemical methods.2 Though
there are applications that necessitate these methods, ab initio
energies are computationally expensive to obtain, such that
quantum chemical methods are limited to relatively small
systems and short time scales. On the other hand, classical
molecular simulations represent the atomic interaction
energies with an analytical function (a “force field”) that can
be evaluated much more rapidly than ab initio energies
enabling simulations of much larger systems and longer time
scales than is possible with ab initio techniques. If force fields
are highly accurate, classical molecular simulations have been
shown to give accurate property predictions in several fields
including protein structure refinement,3 drug discovery,4 and
energy storage.5

Developing Accurate Force Fields is Difficult. There
are two fundamentally different approaches to developing and
improving force fields: bottom-up approaches, wherein
parameters are calibrated so the model reproduces the results
(e.g., forces, energies, and dipoles) of more expensive and
accurate methods (i.e., quantum calculations),6 and top-down
approaches, wherein parameters are calibrated so the model
matches experimental results.7 Emerging bottom-up ap-
proaches use machine learning (ML) to parametrize force

fields with black-box potential energy functions.8,9 Though
these so-called ML force fields10,11 have proven successful for
an increasing number of systems, the black-box nature of the
potential energy function makes the models physically
uninterpretable and hinders model transferability beyond the
specific training conditions. Developing accurate and trans-
ferable force fields with analytical functional forms is a difficult
and laborious endeavor.12 Significant efforts spanning several
decades have resulted in several “off-the-shelf” force fields that
describe large swaths of condensed matter chemical
space.13−16 These are most commonly “Class I” force fields
that consist of harmonic or sinusoidal intramolecular terms
that describe bonded interactions, atomic partial charges that
represent electrostatic interactions, and nonbonded repul-
sion−dispersion terms. Unfortunately, these off-the-shelf force
fields can yield poor property predictions, even for relatively
common compounds, particularly when they are applied in
circumstances beyond the systems and conditions for which
they were parametrized.17 However, since they are well-known
and the parameter sets are widely distributed, these force fields
are used in many molecular simulation studies.
For decades, force field development and optimization has

been an active area of research. Several methods and tools have
been developed to derive bonded intramolecular parameters
and partial charges in a bottom-up fashion from quantum
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calculations, provided that the desired classical functional form
has been selected. Common approaches include gradient-based
techniques, evolutionary algorithms, or even analytical
solutions.18−25 These methods work well because the relevant
quantities can be computed to a high degree of accuracy with
quantum calculations and evaluating a prospective force field
parameter set is computationally trivial. However, optimizing
the repulsion−dispersion parameters that are largely respon-
sible for many macroscopic thermodynamic properties (e.g.,
density, enthalpy of vaporization, vapor pressure, etc.) is more
challenging. Since these parameters can be difficult to derive
from quantum calculations without special methods,26 top-
down parametrization is often necessary. Yet screening
thousands of prospective parameter sets is computationally
expensive due to the need for sufficiently long simulations to
accurately compute the relevant experimental properties. Even
for relatively simple properties, a single simulation can require
hours-to-days of computation time.
It is often desirable to parametrize a force field to reproduce

multiple physical properties. A rigorous way to calibrate force
fields with multiple properties simultaneously is to use
multiobjective optimization,27−31 which can exacerbate the
computational burden by an order of magnitude or more. In
multiobjective optimization, a solution is Pareto optimal if it is
not possible to improve one objective without sacrificing
another objective.32 One approach is to weight each objective
and re-solve the optimization problem for many different
weights to identify Pareto optimal solutions.33 Thus,
computing a set of Pareto optimal solutions is often at least
an order of magnitude more computationally expensive than
single objective optimization. With much less computational
effort, a finite set of candidate solutions can be classified into
two groups: the nondominated set, which comprises the
solutions for which no other solution in the set offers
improvement in any one objective without degrading perform-
ance in another objective, and the dominated set, comprising
the solutions for which another solution offers improved
performance in one or more objectives without degrading the
performance in any other objective. By definition, all points in
the Pareto set are nondominated; the nondominated set is an
easy to compute approximation of the Pareto set.
Given the challenges associated with top-down optimization

of the repulsion−dispersion parameters, there are fewer
methods and packages available34,35 compared to intra-
molecular parameters and partial charge optimization. Much
more frequently, attempts to improve these parameters involve
ad hoc hand-tuning,36,37 which is arbitrary and often limited to
a few interaction parameters or a scaling thereof, as larger
searches quickly become intractable.38 Instead of performing
multiobjective optimization, the more common approach is to
use ad hoc weights to combine multiple calibration objectives
into a single cost function.28,34,35 However, this approach only
finds a single Pareto optimal trade-off between the calibration
objectives.
Machine Learning Directed Optimization Makes

Force Field Calibration More Computationally Tract-
able. The core challenges of optimizing the repulsion−
dispersion parameters can be solved with a computationally
inexpensive mapping between the desired physical properties
and force field parameters. For certain cases, these mappings
can be constructed with statistical mechanics,39,40 but this
approach likely cannot be generalized to arbitrary systems.
Alternatively, ML can be used to approximate the relevant

mapping. For example, surrogate-assisted optimization (also
known as black-box or derivative-free optimization) uses
computationally inexpensive surrogate model evaluations to
emulate the outputs of a complex computer simulation, e.g.,
computational fluid dynamics, finite element analysis, or
molecular simulations. Several different types of surrogate
models have been successfully applied to molecular simulations
for uncertainty quantification41,42 and force field parametriza-
tion.35,43−45 Linear regression response surface models were
used to predict the optimal combination of scaling factors for
the charge and Lennard-Jones (LJ) parameters of General
AMBER force field (GAFF) to reproduce four properties of
organic liquid electrolytes. While easy to implement and
moderately successful at improving the force field’s accuracy
for some of the properties, this method was limited by the
choice of statistically significant parameters in the response
surface.46 For some thermodynamic properties, reweighting
methods are an effective tool to test a large number of
parameters without performing additional simulations,44,47,48

but care must be taken to ensure good phase space overlap
between the sampled and reweighted ensembles.44 Gaussian
process regression (GPR) is a popular nonparametric surrogate
model that smoothly interpolates between training data. Some
applications of GPR in molecular simulations include ML force
fields49−51 and property prediction.52 In Bayesian optimization,
which is a special case of surrogate-assisted optimization, the
uncertainty estimates from GPR (or a similar model) are
directly used to balance exploration and exploitation. Recent
work demonstrates Bayesian optimization can efficiently
calibrate force field parameters in coarse-grained models.53−55

Moreover, computationally inexpensive surrogate models can
enable multiobjective optimization algorithms that go beyond
ad hoc weighting32 to systematically explore trade-offs when
calibrating multiple physical properties.
Here, we demonstrate a new multiobjective surrogate-

assisted optimization framework that uses GPRs and support
vector machine (SVM) classifiers to improve existing all-atom
force fields. The proposed strategy enables extremely accurate
property calculations while retaining physically motivated and
interpretable functional forms. We show that the same general
approach successfully optimizes force fields for two systems
with very different characteristics and property objectives:
hydrofluorocarbon (HFC) vapor−liquid equilibrium (VLE)
and solid ammonium perchlorate (AP) crystal structure. Our
results highlight the versatility of surrogate-assisted optimiza-
tion approaches for top-down parametrization of all-atom force
fields in a wide range of domains. The remainder of the
manuscript proceeds as follows: we outline the method and
provide technical details in the Methodology section,
demonstrate the approach for the two case studies in the
Results, discuss the challenges and implications of the method
in the Discussion section, and provide concluding remarks in
the Conclusions.

■ METHODOLOGY
Machine Learning Directed Force Field Optimization

Workflow. An overview of our force field optimization
workflow is provided first with a more technical description
given in the following subsections. Our strategy in this work is
to optimize LJ repulsion−dispersion parameters, which are
among the most difficult to calculate from ab initio methods.56

Intramolecular parameters and partial charges, which usually
can be reliably and inexpensively determined from bottom-up
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ab initio-based methods, were determined from existing force
fields. We stress, however, that this method can be applied to
calibrate any force field parameters.
Our force field optimization workflow is shown schemati-

cally in Figure 1. First, domain knowledge is used to specify
physically reasonable bounds on the search space for the
parameters that are being optimized. Next, (10 )2 initial
parameter sets are generated via space-filling Latin hypercube
sampling (LHS). Molecular simulations are performed with
each parameter set (Figure 1, box 1), and the physical
properties of interest are computed from the simulations.
These results are used to train surrogate models (box 2, panel
d) that predict the simulation results directly from the
parameter set, and optionally, the thermodynamic state
point, e.g., T and p. Additional examples of surrogate model
accuracy can be found in SI Figures S1 and S2. The surrogate
model is then used to predict the molecular simulation results
for a very large number, (10 )6 , of candidate parameter sets,
once again generated with LHS (box 3). The (10 )2 most
promising parameter sets are identified via user-selected
system-specific metrics including error thresholds, separation
in parameter space, and nondominated status, from the (10 )6

candidate sets evaluated with the surrogate models (box 4). In
multiobjective optimization, the set of nondominated points
includes all parameter sets that are not simultaneously
outperformed in every dimension by any other parameter set
(Figure 1a).32 Finally, the most promising parameter sets are
used to initialize the next iteration of molecular simulations
(box 1). The process is repeated until parameter sets are
generated that provide the desired accuracy for the
experimental properties of interest.
The workflow uses a combination of machine learning-based

surrogate models and physics-based molecular simulations to
quickly optimize force field parameters for a specific system.
Physically motivated potential energy functional forms that
have proven successful over decades are retained. Whereas the
molecular simulations require hours-to-days to compute
experimentally measurable properties arising from a single set
of force field parameters, the surrogate models can evaluate
millions of parameter sets in minutes-to-hours. This means
that once the surrogate models have been trained to predict
the results of the molecular simulations, they enable an
exhaustive search of large parameter spaces that would require

(107−109) CPU-hours with molecular simulations. We
emphasize that although the surrogate models are used to
screen millions of candidate parameter sets, all of the
promising candidate parameter sets are ultimately tested with
physics-based molecular simulations. The role of machine
learning is only to act as a surrogate for physics-based
simulations, enabling the parameter search through an
otherwise intractable space. The iterative procedure allows
the surrogate models to improve as additional training data is
collected with each iteration. The original molecular
simulations are dispersed across the entire parameter space,
but subsequent iterations are focused on the smaller regions of
parameter space that are predicted to yield good parameter
sets, enabling the surrogate models to improve in the most
important regions of parameter space. The theory and
technical details of each step in Figure 1 are presented
below. Methodological details specific to the HFC and AP
examples are reported in the Hydrofluorocarbon and
Ammonium Perchlorate Case Study sections, respectively.

Problem Setup. The interaction potential is taken as a
classical molecular mechanics force field, U(r) = f(r, ζ), where
U is the potential energy, r ∈ Γ is the vector of position
coordinates within configuration space Γ, f is the functional
form for the potential energy, and ζ = ζ1, ζ2, ..., ζN are the
parameters of f that define the intra- and intermolecular
interactions between different types of particles. Molecular
simulations can be used to compute M structural, thermody-
namic, or dynamic properties, ysim = y1

sim, y2
sim, ..., yM

sim, from
U(r). Depending upon the quality of U(r), ysim may or may
not be close to the experimental values, yexp. The goal of this
work is to refine U(r) by optimizing (10 )1 force field
parameters, ζ′ ⊆ ζ, such that ysim ≈ yexp for one or more
physical properties of interest. In both case studies presented
here, the LJ parameters, σ and ε, are optimized. Upper and
lower bounds for each parameter are selected to span a wide
range of physically reasonable values. The initial (10 )2

parameter sets are randomly selected to be space-filling within
these bounds with LHS.

Step 1: Perform Molecular Simulations with (102)
Physics-Based Force Fields. Molecular simulations are
performed for each parameter set with the molecular dynamics
(MD) or Monte Carlo (MC) method. For each parameter set,
ysim is computed from the simulation output. Simulations may

Figure 1. Overview of the proposed machine learning directed force field optimization procedure. The workflow tests (10 )6 sets of force field
parameters for every (10 )2 molecular simulations. The four main steps are described in the numbered boxes. (a) Difference between dominated
and nondominated solutions for an example where the goal is to minimize two objectives. (b and c) Two example applications. (d) Example of how
the surrogate models accurately predict the outcomes of molecular simulations.
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be performed at multiple thermodynamic conditions (e.g., T
and p) for each parameter set if the experimental data exist.
Signac-flow was used to manage the setup and execution of all
molecular simulations.57,58

Step 2: Train Surrogate Models to Predict Simulation
Results from Force Field Parameters. Gaussian process (GP)
surrogate models are trained to predict ysim as a function of the
calibrated parameters ζ′. For each property, we train the
following:

ζ ζ ζ̂ = ′ ′ ′y mGP( ( ), cov( , ))i i i i
sim

(1)

where ŷi
sim is the surrogate model prediction of yi

sim, GPi is the
GP model for property i, mi is the mean function, and covi is
the covariance (kernel) function. All GP models were
implemented in GPFlow 2.0.0.59 To improve the accuracy of
the GP models in regions of parameter space where ysim ≈ yexp,
we exclude parameter sets that result in extremely poor or
unphysical results from the GP training data. We then trained
SVM classifiers to predict if a parameter set was unphysical
(e.g., simulation fails) so that parameter sets from these regions
of parameter space could be excluded when the GP models
were used to predict the results of trial parameter sets. All SVM
classifiers were implemented in scikit-learn60 with a radial basis
function kernel.
Step 3: Evaluate Surrogate Models for (106) Trial Force

Field Parameter Sets. After the GP and SVM models are

trained, (10 )6 trial parameter sets are generated with LHS.
For each parameter set, the SVM and GP models are used to
calculate ŷsim, the surrogate model estimates of ysim.
Step 4: Select Parameter Sets that Surrogate Models

Predict Will Best Reproduce Experiments. Parameter sets
where the surrogate models predict good agreement with
experiment, y ̂sim ≈ yexp, are selected for the next iteration. In
some cases we apply an optional distance-based search
algorithm (see SI Methods) to down-select only parameter
sets that are far apart in parameter space.
Hydrofluorocarbon Case Study. Force fields were

independently developed for two HFCs: difluoromethane
(HFC-32) and pentafluoroethane (HFC-125). Two stages of
optimization were used for each HFC. The first stage used MD
simulations in the NpT ensemble at 241, 261, 281, 301, and
321 K for HFC-32 and 229, 249, 269, 289, and 309 K for
HFC-125. For each temperature, the pressure was set to the
experimental61 saturation pressure. The only property
considered during the first stage was the liquid density (LD)
(y = {ρl}). In the second stage of optimization, Gibbs
ensemble Monte Carlo (GEMC) was performed. The property
objectives were the saturated liquid density, saturated vapor
density, vapor pressure, and enthalpy of vaporization, or y =
{ρsat

l , ρsat
v , Pvap, ΔHvap}. Simulations were performed at the

same temperatures used for the first stage. Four iterations of
the stage 1 optimization were performed for both HFC-32 and
HFC-125. Three and five iterations of stage 2 optimization
were performed for HFC-32 and HFC-125, respectively.
Force Field Parameters. The functional form was taken

from GAFF:15
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where Uintra contains all the intramolecular terms, rij is the
distance between atoms i and j, q is the atomic charge, ϵ0 is the
permittivity of free space, and σij and εij parametrize the LJ
potential that describes the repulsion−dispersion interactions
between atoms i and j. The intramolecular interactions are
given by

∑ ∑

∑
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2
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0

2

dihedrals (3)

where r0 and θ0 are the nominal bond length and angle,
respectively, kr, kθ, and νn are force constants, n is the
multiplicity, and γ is the nominal dihedral angle. The sums are
over all bonds, angles, and dihedrals in the system, respectively.
The bond, angle, and dihedral parameter for HFC-32 and
HFC-125 were taken from GAFF.15 Partial charges were
determined with RESP18 as implemented in AmberTools 1.4.62

The quantum electrostatic potential was computed with
Gaussian 0963 with B3LYP/6-311++g(d,p).64,65 The intra-
molecular parameters and partial charges are reported in SI
Table S1.
The force field optimization method was used to determine

the like-interaction parameters σii and εii for three atom types
(C, F, and H) in HFC-32 and five atom types (C1, C2, F1, F2,
and H) in HFC-125. This results in 6 parameters that are
optimized for HFC-32 and 10 parameters that are optimized
for HFC-125. All unlike interaction parameters were computed
with Lorentz−Berthelot mixing rules. For HFC-125, C1 is the
carbon bonded to one carbon atom, two fluorine atoms, and
one hydrogen atom, while C2 is the carbon bonded to one
carbon atom and three fluorine atoms, F1 is bonded with to
C1, and F2 is bonded with C2. The lower and upper bounds
for each parameter were selected per-element (σ in Å, ε/kB in
K): 3.0 ≤ σC ≤ 4.0, 2.5 ≤ σF ≤ 3.5, 1.7 ≤ σH ≤ 2.7, 20 ≤ εC/kB
≤ 60, 15 ≤ εF/kB ≤ 40, 2 ≤ εH/kB ≤ 10. The parameter
bounds for each atom type in HFC-32 and HFC-125 are
summarized in SI Tables S2 and S3, respectively.

Classifier. An SVM classifier was trained to predict
parameter sets that yielded spontaneous vaporization (ρl <
500 kg/m3) in MD simulations initiated at liquid density from
ζ′ and T.

GP Model. The GP models predicted the value of a physical
property from ζ′ and T. The LD iterations used one GP model
that predicted ρl. Parameter sets with ρl < 500 kg/m3 were
excluded from the GP training data. The VLE iterations used
one GP model for each property: {ρsat

l , ρsat
v , Pvap, ΔHvap}. All

GP models used a radial basis function or Mate  rn ν = 5/2
kernel and a linear mean function.66

Selecting Parameter Sets for the Next Iteration. A new
LHS with 1 000 000 (HFC-32) or 500 000 (HFC-125)
parameter sets was generated for each iteration. LD iterations:
Each parameter set was evaluated with the LD SVM classifier
at the highest T. Each parameter set was evaluated with the LD
GP model at each T, and the root-mean-square error (RMSE)
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between the GP model prediction and experimental liquid
density across all five temperatures was calculated for each
parameter set. The 100 lowest RMSE parameter sets that the
SVM predicted would remain liquid, and the 100 lowest RMSE
parameter sets that the SVM predicted would transform to
vapor, were selected for the next iteration. The low-RMSE,
predicted-vapor parameter sets were included because they
reflect disagreement between the SVM and GP models. After
four LD iterations, parameter sets for the VLE-1 iteration were
selected from the 800 simulated parameter sets. A distance-
based search algorithm (see SI Methods) was used to select 25
well-separated parameter sets with RMSE ≤ 10 kg/m3. VLE
iterations: Each parameter set from the LHS was evaluated
with the LD GP model. Parameter sets predicted to yield LD
RMSE > 25 kg/m3 were discarded. This step was included to
make use of the training data generated during the LD
iterations since the LD GP model is very accurate after four LD
iterations. The remaining parameter sets were evaluated with
the four GP models trained to predict VLE properties {ρsat

l ,
ρsat
v , Pvap, ΔHvap}. The RMSE difference between the GP model

predictions and experimental values across all five temperatures
was calculated for each property and parameter set. All
dominated parameter sets were discarded. A parameter set is
dominated if one or more parameter sets performs better than
it in all of the considered objective dimensions (e.g., physical
properties). The 25 parameter sets selected for the next
iteration comprised the top performing parameter set for each
physical property and 21 parameter sets selected from the
remaining nondominated parameter sets. A distance-based
search algorithm identified parameter sets that were well-
separated in parameter space.
MD Simulations. Simulations of 150 HFC molecules were

performed in the NpT ensemble at the experimental saturation
pressure. Initial configurations were generated at 1000 kg/m3.
Following a steepest descent energy minimization, systems
were equilibrated for 500 ps with the Bussi thermostat67 and
Berendsen barostat68 with τT = 0.1 ps, τp = 0.5 ps. The
production simulations were 2.5 ns in length with the Bussi
thermostat and Parrinello−Rahman barostat69 with τT = 0.5 ps
and τp = 1.0 ps. The final 2.0 ns of the production simulations
were used to compute the average density.
The equations of motion were integrated with the leapfrog

algorithm70 and a time step of 1.0 fs. LJ interactions and short-
range electrostatics were cut off at 1.0 nm. The particle mesh
Ewald method71 was used to compute long-range electrostatic
interactions. Analytical tail corrections to the LJ potential were
applied to energy and pressure. All bonds were constrained
with the P-LINCS72 method with the lincs-order and lincs-iter
set to 8 and 4, respectively. Simulations were performed with
GROMACS 2020.73

MC Simulations. GEMC simulations were performed with
1000 HFC molecules. The initial liquid box (800 HFC
molecules) was generated at the experimental liquid density
and pre-equilibrated with a 5000 sweep NpT MC simulation.
The initial vapor box (200 HFC molecules) was randomly
generated at the vapor density estimated from the ideal gas law.
The combined system was simulated with GEMC. The
systems were equilibrated for 10 000 MC sweeps followed by
a production GEMC simulation that was 90 000 MC sweeps.
LJ interactions and short-range electrostatics were cut off at

1.2 nm in the liquid box and 2.5 nm in the vapor box. Long-
range electrostatics were computed with an Ewald summation
with a relative accuracy of 10−5. Analytical tail corrections to

the LJ interactions were applied to energy and pressure. All
bonds were fixed at their nominal bond length. Simulations
were performed with MoSDeF Cassandra 0.1.174 and
Cassandra 1.2.2.75

Ammonium Perchlorate Case Study. Simulations of AP
were performed at 1 atm and 10, 78, and 298 K. Three
properties were considered: (1) the absolute percent error
(APE) from the experimental lattice parameters averaged
across all three temperatures, i.e. the mean absolute percent
error (MAPE), and (2) the mean of the absolute residuals of
equilibrium average simulated atomic positions in reference to
the experimental unit cell76 at 10 K, subsequently referred to as
unit cell mean distance (UCMD), and (3) hydrogen-bonding
symmetry that is present in the experimental crystal structure.
Four workflow iterations were performed.

Force Field Parameters. The Class II force field of Zhu et
al.77 served as a basis for the development of a hand-tuned
Class I force field. The partial charges were left unchanged.78

The Class II intramolecular bonds and angles were recast to
the Class I harmonic functional forms; this process was ad hoc
and involved qualitative matching to the experimental infrared
spectrum. The most significant outcome of this procedure was
that at 298 K the N−H stretching mode split into two separate
peaks for the Class I force field, as opposed to the single peak
observed by both experiment and the Class II force field. This
is likely due to inherent limitations in the harmonic
representation of the vibrational mode; in the context of our
work, this trade-off in vibrational behavior for the simplicity
and transferability of the Class I AP force field is acceptable.
The LJ parameters of the hand-tuned force field were also
developed with an ad hoc approach, using similar structural
metrics as described above. The hand-tuned AP force field
parameters are reported in SI Table S4.
The force field optimization workflow was applied to further

optimize the σ and ε for the 4 unique atom types in the AP
model, giving a total of 8 calibrated parameters. The lower and
upper bounds for each parameter were as follows (σ in Å, ε in
kcal/mol): 3.5 ≤ σCl ≤ 4.5, 0.5 ≤ σH ≤ 2.0, 2.5 ≤ σN ≤ 3.8, 2.5
≤ σO ≤ 3.8, 0.1 ≤ εCl ≤ 0.8, 0.0 ≤ εH ≤ 0.02, 0.01 ≤ εN ≤ 0.2,
0.02 ≤ εO ≤ 0.3. The parameter bounds are also summarized
in SI Table S5. All unlike LJ interactions were calculated with
geometric mixing rules.

Property Calculation Details. In an effort to be more
consistent with the refined hydrogen positions described by
Choi et al.,76 the hydrogen atoms in the primitive cell were
extended along their N−H vectors to match the N−H lengths
that they report in Table V of their 1974 paper. To assess the
symmetry that should be present in orthorhombic AP’s Pnma
space group, the differences in the N−H(3)···O(3) mirror
symmetric bond lengths and angles were computed. Hydrogen
bonds within 0.001 Å, and angles within 0.3° were considered
symmetric. To determine tolerances for assessing symmetry,
the manually tuned force field was utilized and the frequency
of saving coordinate data over the 100 ps production run was
varied between 100 and 10 000 fs. When saving the
coordinates every 100 fs, the symmetric hydrogen bond
lengths were within 0.000 03 Å and the angles were within
0.01° of each other. When saving the coordinates every 10 000
fs, the resolution of symmetry decreases to within 0.001 Å for
bonds and 0.3° for angles. For data management reasons, the
coordinates were saved every 10 000 fs and the corresponding
symmetry tolerances were utilized in classifying if a given
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parameter set was successful in reproducing the experimentally
observed symmetry in the hydrogen bonding structure of AP.
Classifier. Two SVM classifiers were trained. The first

classifier predicted whether a parameter set would yield an
accurate 10 K unit cell with UCMD < 0.8 Å, and the second
classifier predicted whether a parameter set would yield the
desired hydrogen bond symmetry, as defined above.
GP Model. Two GP surrogate models were trained. The first

GP model predicted the 10 K UCMD from ζ′. Parameter sets
with UCMD ≥ 0.8 Å were not included in the training data.
The second GP model predicted the APE of the lattice
parameters from ζ′ and T. Both GP models used a Mate  rn ν =
3/2 kernel and a linear mean function.66

Selecting Parameter Sets for the Next Iteration. For each
iteration, 1 000 000 new parameter sets were generated using
LHS. Each parameter set was evaluated with the UCMD and
symmetry classifiers. Parameter sets that did not meet the
UCMD threshold were discarded. The remaining parameter
sets were evaluated with the two GP models. The lattice APE
GP model was evaluated at T = 10, 78, and 298 K for each
parameter set. The mean of the lattice parameter APE at each
temperature was calculated and recorded as the lattice MAPE.
All parameter sets that did not meet the UCMD and lattice
MAPE thresholds listed in the SI Table S6 were discarded.
When selecting parameter sets for the fourth iteration, the
symmetry SVM was used to remove all parameter sets that did
not meet the symmetry threshold (SI Table S6). A total of 250
parameter sets were selected for the next iteration. All
nondominated parameter sets were selected. The remainder
of the parameter sets were selected by applying an L1 distance
metric in scaled parameter space and the distance-based search
to identify well-separated parameter sets.
MD Simulations. Simulations of orthorhombic AP were

performed in the NpT ensemble at 1 atm and 10, 78, and 298
K. The AP structure was taken from the 10 K data of Choi et
al.76 The simulation cell comprised 378 (6 × 9 × 7) unit cells.
Initial velocities were drawn from a Gaussian distribution with
the linear and angular momenta set to zero. A 1.0 fs time step
was utilized with the time integration scheme derived by
Tuckerman et al.79 The equations of motions were those of
Shinoda et al.80 Nose  −Hoover style algorithms were utilized
for both the thermostat and barostat with relaxation times of
0.1 and 1.0 ps, respectively. The x-, y-, and z-dimensions were
allowed to fluctuate independently while maintaining an
orthorhombic geometry. All simulations utilized 100 ps of
equilibration followed by an additional 100 ps for generating
production data. Pairwise LJ and Coulombic interactions were
computed up to 1.5 nm, and long-range electrostatic
interactions were computed using the particle−particle
particle−mesh method70 with a relative accuracy of 10−5. No
analytical tail corrections were applied to the repulsion−
dispersion interactions. All bonds were fully flexible.
Simulations were performed with LAMMPS, version 7 Aug
2019.81

■ RESULTS
Case Study: Hydrofluorocarbon Force Fields. Recent

international agreements, including the 2016 Kigali Amend-
ment to the 1987 Montreal Protocol, mandated the phaseout
of high global warming potential HFC refrigerants.82 Accurate
HFC force fields that are compatible with typical all-atom
functional forms are of interest as part of a broader multiscale
engineering effort to sustainably implement this phaseout.

Here, we optimize force fields for HFC-32 and HFC-125, the
two components of R-410a, a common household refrigerant,
to accurately predict the pure-component VLE properties.
While an accurate hand-tuned force field for HFC-32 exists in
the literature,37 the existing HFC-125 force fields are either
inaccurate15 or rely on less common functional forms,83−85

which often leads to challenges with force field transferability
and simulation software compatibility. For HFC-32, we show
that our strategy can develop force fields that outperform
expert-created models, while for both HFC-32 and HFC-125,
we demonstrate the large improvements that are possible
compared against “off-the-shelf” models.
We applied a two-stage approach to improve the HFC force

fields. Our workflow was first applied to optimize the force
fields to accurately predict the LD at the experimental
saturation pressure for five temperatures spanning an 80 K
temperature range. Following four iterations (LD-1, LD-2, LD-
3, and LD-4), 25 parameter sets with low LD MAPE were used
to initiate the second stage of force field optimization. In this
stage, force field parameters were optimized to accurately
predict VLE properties: saturated liquid density, saturated
vapor density, vapor pressure, and enthalpy of vaporization.
The two-stage approach has advantages: (1) the MD
simulations required to compute LD in the isothermal−
isobaric ensemble are computationally less expensive than the
MC simulations required to compute VLE properties in the
Gibbs ensemble and (2) the stability of the Gibbs ensemble
MC simulations is more sensitive to very poor force field
parameters.
Figure 2a shows the cumulative number of parameter sets

that yield less than some value of the LD MAPE for each HFC-

32 LD iteration. Analogous results for HFC-125 are reported
in SI Figure S3. The strength of the surrogate model approach
is highlighted by the improvement from the initial liquid
density iteration, LD-1, which evaluated 250 parameter sets
generated directly from LHS, to the second liquid density
iteration, LD-2, which evaluated parameter sets predicted by
the surrogate models to yield low LD MAPE. In LD-1 fewer
than 5 parameter sets had an LD MAPE below 10%, but LD-2
yielded more than 100 parameter sets with LD MAPE below
2.5%. Limited additional improvements are observed in LD-3
and LD-4, but additional parameter sets with low LD MAPE

Figure 2. Cumulative number of HFC-32 parameter sets generated
per iteration with less than some MAPE for (a) the liquid density
iterations 1−4 (LD-n) and (b) vapor−liquid equilibrium iterations
1−3 (VLE-n), where n is the iteration number. (a inset) LD behavior
for liquid density MAPE < 2.5%.
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are nonetheless generated. Figure 2b shows the same
information for three VLE workflow iterations (VLE-1, VLE-
2, and VLE-3). Consistent improvements in the saturated
liquid density, saturated vapor density, vapor pressure, and
enthalpy of vaporization are observed from VLE-1 to VLE-3.
The results for the critical temperature and critical density also
show improvement even though these properties were not
explicitly included in the parameter optimization workflow.
Note that the saturated liquid density in VLE-1, which
evaluated 25 parameter sets generated during the LD stage,
performs slightly worse than the results from LD-4 for two
reasons: (1) the model vapor pressure is not precisely equal to
the experimental vapor pressure and (2) a smaller system size
and shorter interaction cutoff were used to minimize the
computational overhead of the LD iterations. Despite the
approximation errors introduced by smaller system sizes and
cutoffs, the success of our two-stage optimization strategy
shows that initial iterations can be performed with less
computationally expensive simulations.
After completing the three (five) VLE iterations, our force

field parametrization workflow yielded 26 HFC-32 (45 HFC-
125) nondominated parameter sets. Figure 3 compares vapor−

liquid coexistence curves predicted by our nondominated
parameter sets with experiments61 and force fields for HFC-32
and HFC-125 found in the literature. Results for vapor
pressure and enthalpy of vaporization are shown in SI Figure
S4. The optimized HFC-32 and HFC-125 force fields are
notably better than GAFF, and multiple optimized HFC-32
force fields give improved accuracy in all properties compared
to the Raabe force field.37 We chose an error threshold metric
to select a subset of top-performing parameter sets from the
nondominated sets. This yielded four HFC-32 top parameter
sets with MAPE of less than 1.5% and four HFC-125 top
parameter sets with MAPE of less than 2.5% for the four
properties included in the optimization workflow and the
critical temperature and critical density. Comparisons of
critical temperature and critical density values between
experiment, the top four optimized force fields, and literature
force fields for both HFCs are shown in SI Tables S7 and S8.
Case Study: Ammonium Perchlorate Force Field. AP

is a key ingredient in some solid rocket propellants.
Experimental data for physical properties of AP are readily
available and a Class II force field parametrized by Zhu et al.77

has been used to predict78 pure AP properties at temperatures
up to 298 K. The Class II functional form supplements the
harmonic diagonal constants found in the more common Class
I force fields through the inclusion of cross terms, namely, the
stretch−stretch and stretch−bend interactions. The cross
terms couple internal coordinates in an effort to better
reproduce the molecular energetics as well as the dynamics of a
system by accounting for anharmonic and coupling inter-
actions. However, it is of interest to develop a Class I force
field for AP to use in conjunction with existing Class I force
fields for the other components of conventional solid
propellant, aluminum oxide86 and the polymeric binder.87

Here, we parametrize an AP force field with our force field
optimization workflow; we previously had utilized hand-tuning
methods to develop a Class I AP force field. We present a
comparison between the conventional hand-tuning approach
and our workflow. In addition to the motivation provided
above, we selected solid AP as our second case study because it
represents a very different system than the HFC VLE
investigated in the first case study.
The properties to which we calibrated our Class I force field

were the following: (1) UCMD at 10 K, defined as the mean of
the absolute residuals of equilibrium average simulated atomic
positions in reference to the experimentally observed unit cell
atomic positions (low values indicate the simulation maintains
the experimental AP crystal structure); (2) unit cell lattice
parameter mean absolute percent error at the three temper-
atures of interest (10, 78, and 298 K); and (3) correct
hydrogen bond symmetry.
Four iterations of the force field optimization workflow were

performed. The cumulative error plots are shown in Figure 4.

Once again, we observe substantial improvement between the
first and second workflow iteration. Here, the cumulative error
plots also show that the criteria for selecting parameter sets for
the next iteration can significantly affect the improvement in
objective performance between iterations. Less strict UCMD
and lattice MAPE criteria were applied when selecting
parameter sets for iterations 2 and 3, and stricter criteria
were applied when selecting parameter sets for iteration 4;
iteration 4 showed much greater improvement over iteration 3
whereas iterations 2 and 3 are very similar. Our workflow
generated 70 parameter sets over the four iterations which gave

Figure 3. Vapor−liquid equilibrium envelopes for (a) HFC-32 and
(b) HFC-125. The 26 (HFC-32) and 45 (HFC-125) nondominated
parameter sets identified in this work are reported as the transparent
colored circles and are compared with literature15,37 and experiment
values.61 All the nondominated parameter sets for both HFCs
reproduce the experimental values well and are thus highly
overlapped.

Figure 4. Cumulative number of AP parameter sets per iteration with
less than some value of (a) the 10 K unit cell mean distance (UCMD)
and (b) the lattice MAPE. Insets have the same axis titles and focus
on the improvement from iteration 3 to iteration 4. Less strict UCMD
and lattice MAPE criteria were applied when selecting parameter sets
for iterations 2 and 3, and stricter criteria were applied when selecting
parameter sets for iteration 4. Threshold values for selecting next
iteration points are shown in SI Table S6.
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lower UCMD and lattice parameter errors than the hand-tuned
values while maintaining the correct hydrogen bonding
symmetry. We found two nondominated parameter sets, as
shown in Figure 5. These two nondominated parameter sets

will subsequently be referred to as our top two AP parameter
sets. Table 1 compares the AP results for these top parameter
sets with the hand-tuned and Class II force field results.

■ DISCUSSION
Many Distinct Parameter Sets Yield Equally Accurate

Results. The conventional wisdom in molecular modeling
often seems to be that there is a single “correct” or “best” set of
force field parameters, but this may be a misleading way to
think about force field optimization. No force field is a perfect
representation of the physical world. Therefore, model
limitations will result in trade-offs between different objectives
and, depending on the property priorities for a specific
application, lead to different optimal parameter sets.88

However, our results clearly show that multiple parameter
sets can reproduce several experimental properties with very

low error. For the HFCs, our procedure yielded 26 (HFC-32)
and 45 (HFC-125) nondominated parameter sets, which are
distinctly different parametrizations, all of which display good
performance on our optimization objectives and the critical
temperature and density. A visual representation of the
nondominated parameter sets and their performance for the
optimization objectives is shown in Figure 6. For HFC-32,
where there are six optimized force field parameters, the
nondominated parameter sets show variation of up to ∼0.3 Å
in the carbon and fluorine σ values and up to ∼10 K/kB in the
carbon and fluorine ε values. For HFC-125, there is even larger
variation in the σ and ε values among the nondominated
parameter sets. We suspect this is because there are a larger
number of parameters for HFC-125 (10) than for HFC-32 (6),
allowing for compensating behavior between different
parameters. For example, consider σF1 and σF2. There is a
clear compensating effect: when σF1 is larger, σF2 is smaller, and
vice versa. On the other hand, σF1 and σF2 do appear to be
different, as some parametrizations of σF1 are 0.3 Å larger than
any of the parametrizations of σF2.
The visualizations in Figure 6 suggest that the 26 (HFC-32)

and 45 (HFC-125) nondominated parameter sets are indeed
distinct parametrizations, rather than closely related para-
metrizations with small variations along a continuous manifold
of good parameters. To further investigate this question, the L1
distance between the best-performing parameter set in each
property and every other nondominated parameter set was
calculated and plotted against the property error (SI Figure
S5). No correlation is observed between the similarity of a
parameter set to the top-performing parameter set in a given
property and the property error for that parameter set. This
strongly suggests that our nondominated parameter sets are
indeed distinct parametrizations. In part, this can be attributed
to our procedure for advancing parameter sets to the next
iteration, where we intentionally selected points that were well-
separated in parameter space (see section Selecting Parameter
Sets for the Next Iteration in Hydrofluorocarbon Case Study).
Similar behavior is observed in the AP system, where we

identified 70 parameter sets that outperform the hand-tuned
Class I and existing Class II force fields.77 Figure 7 shows the
variation in the optimized AP force field parameters. Once
again, a number of distinct parametrizations yield similar
accuracy for the optimization objectives. The σ values vary by
∼0.3 Å for the hydrogen and oxygen atom types that are more
exposed to intermolecular interactions, and up to as much as
nearly 1.0 Å for the buried Cl atom type. The ε values vary by
as much as ∼0.6 kcal/mol, with the largest variation once again
observed for the Cl atom type. Although there is a large
variation in the individual parameter values between different
parameter sets, it is the entire parameter set, taken together,
that provides good performance. The results presented here do
not suggest that a parameter can take any value within the
ranges shown in Figure 7, e.g., any value of σCl between 3.5 and
4.5 Å, and yield good performance if all other other parameter
values are held constant. Rather, correlations between the
different parameters enable a number of distinct yet highly
accurate force field parametrizations.
Finding many distinct well-performing nondominated

parameter sets suggests the model may be overparameterized.
To investigate this, we performed a local identifiability analysis
by inspecting the eigenvalues of the Fisher information matrix
(FIM) for the top four parameter sets for both the HFC-32
and HFC-125 models. As detailed in the SI Discussion, we find

Figure 5. 70 AP parameter sets that yield lower UCMD and lattice
parameter errors than the hand-tuned values while maintaining the
correct hydrogen bonding symmetry. The red points are non-
dominated and indicate our top two AP parameter sets. The blue
points are dominated.

Table 1. Crystal Structure Results for the Top Two AP
Parameter Sets, “Top A and Top B”, Identified via the
Workflow Presented in This Study, the Hand-Tuned
Parameter Set (HT), and the Class II Parameter Set of Zhu
et al.77a

property T (K) Top A Top B HT Class II

lat. a 298 −0.77 −0.40 −2.09 −0.21
78 −0.88 −0.48 −1.87 −2.79
10 −0.24 0.26 −1.38 −3.10

lat. b 298 1.13 0.61 1.96 7.00
78 1.11 0.89 1.68 8.19
10 0.63 0.26 1.16 8.22

lat. c 298 −0.18 −0.74 −1.04 1.64
78 −0.71 −1.10 −1.31 0.46
10 0.39 0.04 −0.30 0.32

MAPE 0.67 0.53 1.42 3.55
UCMD 10 0.1142 0.1247 0.1560 0.3485

aLattice parameter results are reported in terms of percent error
relative to experimental results.76 The UCMD results are given in
angstroms.
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the FIM has one and five near-zero eigenvalues for HFC-32
and HFC-125, respectively, when considering only the liquid
density data. This means we can only identify five (HFC-32:6
total parameters minus 1 near-zero eigenvalue equals five

identifiable directions, HFC-125:10 minus 5 equals 5)
parameters using only experimental liquid density data. The
corresponding eigenvectors for these near zero eigenvalues
reveal the direction in parameter space in which the regression
objective is flat (near zero curvature). Unfortunately, these
eigenvectors do not point in the direction of a single
parameter, which complicates their interpretation. More
importantly, the FIM is full rank when simultaneously
regressing both liquid density and VLE experimental data
sets, which implies both models are locally fully identifiable.
Thus, this analysis resolves one aspect of overparameterization
by mathematically quantifying the importance of including
multiple types of experimental data in the model calibration
process. Moreover, our results suggest all of the top parameter
sets are near locally optimal solutions (all with positive
curvature, thus locally identifiable).
Another aspect of overparameterization is that we find a

large number of high-quality solutions. These results are not
surprising, given that many inverse problems based on
engineering models have numerous locally optimal parameter
sets that lead to accurate in-sample predictions.89 In this case,

Figure 6. Repulsion−dispersion parameters for (a) 26 HFC-32 and (b) 45 HFC-125 high quality parameter sets. σ is reported in units of Å, and ε
is reported in units of K/kB. Each parameter set is connected by a different color line. Thick lines indicate the top four parameter sets for each
molecule. The y-axes are scaled to show the full range investigated for each parameter. The final four y-axes show the performance for the training
objectives. The gray squares and cyan triangles show the performance of GAFF15 and the force field of Raabe,37 respectively. For HFC-32 the
GAFF MAPE for ρvap and Pvap are not shown as they are 133 and 104, respectively.

Figure 7. Repulsion−dispersion parameters for the final 70 AP
parameter sets. σ is reported in units of Å, and ε is reported in units of
kcal/mol. Each parameter set is connected by a different color line.
The thick lines show the top two AP parameter sets. The y-axes are
scaled to show the full range investigated for each parameter. The
final two y-axes show the training objectives. The red stars and purple
circles show the performance of the Class II force field of Zhu et al.77

and the hand-tuned Class I force field, respectively.

Figure 8. (a) Cumulative percent of parameter sets from a large ( (105)) Latin hypercube that yield less than each value of MAPE for all four VLE
properties. For a given MAPE, a higher percentage indicates that more parametrizations achieve at least that threshold level of accuracy. Results are
shown for four different atom-typing schemes (AT-1, AT-2, AT-3, and AT-4). (inset) Low-MAPE region with data on a log-scale. (b) Schematic of
AT-1, AT-2, AT-3, and AT-4. AT-1 is the original atom-typing scheme where no atom types were shared between HFC-32 and HFC-125.
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we hypothesize that parametrizing each molecule individually
leads to many locally optimal parameter sets. Extending our
method to simultaneously optimize force field parameters for
an entire class of molecules (e.g., all hydrofluorocarbons) with
a number of shared atom types will likely reduce the
overparameterization. While we leave the development of an
HFC force field for future work, here, we explore the effects of
using shared atom types for HFC-32 and HFC-125 on the
number of high-quality model parametrizations. We consider
four atom-typing schemes (AT-1, AT-2, AT-3, and AT-4),
shown in Figure 8b. AT-1 is the scheme we have used thus far;
there are eight total atom types, three for HFC-32 and five for
HFC-125. In AT-2, we use a total of three atom types across
both molecules, C, F, and H. AT-3 and AT-4 both use five
atom types but differ in how these atom types are distributed.
In AT-3, we maintain the original scheme for HFC-125, but
then reuse the C1, F1, and H1 types for HFC-32. In AT-4, the
C and H types are shared as they are either small or buried,
while each fluorine is a different atom type. The surrogate
models trained during this work were used to evaluate the
performance of the different atom typing schemes. LHS was
used to generate 500 000 parameter sets. First, the liquid
density GP surrogate model was used to eliminate any
parameter sets with RMSE greater than 100 kg/m3. For each
of the remaining parameter sets, the VLE GP surrogate models
were used to predict the MAPE for each VLE property
(saturated liquid and vapor densities, vapor pressure, and
enthalpy of vaporization). Figure 8a reports the percentage of
the original 500 000 parameter sets that yield less than a given
MAPE threshold for all four VLE properties, simultaneously.
The atom-typing schemes with a reduced number of atom
types have a much smaller percentage of parameter space
containing low-error parameter sets. In fact, AT-2, with only
three atom types, does not result in any parametrizations that
are predicted to have below 46% MAPE for all four VLE
properties. AT-3 and AT-4 show that even with the same
number of atom types, one atom-typing scheme may result in
superior performance. This naturally raises another question:
given different atom-typing schemes, which should be used?
Recent work90 demonstrates the promise of using Bayes factors
to compare models with different levels of complexity (e.g.,
different atom-typing schemes) and make a justified selection.
Since the prior analysis was performed entirely with the

predictions of the GP surrogate models, we performed
molecular simulations with two top-performing parameter
sets for each of the shared atom-typing schemes (AT-2, AT-3,
and AT-4) in order to compute the simulated MAPE values
and compare them with the surrogate model predictions. The
results are reported in SI Table S9. Overall, the surrogate
model predictions were excellent, often showing less than 0.5%
MAPE deviation from the simulated MAPE. GEMC
simulations for AT-2 were unstable at the highest temperature,
confirming the surrogate models’ prediction that AT-2 would
not yield any good parameter sets. We also explored HFC-125-
only force fields with a reduced number of atom types (SI
Table S10) and found that we were able to identify parameter
sets with less than 3% MAPE using only 3 atom types (C, F,
and H). However, as noted above, when we attempted to use
three atom types (C, F, and H) for both HFC-32 and HFC-
125, no good force fields were identified. This finding is strong
evidence that the fluorine atom types in HFC-32 and HFC-125
should be different (e.g., AT-4) and shows how developing

parametrizations for an entire class of molecules will reduce the
number of viable parameter sets.
Adding additional objective properties is a complementary

strategy to reduce the number of viable parameter sets. In that
case, it is important that the additional properties are
orthogonal in the sense that good performance for one
property is not highly correlated with good performance for
another property. If property performance is highly correlated,
then adding additional properties to the optimization workflow
may not substantially reduce the number of viable parameter
sets. The apparent overparameterization observed in this work
emphasizes why tuning force fields for specific systems and
using a few objective properties via relatively simple methods
such as epsilon-scaling, manipulating mixing rules, or varying a
single parameter value are often quite successful. However, our
findings suggest that the force fields developed via these
methods are most likely only one of a large number of possible
parametrizations that would yield at least equal accuracy.
A further question involves how final parameter sets should

ultimately be selected, given that many high-quality parameter
sets are available. Our workflow is explicitly not designed to
identify a single optimal set of force field parameters. Instead, it
searches for and identifies high quality parameter sets with
respect to all of the optimization objectives, e.g., points in the
nondominated set. Selecting a single specific parameter set
from the optimized parameter sets identified by the workflow
requires additional post hoc criteria that are application specific.
Here, we chose nondominated status and error thresholds for
all properties. Alternative strategies include creating a weighted
sum of errors in the properties based upon the desired
application and domain knowledge, ranking force fields by
their error in the various properties studied via statistical
tests,54 evaluating the force field’s performance for properties
not included in the optimization procedure, or selecting
parameter sets based upon a measure of compatibility with the
force fields being used for other components of a system. One
could also consider chemical intuition when selecting the final
parameter sets, e.g., for HFC-125, perhaps a parameter set with
more similar values for both fluorine atoms would be preferred.
Though our preference is to minimize the number of ad hoc
choices, ultimately, selecting the final force field for a given
application will be system and application dependent and rely
heavily on domain expertise.

Maintaining a Physically-Motivated Analytical Func-
tional Form Aids Transferability to Properties Not
Included as Optimization Objectives. One important
question is whether the force field parameters developed with
this workflow will yield accurate property predictions for
properties not included in the optimization workflow. We have
already shown that the HFC force fields developed during the
VLE tuning stage result in accurate critical temperature and
density even though these properties were not optimization
objectives. However, these critical properties are largely
determined by accurately capturing the temperature depend-
ence of the saturated liquid and saturated vapor density, both
of which were optimization objectives. To further investigate
the transferability of force field parameters developed with our
workflow to properties not included as optimization objectives,
we examine the performance of the 25 parameter sets used
during the VLE-1 iteration. These parameter sets were used for
VLE-1 because they were identified as good at predicting the
temperature dependence of the liquid density during the LD
iterations. Figure 2 shows that when applied for VLE-1, many
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perform quite well for VLE properties. In fact, three of the
HFC-32 parameter sets used for the VLE-1 iteration had less
than 2% MAPE in all six properties. Furthermore, when
compared with GAFF, all 25 parameter sets selected from the
LD stage yield better performance for all six properties. This is
strong evidence that our force field optimization workflow can,
with the correct optimization objectives, yield force fields that
accurately predict properties beyond the optimization
objectives.
The transferability of the LD-optimized parameters to VLE

gives credence to our overall force field optimization
philosophy, which maintains traditional analytical functional
forms and uses machine learning as a guide to identify optimal
parameters. However, a priori, it is unclear that there should be
such a strong correlation between the liquid density and VLE
properties. For many systems, accurately predicting the liquid
density is a necessary, but often quite insufficient, condition for
an accurate force field. We hypothesize there is a key factor
that contributes to the transferability of the parameters
developed during the LD iterations to VLE: the LD
simulations were performed at the saturated vapor pressure
across an 80 K temperature range, up to within 30 K of the
experimental critical temperature. Accurately capturing the
liquid density at saturation across a relatively large temperature
range and avoiding spontaneous vaporization, especially at
conditions closer to the critical point, requires capturing a
careful balance of the cohesive energy and molecular size,
which are closely related to the LJ repulsion−dispersion
parameters that were calibrated. If the correlation between LD-
optimized parameters and VLE properties proves applicable to
other classes of molecules, it may offer a rapid method for
developing force fields with accurate VLE properties.
Selecting Good Properties for Force Field Optimiza-

tion is Challenging. When optimizing force fields for the
HFC case study, we were interested in developing force fields
that accurately predict HFC VLE behavior. As such, we chose
to calibrate parameters to the saturated liquid and vapor
densities, vapor pressure, and enthalpy of vaporization.
However, these properties are expensive to compute in
molecular simulations, making it difficult to evaluate a large
parameter space. Therefore we used less computationally
expensive LD iterations to generate good parameter sets for
VLE and narrow the parameter search space. Furthermore, we
continued to use the highly accurate LD GP surrogate models
to screen out poor parameter sets during the VLE iterations.
The success of this approach demonstrates that a cheaper
“screening” property can be used to narrow the parameter
search space drastically when good parameter sets for the
screening property are a superset of the good parameter sets
for the final properties of interest.
The AP case study had different challenges. The MD

simulations required to predict the AP properties were
computationally inexpensive, so there was no need to first
use a screening property. However, it was not immediately
clear what experimental properties we should target. Our first
implementation attempted to reproduce the temperature
dependence of the crystal lattice parameters alone; this proved
ineffective and naive in hindsight, as we generated many force
fields that yielded the correct crystal lattice parameters but
incorrect crystal structures. To overcome this issue, we added
the 10 K UCMD as an objective because it is a measure of how
accurately the force field reproduces the experimental crystal
structure at 10 K. The lattice MAPE was still included to

capture the temperature dependence of the crystal dimensions
since the experimental unit cell coordinates are only reported
at 10 K.
The UCMD surrogate model has a notable difference from

the others; whereas the other surrogate models predict a
property (e.g., lattice a or pvap), the UCMD is itself an
objective function. The UCMD surrogate model predicts the
mean distance of all of the unit cell atoms from their respective
coordinates in the experimental unit cell. By definition, this
distance is zero if the simulated structure perfectly matches
experiment. There are benefits to using physical experimentally
measured properties compared to an objective function within
the optimization workflow, including providing a clear
mapping between a surrogate model and the objective metric.
However, using surrogate models to predict the value of an
objective function provides the opportunity to combine
multiple pieces of information into a single quantity, as is
the case with UCMD, which combines the distance of 40
atoms from their positions in the experimental unit cell into a
single value. This strategy can drastically reduce the number of
required surrogate models. In general, our experience with the
AP case study emphasizes that careful thought must be given as
to which experimental properties are best to target and how
these should be accounted for within the workflow. Roughly
75% of our effort for the AP case study was dedicated to
identifying the appropriate experimental properties to target.

Systematic Parameter Search Provides Insights into
Model Limitations. The exhaustive search of parameter
space enabled by our workflow provides opportunities to
distinguish between inaccurate results from poor parameter
sets and physical limits from our choice in force field functional
form and unoptimized parameters. For example, although our
workflow finds high-quality AP parameter sets, we encountered
limitations that likely arise from parameters that were not
calibrated, and possibly even the force field functional form
that we selected. No parameter set predicted an overall UCMD
of less than 0.1 Å. Given the exhaustive search enabled by our
force field optimization workflow, this suggests that there are
no parameter sets capable of yielding a crystal structure with
UCMD below 0.1 Å, given the selected functional form,
intramolecular parameters, and partial charges. Figure 9 shows
the per-element UCMD distances after iteration 4. Although
the UCMD for the chlorine, oxygen, and nitrogen atoms fall
below 0.12 Å for many parameter sets, the hydrogen UCMD
rarely falls below 0.2 Å. Further investigation suggests that this
effect is because the N−H bond stretching is insufficiently
susceptible to the three unique local hydrogen-bonding
chemical environments; experiments report76 that the N−H
bond lengths range between 1.028 and 1.058 Å whereas in
simulations the N−H bond lengths typically cover a much
smaller rangebetween 1.025 and 1.033 Åfor parameter
sets that well reproduce the experimental physical properties.
The N−H stretching force constant was not included in our
parametrization process. However, even if it was, it is not clear
that it would be possible to capture the correct bond stretching
behavior and match the vibrational spectra and the N−H bond
lengths with a Class I functional form. The exhaustive search
provides confidence that the limitations of the model arise
from the functional form and unoptimized parameters, rather
than the selected parametrization.
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■ CONCLUSIONS
We have presented a machine learning directed workflow for
top-down optimization of force field parameters. By harnessing
surrogate-assisted optimization, our workflow drastically
reduces the number of simulations necessary to find optimal
force field parameters by replacing them with computationally
tractable surrogate model evaluations. We synthesize GPR and
SVM surrogate models and multiobjective optimization into a
generic approach to optimize all-atom force fields for realistic
systems. We have applied our workflow to optimize HFC force
fields to VLE properties and an AP force field to the
experimental crystal structure. These case studies show that
our workflow can be used for systematic exhaustive screening
of parameter space and that surrogate models are highly
effective at predicting both simulated physical properties and
objective metrics, enabling us to find multiple low-error force
fields. The approach presented here could be further combined
with gradient-based methods or other approaches such as trust
region surrogate-based optimization91 to further refine the final
force fields.
Based upon the success of our approach for the two

disparate case studies presented here, we believe that this
workflow can be applied to most molecular systems and
optimization objectives, provided sufficient reference data.
Surrogate models could be used to predict difficult-to-compute
thermodynamic properties such as solubilities and binding
energies, and transport properties such as self-diffusivity and
thermal conductivity. While we have focused on calibrating
repulsion−dispersion parameters in this work, this workflow
could be used to calibrate any parameters within the force field
in a fully top-down approach or as part of a bottom-up force
field development workflow, by including ab initio data in the
fitting procedure.45 Additionally, we discussed the reasons for
successes and limitations of the workflow, the potential
challenges of applying this workflow to a particular system
(i.e., choosing optimization objectives) and the questions
about molecular modeling these results present. We highlight
that this workflow is built on a foundation of domain
knowledge in selecting the parameters to calibrate, the

parameter bounds, and the experimental properties to ensure
results are reasonable.
Finally, while we believe that our workflow will enable more

efficient force field development and optimization in the
future, reducing the need for laborious hand-tuning practices,
quantifying the workflow’s efficiency was beyond the scope of
this work. We can, however, anecdotally note for the AP case
study that the hand-tuning approach utilized ∼15 000
simulations and only found 1 optimal parameter set. This is
in contrast to our presented workflow, which evaluated
∼3 000 000 parameter sets using surrogate models, (103)
times as many as the hand-tuning method, but only required
3000 simulations, to find 70 parameter sets with lower error in
the metrics of interest than the hand-tuned parameter set. We
anticipate that further refining the proposed workflow, e.g.,
incorporating adaptive sampling via Bayesian optimization, can
dramatically reduce the number of molecular simulations
required to identify parameter sets that accurately predict
several physical properties.

■ DATA AND SOFTWARE AVAILABILITY
Codes used to perform the HFC case study and all generated
parameters sets are available at https://github.com/
dowlinglab/hfcs-fffit. Codes used to perform the AP case
study and all generated parameter sets are available at https://
github.com/dowlinglab/ap-fffit.
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Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine
Learning Force Fields. Chem. Rev. 2021, DOI: 10.1021/acs.chem-
rev.0c01111.
(10) Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy Surfaces.
Phys. Rev. Lett. 2007, 98, 146401.
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