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In this paper, we present the analytical theory of attosecond-pulse formation via optical modulation of an
active medium of the hydrogen-like C5+ plasma-based x-ray laser at 3.4 nm wavelength in the “water-window”
range, taking into account a variation of the population inversion caused by radiative decay of the upper lasing
states. We derive an analytical solution for the x-ray field amplified by an x-ray laser with time-dependent
population inversion, which is simultaneously irradiated by a strong optical laser field, and use it to find the
optimal conditions for the attosecond-pulse formation from a narrow-band seeding x-ray field. We show that the
shape of pulses can be improved at the cost of reduced pulse peak intensity (i) via external attenuation of the
resonant spectral component of the amplified x-ray field or (ii) by using a resonantly absorbing medium (the
active medium of the x-ray laser after the change of sign of the population inversion) for the pulse formation.
The results of the analytical theory are in a good agreement with the numerical solutions of the Maxwell-Bloch
equations which account for the nonlinearity, as well as the amplified spontaneous emission, of the active
medium. Both analytically and numerically we show the possibility to produce a train of attosecond pulses
with sub-200-as duration and the peak intensity exceeding 1012 W/cm2 at the carrier wavelength 3.4 nm in the
water-window range, which makes them attractive for the biological and medical applications.
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I. INTRODUCTION

The time-resolved x-ray diffraction, absorption, and scat-
tering are indispensable tools for study of the ultrafast electron
dynamics and nuclear motions in atoms and molecules at
their intrinsic time scales, as well as charge migration, struc-
tural and spin dynamics in solids, and photoinduced chemical
reactions (see the recent reviews [1–6]). In particular, the
time-resolved imaging of nanoscale biological materials and
living cells attracts increasing attention [1,3–5]. In all of these
applications a combination of the high temporal and spatial
resolution with the high brightness of the x-ray field is desir-
able.

To date, the most promising (but at the same time the most
demanding and expensive) sources of x-ray radiation with up
to multi-keV photon energy are the x-ray free-electron lasers
(XFELs) [4,7], which are capable of producing the radiation
of high brightness in a sequence of femto- or attosecond [8]
bursts. But at the same time XFELs lack temporal coherence
and reproducibility even in the self-seeded mode of operation,
and there are only few such facilities in the world. The fully
coherent x-ray pulses with photon energies exceeding 1 keV
[9] and pulse duration down to 50 as [10] have been produced
via the high-harmonic generation (HHG) of infrared (IR) laser
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fields in gases (see also [5] and [7]). However, although re-
maining the only reliable source of attosecond pulses, suitable
for the practical applications, HHG is strictly limited in terms
of pulse energy in the x-ray range (typically, by few or few
tens of pJ for the photon energies exceeding 200 eV). The
other widespread coherent x-ray sources are the plasma-based
soft-x-ray lasers [11,12], which allow producing the pulses
of x-ray radiation with up to a few μJ energy at a few nm
wavelength [12–14] in a tabletop setup. But the radiation
bursts of the plasma-based x-ray lasers have ps or longer
duration, which limits their applications for the time-resolved
measurements.

Recently, we suggested an approach which might allow
one to combine the merits of the HHG and the plasma-based
x-ray sources, that is the attosecond-pulse duration and the
high radiation energy [15,16]. The basic idea is to enrich the
spectrum of generation and amplification of an x-ray laser
by multiple equidistant sidebands via irradiation of its active
medium by a strong optical laser field. The sidebands appear
due to sub-optical-cycle modulation of the frequency of the
inverted x-ray transition by the optical laser field via Stark
splitting of the excited energy levels of the resonant ions
[17,18]. Under a proper choice of parameters of the modu-
lating optical field and the active medium, the generated [15]
or amplified [16] spectrum might be sufficiently broad and
phase aligned, so that the output x-ray field constitutes a train
of attosecond pulses in the time domain. In the following work
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[19] we described the spectrum enrichment process analyti-
cally and found the optimal conditions for the transformation
of a quasimonochromatic seeding extreme ultraviolet (XUV)
radiation into a sub-fs pulse train in an active medium of a
hydrogen-like Li2+ soft-x-ray laser, dressed by an optical laser
field (the resonant radiation wavelength in such a case is 13.5
nm) [20].

In the present contribution, we analyze the ultimate ca-
pabilities and limitations of this method in the x-ray range
by considering the possibility to produce an attosecond-pulse
train from a quasimonochromatic seeding x-ray field in an
active medium of the hydrogen-like C5+ x-ray laser (the reso-
nant radiation wavelength is 3.4 nm) [14]. In the case of C5+
active medium (i) the lifetime of the population inversion is 16
times smaller than that in the case of Li2+ plasma [19], while
(ii) the gain for the resonant x-ray field is weaker, and (iii) the
plasma dispersion for the modulating optical field is stronger.
As a result, (a) it is necessary to account for the time variation
of the population inversion at the lasing transition, and (b)
the sidebands are generated less efficiently than in the case of
Li2+ active medium. Therefore, formation of the high-contrast
attosecond pulses implies either an attenuation of the resonant
spectral component of the amplified x-ray field to the level
of the generated sidebands, or use of a passive (absorbing),
rather than active (amplifying) plasma medium. These ques-
tions are addressed in the present paper both analytically and
numerically.

The paper is organized as follows. In Sec. II we briefly
formulate the basic set of equations for the resonant x-ray
field and the active medium (which is the same as in [19]). In
Sec. III we introduce the analytical solution for the x-ray field
(which is more general as compared to that in [19], as it takes
into account the variation of population inversion). In Sec. IV
based on both the analytical solution and numerical studies
we find the optimal conditions for the formation of attosecond
pulses with the highest contrast in either an active or a passive
medium. Also, we discuss the limitations of the considered
approach, caused by (i) the amplified spontaneous emission
of the active medium in the case of a very weak seeding
x-ray field, and (ii) reduction of the population difference at
the lasing transition caused by the stimulated transitions in
the case of a strong seeding field. In Sec. V we summarize
the results. Finally, in the Appendix we derive the analytical
solution, given in Sec. III.

II. THEORETICAL MODEL

In the following, we consider the active medium of C5+
x-ray laser, which is a plasma of hydrogen-like C5+ ions
with a population inversion at the transition n = 1 ↔ n = 2
(where n is the principal quantum number) [12,14–16,19,20].
Such plasma can be created by an optical pump laser pulse
with intensity on the order of 1019 W/cm2 and few tens of
femtosecond duration [14], which fully ionizes the atoms
of carbon at the same time producing minimal heating of
the plasma. Just after the ionization, the electrons start to
recombine with the atomic cores. At the early stage of the
recombination process, the hydrogen-like C5+ ions are pro-
duced in the highly excited energy levels. Subsequently, they
decay to the energy level n = 2 via both radiative and non-

FIG. 1. A schematic diagram of the experimental setup. A micro-
capillary in a vacuum chamber is irradiated by a femtosecond pump
laser pulse, which creates the C5+ active plasma medium, and with
a subpicosecond delay, by a combination of nonionizing modulating
laser field and a quasimonochromatic seeding soft x-ray field.

radiative transitions, resulting in a population inversion at the
transition n = 1 ↔ n = 2.

With a subpicosecond delay, required for the population
inversion to reach its maximum value [14], the pump laser
pulse is followed by a combination of co-propagating (along
x axis) quasimonochromatic resonant seeding soft x-ray field
and modulating optical laser field, which overlap in space and
time and have the same linear polarization (along the z axis).
The modulating field has an intensity of about 1016 W/cm2,
which is below the ionization threshold of C5+ ions from
energy levels with n = 1 and n = 2. A sketch of the suggested
experimental setup is shown in Fig. 1.

The basic set of equations, describing formation of attosec-
ond x-ray pulses in the active medium of the hydrogen-like
ions, dressed by the far-off-resonant IR/optical field, was pre-
sented in [19]. For completeness and self-sufficiency of this
paper we briefly describe it below.

At the entrance to the medium, x = 0, the x-ray field is
quasimonochromatic and has a form

�E (x = 0, t ) = 1
2�z0Ẽinc(t ) exp (−iωinct ) + c.c., (1)

where �z0 is a unit polarization vector, c.c. stands for complex
conjugation, ωinc is the carrier frequency of the field, which
is close to the frequency of the transition n = 1 ↔ n = 2, and
Ẽinc(t ) is the slowly varying amplitude of the x-ray field. For
the analytical solution, derived below, we assume Ẽinc(t ) in the
form of a unit step function, which is turned on instantly at the
initial moment of time, t = 0. In the numerical calculations,
we imply an incident field with a rectangular envelope Ẽinc(t )
and smoothed turn-on and turn-off. The modulating optical
field inside the medium has a form

�E�(x, t ) = �z0EM cos

[
�

(
t − npl

c
x

)]
. (2)

Here EM is the amplitude of the modulating field, � is its
angular frequency, c is the speed of light in vacuum, npl =√

1 − ω2
pl/�

2 is the plasma refraction index at the frequency

of the modulating field, ωpl =
√

4πNee2/me is the (electron)
plasma oscillation frequency, Ne is the concentration of free
electrons; e and me are charge and mass of an electron, re-
spectively. Equation (2) implies that the modulating field is
monochromatic and passes through the medium at the phase
velocity c/npl . These approximations are justified if (i) the
duration of the modulating optical field considerably exceeds
both the duration of the x-ray field and the relaxation times of
the active medium; (ii) the concentration of free electrons is
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FIG. 2. The relevant energy level scheme of C5+ ions under
the action of the modulating field (2). The energies of the states
are calculated according to (6) for the intensity of the modulating
field 2.3 × 1016 W/cm2, which is assumed throughout the paper. The
electric allowed transitions are shown by dashed vertical arrows. γcoll

is their collision broadening for the considered parameters of the
plasma (see the text). �rad is the radiative decay rate from each of
the excited states |2〉, |3〉, |4〉, or |5〉, to the state |1〉. λinc = 2πc/ωinc

is the wavelength of the seeding x-ray field (1) in vacuum.

nearly constant in the interaction volume during the interac-
tion time; and (iii) the modulating field is far-detuned from all
the dipole-allowed transitions involving the populated states
of the ions (so it is not absorbed, neither is it affected by the
resonant dispersion).

The relevant energy level scheme, which describes the
interaction of the resonant x-ray field (1) with hydrogen-like
ions, includes the five states of the ions, namely, the ground
state |1〉 = |1s〉, corresponding to the energy level n = 1,
and the excited states |2〉 = (|2s〉 + |2p, m = 0〉)/

√
2,

|3〉 = (|2s〉 − |2p, m = 0〉)/
√

2, |4〉 = |2p, m = 1〉, and
|5〉 = |2p, m = −1〉, which correspond to the energy level
n = 2. Here m is a projection of the orbital momentum of the
ions on the polarization direction of the modulating optical
field (z axis). Under the action of the modulating field (2)
the upper resonant energy level of the ions is split into three
sublevels because of the Stark effect. Two of them, which
correspond to the states |2〉 and |3〉, oscillate in space and time
along with the electric field strength of the modulating field
due to the linear Stark effect, and also experience a relatively
small time-independent shift due to the quadratic Stark effect.
The third sublevel corresponds to the states |4〉 and |5〉, which
remain degenerate and experience only a quadratic Stark
shift. The relevant energy level scheme of the ions under the
action of the modulating field is shown in Fig. 2. The resonant
polarization of the medium has a form

�P(x, t ) = Nion[ �d12ρ21 + �d13ρ31 + �d14ρ41 + �d15ρ51 + c.c.],
(3)

where Nion is density of the resonant ions, �d1i are electric
dipole moments of the transitions |i〉 ↔ |1〉, i = 2, 3, 4, 5,
while ρi1 are the quantum coherences at these transitions. The
values of dipole moments �d1i in Eq. (3) are �d12 = �z0dtr, �d13 =
−�z0dtr, �d14 = �d15 = i�y0dtr , where dtr = 27

35Z ea0, Z is nucleus
charge of the ions (Z = 6 for C5+), and a0 is the Bohr radius.
The nonzero elements of the matrix of dipole moments are
also �d22 = �z0dav and �d33 = −�z0dav , where dav = 3

Z ea0. As it

was discussed in [15], the incident z-polarized x-ray field (1)
is amplified and generates the sidebands due to interaction
with the transitions |2〉 ↔ |1〉 and |3〉 ↔ |1〉, whose dipole
moments are oriented along the z axis, whereas the transitions
|4〉 ↔ |1〉 and |5〉 ↔ |1〉, whose dipole moments are perpen-
dicular to the z axis, are a source of the amplified spontaneous
emission (ASE), which is polarized along the y axis, and re-
duces the gain for the z-polarized x-ray field by increasing the
population of the ground state. In the following we consider
a plasma, which consists of only the resonant hydrogen-like
ions and free electrons (there are no ions of the other ioniza-
tion degree), so that the ion concentration can be expressed
through the electron concentration as Nion = Ne/(Z − 1). The
time evolution of the quantum state of the ions is described by
the density-matrix equations

∂ρ11

∂t
= γ11

5∑
k=2

ρkk − i

h̄
[Ĥ , ρ̂]11,

∂ρi j

∂t
= −γi jρi j − i

h̄
[Ĥ , ρ̂]i j, i, j = {1, 2, 3, 4, 5}, i j �= 11,

(4)

which take into account that the ground state |1〉 has an infinite
lifetime. In Eqs. (4) γi j are decay rates of the density matrix
elements ρi j , while Ĥ is the Hamiltonian of the system. In the
presence of both the resonant x-ray field and the modulating
optical field it has a form

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

h̄ω1 −Ezdtr Ezdtr −iEydtr −iEydtr

−Ezdtr h̄ω2(t, x) 0 0 0

Ezdtr 0 h̄ω3(t, x) 0 0

iEydtr 0 0 h̄ω4 0

iEydtr 0 0 0 h̄ω5

⎞
⎟⎟⎟⎟⎟⎠

,

(5)

where

h̄ω1 = −mee4Z2

2h̄2

{
1 + 9

256
F 2

0

}

h̄ω2(t, x) = −mee4Z2

8h̄2

{
1+21

4
F 2

0 + 3F0 cos
[
�
(

t − npl
x

c

)]}

h̄ω3(t, x) = −mee4Z2

8h̄2

{
1+21

4
F 2

0 − 3F0 cos
[
�
(

t − npl
x

c

)]}

h̄ω4 = h̄ω5 = −mee4Z2

8h̄2

{
1 + 39

8
F 2

0

}
(6)

are the energies of the states |1〉, |2〉, |3〉, |4〉, and |5〉, corre-
spondingly, taking into account the linear and quadratic Stark
shifts induced by the modulating field (2) [21]; F0 = ( 2

Z )3 EM
EA

is a dimensionless amplitude of the modulating field, and
EA = m2

ee5/h̄4 ∼= 5.14 × 109 V/cm is the atomic unit of elec-
tric field. In turn, the decay rates γi j are determined by the
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following equations:

γ21 =γ31 =γcoll + w
(2,3)
ion /2 + �rad/2 ≡ γz,

γ41 =γ51 =γcoll + w
(4,5)
ion /2 + �rad/2 ≡ γy,

γ32 =γcoll + w
(2,3)
ion + �rad, γ54 =γcoll + w

(4,5)
ion + �rad,

γ42 =γ52 =γ43 =γ53 =γcoll + w
(2,3)
ion /2 + w

(4,5)
ion /2 + �rad,

γ11 =�rad, γ22 =γ33 =w
(2,3)
ion +�rad, γ44 =γ55 =w

(4,5)
ion +�rad.

(7)

In (7) γcoll is the collision broadening of the spectral lines,
�rad is the radiative decay rate from each of the upper states
of the ions, |2〉, |3〉, |4〉, or |5〉, to the ground state |1〉, while
w

(2,3)
ion and w

(4,5)
ion are the ionization rates from the states |2〉 or

|3〉, and |4〉 or |5〉, respectively, averaged over the period of
the modulating field:

w
(2,3)
ion = mee4Z2

16h̄3

√
3F0

π

[
4

F0
e3 +

(
4

F0

)3

e−3

]
e−2/(3F0 ),

w
(4,5)
ion = mee4Z2

4h̄3

√
3F0

π

(
4

F0

)2

e−2/(3F0 ). (8)

Since the modulating optical field should not ionize the
active medium during the interaction time, it should be
not too strong, so that both (i) the quadratic Stark shifts
of the resonant energy levels and (ii) the ionization rates
from them remain much smaller than the frequency of the
modulating field, �. It allows taking them into account as
time-independent values [22,23,15], as implied by Eqs. (6)
and (8). Under the same conditions cubic Stark effect and
higher-order corrections to the Stark shift can be safely ne-
glected.

In the following we assume the active medium in the form
of a long cylinder of the length L and radius R � L, with Fres-
nel parameter F = πR2/(λ21L) ∼ 1 (here λ21 = 2πc/ω̄21 is
the wavelength of the resonant x-ray field, and ω̄21 is the
time-averaged frequency of the transition |2〉 ↔ |1〉). In such
a case, propagation of the x-ray field through the medium can
be described by a one-dimensional wave equation:

∂2 �E
∂x2

− εx−ray

c2

∂2 �E
∂t2

= 4π

c2

∂2 �P
∂t2

, (9)

where �E = �z0Ez + �y0Ey is a vector of the resonant field inside
the medium [although the seeding field (1) is z polarized, y
polarization appears in the medium because of the sponta-
neous emission at the transitions |4〉 ↔ |1〉 and |5〉 ↔ |1〉],
�P is a vector of the resonant polarization (3), and εx−ray =
1 − 4πNee2/(meω

2
inc) 	 1 is a dielectric permittivity of the

plasma for the x-ray field. The system of equations (3)–(9)
describe the transformation of the resonant x-ray field (1)
in the active medium of a hydrogen-like plasma-based x-ray
laser irradiated by the modulating field (2). Let us change the
independent variables x, t → x, τ = t−x

√
εx−ray/c and seek

a solution of this system within the slowly varying amplitude
approximation for both the x-ray field and the resonant polar-
ization, and the rotating wave approximation for the density

matrix elements:

�E (x, τ ) = 1

2
{�z0Ẽz(x, τ ) + �y0Ẽy(x, τ )}e−iωincτ + c.c.

�P(x, τ ) = 1

2
{�z0P̃z(x, τ ) + �y0P̃y(x, τ )}e−iωincτ + c.c., (10a)

ρi1(x, τ ) = ρ̃i1(x, τ )e−iωincτ , i = {2, 3, 4, 5}
ρi j (x, τ ) = ρ̃i j (x, τ ), i j �= {21, 31, 41, 51}
ρ̃i j (x, τ ) = ρ̃∗

ji(x, τ ), (10b)

where Ẽp, P̃p (p = z, y) and ρ̃i j (i, j = 1–5) are
slow functions of space and time, which means

1
|Ẽp| |

∂Ẽp

∂x |, 1
|P̃p| |

∂P̃p

∂x |, 1
|ρ̃i j | |

∂ρ̃i j

∂x | � ωinc
√

εx−ray/c and 1
|Ẽp| |

∂Ẽp

∂τ
|,

1
|P̃p| |

∂P̃p

∂τ
|, 1

|ρ̃i j | |
∂ρ̃i j

∂τ
| � ωinc.

Then, the Eqs. (9) and (3) take the form

∂Ẽz

∂x
= i

4πωincNiondtr

c
√

εx−ray
(ρ̃21 − ρ̃31)

∂Ẽy

∂x
= −4πωincNiondtr

c
√

εx−ray
(ρ̃41 + ρ̃51). (11)

The explicit form of the density matrix equations (4)–(6)
under the considered approximations (10) is given in [15] and
will not be repeated here because of its bulkiness. To solve
the resulting system of equations (4)–(6) and (11) one should
have (i) the boundary conditions for the resonant field at the
entrance of the medium, and (ii) the initial conditions for the
density matrix elements.

Since εx−ray 	 1, the reflection of the incident x-ray field
from the edges of the medium is negligible. Thus, the bound-
ary conditions for the resonant field are

Ẽz(x = 0, τ ) = Ẽinc(τ ), Ẽy(x = 0, τ ) = 0. (12)

As initial conditions we assume that at τ = 0 the ions
are excited to the states |2〉 − |5〉 with equal probability by a
running wave of a pump laser field, which goes slightly ahead
of the modulating optical field and the seeding x-ray field (see
Fig. 1), while some of the ions decay to the ground state |1〉.
Thus,

ρ̃11(x, τ = 0) = 1 − 4n(0)
tr

5
, and

ρ̃ii(x, τ = 0) = 1 + n(0)
tr

5
for i = {2, 3, 4, 5}, (13)

where n(0)
tr is the initial population difference at the transitions

|i〉 ↔ |1〉, i = {2, 3, 4, 5}. At the same time, we account for
the nonzero initial values of the quantum coherences at the
inverted transitions, ρ̃i1(x, τ = 0), i �= 1, which are respon-
sible for spontaneous emission of the active medium, see
[24–26] and a review [27]. In accordance with [19] these
quantum coherences are stepwise-constant random functions
of the longitudinal coordinate x, while the other coherences
equal zero:

ρ̃i1(xk−1 � x < xk, τ = 0) = Ai,k
exp {i(ϕi,k + φi )}

2NionπR2lelem
,

i = {2, 3, 4, 5}, (14a)

ρ̃i j (x, τ = 0) = 0, i �= j, i, j �= 1, (14b)
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where xk = klelem, k = 1, 2, . . . , kmax; lelem is much larger
than the wavelength of the resonant x-ray field, λ21 =
2πc/ω̄21, and much smaller than the total length of the
medium, λ21 � lelem � L. In Eq. (14a) φ2 = 0, φ3 =
π, φ4 = φ5 = π/2, while the amplitudes Ai,k and phases
ϕi,k are random and statistically independent values, which
obey the following probability distributions:

W
(
A2

i,k

) = 1

Ni,k
exp

(−A2
i,k/Ni,k

)
, 0 � A2

i,k < ∞, (15a)

W (ϕi,k ) = 1/(2π ), 0 � ϕi,k < 2π. (15b)

Here Ni,k = ρ
(0)
ii NionπR2lelem is the number of particles,

which are initially excited to the state |i〉 in the slice
number k.

In order to get an insight into the process of sub-fs pulse
formation from the quasimonochromatic seeding x-ray field,
in the next section we derive a simplified analytical solution,
which is further compared to the results of numerical calcula-
tions based on Eqs. (4)–(6) and (11) with boundary conditions
(12) and initial conditions for the density matrix elements [see
Eq. (13) and (14)].

III. ANALYTICAL STUDY

The high frequency of transitions |i〉 ↔ |1〉, i =
{2, 3, 4, 5}, of C5+ plasma-based x-ray laser results in a small
radiative lifetime of the excited states |i〉, �−1

rad 	 1.23 ps, and
rapid decrease of the population inversion at these transitions,
ni1 ≡ ρ̃ii − ρ̃11, due to spontaneous emission. In the absence
of the x-ray field inside the medium with initial conditions
(13) the population differences at all the inverted transitions
are identical, ni1 = nSp

tr (τ ) for any i = {2, 3, 4, 5}, where

nSp
tr (τ ) = (

1 + n(0)
tr

)
exp {−�radτ } − 1 (16)

is the common population difference, whose time dependence
is governed by radiative decay of (spontaneous emission
from) the excited states. As follows from Eq. (16), the

population difference is zero at the moment of time τ0 =
1

�rad
ln(1 + n(0)

tr ). In the following, similarly to [15], we as-
sume that at the initial moment of time there is a complete
population inversion, i.e., n(0)

tr = 1/4. Besides, we assume that
the other parameters of the active medium are also the same
as in [15]. Thus, the densities of C5+ ions and free electrons
are Nion = 1017 cm−3 and Ne = 5 × 1017 cm−3, respectively,
the ion temperature is 3 eV, the electron temperature is 5 eV,
the intensity of the modulating optical field is Iopt = 2.3 ×
1016 W/cm2 (which is slightly below the threshold of rapid
ionization from the excited states of the ions). In such a case
the population inversion at all the transitions |2〉, |3〉, |4〉,
|5〉 ↔ |1〉 drops to zero at τ = τ0 	 270 fs, while the relax-
ation time of the quantum coherences at the transitions |2〉,
|3〉 ↔ |1〉, which govern the amplification of z-polarized x-ray
field, is 1/γz 	 415 fs (the collision time is 1/γcoll 	 560 fs
[28] and the inverse ionization rates from the upper lasing
states are 1/w

(2,3)
ion 	 2.3 ps). Thus, τ0 < 1/γz, so that there is

no steady-state solution for the quantum coherences and the x-
ray field inside the medium, contrary to the case of Li2+ x-ray
laser [19], where τ0 � 1/γz. In such a case, time variation of
the population differences should be taken into account in the
analytical solution. To construct such an analytical solution,
we assume that (i) the seeding z-polarized x-ray field is strong
enough so that the influence of y-polarized ASE of the active
medium is negligible, and, at the same time, (ii) the sponta-
neous radiative transitions from the excited states of the active
medium dominate over the stimulated transitions, so that the
influence of the x-ray field on the population differences at the
inverted transitions can be neglected. There is no contradic-
tion between these two conditions for a sufficiently elongated
active medium, since the population of the excited states is
reduced because of spontaneous emission in any direction
(in 4π solid angle), while the ASE originates only from the
spontaneous emission along the axis of the active medium (in
a small solid angle ∼πR2/L2). Within these approximations,
the propagation of z-polarized x-ray field inside the medium
is governed by the equations

∂Ẽz

∂x
= i

4πωzNiondtr

c
√

εx−ray
(ρ̃21 − ρ̃31)

∂ρ̃21

∂τ
+

{
i(ω̄21 − ωinc) − i�� cos

[
�τ + (

√
εx−ray − npl )

�

c
x

]
+ γz

}
ρ̃21 = −i

nSp
tr (τ )

2h̄
dtrE0(x, τ )

∂ρ̃31

∂τ
+

{
i(ω̄31 − ωinc) + i�� cos

[
�τ + (

√
εx−ray − npl )

�

c
x

]
+ γz

}
ρ̃31 = i

nSp
tr (τ )

2h̄
dtrE0(x, τ ), (17)

where the population differences at the transitions |2〉 ↔ |1〉
and |3〉 ↔ |1〉 are the functions of local time (16), ω̄21 = ω̄31

are the time-averaged frequencies of these transitions, and
�� = 3mee4Z2

8h̄3 F0 is the depth of modulation of their frequen-
cies by the optical field due to the linear Stark effect.

To derive a simple analytical solution we assume that the
incident field (1) is turned on instantly at time τ |x=0 = t = 0
and has constant amplitude after that:

Ẽz(x = 0, τ ) = θ (τ )Einc, (18)

where θ (τ ) is Heaviside step function: θ (τ ) = 0 for τ < 0,
and θ (τ ) = 1 for τ � 0.

In the following we assume that the incident x-ray field
(1) is strictly resonant to the transitions |2〉 ↔ |1〉 and |3〉 ↔
|1〉 whose redefined frequencies include the time-averaged
quadratic Stark shift, that is

ωinc = ω̄21 = ω̄31 = 3mee4Z2

8h̄3

(
1 − 109

64
F 2

0

)
≡ ωz. (19)
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Let us look for a solution of Eqs. (17) for the envelope of
the x-ray field in the form of a spectral comb,

Ẽz(x, τ ) =
∞∑

l=−∞
El (x, τ )e−i2l�τ , (20)

where El (x, τ ) are slowly varying functions of space and
time on the time scale ∼2π/� and the propagation distance
∼2πc/� (then, the solutions for the quantum coherences have
a similar form). Finally, let us suppose that the quantum coher-
ences ρ̃21 and ρ̃31 are determined only by the central spectral
component of the x-ray field (at the frequency of the seeding
radiation), which dominates over the sidebands at arbitrary
time and arbitrary propagation distance inside the medium,
|E0(x, τ )| � |El (x, τ )|. As shown below, this is a rather good
approximation in the case of C5+ x-ray laser because of (i)
not so high gain for the x-ray field and (ii) strong plasma
dispersion for the modulating optical field. As shown in the
Appendix, under the above approximations the amplitudes of
the spectral components of z-polarized x-ray field (20), which
satisfy Eqs. (17) and boundary condition (18), are

E0(x, τ ) = Eincθ (τ ) exp {g(P�, τ )x}, (21a)

El (x, τ ) = Eincθ (τ )
J2l (P�)

J0(P�)
g(P�, τ )

× exp {[g(P�, τ ) − i2l�K]x} − 1

g(P�, τ ) − i2l�K
, l �= 0,

(21b)

g(P�, τ ) = g0J2
0 (P�)

[
1 + n(0)

tr

n(0)
tr

e−�radτ − e−γzτ

1 − �rad/γz

− 1

n(0)
tr

(1 − e−γzτ )

]
, (21c)

where P� = ��

�
is the modulation index, which is the am-

plitude of the linear Stark shift of the excited energy levels,
corresponding to the states |2〉 and |3〉, normalized to the

frequency of the modulating field (2), g0 = 4πωzn(0)
tr d2

tr Nion

h̄c
√

εx−rayγz
is the

gain coefficient for the resonant x-ray field in the absence
of the modulating field, and �K = (

√
εx−ray − npl )�/c is

a modification of the wave number of the modulating field
due to the plasma dispersion. Thus, the amplified x-ray field
consists of the resonant spectral component (21a), and a set of
sidebands (21b) at the combinational frequencies, separated
from the resonance by even multiples of the frequency of
the modulating field. The resonant component of the x-ray
field exponentially grows during its propagation through the
medium with the effective gain coefficient (21c), which is
a nonmonotonic function of local time, while the sidebands
experience also an increasing phase shift caused by mismatch
of the phase velocities of the amplified x-ray field and the
modulating optical field. A comparison of the derived analyt-
ical solution (21) with a similar solution for the case of Li2+

x-ray laser [see Eqs. (19) in [19]] shows that an account of
the local-time dependence of the population differences (16)
changes only the local-time dependence of the effective gain
coefficient g(P�, τ ) for the x-ray field. Moreover, in the limit
of slow radiative decay of the excited states (or fast relaxation

FIG. 3. The amplitudes of spectral components of the x-ray field
according to the analytical solution Eq. (21) vs the propagation
distance in the active medium of C5+ ions, x, for τ = 208 fs (which
corresponds to the maximum amplification; see Fig. 4) and P� =
4.1. Black solid line shows the central spectral component, l = 0.
Blue dash-dot, red dashed, and green dotted curves correspond to
the sidebands with l = ±1, l = ±2, and l = ±3, respectively. The
coherence lengths for the sidebands are L(±1)

coh = 2.43 mm, L(±2)
coh =

1.22 mm, L(±3)
coh = 0.81 mm. The central spectral component has an

infinite length of coherence.

of the quantum coherences at the inverted transitions), �rad �
γz, the effective gain coefficient takes exactly the same form,
as in [19], g(P�, τ ) = J2

0 (P�)(1 − e−γzτ )g0. At the same time,
the spatial dependencies of spectral components of the ampli-
fied x-ray field remain the same as in the case of Li2+ ions
[19] regardless of the ratio �rad/γz. In particular, in the limit
of a small gain/strong plasma dispersion, g(P�, τ ) � |l|�K
(where l is a sideband number), which is realized either at
the initial moments of time, τ � τ0, or for a low-frequency
modulating field, � ∼ ωpl , or for the modulation indices,
which satisfy the condition J0(P�) ≈ 0, the sidebands are
much weaker as compared to the resonant spectral component
of the x-ray field. In such a case, the amplitude of l th sideband
periodically oscillates in space, reaching the maximum values
at odd multiples of a coherence length

L(l )
coh = λopt

4|l|(√εx−ray − npl )
, (22)

where λopt = 2πc/� is a wavelength of the modulating op-
tical field in vacuum. With an increase of an effective gain
coefficient the sidebands become stronger, while their spatial
oscillations become accompanied by the exponential grows,
see Fig. 3, which is plotted for the value of modulation index
P� = 4.1 and the local time τ = 208 fs, which maximizes
the amplitudes of sidebands [see Fig. 4(b)]. A comparison of
Fig. 3 with the corresponding figure for Li2+ ions (Fig. 3 in
[19], which shows the amplitudes of sidebands, maximized
with respect to the local time) shows that in the case of
C5+ ions the generation of sidebands is less efficient, which
is caused by (i) higher free electron density, relative to the
density of the ions, as well as (ii) a decay of the population in-
version, which reduces the gain and prevents it from reaching
the steady-state amplification in the C5+ active medium (see
the next paragraph).

At the same time, contrary to the case of Li2+ ions [19],
a decrease of the population difference at the inverted transi-
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FIG. 4. (a) Local-time dependencies of (i) the population differ-
ence at the lasing transitions, nSp

tr (τ ), see Eq. (16), solid red curve,
right vertical axis, and (ii) the normalized effective gain coefficient,
g(P�, τ )/[g0J2

0 (P�)], see Eq. (21c), dash-dot blue curve, left vertical
axis. (b) Local-time dependencies of the amplitudes of the central
spectral component, l = 0, solid black curve, and the sidebands of
the x-ray field: l = ±1, shown by blue dash-dot curve, l = ±2,
shown by red dashed curve, and l = ±3, shown by green solid curve.
Black dotted curve shows the central spectral component, l = 0, after
a two-time attenuation. The amplitudes of spectral components are
calculated via the analytical solution (21) at the output from the
active plasma medium of the length L = 3.9 mm. The modulation
index is P� = 4.1.

tions (16) with increasing local time results in nonmonotonic
local-time dependence of both (i) the effective gain coefficient
(21c) and (ii) the amplitudes of spectral components of the
amplified x-ray field, (21a), (21b), shown in Fig. 4. The ef-
fective gain coefficient g(P�, τ ) reaches its maximum value at
the moment of time

τmax = 1

γz

1

1 − �rad/γz
ln

[
γz

�rad

(
1 − 1 − �rad/γz

1 + n(0)
tr

)]
, (23)

which is determined from the condition dg(τ )/dτ |τ=τmax = 0.
For the considered parameters of the active medium τmax 	
208 fs. Such a location of a maximum in the time dependence
of the effective gain coefficient in Fig. 4(a) can be under-
stood in the following way: The active medium has a finite
response time to the seeding x-ray field, which is switched
on instantly at τ = 0. This response time is 1/γz 	 415 fs, so
the resonant response of the ions is intensified with increas-
ing time till τ � 1/γz. On the other hand, radiative decay
of the excited states results in a decrease of the population
difference at the resonant transitions (16), thus weakening the
resonant interaction between the x-ray field and the ions. At
τ = τmax < τ0, 1/γz these two factors balance each other,
which results in a maximum gain for the x-ray field. With
further increasing time, the effective gain coefficient decreases
and finally changes the sign at τswitch 	 475 fs, after which
the medium becomes absorbing for the x-ray field. Naturally,
τswitch > τ0, since amplification or absorption of the x-ray
field is governed by the values of quantum coherences, rather

than the population differences at the resonant transitions,
and some time is needed for the coherences (which possess
considerably nonzero values at τ = τ0) to change the sign
after a change of sign of the population difference. In Fig. 4(b)
we plot the local-time dependencies of the amplitudes of the
resonant spectral component and the sidebands of the x-ray
field predicted by the analytical solution (21) at the output
from the active medium of the length L = 3.9 mm. The modu-
lation index is P� = 4.1. As shown below, such a combination
of L and P� corresponds to one of the optima for the trans-
formation of a quasimonochromatic seeding x-ray field (1)
into an attosecond-pulse train. As follows from Fig. 4(b), the
amplitude of the resonant spectral component of the x-ray
field reaches its maximum value along with the effective gain
coefficient at τ = τmax, while at τ = τswitch (when the gain
coefficient is zero), it equals the amplitude of the seeding
field. At τ > τswitch the medium starts to absorb the radia-
tion, and the amplitude of the resonant spectral component
of the x-ray field monotonically tends to zero. The amplitudes
of the sidebands also reach their local maxima at τ = τmax,
while at τ = τswitch they become zero. Until τ � τswitch the
resonant spectral component of the x-ray field dominates over
the sidebands, which justify the analytical solution (21). How-
ever, for τ > τswitch the sidebands grow up again due to the
energy transfer from the resonant spectral component in the
absorbing medium; see [23] and [29]. In such a case, the
amplitudes of the sidebands may become comparable or even
exceed the amplitude of the resonant spectral component of
the field [30], which makes the solution (21) inapplicable [in
particular, the amplitudes of sidebands will never exceed the
amplitude of the seeding field, as it happens in Fig. 4(b) for
τ � 850 fs, because of the energy dissipation in absorbing
medium]. Thus, for the considered parameters of the plasma,
the analytical solution (21) is valid only till the medium ampli-
fies the resonant radiation, τ � τswitch, or for a little bit longer
time interval (for τ � 550 fs in the considered case).

In Fig. 5 we plot the maximum achievable values of the
amplitudes of sidebands, normalized to the amplitude of the
resonant spectral component of the x-ray field, calculated via
the analytical solution (21), as a function of the modulation
index. Generally, the peak amplitudes of sidebands, shown in
Fig. 5, are achieved at different depths of the active medium
for each sideband number and each value of the modula-
tion index (but at the same moment of time τ = τmax). For
each point in Fig. 5 the amplitudes of sidebands are normal-
ized to the amplitude of the resonant spectral component at
the corresponding propagation distance (where the particular
sideband reaches its maximum value). As follows from this
figure, the amplitudes of sidebands never reach the amplitude
of the resonant spectral component of the x-ray field (at the
frequency of the seed). With increasing modulation index,
an increasing number of sidebands possess comparable am-
plitudes. Thus, for 0 < P� < 2.4 only the resonant spectral
component and the ±1 sidebands are appreciably nonzero;
for 2.4 < P� < 5.5 also the ±2 sidebands should be taken
into account; for 5.5 < P� < 8.4 the ±3 sidebands become
noticeable, and so on. But at the same time, with increasing
value of the modulation index, the amplitudes of sidebands
become smaller with respect to the amplitude of the resonant
spectral component.
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FIG. 5. The maximum achievable values of the amplitudes of
sidebands relative to the amplitude of the resonant (zeros) spectral
component of the x-ray field, calculated via the analytical solution
(21) at τ = τmax ≈ 208 fs, as a function of the modulation index.
Blue dash-dot curve corresponds to l = ±1, red dashed curve cor-
responds to l = ±2, green solid curve shows l = ±3, cyan dash-dot
and magenta dotted curves represents the cases of l = ±4 and l =
±5, respectively. Generally, the peak amplitudes of sidebands are
achieved at different propagation distances for each sideband number
and each value of the modulation index.

In order to constitute a train of attosecond pulses, the
spectral components of the output x-ray field should (i) be
phase matched and (ii) have comparable amplitudes. Thus,
the resonant spectral component of the x-ray field should be
attenuated to the level of sidebands. Use of larger modulation
indices allows for generation of a broader spectrum (and thus
supports formation of shorter pulses with higher off-duty ra-
tio), but requires stronger attenuation of the resonant spectral
component of the output x-ray field, which results in lower
energy and lower peak intensity of the pulse train. The pos-
sibilities for the pulse formation using different modulation
indices and different attenuation levels for the central spectral
component of the output x-ray field are considered in the next
section.

IV. X-RAY PULSE FORMATION IN HYDROGEN-LIKE
PLASMA OF C5+

In this section we will analyze the optimal conditions for
the attosecond-pulse formation from the resonant x-ray field
on the basis of both the derived analytical solution (21), and
the numerical solution of Eqs. (4)–(6) and (11). During the
propagation through the medium the spectrum of the resonant
field is enriched by multiple sidebands. Under certain condi-
tions, these sidebands are sufficiently strong and nearly phase
aligned, so that their constructive interference in time domain
results in formation of an attosecond-pulse train.

The x-ray field at the output from the medium [its z-
polarization component, which corresponds to the amplified
seeding field (1)] can be characterized by a contrast C, defined
as a ratio of a difference between the maximum and minimum
values of its intensity, taken within a half-cycle of the modu-
lating field centered at local time τ , to the mean value of this

intensity, averaged over the same time interval:

C(x, P�, τ ) = (max {Iz} − min {Iz})/mean{Iz}, (24)

where Iz = c
8π

|Ẽz(x, P�, τ )|2. For the seeding field (18) with
the time-independent amplitude the contrast equals unity,
while the formation of the pulse train results in C � 1. The
higher contrast generally corresponds to the higher off-duty
ratio and better pulse shape. Thus, the optimal conditions
for the pulse formation correspond to the maxima in the
dependence of contrast on the length of the medium x and
the modulation index P�. The dependence C = C(x, P�), cal-
culated via the analytical solution (21) at the peak of the
intensity envelope (in the vicinity of τ = τmax ≈ 208 fs) is
shown in Fig. 6 (a). The peak contrast, C ≈ 2.8, is achieved
at x = 3.9 mm and P� = 3.2, which maximize the amplitudes
of ±1 sidebands (which dominate over the rest of sidebands,
but still remain weaker than the resonant spectral component);
see Fig. 5. The higher values of contrast can be achieved
by external attenuation of the central spectral component of
the x-ray field either via its propagation through the reso-
nant absorber, or via reflection from a spectrally selective
narrow-band x-ray mirror [31,32]. Figures 6(b)–6(d) show the
contrast of the x-ray field after attenuation of the amplitude
(not spectral density) of its central spectral component by
the factors K = 2, K = 4, and K = 8, respectively. As can
be seen, with increasing attenuation factor the peak values of
contrast grow: C ≈ 3.5 in (b), C ≈ 4.6 in (c), and C ≈ 5.2
in (d); the optimal value of the modulation index increases:
P� = 4.3 in (b), P� = 4.5 in (c), and P� = 4.7 in (d), while
the optimal propagation distance remains nearly constant: x =
3.3 mm in (b) and (c), x = 3.4 mm in (d). For the values of the
modulation index 4.3 � P� � 4.7 the amplitudes of ±1 and
±2 sidebands become comparable to each other (and the ±3
sidebands become noticeable), but the sidebands are weaker
with respect to the resonant spectral component of the field
as compared to the case of P� = 3.2 [which is the optimum
in Fig. 6(a)]; see Fig. 5. Thus, with increasing attenuation
factor the spectrum of x-ray field is enriched by an increasing
number of sidebands, but it contains less energy. In Fig. 7
we compare the wave forms of the output x-ray field without
attenuation of its central spectral component, K = 1, and with
its eightfold attenuation, K = 8, for the identical values of the
modulation index and the medium length, which maximize the
pulse contrast for K = 1 (P� = 3.2, x = 3.9 mm) in (a), and
for K = 8 (P� = 4.7, x = 3.4 mm) in (b). It is worthwhile to
note that K = 8 is not optimal in (a) and K = 1 is not optimal
in (b). Indeed, for K = 8 in Fig. 7(a) the central spectral
component of the x-ray field is too weak, so that ±1 sidebands
dominate in its spectrum, which results in a secondary peak
between the maxima of the wave form, while for K = 1 in
Fig. 7(b), vice versa, the central spectral component is too
strong as compared to the sidebands, which results in a large
constant component of the output intensity.

The shape of individual pulses at the peak of the inten-
sity envelope (at the vicinity of τ = τmax ≈ 208 fs) under the
conditions, which maximize the contrast in the absence of
attenuation (K = 1), as well as for the attenuation factors
K = 2, K = 4, and K = 8, is shown in Fig. 8. As follows
from this figure, with increasing attenuation factor the pulse
duration comprises a smaller fraction of the modulating field
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FIG. 6. (a) The dependence of contrast of the x-ray field on the propagation distance through the medium x and on the modulation index
P�. (b)–(d) The same as in (a), but the central spectral component of the output x-ray field is externally attenuated by two times (K = 2) in (b),
four times (K = 4) in (c), and eight times (K = 8) in (d). Note that the color scale in different panels is different. The maximum achievable
values of contrast are C ≈ 2.8 at x = 3.9 mm and P� = 3.2 in (a); C ≈ 3.5 at x = 3.3 mm and P� = 4.3 in (b); C ≈ 4.6 at x = 3.3 mm and
P� = 4.5 in (c); and C ≈ 5.2 at x = 3.4 mm and P� = 4.7 in (d).

cycle. At this point it is worth noting that in Figs. 6–8 (as
well as in all the other figures throughout the paper starting
from Fig. 2) the intensity of the modulating field is fixed to
the value Iopt = 2.3 × 1016 W/cm2, which is slightly below
the threshold of rapid ionization from the excited states of
the active medium (so that the further increase of intensity
is not possible). Such a high intensity of the modulating field
allows one to produce the pulses with highest contrast and
shortest duration. Indeed, by maximizing the strength of the
modulating field we maximize the amplitude of linear Stark
shift of the excited states |2〉 and |3〉, ��, which allows one
to obtain the optimal values of the modulation index P� =
��/� with a higher frequency/shorter wavelength modulat-
ing field. In turn, increasing the frequency of the modulating
field results in (i) weaker plasma dispersion [smaller �K

in Eqs. (21)] and, thus, larger amplitudes of the sidebands
and higher pulse contrast, as well as (ii) larger frequency
separation between the sidebands and, thus, larger bandwidth
of the output signal and smaller pulse duration. At the same
time, the pulses can be produced using a longer wavelength
modulating field of lower intensity (as compared to those
discussed below). In the following, the modulation index is
changed via a change of wavelength of the modulating field: a
larger value of the modulation index corresponds to a larger
wavelength. In Fig. 8 the wavelengths of the modulating
field are 357.8 nm for K = 1, 480.8 nm for K = 2, 503.2
nm for K = 4, and 525.5 nm for K = 8. Thus, in each case
the duration of the modulating field cycle is different. The
relative full width at half maximum (FWHM) duration of
the pulses in the modulating field cycles, 2π /�, is 0.182

FIG. 7. Time dependencies of intensity of the output x-ray field for P� = 3.2, x = 3.9 mm (a), and P� = 4.7, x = 3.4 mm (b). Blue solid
curve corresponds to no attenuation of the central spectral component (K = 1); red dashed curve represents the case of eightfold attenuation
(K = 8). Each intensity time dependence is normalized on its peak value, which are Imax = 32.4I0 for K = 1 and Imax = 10.57I0 for K = 8 in
(a), as well as Imax = 7.13I0 for K = 1 and Imax = 1.05I0 for K = 8 in (b).
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FIG. 8. The time dependence of intensity of the output x-ray
field near the peak of its envelope at τ = 208 fs, calculated via
the analytical solution (21). Black dotted curve corresponds to the
x-ray field as it is (no spectral filtering), K = 1. Green dash-dot
curve: the central spectral component is externally attenuated by two
times, K = 2. Blue dashed curve: the central spectral component is
attenuated four times, K = 4. Red solid curve: the resonant spectral
component is attenuated eight times, K = 8. The intensities are nor-
malized on their maximum values, which are shown in the legend. In
each case the length of the medium and the index of modulation are
chosen to be optimal for the corresponding level of attenuation, that
is x = 3.9 mm and P� = 3.2 for K = 1; x = 3.3 mm and P� = 4.3
for K = 2; x = 3.3 mm and P� = 4.5 for K = 4; x = 3.4 mm and
P� = 4.7 for K = 8 (see Fig. 6).

for K = 1, 0.115 for K = 2, 0.092 for K = 4, and 0.076
for K = 8. In absolute values the pulse duration is 217 as
for K = 1, 184 as for K = 2, 154 as for K = 4, and 133 as
for K = 8.

At the same time, the peak intensity of the pulses de-
creases with increasing attenuation factor: Imax = 32.4I0 for
K = 1, Imax = 12.1I0 for K = 2, Imax = 3.66I0 for K = 4,
and Imax = 1.05I0 for K = 8. These values are predicted by
the analytical solution (21), I0 is the intensity of the seeding
field (1). Thus, an increase of the attenuation factor by two

times results in two to three times the decreasing pulse peak
intensity. The intensity of the pulses can be increased in three
ways: (i) by choosing a smaller attenuation factor K, (ii) via
an increase of the propagation distance x, and (iii), in the case
of attenuation factors K � 2, via a reduction of the modulation
index P�. The role of the attenuation factor is trivial. An
increase of the propagation distance (medium length) results
in increasing gain-length product and stronger amplification
of the x-ray field. In its turn, a decrease of the modulation
index from 4.3 � P� � 4.7 to 3.2 � P� � 4.2 results in in-
creasing amplitudes of ±1 and ±2 sidebands at the cost of
a larger difference between them and weaker ±3 sidebands.
A decrease of the modulation index below P� = 3.2 is not
favorable since it results in increasing amplitude of the cen-
tral spectral component of the x-ray field and growing pulse
pedestal.

In the following we will consider the case of x = 3.9 mm,
P� = 4.1 (the wavelength of the modulating field is 458.4
nm), and the attenuation factor K = 2 (see Figs. 3 and 4).
According to the analytical solution, these parameters corre-
spond to C ≈ 3.25 and the peak intensity of the pulse train
Imax = 26.5I0. Below we present the results of numerical so-
lution of Eqs. (4)–(6) and (11) for this case. Looking ahead,
it is worth noting that the results of numerical calculations
for the dependence of contrast of the x-ray field C on the
propagation distance x and the modulation index P� strongly
resemble those shown in Fig. 6 except for the values of
modulation index P� ≈ 2.4, 5.5, 8.6, where J0(P�) = 0 and
the analytical solution become inapplicable, while for these
values of the modulation index the output intensity is quite
small, so that they are of minor importance. Thus, the analyt-
ical solution correctly predicts the optimal conditions for the
pulse formation. In its turn, the numerical solution describes
the pulse formation more precisely by taking into account
the rescattering of sidebands into each other, their nonlinear
interaction with the medium (in particular, the reduction of the
population differences because of the stimulated transitions),
and the amplified spontaneous emission of y polarization. In
order to directly compare the results of the calculations with
the analytical solution derived in the previous section, we
assume an incident x-ray field with a rectangular shape and
smoothed turn-on and turn-off:

Ẽinc(t ) = E0 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(

π
2

t
tswitch

)
, 0 � t < tswitch

1, tswitch � t < tflat + tswitch

cos2
(

π
2

[t−{tflat+tswitch}]
tswitch

)
, tflat + tswitch � t < tflat + 2tswitch

0, t � tflat + 2tswitch

, (25)

where tflat = 1470 fs and tswitch = 15 fs, which is much longer
than the x-ray field cycle, 2π/ωinc ≈ 11 as. The wavelength
of the seeding field is 2πc/ωinc = 3.376 nm. The radius of the
plasma channel is 2.5 μm. The time dependence of intensity
of the output x-ray field for these parameter values and the
intensity of the seeding field I0 = 109 W/cm2 is shown in
Fig. 9 (the central spectral component of the x-ray field is
attenuated two times). At the peak of the intensity envelope
the pulse shape is nearly the same as in the optimal case,

shown in Fig. 8 for K = 2; the pulse duration is 180 as, the
contrast of the field is 3.2, and the peak intensity of the pulses
is Imax ≈ 10I0. The peak intensity of the pulses resulting from
the numerical calculations is lower than that predicted by
the analytical solution. There are two reasons for this. First,
the inertialess approximation, used for the derivation of the
analytical solution (see the Appendix), leads to overestimated
value of the amplified x-ray field. Second, stimulated tran-
sitions, induced by the seeding field (and neglected by the
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analytical solution), result in faster depletion of the population
inversion of the medium and smaller amplification of the
resonant field. However, the pulses are produced not only in
the amplifying medium, but also after the medium becomes
absorbing for the resonant x-ray field at τ ≈ 460 fs ≈ τswitch.
This is not surprising, since in accordance with [23] the value
P� = 4.1 is within the optimal range of modulation indices
for the pulse formation in the absorbing medium: ν

(1)
0 < P� <

ν
(1)
2 , where ν

(1)
0 is the first root of equation J0(P�) = 0 and

ν
(1)
2 is the first root of equation J2(P�) = 0. The duration

of the pulses, produced in the absorbing medium, is 130 as,
the contrast of the field is 5.4, the pulse peak intensity is
1.7I0. Noteworthy is that in this case the contrast is higher
than in the case of amplifying medium and attenuation factor
K = 8 (see Fig. 8), while the peak intensity is also higher.
Thus, instead of using large attenuation factors, it might be
more reasonable to wait till the medium becomes absorbing
for the x-ray field. In Fig. 10 we plot the Fourier transform
(amplitude spectrum) of the field, shown in Fig. 9. Figure
10(a) shows the time-windowed spectrum, calculated via a
convolution of the x-ray field with the time window of the
form F (τ ′) = sin2{π [τ ′ − (τ − τd )]/(2τd )} if τ − τd � τ ′ �
τ + τd , and F (τ ′) = 0 otherwise, where τd = 20 fs is the full
duration of the time window at the half of its maximum, and τ

is the position of the maximum, which varies from 0 to 1500
fs. Figures 10(b) and 10(c) show the cuts of the surface, plot-
ted in Fig. 10(a) for τ = 208 fs and τ = 1210 fs, respectively.
Thus, Figs. 10(b) and 10(c) show the time-windowed spectra
of the pulses, shown in the insets of Fig. 9. As follows from
Fig. 10(b), at the peak of the intensity envelope the amplitudes
of ±2 spectral components are larger than those predicted
by the analytical solution (see Figs. 3 and 4), which can be
attributed to the rescattering of sidebands. At the same time,
in agreement with the analytical solution, the amplitudes of
sidebands become close to zero at τ ≈ 460 fs ≈ τswitch; see
Fig. 10(a). In the absorbing medium [Fig. 10(c)] the amplitude
of the central spectral component is smaller and closer to
the amplitudes of sidebands, which is the reason for the high
contrast of the pulses produced in this case.

In Figs. 11 and 12 we compare the time dependencies of
intensity of the x-ray field, calculated numerically for different
intensities of the seed (1): I0 = 106 W/cm2, I0 = 109 W/cm2,
and I0 = 1012 W/cm2, with that predicted by the analytical

solution (all the other parameters are the same as in Figs. 9
and 10). Figure 11 shows the envelopes of the pulse trains
within the time interval 0 � τ � 1485 fs, while in Fig. 12
we compare the shape of individual pulses within a single
cycle of the modulating field 2π/� ≈ 1.52 fs. Particularly,
in Fig. 12(a) we plot the pulses produced in the amplifying
medium and located at the peaks of the intensity envelopes
(for each solution the peak is achieved at a different time,
95 fs � τ � 215 fs), while in Fig. 12(b) we plot the pulses
produced in the absorbing medium (after a change of sign of
the population inversion) and located at the tails of the pulse
trains (in this case, depending on the solution, 740 fs � τ �
1180 fs). Thus, in Fig. 12 different solutions are shown in
different time windows of the same duration, 2π/� ≈ 1.52 fs
(whose left boundaries are artificially shifted to zero time).
Also, in Fig. 11 we plot the envelope of the (y polarized)
amplified spontaneous emission of the active medium, which
is noticeable for I0 = 106 W/cm2, while for the higher inten-
sities of the seeding field it can be neglected. In Fig. 11 the
intensity of the x-ray field is normalized to the intensity of
the seeding field I0, while in Fig. 12 for each solution the in-
tensity is normalized by its peak value within the chosen time
window. In accordance with Fig. 11, the peak intensities of the
pulses, produced in the amplifying medium, are Imax = 13.6I0

for I0 = 106 W/cm2, Imax = 10.3I0 for I0 = 109 W/cm2, and
Imax = 2.85I0 for I0 = 1012 W/cm2; the analytical solution
predicts Imax = 26.5I0. The peak intensities of the pulses, pro-
duced in the absorbing medium (after a change of sign of the
population inversion), are Iabs = 1.98I0 for I0 = 106 W/cm2,
Iabs = 1.68I0 for I0 = 109 W/cm2, and Iabs = 1.24I0 for I0 =
1012 W/cm2. In Fig. 11 the peak intensity of the pulses, nor-
malized to the intensity of the seeding field, Imax/I0, decreases
with increasing I0 because of the stimulated emission of radi-
ation, which reduces the population differences at the inverted
transitions. The analytical solution overestimates the pulse
peak intensity because of the use of inertialess approximation
for the dependence of the resonant polarization of the medium
on the electric field strength (see the Appendix for details). At
the same time, the relative intensity of the pulses, produced in
the absorbing medium, Iabs/I0, weakly depends on I0, which
makes possible (and reasonable) the use of absorbing medium
for the pulse formation at intensities of the seeding field I0 >

1012 W/cm2. The shape of the pulses in Fig. 12 also remains

FIG. 9. The numerical solution for the time dependence of intensity of the x-ray field at the output from the medium of the length x =
3.9 mm; the modulation index is P� = 4.1. The central spectral component is externally attenuated two times. The insets show the shape
of pulses at the peak of the intensity envelope and at the tail of the pulse train. In the first case (τ ≈ 208 fs) the pulses are produced in the
amplifying medium, while in the second case (τ ≈ 1210 fs) the medium is absorbing for the x-ray field.
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FIG. 10. (a) The time-windowed Fourier transform (an amplitude spectrum) of the x-ray field shown in Fig. 9 (a numerical solution for
x = 3.9 mm, P� = 4.1, the resonant spectral component is attenuated two times). (b) Blue curve, left vertical axis: a cut of Fig. 10(a) for
τ = 215 fs (the time-windowed spectrum, which corresponds to the left inset in Fig. 9). Red stars, right vertical axis: the central phases of the
spectral components. (c) The same as in (b) but for τ = 1210 fs (the time-windowed spectrum, which corresponds to the right inset in Fig. 9).
The spectral amplitude in (a) is normalized to its maximum value, which is achieved at τ = 215 fs. In (b) and (c) the normalization factor is
the same as in (a).

almost the same for different intensities of the seeding field I0

except for the highest considered intensity, I0 = 1012 W/cm2,
at which the generation of sidebands becomes less efficient
because of the reduced population differences at the reso-
nant transitions, which leads to increasing background of the
pulses.

In summary, Figs. 11 and 12 show the possibility to pro-
duce an attosecond-pulse train in a wide range of intensities
of the seeding x-ray field, I0 = 106–1012 W/cm2. At I0 =
106 W/cm2 the limiting factor is the amplified spontaneous
emission, which takes a considerable part of the energy,
initially stored in the population inversion of the active
medium, while at I0 = 1012 W/cm2 it is the stimulated emis-
sion of radiation, which reduces the population differences at
the resonant transitions and limits the gain. For the considered

parameters of the problem, the peak intensity of the pulses can
reach 2.8 × 1012 W/cm2 for the pulse duration 180 as; even
shorter 130-as pulses can be produced after a change of sign
of the population inversion at the resonant transitions of the
medium at the cost of a few times lower pulse peak intensity,
1.2 × 1012 W/cm2. The pulses are nearly transform-limited
and the pulse shape weakly depends on the intensity of the
seeding field.

V. CONCLUSION

In this paper, we studied the ultimate capabilities and
limitations for the attosecond-pulse formation via optical
modulation of an active medium of the hydrogen-like C5+
plasma-based x-ray laser. The pulses are produced via the

FIG. 11. The time dependencies of intensity of the polarization components of the x-ray field, calculated analytically and numerically for
different intensities I0 of the z-polarized seeding field. The parameters of the medium are the same as in Fig. 9: the length of the medium is
x = 3.9 mm; the modulation index is P� = 4.1. The central spectral component of the field is attenuated by two times. Black solid curve shows
the analytical solution for z-polarization component of the amplified x-ray field. Blue, red, and green solid curves show the results of numerical
calculations for z-polarization component of the field, assuming I0 = 106 W/cm2, I0 = 109 W/cm2, and I0 = 1012 W/cm2, respectively. The
results of numerical calculations for y-polarization component of the x-ray field for I0 = 106 W/cm2, I0 = 109 W/cm2, and I0 = 1012 W/cm2

are shown by dash-dot lavender curve, dotted grey curve, and orange dashed curve (the latter two are almost indistinguishable). The output
intensity is normalized to the intensity of the seeding field I0.
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FIG. 12. The shape of individual pulses, produced under the conditions of Fig. 11. Black dotted curve is the analytical solution. Blue
dash-dot, red solid, and green dashed curves are the results of numerical calculations for the intensities of the seeding field I0 = 106 W/cm2,
I0 = 109 W/cm2, and I0 = 1012 W/cm2, respectively. Panels (a) and (b) show the time dependencies of intensity of the x-ray field at the peak
of the intensity envelope (a) and at the second local maximum of the intensity envelope (b); compare with insets in Fig. 9. The position of the
maxima differs for different solutions. The analytical solution in (a) is plotted for τ ≈ 208 fs. The numerical solutions in (a) and (b) are plotted
for τ ≈ 215 fs and τ ≈ 1160 fs (for I0 = 106 W/cm2), τ ≈ 210 fs and τ ≈ 1180 fs (for I0 = 109 W/cm2), as well as τ ≈ 95 fs and τ ≈ 740 fs
(for I0 = 1012 W/cm2). In each case the intensity is normalized on its peak value.

spectral broadening of a quasimonochromatic seeding x-ray
field at a wavelength 3.38 nm in the water-window range dur-
ing its amplification by C5+ ions, whose transition frequencies
oscillate in time along with oscillation of the modulating
optical field due to the linear Stark effect. This method was
proposed in [15] on the bases of the numerical calculations.
In the present paper we derived an analytical solution for the
amplified (and spectrally broadened) x-ray field, which takes
into account the plasma dispersion of the medium and rapid
depopulation of the upper lasing states of C5+ ions because
of the radiative transitions. The analytical solution allowed
us to find the optimal conditions for the transformation of a
quasicontinuous seeding x-ray field into a train of attosecond
pulses with the highest contrast and shortest duration. It has
been shown that the contrast of pulses can be increased via
external attenuation of the resonant spectral component of the
amplified x-ray field to the level of the generated sidebands.
The predictions of analytical theory have been compared to
the results of numerical calculations, which take into account
an amplified spontaneous emission of the active medium as
well as a variety of nonlinear processes in the considered
system. It has been shown that the analytical solution correctly
predicts the shape, duration, and contrast of the attosecond
pulses, as well as the envelope of the pulse train. At the
same time, it overestimates the peak intensity of the pulses,
which is reduced due to the final response time of the ions
on the x-ray field and the stimulated emission at the las-
ing transitions. Besides, the numerical calculations show that
the pulses continue to be formed after a change of sign of
the population differences at the lasing transitions (when the

medium becomes absorbing for the x-ray field). In this case
the pulses are shorter and have better shape as compared to
the amplifying medium at the cost of the lower peak intensity
(which still can exceed the intensity of the seeding field). It has
been shown that the pulses can be produced from a seeding
field with the intensity in the range I0 = 106–1012 W/cm2.
The peak intensity of the attosecond pulses can exceed the
intensity of the seeding field by more than ten times, while the
pulses’ durations vary in the range 130–180 as. Such pulses
at a wavelength 3.38 nm in the water-window range might
be a useful tool for the studies of the ultrafast processes in
medicine and biology.
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APPENDIX: DERIVATION OF THE ANALYTICAL SOLUTION

In order to solve Eqs. (17), let us use a substitution

ρ̃21(x, τ ) = ρ̂21(x, τ )e−γzτ+iP� sin [�τ+(√εx−ray−npl )(�/c)x] = ρ̂21(x, τ )e−γzτ

∞∑
k=−∞

Jk (P�)eik�τ eik(√εx−ray−npl )(�/c)x, (A1)

where the Jacobi-Anger formula is used: exp{iP� sin(ϕ)} = ∑∞
k=−∞ Jk (P�) exp(ikϕ); Jk (P�) is the Bessel function of the first

kind of order k, and P� = ��/� is the modulation index, which is the amplitude of variation of frequencies of the transitions
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|2〉 ↔ |1〉 and |3〉 ↔ |1〉 due to the linear Stark effect, normalized to the frequency of the modulating field. As follows from the
second equation of system (17), the function ρ̂21(x, τ ) satisfies the equation

∂ρ̂21

∂τ
= −i

dtr

2h̄
nSp

tr (τ )E0(x, τ ) exp

{
γzτ − iP� sin

[
�τ + (

√
εx−ray − npl )

�

c
x

]}
, (A2)

which has a solution

ρ̂21 = −i
dtr

2h̄

∞∑
m=−∞

Jm(P�) exp

[
−im

�

c
(
√

εx−ray − npl )x

] ∫ τ

0
E0(x, τ ′)nSp

tr (τ ′)e(γz−im�)τ ′
dτ ′, (A3)

valid in the case ρ̃21(x, τ = 0) = 0. One can approximately evaluate the integral in the right-hand side of Eq. (A3) as∫ τ

0
E0(x, τ ′)nSp

tr (τ ′)e(γz−im�)τ ′
dτ ′

=
∥∥∥∥�τ ′ = τ − τ ′

d�τ ′ = −dτ ′

∥∥∥∥ = e(γz−im�)τ
∫ τ

0
E0(x, τ − �τ ′)nSp

tr (τ − �τ ′)e−(γz−im�)�τ ′
d�τ ′

≈ ∥∥nSp
tr (τ ) = (

1 + n(0)
tr

)
e−�radτ − 1

∥∥ ≈ e(γz−�rad−im�)τ
(
1 + n(0)

tr

)
E0(x, τ )

∫ τ

0
e−(γz−�rad−im�)�τ ′

d�τ ′

− e(γz−im�)τ E0(x, τ )
∫ τ

0
e−(γz−im�)�τ ′

d�τ ′ = (
1 + n(0)

tr

)
E0(x, τ )

e(γz−�rad−im�)τ − 1

γz − �rad − im�
− E0(x, τ )

e(γz−im�)τ − 1

γz − im�
. (A4)

Formally, this approximation implies that the amplitude of the resonant spectral component of the field, E0(x, τ ), is a slowly
varying function of time at the time intervals ∼ γ −1

z and ∼�−1
rad . But as follows from the derived solution, for the incident field

with a time-independent amplitude (18), and for the values of time τ � τswitch 	 475 fs, Eq. (A4) gives a sufficiently good
approximation. Thus, one finds a solution for ρ̃21(x, τ ) in the form

ρ̃21 = −i
dtr

2h̄
E0(x, τ )

∞∑
m,k=−∞

Jm(P�)Jk (P�) exp

[
−i(m − k)(

√
εx−ray − npl )

�

c
x

]

×
{(

1 + n(0)
tr

)e−�radτ−i(m−k)�τ − eik�τ−γzτ

γz − �rad − im�
− e−i(m−k)�τ − eik�τ−γzτ

γz − im�

}
. (A5)

The solution for ρ̃31(x, τ ) is found analogously, so that

ρ̃21 − ρ̃31 = −i
dtr

2h̄
E0(x, τ )

∞∑
m,k=−∞

{
1 + (−1)m−k

}
Jm(P�)Jk (P�) exp

{
−i(m − k)(

√
εx−ray − npl )

�

c
x

}

×
{(

1 + n(0)
tr

)e−�radτ−i(m−k)�τ − eik�τ−γzτ

γz − �rad − im�
− e−i(m−k)�τ − eik�τ−γzτ

γz − im�

}
. (A6)

In the following we assume that the frequency of the modulating field is much larger than the linewidth of the resonant
transition, �/γz � 1, so that for J0(P�) �= 0 a contribution with m = 0 is dominant in Eq. (A6), which is reduced to

ρ̃21 − ρ̃31 = −i
dtrn

(0)
tr

h̄γz
E0(x, τ )

{
1 + n(0)

tr

n(0)
tr

e−�radτ − e−γzτ

1 − �rad/γz
− 1

n(0)
tr

(1 − e−γzτ )

}

× J0(P�)
∞∑

l=−∞
J2l (P�)e−i2l�τ exp

{
−i2l (

√
εx−ray − npl )

�

c
x

}
. (A7)

Thus, according to (18), the z-polarized x-ray field is determined by the equation

∂Ẽz

∂x
= 4πωzNionn(0)

tr d2
tr

h̄c
√

εx−rayγz

{
1 + n(0)

tr

n(0)
tr

e−�radτ − e−γzτ

1 − �rad/γz
− 1

n(0)
tr

(1 − e−γzτ )

}

× E0(x, τ )J0(P�)
∞∑

l=−∞
J2l (P�)e−i2l�τ e−i2l(√εx−ray−npl )(�/c)x, (A8)

which has a solution in the form of the spectral comb (20), that is Ẽz(x, τ ) = ∑∞
l=−∞ El (x, τ )e−i2l�τ . The amplitudes of the

spectral components of z-polarized field (20), which satisfy the boundary condition (18), are given by Eqs. (21) of the paper.
It should be noted that the inertialess approximation for the dependencies of the quantum coherences ρ̃21 and ρ̃31 [and, thus,

for the z-polarization component of the resonant polarization of the medium, (3)] on the electric field strength (A4) implies that
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the coherences at time τ are proportional to the electric field strength (of the incident spectral component) at the same moment
of time. In fact, these dependencies are integral, and the coherences depend not only on the electric field strength at the current
moment of time, but also at the preceding times. By taking the electric field outside the integral we overestimate the coherences
(and the induced resonant polarization), since in the amplifying medium the electric field grows with time. Since the coherences
are responsible for the amplification of the field (11), their overestimation, in its turn, results in overestimating the strength of the
amplified x-ray field on the basis of the analytical solution. This is the main reason for the discrepancy between the analytical
and numerical solutions in Fig. 11 along with the stimulated transitions induced by the x-ray field, which are taken into account
by the numerical code.
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