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Abstract

Let C be a class of graphs closed under taking induced subgraphs. We say that C has the
clique-stable set separation property if there exists ¢ € N such that for every graph G € C there
is a collection P of partitions (X,Y) of the vertex set of G with |P| < |V(G)|¢ and with the
following property: if K is a clique of G, and S is a stable set of G, and K NS = (), then there
is (X,Y) € Pwith K C X and S CY. In 1991 M. Yannakakis conjectured that the class of
all graphs has the clique-stable set separation property, but this conjecture was disproved by M.
Go06s in 2014. Therefore it is now of interest to understand for which classes of graphs such a
constant ¢ exists. In this paper we define two infinite families S, K of graphs and show that for
every S € § and K € K, the class of graphs with no induced subgraph isomorphic to S or K has
the clique-stable set separation property.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A cligue in G is a set of pairwise
adjacent vertices, and a stable set is a set of pairwise non-adjacent vertices. Let C be a class of graphs
closed under taking induced subgraphs. We say that C has the clique-stable set separation property if
there exists ¢ € N such that for every graph G € C there is a collection P of partitions (X,Y) of the
vertex set of G with |P| < |V(G)|¢ and with the following property: if K is a clique of G, and S is a
stable set of G, and KNS = (), then there is (X,Y) € P with K C X and S C Y. This property plays
an important role in a large variety of fields: communication complexity, combinatorial optimization,
constraint satisfaction and others (for a comprehensive survey of these connections see [3]).

In 1991 Mihalis Yannakakis conjectured that the class of all graphs has the clique-stable set
separation property [5], but this conjecture was disproved by Mika G66s in 2014 [2]. Therefore it is
now of interest to understand for which classes of graphs such a constant ¢ exists; our main result
falls into that category.

Let G be a graph and let X,Y be disjoint subsets of V(G). We denote by G[X] the subgraph of
G induced by X, by N(X) the set of all vertices of V(G)\ X with a neighbor in X, and by N[X] the
set N(X)UX. We say that X is complete to Y if every vertex of X is adjacent to every vertex of Y,
and that X is anticomplete to Y if every vertex of X is non-adjacent to every vertex of Y. We say
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that X and Y are matched if every vertex of X has exactly one neighbor in Y, and every vertex of
Y has exactly one neighbor in X (and therefore |X| = |Y|). For a graph H, we say that G is H-free
if no induced subgraph of G is isomorphic to H.

Next we define two types of graphs. Let p,q € N. We define the graph F£ as follows:

o V(FE?) = K US; USyUS3 where K is a clique, Si,S2,53 are stable sets, and the sets
K, 51,55, 53 are pairwise disjoint;

|K| =|S1| = p, and K and S; are matched,;

|Sa] = |S3| = ¢, and Sy and S3 are matched,;
e K is complete to So;
e there are no other edges in F§.

The graph FI? is obtained from F£? by making all pairs of vertices of S3 adjacent.

R

Figure 1: The graphs Fg’s and FIS(’?’

Let FP4 be the class of all graphs that are both F&9-free and F%-free. We can now state our
main result:

1.1 For all p,q > 0 the class FP9 has the clique-stable set separation property.

Since the clique-stable set separation property is preserved under taking complements, we immedi-
ately deduce:

1.2 For all p,q > 0 the class of graphs whose complements are in FP? has the clique-stable set
separation property.

2 The Proof

In this section we prove 1.1. The idea of the proof comes from [1]. Let G € FP4. Define P; to be the
set of all partitions (N[X],V(G) \ N[X]) and (N(X),V(G) \ N(X)) where X is a subset of V(QG)
with | X| < p. Clearly |P1| < 2|[V(G)|P.

Write R = R(q,q) to mean the smallest positive integer R such that every 2-coloring of the
edges of the complete graph on R vertices contains a monochromatic complete graph on ¢ vertices.
Ramsey’s Theorem [4] implies:



2.1 R(q,q) < 2%.
For a,b € N let the graph F, ; be defined as follows:

o V(Fup) = K1US1USUW where K is a clique, S7, So are stable sets, and the sets K1, 51, So, W
are pairwise disjoint;

|K1] = |S1]| = a, and K; and S are matched;

|Sa| = |[W] =b, and Sy and W are matched;

e K is complete to So;

there is no restriction on the adjacency of pairs of vertices of W;

e there are no other edges in Iy ,.
From the definition of R we immediately deduce:
2.2 G is F) g-free.

For every triple X = (K1, S1,52) of pairwise disjoint non-emtpy subsets of V(G) such that |K;| =
|S1] = p and |S2| < R we define the partition Px of V(G) as follows. Let Z be the set of all vertices
of GG that are anticomplete to K71 U S;. Let Ax be the set of all vertices v of G such that

e cither v € K, or v is complete to K, and
e cither v has a neighbor in S, or v has a neighbor in Z \ N(S2).

Note that Ay is disjoint from S; U Z. Define Py = (Ax,V(G) \ Ax), and let Py be the set of all
such partitions Py. Since |K3 US; U Sa| < 2p+ R — 1, and since by 2.1 R < 229, we deduce that
ol < V(G2

In order to complete the proof of 1.1 we will prove the following:

2.3 For every cliqgue K and stable set S of G such that K NS = 0, there exists (X,Y) € Py U Py
with K C X and SCY.

Proof: Let K and S be as in the statement of 2.3.

(1)  We may assume that K is a mazimal clique of G, and S is a maximal stable set of G.

Let K’ be a maximal clique of G with K C K’, and let S’ be a maximal stable set of G with
S C S If KNS = (), then the existence of the desired partition for K, S follows from the ex-
istence of such a partition for K’,S’; thus we may assume that K’ NS’” # (). Since K’ is a clique
and S’ is a stable set, it follows that |[K'NS’| = 1, say K’ NS’ = {v}. But now the partitions
(N[{v}],V(G) \ N[{v}]) and (N({v}), V(G) \ N({v}]) are both in P;, and at least one of them has
the desired property. This proves (1).



In view of (1) from now on we assume that K is a maximal clique of G, and S is a maximal
stable set of G. Consequently every vertex of K has a neighbor in S. Let S] C S be a minimal
subset of S such that every vertex of K has a neighbor in S]. It follows from the minimality of S}
that there is a subset K{ of K such that Si and K are matched. If |S]| < p, then the partition
(N(S1),V(G)\ N(S7)) € P1 has the desired property, so we may assume that S]] > p.

Let S; be a subset of S| with [S1| = p, and let K1 = N(S;) N K{. Then S; and K; are
matched, and so | K| = p. Let Z be the set of vertices of G that are anticomplete to S; U Kj. Then
S1\ S1 € ZnN S, and in particular every vertex of K has a neighbor either in S; or in Z N S. Let
S’ be the subset of vertices of S\ S that are complete to K;. Note that S'NZ = (). Let Sy be a
minimal subset of S such that N(S2) N Z = N(S') N Z. It follows from the minimality of Sy that
there is a subset W C ZNN(S’) such that W and Sy are matched. Observe that G[K1US; US;UW]|
is isomorphic to F}, |, (with K7,S1,52, W as in the definition of Fyp). It follows from 2.2 that
‘SQ’ < R.

Let X = (K, S51,S52). We claim that the partition Px € Ps has the desired property for the pair
K,S. Recall that Px = (Ax,V(G) \ Ax), where Ax is the set of all vertices v of G such that

e cither v € K, or v is complete to K, and
e cither v has a neighbor in S, or v has a neighbor in Z \ N(S2).

We need to show that K C Ax, and SN Ax = 0.
(2) K C Ay

Let k € K. Clearly either k € K; or k is complete to K;. Moreover, k has a neighbor in S7,
and S] C S1U(ZNS). Since S is a stable set, it follows that Z NS C Z\ N(S2), and thus k has a
neighbor either in Sp, or in Z \ N(S2). This proves (2).

(3) SnAx=0.

Suppose that s € SN Ax. Then s ¢ K;; therefore s is complete to K7, and so s € S’. Since S
is a stable set, it follows that s is anticomplete to Si, and therefore s has a neighbor in Z \ N(S2).
But N(S")NZ = N(S2) N Z, a contradiction. This proves (3).

Now 2.3 follows from (2) and (3). |1
This completes the proof of 1.1.
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