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Recently, Chern insulators with Chern numbers C = 1 and 2 in zero (or very small) magnetic field have been
observed in two moire graphene systems: twisted bilayer graphene and ABC trilayer graphene, both aligned with
a hexagonal boron-nitride (h-BN) substrate. These Chern insulator states arise due to many-body effects in the
Chern bands of these systems when they are partially filled to a total integer filling νT = 1, 3 (including spin and
valley degrees of freedom). A simple possible explanation is from Hartree-Fock mean-field theory which predicts
valley and spin polarization in the zero bandwidth limit, similar to the “quantum Hall ferromagnetism” in Landau
levels. Though valley polarization is implied by the existing experiments, the fate of the spin degree of freedom
is not presently clear. In this paper, we propose alternative valley polarized—but not spin polarized—candidates
for the observed QAH effect. For a valley polarized spinful Chern band at filling νT = 1, we describe a class of
exotic Chern insulator phases through spin-charge separation: charge is in a conventional Chern insulator phase
with quantized Hall conductivity, while the spin forms disordered spin liquid phase with fractionalization, which
we dub quantum Hall spin liquids. We construct a simple class of Z2 quantum Hall spin liquid as analogs of
the familiar Z2 spin liquid through slave fermion-Schwinger boson parton theory. Condensation of the spinon
from the Z2 quantum Hall spin liquid can lead to a quantum Hall antiferromagnet which is yet another, less
exotic, candidate for the experimentally observed Chern insulator. We offer several experimental proposals
to probe the quantum Hall spin liquid and the quantum Hall antiferromagnetic phases. We briefly comment
on the generalization to the filling νT = 2 and propose possible quantum valley Hall spin liquid without full
spin polarization. Finally, we also propose another class of QHSL using fermionic spinons, including phases
supporting non-Abelian anyons.
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I. INTRODUCTION

Recently moiré superlattices formed by Van der Waals
heterostructures have been shown to be an excellent plat-
form for strongly correlated physics. Observed phenomena
include correlated insulator [1], superconductivity [2–4], and
(quantum) anomalous Hall effect [5,6] in twisted bilayer
graphene. Spin-polarized correlated insulators [7–9] and pos-
sibly superconductivity [7,8] have been reported in twisted
bilayer-bilayer graphene. In addition, ABC trilayer graphene
aligned with a hexagonal boron nitride (TLG-hBN) has been
demonstrated to host gate tunable correlated insulators [10],
signatures of superconductivity [11], and a Chern insulator
[12].

Here we focus on the recent observation of Chern insulator
phases in twisted bilayer graphene [5,6] and in ABC trilayer
graphene aligned with hBN [12]. In these systems, there is
one isolated Chern band per spin-valley flavor and the two
valleys have opposite Chern numbers [13–16]. At odd integer
filling νT = 1 or 3, the valley is expected to be polarized be-
cause of the Coulomb exchange [13,16], resulting in a single
spinful Chern band. This is consistent with the experimentally
observed hysteretic anomalous Hall effect in these systems.
To explain the Chern insulator behavior, the simplest option
[13,16] is to further postulate that the spin is fully polarized

as well. The spin polarization is indeed favored in the flat
band limit as verified by numerical simulation [17]. Full spin
polarization is taken for granted in several theoretical works to
explain the moiré quantum anomalous Hall effects [18–20].

However, it is important to recognize that the current ex-
perimental data does not address the issue of spin polarization
one way or the other. In these moiré systems, the valley po-
larization is an ising order parameter, and hence there will
be domain formation leading to hysteresis. To an excellent
approximation the spin however is fully SU(2) invariant. Thus
the observed hysteretic transport suggests valley polarization
(also known as orbital ferromagnetism) but does not directly
give any evidence of spin polarization. A very recent experi-
ment [21] directly imaged the magnetization in twisted bilayer
graphene aligned with hBN using a nano-SQUID probe. The
measured magnetization is larger than that expected from spin
polarization by a factor of 2–4. This supports the picture that
the magnetization comes predominantly from valley polar-
ization. Indeed these experiments could be consistent even
with the complete absence of spin magnetism. Given this
situation, there is room to contemplate Chern insulator phases
with more interesting spin physics than the usually assumed
full spin polarization, and this is the focus of the current
paper.
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For simplicity, we assume valley polarization and consider
a model with a single isolated spinful Chern band at fill-
ing νT = 1. We consider the possible phase diagram when
the bandwidth W varies relative to the Coulomb interaction
strength U . In the limit W/U → 0, spin polarization is ex-
pected because of the similarity to the Landau level and has
indeed been verified by numerical simulation [17]. In the limit
W/U � 1, the ground state is a conventional Fermi liquid.
The key problem we want to study is the fate at intermediate
W/U . From Hartree-Fock mean-field theory, one expects that
spin polarization gradually decreases to zero upon increasing
the bandwidth, leading to a metal with spin imbalance in the
intermediate region. We will challenge this scenario in the
following.

First let us review a related problem to gain more intuition.
Consider spinful electrons in a topologically trivial band at
filling νT = 1. In the presence of interactions, a useful model
of such a system is a lattice Hubbard model, which has
been intensely studied for several decades. In many cases the
ground state is an antiferromagnetic ordered Mott insulator
at filling νT = 1 for small W/U , while it is a Fermi liquid
metal for large W/U (in the absence of special nesting effects).
How doe the system evolve between these two limits? In the
conventional Hartree-Fock (“Slater”) picture, the charge gap
in the insulator is induced by the spin order. With increas-
ing W/U the spin order decreases and the system eventually
goes through an intermediate antiferromagnetic metal, before
reaching the paramagnetic Fermi liquid. However, for small
W/U, the charge gap in the Mott insulator is induced by Hub-
bard U and is independent of spin order. Most importantly,
an intermediate Mott insulator with a quantum disordered
spin state (quantum spin liquid) is possible. Indeed, a spin
liquid phase has been observed in numerical simulation of
Hubbard model on the triangular lattice [22,23] and is further
supported by experiments on some quasi-two-dimensional tri-
angular lattice organic salts. These results suggest that the
naive Hartree-Fock theory is not correct in the case of a
topologically trivial band. Now let us return to the problem of
the spinful Chern band. Because of the Wannier obstruction,
charge can not be localized and the small W/U regime is not
described by a pure spin model. In the small W/U limit, the
charge gap should still be determined by U and disordering
of spin does not necessarily close the charge gap. After all,
the ferromagnetism is disordered at finite temperature be-
cause of SU(2) rotation symmetry in 2D, but the QAH effect
persists to finite temperature [6]. We might then question
whether Hartree-Fock theory correctly describes the evolution
of the phase diagram with increasing W/U . In a trivial band
with nonzero Berry curvature, previous theory shows that
the ferromagnetism in the W = 0 limit can be suppressed
by antiferromagnetic exchange at order W/U [24]. Similar
destruction of the quantum Hall ferromagnetism by kinetic
term may also be possible at integer filling of Chern band.

In this paper, we will explore the possibility that for inter-
mediate W/U , the charge part remains as a Chern insulator
with quantized Hall conductivity, but the spin is in a different
state instead of a ferromagnet. This picture is illustrated in
Fig. 1. We consider both the possibility of antiferromagnet-
ically ordered and of quantum spin liquid phases coexisting
with quantized electrical Hall conductivity. We dub these

FIG. 1. Two types of phase diagrams for (a) spinful Hubbard
model at νT = 1; (b) spinful Chern band at νT = 1. QHFM, QHAF,
and QHSL refer to quantum Hall ferromagnetism, quantum Hall an-
tiferromagnetism and quantum Hall spin liquid respectively. QHAF
can be viewed as descendants of QHSL through a continuous transi-
tion. Within QHAF, we expect that partial spin polarization coexist
with antiferromagnetic order at momentum Q.

states quantum Hall antiferromagnets (QHAF) and quantum
Hall spin liquids (QHSL). Either of these states, as well as
the simple spin polarized state, are consistent with current
experimental observations. Thus it is important for future
experiments to probe the spin physics and establish which of
these states actually occurs.

From a conceptual point of view, one of our main concerns
in this paper will be to answer the question: Which kind of
symmetric correlated insulator with nonzero Hall conductivity
can exist at integer filling of a spinful Chern band? The anal-
ogous question of symmetric correlated insulator with zero
Hall conductivity has been well studied in the context of Mott
insulator of a topologically trivial band. In the Mott insulator,
the charge degree of freedom is frozen at low energies and we
can focus on just the spin degree of freedom to study a pure
spin model obtained from a t/U expansion. This framework
is not possible anymore in a Chern band, as the charge can not
be frozen due to the Wannier obstruction. This is illustrated
by the well studied quantum Hall ferromagnets in a Landau
level of spinfull electrons: there due to a nonzero quantized
Hall conductivity, topological spin textures (like skyrmions)
need to carry charge because they are felt by electrons as a
magnetic flux [25]. As well see, quite generally, the spin and
charge degrees of freedom are entangled in a nontrivial way
in a correlated insulator with a Hall effect at integer filling.
Thus a QAH insulator without spin order is different from the
familiar spin liquid. To the best of our knowledge, this class
of phase has not been explored before and the various QHSL
and composite Fermi liquid phases constructed in the current
paper is a first description of some of the possibilities in this
new direction. As a secondary focus we will also describe
some interesting properties of quantum Hall antiferromag-
netic states which may also be relevant to experiments.

Note that the “quantum Hall spin liquid” really refers to
a class of phases, which may be further divided to several
categories (just like that there are many different “ordinary”
spin liquid phases). As explained above, by a QHSL, we
mean a phase which has quantized integer Hall conductivity
σ c

xy while its spin is in a disordered phase (very likely there
exist fractionalized spinon excitation). The notion of QHSL
can be easily generalized to fractional quantum Hall spin
liquid (FQHSL) which has fractional charge Hall conductiv-
ity. FQHSL should have both fractional charge and fractional
spin. Spin rotation invariant FQHE states have been proposed
before. The FQHSL proposed by us can be viewed as a new
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class of phases in this category. We will construct several sim-
ple QHSL and FQHSL phases explicitly, as well as the simpler
QHAF phases. But we do not attempt to do a classification and
more sophisticated QHSL phases beyond this paper definitely
are possible.

Spin liquids have been discussed before in the context of
moiré systems [24,26–28]. However, these studies focus on
the case with topologically trivial bands and the proposed spin
liquids are the same as the ones studied in traditional solid
state systems. In contrast, the QHSL phase discussed here
should not be viewed as a subcategory of the familiar spin
liquid. Instead, QHSL is a new class of phase, which shares
properties of the both spin liquid and quantum Hall phases.

Let us highlight some attractive features of QHSL. (I)
Charge is not completely frozen in the QHSL, unlike the usual
Mott insulator. In a gauge theory description, the internal
flux is constrained to carry charge. For example, in the Z2

QHSL, the m particle (the vison) carries charge Q = C/2
and fractional statistics. In the analogous state of “spinon
Fermi surface” with U(1) gauge field, the internal flux carries
charge, making the phase compressible. (II) There is chiral
electrically charged edge mode as implied by the quantized
Hall conductivity. Therefore the QHSL phase may be easier to
detect than the traditional spin liquids, where all of excitations
are neutral. (III) Z2 QHSL realizes the same kind of quantum
topological order present in FQHE states but at integer filling.
The generalization to a closely related state—which we dub
a quantum valley Hall spin liquid (QVHSL)—realizes a frac-
tional topological insulator at integer filling. The correlated
insulator at integer filling seems to be quite robust in moiré
systems and the realization of fractional state at integer filling
in QHSL may be easier than the usual proposal at fractional
filling. (IV) As the anyon in QHSL carries charge, doping a
QHSL may create an anyon gas. Especially in the case of
QVHSL, we argue that an anyon superconductor can naturally
emerge from doping. If this is true, the system is promising to
search for parafermion mode [29] by coupling a superconduc-
tor to the QVHSL insulator.

II. GENERAL FRAMEWORK

Consider a lattice model with spinful electrons ciσ (where i
is a lattice site and σ is the spin component) such that there are
two bands with equal and opposite Chern numbers ±C. We
assume that the lower band has positive Chern number and is
well separated in energy from the other band. We consider a
situation where the lattice filling νT = 1 so that the lower band
is half-full. A concrete example (with C = 1) is provided by
the spinful Haldane Hubbard model on the honeycomb lattice
at this filling.

We begin by using the standard slave fermion parton ciσ =
fibi;σ , where f is a slave fermion which carries the electrical
charge while bσ is an electrically neutral bosonic spinon.
As usual there is an emergent U(1) gauge field arising from
the constraint that the number of fermions n f i = f †

i fi must
equal the number of spinons nbi = ∑

σ b†
iσ biσ at each site i:

n f i = nbi. The total filling of the fermions is n f = 1. Therefore
we consider an ansatz where the fermion f inherits the Chern
number of the underlying electronic band and is thus in a band
Chern insulator phase. We may then contemplate a number of

distinct phases depending on the fate of the spinons which we
describe below.

A. Quantum Hall ferromagnet

The simplest possibility is that the bosons condense at a
wave-vector �q = 0, i.e.,

〈biσ 〉 = �σ , (1)

where � is a spinor that is independent of i. Clearly this
condensation gaps renders the gauge fluctuations innocuous
by the Anderson-Higgs mechanism. Further the order param-
eter �† �σ� is gauge invariant, spatially uniform, and is a
spin-triplet. Thus this state has ferromagnetic spin order. The
charge response is determined by the f fermions and is that of
a Chern insulator.

Thus we have just described the familiar quantum Hall
ferromagnet which could equally well be understood within
the usual Hartree-Fock theory. The purpose of the slave par-
ticle description is that it gives ready access also to the states
described below some of which cannot be described within
usual Hartree-Fock.

B. Quantum Hall antiferromagnet

If the boson condenses at a nonzero wave vector q, then
in general both spin rotation and translation invariance are
broken and we have antiferromagnetic order. Specifically con-
sider a condensate

〈biσ 〉 = ei �Q·�xi�+σ + e−i �Q·�xi�−σ . (2)

This condensation also kills the gauge field fluctuations,
and spontaneously breaks the global spin rotation sym-
metry. The gauge invariant spin triplet order parameters
�

†
+ �σ�−, �

†
− �σ�+ live at wave vectors ±2 �Q, respectively.

Thus the spin ordering is that of an antiferromagnet. Depend-
ing on the details of �±, both uniaxial and spiral ordering
patterns can be so described. Specifically if �+ = eiθ�− the
ordering is uniaxial while if �

†
+�− = 0, the ordering is a

spiral. The charge response is again due to the f fermions,
and is that of a Chern insulator. Thus we have a description of
a quantum Hall antiferromagnet.

It is interesting to ask about topological defects of the
antiferromagnet. For the spiral ordering pattern, the defects
are pointlike Z2 vortices. Unlike conventional spiral ordered
magnets, here these defects will carry nonzero electric charge
due to the nontrivial quantum Hall charge response. Indeed
these Z2 vortices evolve into the vison excitations (the m-
particle) when the quantum Hall antiferromagnet undergoes a
phase transition to the proximate Z2 quantum Hall spin liquid
described in the next section. Our analysis below of the charge
of the quasiparticles of this quantum Hall spin liquid also
determines the charge of the Z2 vortices in the spiral ordered
antiferromagnet.

C. Quantum Hall spin liquid

We may contemplate the possibility that, instead of con-
densing, the bosons form a state which is a spin paramagnet.
A simple such possibility is to let the Schwinger boson bσ

form a paired spin singlet superfluid phase described (at the
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mean-field level) by the condensate

〈εσσ ′biσ b jσ ′ 〉 = Pi j . (3)

Here, εσσ ′ is antisymmetric with ε12 = 1. In a mean-field
description, this condensate leads to a term in the Hamiltonian
of the form

Hb =
∑
〈i j〉

�i j (bi↑b j↓ − bi↓b j↑) + H.c. (4)

Clearly this condensation preserved spin rotation symme-
try. Further (analogous to the usual description of Z2 quantum
spin liquids in frustrated magnets) it breaks the U(1) gauge
structure to Z2. Thus this state is a quantum spin liquid with
topological order. The charge response however is still that of
a Chern insulator, and we have the promised ‘quantum Hall
spin liquid” state.

In the rest of the paper we describe the detailed topological
order and properties of such quantum Hall spin liquid states.
We will see that despite the similarity in the construction, the
Chern number of the f band changes the topological order
from that of the Z2 spin liquid. Though our initial discussion
will use the parton construction above, we will later also use
an alternate parton construction in terms of fermionic spinons
and bosonic holons. This will enable us to access a different
class of quantum Hall spin liquid states.

III. (Z2) QHSL: EIGHTFOLD WAY

The low-energy gauge theory for any of the states de-
scribed by the bosonic spinon parton construction of the
previous section takes the schematic form

L = L f [ f , a + A] + Lb[b,−a] (5)

where a is the internal U(1) gauge field. b and f have opposite
gauge charges. We have also included a coupling to a back-
ground (“probe”) U(1) gauge field A. It couples to f which
carries the global electric charge but not directly to b.

As we take f to be in a Chern insulator with Chern number
C, we have

L f [ f , a + A] = −
C∑

I=1

1

4π
βI dβI −

C∑
I=1

1

2π
(A + a)dβI . (6)

Specializing to the QHSL state, the pair condensation of
the Schwinger boson is described by the following action
(from boson particle-vortex duality)

Lb[b,−a] = − 2

2π
adα. (7)

Taken together, we get

L = − 1

4π

C∑
I=1

βI dβI −
∑
I=1

1

2π
(A + a)dβI − 2

2π
adα. (8)

We can simplify the theory by integrating a (an alternative
formulation can be found in the Appendix A). This enforces

2α = −∑C
I=1 βI . Substituting βC = −2α − ∑C−1

I=1 βI , we get

L = − 4

4π
αdα − 2

4π

C−1∑
I=1

βI dβI

− 1

4π

∑
I 
=J

βI dβJ − 2

2π
α

C−1∑
I=1

dβI + 2

2π
Adα. (9)

In the basis of (α, β1, . . . , βC−1), we have a a K matrix with
dimension C.

For C = 1, the theory is

L = − 4

4π
αdα + 2

2π
Adα. (10)

which is a simple U(1)4 theory with charge vector q = 2. In
terms of topological order, this basically describes the ν = 1

4
Laughlin state of a Cooper pair formed out of the underlying
electrons. However, this does not mean that there is pairing
between electrons. Once there is a spin gap, single electron
can be integrated out and the topological order can be viewed
as purely bosonic. This feature is also shared by gapped spin
liquids in a traditional Mott insulator.

For C = 2, we can diagonalize the 2 × 2 K-matrix by the
transformation K → W KW T with

W =
(

1 −1
0 1

)
. (11)

The transformed K matrix is

K =
(

2 0
0 2

)
(12)

with charge vector qT = (2, 0).
Basically the C = 2 Z2 QHSL contain two copies of U(1)2

theory. One of them is charged and the other one is neutral.
The K matrix for C > 2 does not have a simple diagonal

form. Nevertheless we can understand the general structure of
the QHSL with general integer C. First, |DetK| = 4 is true for
any C and it is always a bosonic Abelian topological order
with four different anyons1.

From a general classification scheme [30], there are only 9
different bosonic abelian topological orders with four anyons
(up to staking of the invertible E8 topological ordered state).
From explicit calculation of anyon self statistics and mutual
statistics, we find C = 0, 1, 2, 3, . . . , 8, . . . QHSL correspond
to eight of them (the exception is the double semion) which
has chiral central charge c = 0, 1, 2, . . . , 7 mod 8. The QHSL
with C and C + 8n are equivalent in terms of anyon braiding
and fusion. Therefore Z2 QHSL offers an interesting realiza-
tion of eight different Abelian topological orders with four
anyons. In terms of topological order they are equivalent to
the 8 Abelian topological superconductors in Kitaev’s 16-fold
way [31].

As there are four anyons, we can always label them by
1, e, m, ε. We find that the fusion is different for odd C and
even C. For odd C, we find a simple anyon m with statistics

1By bosonic topological order we mean that the topological ordered
sector can be chosen so that all local operators are bosonic.
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TABLE I. Anyons in the Z2 quantum Hall spin liquid with Chern
number C. We can always attach the single fermion to change Q, S
and θ . We choose to fix S = 0. If we combine a local electron, e
particle can be viewed as a neutral bosonic spinon with S = 1/2.

anyon Q θ

1 0 0
e 1 π

m C
2

C
4 π

ε C
2 + 1 C

4 π

θ = C
4 π and charge Q = C/2. Any other anyon is a composite

of m. We find m2 has Q = 1 and statistics θ = π . After attach-
ing the local fermion, m2 is equivalent to a neutral bosonic
spinon and thus we label it as e. In another word, for odd
C we have e = m2, ε = em = m3, and m4 = 1. In contrast,
for even C we need two simple anyons. This is obvious for
the K matrix shown in Eq. (12) for the C = 2 case. We
label the charged one as m: this has self-statistics θ = C/4
and Q = C/2. We label the anyon in the neutral sector as ε,
which has θ = C/4 and Q = 0. It is easy to show that m2 = 1
and ε2 = 1. Meanwhile e = mε has θ = C/2π and Q = C/2,
which can be identified as the bosonic spinon up to attaching
of the physical electron. Therefore the fusion for even C is the
same as that of the usual Z2 gauge theory. A list of anyons for
the Z2 QHSL can be found in Table I.

Even if QHSL is not the ground state, it may still be
viewed as a parent state of the ordered phases described in
Sec. II. Specifically comndensation of the bosonic spinon e
leads to a magnetically ordered quantum Hall state. A general
argument—familiar from the theory of phase transitions out
of Z2 spin liquids [32,33]—can be made that second order
transitions will only occur for condensation at a nonzero wave
vector. The resulting phase is thus a quantum Hall antiferro-
magnet. Because of the spin-charge separation nature of our
construction, the spin nature does not influence the charge gap
and the quantized Hall conductivity. In our construction, the
momentum Q of QHAF can be arbitrary. In contrast, one may
be able to construct a Chern insulator with antiferromagnetic
order within simple mean-field theory. In this Slater deter-
minant picture, the Q of the AF needs to be fine tuned to a
certain value to fully gap out the Fermi surfaces. Therefore
QHAF descending from QHSL is essentially different from a
simple slater determinant state derived from an instability of
the Fermi liquid.

Within the QHAF phase the ordering wave vector will
generically evolve continuously as the parameters of the mi-
croscopic Hamiltonian are changed. Thus a possible natural
evolution is that there is a continuous phase transition from
a QHSL to a QHAF which may then give way—with further
change of parameters—to a quantum Hall ferromagnet.

IV. GENERALIZATION OF Z2 QHSL

A. Fractional quantum Hall spin liquid

The notion of QHSL can be easily generalized to the case
of fractional filling. We focus on a C = 1 Chern band at filling
νT = 1/3. As before we assume that the valley is polarized

but do not make assumptions about the spin. Here we offer
the simplest fractional quantum Hall spin liquid (FQHSL)
Now within the parton construction we have used both the
f fermions and the b spinons are at a filling of 1/3. Taking the
fermions to inherit the Chern number as before, they can form
a fractional Chern insulator at filling 1/3. Their low-energy
effective action is now replaced from that in Eq. (6) by

L f [ f , a + A] = − 3

4π
βdβ + 1

2π
(A + a)dβ. (13)

If we now consider a state where the spinons form a paired
spin singlet superfluid, we will get an effective action

L = − 3

4π
βdβ + 1

2π
(A + a)dβ − 2

2π
αda. (14)

We then integrate a to find

L = − 12

4π
αdα + 2

2π
Adα, (15)

which is topologically the same as ν = 1
12 Laughlin state for

Cooper pair. However we emphasize again that the route to
forming this state does not involve attractive interactions.

B. Quantum valley Hall spin liquid at νT = 2

Finally we briefly discuss the possibility of a quantum
valley Hall spin liquid phase at νT = 2. For the narrow Chern
bands in moiré systems with both spin and valley degrees of
freedom at νT = 2, a correlated quantum valley hall (QVH)
insulator with full spin polarization is the likely ground state
in the flat band limit [13,17]. Indeed spin polarization has been
observed in twisted double bilayer graphene (TDBG) [7–9].
Similar to our discussion for νT = 1, when we increase the
bandwidth, the full spin polarization can be destroyed first
before the charge gap is killed. Then a quantum valley Hall
spin liquid (QVHSL) is also possible. In the slave fermion
parton construction ci;aσ = f a

i; b
a
i;σ with the constraint ni; f a =

ni;ba = ni;a. On average 〈ni;+〉 + 〈ni;−〉 = 2. In this construc-
tion, there are two decoupled U(1) gauge fields for the two
valleys: aa

μ. We can put f+ and f− in Chern insulator with
Chern number C and −C. ba

σ can still be in paired superfluid.
The resulting state is the quantum valley Hall spin liquid
(QVHSL). Topologically it is equivalent to a two dimensional
fractional topological insulator [34], but now it is realized at
integer filling.

C. Quantum Hall valley liquid

Finally we briefly mention another possibility with more
detail in Appendix B. QHSL is proposed for system with
spinful Chern bands. Here we consider a different case: we
have two valleys with opposite Chern number and the total
filling is νT = 1. In the moiré context, this corresponds to
assuming full spin polarization, but not necessarily full valley
polarization. It is possible to construct time reversal broken
states with topological order which show an anomalous Hall
effect but where the valley polarization can be continuously
tuned. We denote these states “quantum Hall valley liquids.”
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V. HOLON METAL AND ANYON SUPERCONDUCTOR
UPON DOPING A QHSL OR QVHSL

In this section, we briefly discuss possible phases from
doping the Z2 QHSL. It will depend on what is the cheapest
charged excitation in the QHSL phase. In a QHFM phase, the
cheapest charged excitation can be either generated by c† or
the skyrmion defect of the FM order parameter. In the slave
boson parton theory, we disorder the slave boson condensation
to melt the FM order. After that, the standard particle excita-
tion is generated by f † and the topological defect of FM order
now becomes the m anyon, which corresponds to meron of
FM order and carries charge Q = C/2. Different phases can
be obtained from doping depending on which of the above
two excitations is cheaper. We will discuss these two cases
separately in the following.

A. Holon metal

The simplest case is that the cheapest charge excitation
is generated by the slave fermion f †. Then doping will just
change n f = 1 − x and the Schwinger boson bσ remains in a
paired superfluid phase. In the final phase, f forms a single
Fermi surface with area AFS = −x mod 1. This is a metallic
phase as f carries the physical charge. However, the Fermi
surface couples to a Z2 gauge field and the phase is different
from a conventional Fermi liquid. This is a holon metal [35]
in which both the single electron and the spin are gapped.
This holon metal still breaks time reversal symmetry and has
a nonzero Hall conductivity. A similar holon metal can be
obtained from doping a quantum valley Hall spin liquid and it
is now time reversal invariant.

The charge transport of the holon metal is exactly the same
as that of a ferromagnetic metal. Especially, the Landau fan
degeneracy is reduced. In the experiments, such a reduction of
Landau fan degeneracy has been observed close to correlated
insulator in several moiré materials. Usually it is attributed to
a ferromagnetic order in the metal phase. However, a holon
metal is also consistent with these data. The best way to dis-
tinguish the holon metal and a ferromagnetic metal is through
the single electron gap or the spin gap.

B. Anyon superconductor

In a more nontrivial situation, the cheapest charged exci-
tation is the m anyon in the QHSL. This anyon corresponds
to the meron texture (half skyrmion) in the QHFM phase.
Once entering the QHSL phase, m anyon costs only finite
energy and can be the cheapest charged excitation. In this
case, we will have an anyon gas with finite density of m
anyons upon doping. The problem of anyon gas has attracted
lots of attention and it was predicted that an anyon supercon-
ductor phase may be favored to minimize the kinetic energy
[36,37].

Superconductor may be even more likely if we dope the
QVHSL phase, which has the same topological order as a
fractional topological insulator. For simplicity, let us consider
the case with C = 1. The QVHSL is described by a K matrix
K = (4 0

0 −4) with charge vector q = (2, 2)T . The are two
sets of m particles. m+ is generated by l = (1, 0) and m−
is generated by l = (0, 1). Both carry charge Q = e/2 and

have fractional statistics. Following the previous arguments
in favor of anyon superconductor, m+ and m− can pair and
forms a boson with charge Q = e, which can then move coher-
ently and condense. The resulting phase is a superconductor.
The realization of a superconductor from doping a fractional
topological insulator is interesting. It has been proposed that
fractional topological insulator edges coupled to supercon-
ductors can be used to engineer parafermion states [38–40].
These ingredients may all be available within the same device
in these moire graphene systems.

VI. COMPOSITE FERMI LIQUIDS: PARENT OF
ANOTHER CLASS OF Z2 QHSL

In previous sections, we constructed Z2 QHSL as analogs
of the familiar Z2 spin liquids using the slave fermion-
Cchwinger boson parton theory. For conventional spin mod-
els, the same Z2 spin liquid can also be accessed through the
slave boson-Abrikosov fermion approach. In the fermionic
spinon approach, one can get a U(1) spin liquid with a spinon
Fermi surface, which can be viewed as a parent state of the
Z2 spin liquid. In this section, we construct a variety of QHSL
states as descendants of analogous parent states. For this pur-
pose, we explore the slave boson-Abrikosov fermion parton
theory. For even C, we find that spin unpolarized composite
fermi liquids (CFL) are the analog of the spinon Fermi sur-
face of usual spin models. QHSL states—distinct from those
constructed in previous sections—can be obtained through
pairing of the composite Fermi surface in CFL. Unlike the
usual spinon Fermi surface states, CFL is metallic.

We use the standard slave boson-Abrikosov fermion par-
ton: ci;σ = bi fi;σ . As before b and fσ couple to a dynamical
U(1) gauge field2 a. We have the average density constraint
〈nb

i 〉 = 1 and
∑

σ 〈n f
i;σ 〉 = 1. We assume the mean-field ansatz

of b inherits that Chern number of the original Chern band.
Then we need to decide the fate of the slave boson at n = 1
for a Chern band with Chern number C. Because we are
searching for states with physical Hall conductivity, we should
put b in some kind of a quantum Hall state. For even C, the
simplest possibility is that b is in a bosonic integer quantum
Hall (BIQHE) phase [41,42] with σ b

xy = C. We will come to
the case with odd C later.

For even C, we put b in the bIQHE state. The fermionic
spinons fσ partially fill a band with no Chern number, and
hence it is natural to expect them to form Fermi surfaces. The
effective action of the corresponding phase is

L = LbIQHE[b, A + a] + LFS[ f ,−a], (16)

where A is a background U(1) gauge field.3 The effective
induced action in the bIQHE state is simply [41,42]

LbIQHE = C

4π
(A + a)d (A + a). (17)

2Strictly speaking a spinc connection.
3Actually a spinc connection.
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Note that the bIQHE state has no net thermal Hall effect (and
hence no gravitational Chern-Simons term) and

LFS = f †
σ (∂τ − μ + ia0) fσ − h̄2

2m∗ f †
σ (−i∂i + ai )

2 fσ . (18)

A. Property of CFL

When there is a spinon Fermi surface, the effective action
of the resulting state is simply given by the sum of Eqs. (18)
and (17). This is of the same general form as the Halperin-
Lee-Read (HLR) action for the half-filled Landau level. The
difference is that the level of the Chern-Simons term is C
instead of 1/2. Despite this difference, the essential properties
will be very similar to the CFL in the half-filled Landau level.
In particular, it is metallic.

A difference from the standard HLR theory is that in our
case the spin is not dead and we may contemplate composite
fermi liquid states with partial spin polarization. One interest-
ing question is what the fate is when the spin is fully polarized.
Unlike in the Landau level, when spin is fully polarized, the
size of the spinon Fermi surface is the same as the BZ and
fermionic spinon fσ should be gapped. In this case, the only
term in the final action is that in Eq. (17). We may now shift
a = â = a + A to get4

L = C

4π
âdâ. (19)

This describes a nontrivial topological order with abelian
anyons but it lives entirely in the electrically neutral sector,
In particular there is no topological charge response (the Hall
conductivity is zero).

In a magnetic field, as usual the CFL can show quan-
tum oscillations and form Jain sequences, as is shown in
Appendix C.

B. A different class of Z2 QHSL from pairing of CFL

It is easy to show that another class of Z2 QHSL can be
obtained from pairing of the spinon Fermi surfaces of the
CFL. With pairing of fσ ,

L f = − 2

2π
adα, (20)

where α is introduced through bosonic particle vortex duality.
Combining with Eq. (17), we get

L = C

4π
âdâ − 2

2π
αd (â − A). (21)

In terms of (α, â), we have a K matrix:

K =
(

0 2
2 −C

)
(22)

and charge vector qT = (2, 0).

4Note that â is an ordinary U(1) gauge field and not a spinc con-
nection.

For C = 2n with odd n, we can diagonalize the K
matrix by

W =
(

C+2
4 1

C−2
4 1

)
. (23)

The new K matrix is

K =
(

2 0
0 −2

)
(24)

and charge vector qT = (C+2
2 , C−2

2 ).
For C = 4n with n ∈ Z ,

W =
(

n 1
1 0

)
(25)

transforms the K matrix to

K =
(

0 2
2 0

)
(26)

and charge vector qT = (C
2 , 2).

Obviously C = 4n + 2 with n ∈ Z corresponds to double
semion while C = 4n with n ∈ Z corresponds to toric code.
Within each class, the charge vectors are different for different
C, leading to different Hall conductivity. These states have
helical edge modes protected by charge conservation.

VII. NON-ABELIAN QHSL AT ODD C:
ANOTHER EIGHTFOLD WAY

We turn to the case with odd C. In this case, the slave
boson needs to be in an exotic state to have Hall conductivity
σ b

xy = C. Taking C = 1 as an example, it has been shown that
a boson at ν = 1 is in a Pfaffian state. Motivated this, we
consider the CFL phase with slave boson in a Pfaffian state
while the Abrikosov fermion fσ form spinon Fermi surfaces.

The low-energy action is

L = f †
σ (∂τ − μ + ia0) fσ − h̄2

2m∗ f †
σ (−i∂i + ai )

2 fσ

+ LP f [b, A + a]. (27)

A (generalized) bosonic Pfaffian with σ b
xy = C can be

understood as (Abelian-TQFT× Ising)/Z2, where Abelian-
TQFT is an Abelian topological order described by a K
matrix. For C = 1 it is just U(1)4. For a generic odd C, we
can construct it from parton theory b = ψ1ψ2 and let ψ1 be in
an IQHE state with σψ1

xy = C and ψ2 form a p + ip supercon-
ductor. The Abelian TQFT part is

Lb
Abelian-TQFT[b, A + a] = − 4

4π
αdα − 2

2π
αd

∑
I=1,...,C−1

dβI

− 2

4π

∑
I

βI dβI − 1

4π

∑
I 
=J

βI dβJ

+ 2

2π
(A + a)dα. (28)

This should be glued to the non-Abelian Ising anyon theory
with three quasiparticles (1, σ, ψ ) where ψ is a fermion, and
σ is the Ising anyon. The gluing condition is that the σ is
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bound to anyons in the abelian theory with odd qα , while 1
and ψ are bound to abelian anyons with even qα .

Similar to the discussions for even C, we consider a paired
state of the spinon fσ , which leads to

L f = − 2

2π
adα̃ (29)

The final state is a non-Abelian QHSL, which can be de-
composed as (Abelian-TQFT× Ising)/Z2. The Abelian-TQFT
part is a sum of Eqs. (28) and (29).

We make the redefinition: α = α1, α̃ = α1 − α2, the final
result is

Lc
Abelian-TQFT = − 4

4π
α1dα1 − 2

2π
α1d

∑
I=1,...,C−1

dβI

− 2

4π

∑
I

βI dβI − 1

4π

∑
I 
=J

βI dβJ + 2

2π
Adα1

+ 2

2π
adα2. (30)

We find that this Abelian TQFT is decomposed to
TQFT1 × Toric code. Here Toric code part is formed by
(a, α̃2). Interestingly, TQFT1 is the same as that in Eq. (9)
for the Z2 QHSL constructed from slave fermion-Schwinger
boson approach. From qαα + qα̃ α̃ = qαα1 + qα̃ (α1 − α2), we
can get the transformation rulel for the charge of α1, α2: q1 =
qα + qα̃ and q2 = −qα̃ . Then qα = q1 + q2. We know that an
Ising anyon is bound to qα = 1 mod 2. In terms of gauge fields
in Eq. (D1), the Ising anyon is bounded to q1 + q2 = 1 mod
2. The final TQFT of this non-Abelian QHSL is (TQFT1 ×
Toric Code × Ising)/Z2 with the rule that the σ particle of the
Ising topological order is bounded to q1 + q2 = 1 mod 2.

The chiral central charge is c = C + 1/2. We can also
choose the Ising part as anti-Ising, leading to (TQFT1 ×
Toric Code × anti-Ising)/Z2 with chiral central charge c =
C − 1/2. For C = 1, 3, 5, and 7, we can generate an-
other eight different QHSL with chiral central charge c =
1
2 , 3

2 , 5
2 , . . . , 15

2 . They are similar to the 8 non-Abelian su-
perconductor in Kitaev’s 16-fold way [31]. However, the
topological order here has more anyons because of the Toric
code part (see Appendix D).

VIII. EXPERIMENTAL SIGNATURES

We now discuss some possible experimental signatures of
QHSL or QHAF. To date, much of the information on moire
graphene materials has come from transport experiments. But
in near future measurement of optical conductivity should
also be feasible. In the following we will list some probes
to distinguish a QAH insulator with and without spin-valley
polarization.

A useful probe of spin polarization or lack thereof is to
study the charge gap in the presence of an in-plane magnetic
field Bx. Such a field certainly couples to the spin degree of
freedom. It may also couple to the orbital degree of freedom
but this depends on details [43]. Assuming the in-plane field
predominantly couples to spin, the charge gap � measured
in a transport experiment will depend on it, and will be a
measure of the spin of the cheapest gapped charged excitation.
Under Zeeman field, charge gap changes as �(B) − �(0) =

geffμBB. Next we discuss our expectation of geff for various
phases. For a phase with spin-valley polarized to be −,↓,
the particle-hole excitations can be grouped in the following
three categories: (I) spin flip c†σ+c; (II) valley flip c†τ+c; and
(III) spin and valley flip c†τ+σ+c. Here we denote τa as Pauli
matrix in valley space and σa in spin space. We consider a
particle-hole excitation separated by a long distance and label
the energy gap corresponding to the above three categories as
�1, �2, and �3. At zero magnetic field, we expect �2 ≈ �3

because of an approximate SU(2)+ × SU(2)− symmetry [13].
Under a Zeeman field −gμBBSz

5, these three charge gaps
change differently because they carry different spin: �1(B) −
�1(0) = gμBB, �2(B) − �2(0) = 0, and �3(B) − �3(0) =
gμBB with g = 2. The charge gap will be set by the smallest
one among �1, �2, and �3.6 �2 should be slightly smaller
than �3 because of a small inter-valley Hund’s coupling [13],
which however may compete with a phonon-mediated interac-
tion of the opposite sign [16] but the comparison between �1

and �2 depends on microscopic details and is not clear. There-
fore both geff = 2 and geff = 0 are possible for spin-valley
polarized phase. Next we turn attention to a QHSL phase with
S = 0 ground state. The cheapest charged excitation can carry
S = 1/2 (for example, generated by the electron operator),
or carry S = 0 (for example, the m anyon). In the former
case, the energy cost for excitation with Sz = 1/2 changes as
�(B) − �(0) = −gμBBSz = −μBB under the Zeeman field.
As the ground state energy does not change under Zeeman
field because it is in a singlet state, the charge gap changes
as �(B) − �(0) = −μBB and we have geff = −1. In the later
case with spinless charged excitation, we expect geff = 0. In
summary, geff = 2 is a strong indication of spin polarized
state. geff = −1 is evidence for a ground state with zero spin
polarization. However, geff = 0 seems to be consistent with
both spin polarized and spin unpolarized phases. For QHAF
phase with partial spin polarization, 0 < geff < 2 is also pos-
sible.

A QAH insulator without full spin-valley polarization will
also be reflected in optical spectrum. In experiments it is
possible to measure the optical conductivity σ (ω) for the
correlated insulator. Usually σ (ω) will has a threshold deter-
mined by the charge gap �. However, σ (ω) remains as zero
for ω > � for a spin-valley polarized state. This is because
only excitation with zero spin and almost zero momentum
can be excited in optics. For a spin-valley polarized phase,
the particle-hole excitation needs to flip either spin or valley,
which is dark in optics. Therefore optical conductivity is
suppressed for a spin-valley polarized phase even at energy
larger than the charge gap. In contrast, for a state without
full spin-valley polarization, there can be charged excitation
which carries zero spin and zero valley quantum numbers, and
so it can be excited optically. Thus σ (ω) onsets above a charge
gap.

5We choose the Zeeman field to couple to Sz to simplify the nota-
tion. In experiment, Zeeman field is generated by in-plane magnetic
field Bz, as Bz also couples to the valley

6Here we ignore the possibility that the cheapest charged excitation
is a skyrmion, which has been found to cost larger energy [20].
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A more definitive experiment that can distinguish the
QHSL from other quantum Hall states is to study edge tun-
neling. For the QHSL, single electron is gapped even at edge.
Therefore there is no single electron tunneling at the edge. The
leading process is the tunneling of a cooper pair. In contrast,
single electron gap is zero for both QHFM and QHAF. Finally,
for the QHSL with odd C, there is an excitation with half
charge, which may be detected by shot noise.

Let us now comment on experimental situations which may
favor QHSL states. As emphasized in previous papers, in the
flat band limit the QHFM is likely the ground state [17]. Thus
to stabilize other states we need to imagine tuning the band
width. This can be done by tuning a perpendicular displace-
ment field which (at least in some moire graphene systems)
tunes the band width. Direct calculations of band width over
displacement field in ABC trilayer graphene aligned with hBN
and in twisted monolayer-bilayer graphene can be found in
Refs. [13,24,44]. Indeed, metal insulator transition tuned by
displacement field has been observed in these systems [12,44].
QAH effect is seen in a finite region of displacement field
D (for example, please see Fig. 4 of Ref. [44]). Close to
the boundary of the QAH effect, the system is also close to
a metal-insulator transition and the quantum Hall ferromag-
netism framework is likely not valid anymore. As we argue
in the main text, spin polarization can be lost first before
the charge gap closes when increasing D. Hence we expect a
possible phase transition hidden inside the correlated insulator
in the existing experiments. It will be interesting to study the
quantum anomalous Hall state closely as a function of both
displacement field and an in-plane magnetic field to detect any
possible spin phase transitions. An alternate route is to change
the twist angle between the two graphene layers slightly away
from the magic angle in the twisted bilayer graphene aligned
with hBN [6]. In the range of twist angles where the QAH
effect persists, it is possible that there is a region where we
have either the QHAF or the QHSL state.

The possibility of FQHSL or FQHAF states must be kept
in mind for future experiments on TBLG/h-BN away from
3/4 filling. In the devices studied in Ref. [6] evidence of
valley polarization was seen in a range of fillings that included
νT = 5/6. At this filling (which corresponds to a filling of
2/3 by spinful holes in a C = 1 band), theoretical calculations
of Ref. [45] showed that a fractional Chern insulator state is
possible. There is however a close competition between spin
singlet and spin polarized states even in the flat band limit.
Away from the flat band limit, should a fractional quantum
anomalous Hall effect be present, we expect that FQHFM,
FQHAF, and FQHSL states will all be candidates.

Lastly we want to point out another promising platform
to study QHSL physics, which has not been realized in the
experiments. The idea is to study a bilayer system with two
layers coupled together by the Coulomb interaction. The layer
degree of freedom can mimic a spin 1/2 and the advantage
is that the pseudospin conductivity can be measured through
counter-flow transport. A QHFM phase with the layer pseu-
dospin polarized in the xy direction has been verified in this
way by experiment in quantum Hall bilayers [46,47]. One
can try to add dispersion to the Landau levels by inducing
moiré superlattice potential in this system by aligning hBN
to the double graphene layers in the system of Ref. [47]. Or

alternatively, we can consider a double moiré layers as
proposed in Ref. [48]. For trilayer graphene-hBN-trilayer
graphene system, one can tune both graphene layers to have
topological moiré band [13]. In this case, there are eight
flavors formed by a spin-valley layer. At νT = 1, a QAH in-
sulator with spin-valley-layer polarization is expected. When
tune displacement field, bandwidth increases and the layer
polarization may be disordered as we proposed in the paper. It
is easy to distinguish QHSL and QHFM/QHAF phases in this
setting up because the pseudospin conductivity corresponding
to the layer can easily measured through counter-flow trans-
port. For QHFM and QHAF phase, the pseudospin resistivity
should be zero as the easy-plane anisotropy favors the polar-
ization in the XY direction. However, if the layer pseudospin
is in a similar phase as the Z2 QHSL, the pseudospin resistivity
is infinite because of the pseudospin gap.

IX. CONCLUSION

In summary, we propose a new classes of topological phase
which we call quantum Hall spin liquid, which is a combina-
tion of quantum Hall state and spin liquid state. QHSL can be
viewed as parent state for quantum Hall ferromagnetism and
quantum Hall antiferromagnetism. Recently quantum anoma-
lous Hall effect has been observed in moiré systems. In
addition to QHFM, QHSL, and QHAF are also consistent with
the existing experimental results. We suggest several future
experiments to further distinguish them.

Note added. Recently, we became aware of other works
[49,50] on the QAH effect from a different perspective.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE Z2 QHSL: INTEGRATING αI

In this Appendix, we provide an alternate formulation
to deriving the properties of the QHSL states discussed in
Sec. III. We begin with the low-energy effective theory in the
form

L = L( f , a + A) + L(bα,−a), (A1)

where A is the external probe U(1) gauge field while a is the
internal U(1) gauge field.

For what follows it is useful to generalize the above theory
and consider a continuum Lagrangian in terms of these fields
and allow placing it on an arbitrary space-time manifold with
metric g. Then to be precise we should view A as a spinc
connection, and not a U(1) gauge field.7 The internal gauge

7A spinc connection is like a U(1) gauge field but its field quantiza-
tion is modified to

∫
da
2π

= ∫
w2[T M]

2 on every oriented closed 2-cycle.
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field a however is an ordinary U(1) gauge field. Note that
a + A is then a spinc connection so that the fermionic parton
f couples to a spinc connection as it should.

Now consider the state where f fill their band with Chern
number C. We can describe their low-energy theory using
C U (1) gauge fields αI (I = 1, . . . ,C):

Leff [ f , a + A) = −
∑

I

1

4π
αI dαI + 1

2π
(a + A)

∑
I

dαI .

(A2)
In contrast to the main text where we integrated out a here
we will integrate out αI . This will make some properties more
transparent. The result is

Leff [ f , a + A) = C

4π
(a + A)d (a + A) + 2C(CS[g]). (A3)

The last term is a gravitational Chern-Simons term which will
contribute to the thermal Hall effect. Combining this with the
spinon part we get a useful effective action

Leff = L(bα, a) + C

4π
(a + A)d (a + A) + 2C(CS[g]) (A4)

= L(bα, a) + 1

4π
ada + C

2π
Ada + C(CS[A, g]). (A5)

Here, CS[A, g] = 1
4π

AdA + 2CS[g] is a combined Chern-
Simons term appropriate for a spinc connection. This term
alone contributes a background electrical Hall conductivity
σxy = C, and a thermal Hall conductivity κxy = C. This should
be added to the Hall conductivities of the remaining dynam-
ical theory; in the examples we are interested in there will in
fact be no additional contributions from the dynamics, and so
σxy = κxy = C.

Let us specialize to states where the spinons are paired into
a spin singlet state. This is the QHSL state and is described by
the TQFT Lagrangian

L = C

4π
ada − 1

π
βda + C

2π
Ada + C(CS[A, g]), (A6)

where β and a are both ordinary U(1) gauge fields.
The TQFT has a K matrix(−C 2

2 0

)
(A7)

and a charge vector q = (C, 0). Clearly there is fourfold
ground state degeneracy on a torus, and there are four distinct
quasiparticle sectors. Further clearly as mentioned above this
K-matrix theory has no contribution to either σxy or κxy.

Define the quasiparticle e with l = (1, 0): this has self-
statistics θe = 0, and an electric charge Qe = 0. The other
quasiparticle m with l = (0, 1) has statistics θm = πC/4, and
electric charge Qm = C/2. Their mutual statistics θem = π .

What about the global SU(2) spin of these quasiparticles?
Strictly speaking we should introduce a background SU(2)
gauge field to keep track of this but it is easy to infer the
result through simpler arguments. Note that e couples to a

w2[T M] is the second Stiefel-Whitney class of the manifold. View-
ing A as a spinc connection enables defining fermions on arbitrary
3-manifolds without specifying the spin structure. See, e.g., Ref. [51]

with charge-1 and therefore should be identified as a “dressed”
version of the bosonic spinon. In particular, it will inherit its
SU(2) spin and hence have S = 1/2. The m couples to β and
has S = 0.

Note that in using the “standard” rules of K-matrix CS
theories to infer these results, it is important that all the Chern-
Simons gauge fields are ordinary U(1) gauge fields as we
chose above. If instead we have spinc connections then we
must remember that there is also a “bare” fermionic statistics
of the corresponding quasiparticle that must be added to the
ones coming from the Chen-Simons theory.

One may ask why we identify e with bα and not with
f . The point is f couples to a + A and not just to a. If we
insist on working with f then we should neutralize its electric
charge by binding to a physical electron which is (of course)
equivalent to working with the bosonic spinon.

It is interesting to consider some special values of C.
C = 0 is the usual Z2 spin liquid. For C = 1, the full theory

is equivalent to U(1)4 with a charge vector 2, as is readily
seen by the change of variables a → a − 2β followed by
integrating out the a-field.

For C = 8, we have θm = 0, mod 2π , and Qm = 4. Thus
we can just regard the theory as a regular Z2 gauge theory,
together with a background σxy = κxy = 8. We can just regard
this background as a bosonic E8 state.

For C = 4, θm = π , and Qm = 2. We can still regard this
as a standard Z2 gauge theory but shift notation m ↔ ε. The
quasiparticle with l = (1, 1) is, in the new notation, the m par-
ticle and has Qm = 2, S = 1/2. We can remove the charge by
binding a physical Cooper pair but not the spin. Thus we have
an unusual Z2 spin liquid where both e and m have spin-1/2.
Though unusual, this is not forbidden here. It is anomalous in
a time reversal invariant system which our system is not, and
so there is no problem.

APPENDIX B: DETAILS OF THE QUANTUM
HALL VALLEY LIQUIDS

To better track the fact that the two valleys have the op-
posite Chern number, it is easier to use a rotating frame
technique to reproduce the slave boson theory. We use the
following parton theory [52]:

ci;a = Ri;aαψi;α, (B1)

where a = +,− is the physical valley index. α = 1, 2 is a
pseudo-valley index. Ri is a SU(2) matrix, which rotates the
valley index. The above parton theory has a SU(2) gauge
structure:

Ri → RiU
†
i , �i → Ui�, (B2)

where � = (ψ+, ψ−)T and Ui ∈ SU (2).
In the flat band limit, the ground state is valley polar-

ized. We can define an order parameter as �ni = C†
i �σCi, where

C = (C+,C−)T and �σ is Pauli matrix in the valley space. We
also define �mi = �

†
i �τ�i, where �τ denotes Pauli matrix in the

pseudo-valley space. It is easy to show that

�ni = Ri �mi. (B3)
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The Ri is 3 × 3 SO(3) rotation matrix corresponding to
the 2 × 2 SU(2) rotations:

Rαβ
i = 1

2 Tr(R†
i σ

αRiτ
β ). (B4)

Equation (B3) means that the Ri rotates the order parame-
ter in the valley space. We always assume that the mean-field
ansatz of ψ1 has the same Chern number as c+ and ψ2 has
the same Chern number as c−. Time reversal acts as: C →
σxC, R → σxRτx, � → τx�. The physical charge is carried
by � and R boson is neutral.

In the flat band limit, the valley polarized state can
be reproduced by the following ansatz: 〈Ri〉 = I and �mi =
(0, 0,±1). Basically the fermion � has the full pseudo-valley
polarization along the direction of τz. In the following, we
always assume that �mi = (0, 0, 1) and the time reversal sym-
metry is broken. This does not necessarily mean a valley
polarization, which needs condensation of Ri. A valley disor-
dered phase can be constructed by requiring 〈Ri〉 = 0. Ri can
be parametrized as

Ri =
(

zi;+ −z∗
i;−

zi;− z∗
i;+

)
(B5)

with the constraint |zi;+|2 + |zi;−|2 = 1.
Let us assume that � is pseudovalley polarized to have

only ψ1 component. We can redefine fi = ψi;1. Then Eq. (B1)
can be rewritten as

ci;a = zi;a fi (B6)

where a = ±.
The valley FM order parameter is now �ni = z∗

i;a �σabzi;b,
which is just the standard CP1 representation. Equation (B6)
also reduces to the slave boson parton theory and the SU(2)
gauge structure is higgsed down to U(1) by �m = (0, 0, 1).
Then we can follow our discussion on QHSL to melting
the valley FM order by letting zi forms a paired condensate:
〈εabzi;az j;b〉 
= 0. Given that f = ψ1 forms a Chern insulator
with Chern number C, the property of this phase is the same
as the corresponding QHSL: it has a quantized Hall conduc-
tivity σxy = C e2

h and has topological order with four anyons.
The difference in this quantum Hall valley liquid (QHVL) is
that the time reversal is spontaneously broken without any
quantized valley polarization. Specifically the time reversal
breaking will generically induce some valley polarization.
However the amount of valley polarization will vary contin-
uously throughout this phase. This should be contrasted with
the QHSL where the valley is maximally polarized and hence
quantized throughout the phase. Note that in the quantum Hall
valley liquid. the time reversal breaking is manifested in the
mean-field ansatz ψ = ψ+.

In the discussion of QHSL and QHVL, we assume valley
polarization and spin polarization respectively. It is also pos-
sible to imagine a Chern insulator without neither spin nor
valley polarization.

APPENDIX C: ANOMALOUS JAIN SEQUENCES
FROM CFL

In quantum Hall systems, fractional quantum Hall states
can be generated from CFL by adding effective magnetic field

to composite fermions. Here we generalize this procedure to
the CFL proposed in the section.

From Eqs. (17) and (18), variation of a0 leads to

−δn + C
da

2π
+ C

dA

2π
= 0. (C1)

Therefore the spinon Fermi surfaces can feel an effective
magnetic flux:

− da

2π
= � − 1

C
δn. (C2)

At fix density, da
2π

= −� and we will have quantum os-
cillations when applying external magnetic field. When n =
1 + δn = −C̃ da

2π
, fσ can be in an IQHE states. Without con-

sidering spin polarization, we need C̃ = 2p with p ∈ Z . The
condiction is n = C̃(� − 1

C (n − 1)), leading to n = CC̃
C+C̃

� +
C̃

C+C̃
. We have a sequence of anomalous Landau fans starting

from a QH state at n = 1 with σxy = CC̃
C+C̃

. C̃ = ∞ corre-
sponds to da = 0 and this is a CFL state along the line with
n = C� + 1.

The Hall conductivity can again be easily understood from
Ioffe-Larkin rule ρc = ρb + ρ f . We keep b in the IQHE state
with σ b

xy = C, while letting f in another IQHE states un-

der the effective magnetic field σ
f

xy = C̃. As a result, ρc
xy =

1
C + 1

C̃
and thus σ c

xy = CC̃
C+C̃

. The case with C̃ = −C needs
special treatment. In this case, ρc

xx = ρc
xy = 0 because the Hall

conductivities from b and fσ cancel each other. This is a
superconductor at strong magnetic field with � = 1

C̃
! In this

paper we consider a spinful Chern band with fixed Chern
number, then the sequences for both C̃ > 0 and C̃ < 0 are
possible and they are generated by opposite magnetic field B.
In moiré materials, opposite Chern numbers will be selected
by opposite sign of magnetic fields through opposite valley
polarization. As a result, only one half of the Jain sequences
discussed here are possible, which depends on the sign of
valley Zeeman coupling.

Next we derive effective action for these states. The action
for the IQHE states from fσ is

L f ,IQHE = −
|C̃|∑
I=1

sign(C̃)

4π
αI dαI −

|C̃|∑
I=1

1

2π
adαI . (C3)

The final action is a sum of Eqs. (17) and (C3). Integration
of a locks β1 = ∑C̃

I=1 αI − β2. It is easy to get

L = C

4π
β2dβ2 −

|C̃|∑
I=1

sign(C̃)

4π
αI dαI − 1

2π

|C̃|∑
I=1

βdαI

+ 1

2π

|C̃|∑
I=1

AdαI . (C4)

We have a K matrix with dimension |C̃| + 1. We find that
|DetK| = |C + C̃| and the chiral central charge is C̃ − 1.

When C̃ = −C, DetK = 0 and there must be a gapless
mode. For C = 2, with redefinition αc = 1

2 (α1 + α2), αs =
1
2 (α1 − α2) and β = 1

2 (α1 + α2) − β1, the action can be
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rewritten as

L = 2

4π
βdβ + 2

4π
αsdαs + 2

2π
Adαc. (C5)

From q1α1 + q2α2 + qβ1βq = qcαc + qsαs + qββ we can
get the charge transforms as qc = q1 + q2 + qβ1 , qs = q1 −
q2 + qβ1 and qβ = −qβ1 . Here, αc is a gapless mode cor-
responding to the goldstone mode of the superconductor.
Because the smallest qc is 1, the fundamental flux for this
superconductor is h/2e. Actually the above action is the same
as that for the d + id superconductor. For general C, the
superconductor at C̃ = −C has a fundamental vortex with
flux h

Ce .

APPENDIX D: GROUND STATE DEGENERACY
OF THE NON-ABELIAN QHSL

In this section, we show that the non-Abelian QHSL pro-
posed in Sec. VI has more anyons than a simple Ising TQFT
or Pfaffian state, which has three anyons.

Let us consider C = 1 for simplicity. The non-Abelian
QHSL has a topological order (U(1)4 × TC × Ising)/Z2 (here
TC refers to Toric code/Z2 gauge theory). The action for the
Abelian TQFT part is

Lc
Abelian-TQFT = − 4

4π
α1dα1 + 2

2π
Adα1 + 2

2π
adα2.

(D1)

There are three gauge fields α1, α2, a with charge
q1, q2, qa. As argued in Sec. VI, the Ising anyon is
bound to the charge with q1 + q2 = 1 mod 2. Topologi-
cal order U(1)4 × TC× Ising has 4 × 4 × 3 = 48 anyons.
Naively we may expect the number of anyon for (U(1)4 ×
TC × Ising)/Z2 is 24. However, in the following we will
show that there is double counting and there are only 18
anyons.

Because the m particle generated by (q1, q2, qa) = (0, 0, 1)
does not couple with the Ising and the U(1)4 sector, we can
focus on the qa = 0 case first. We will show that there are
three anyons in the q2 = 0 sector and 6 anyons in the q2 = 1
sector when qa = 0.

When q2 = 0, all of the anyons are from the bosonic
Pfaffian state described by (U(1)4 × Ising)/Z2. Each anyon is
a bound state of one anyon in the Ising TQFT (I, ψ, σ ) and
an anyon in the U(1)4 sector with charge q1. σ bounds to odd
q1 and I, ψ bound to even q1. Therefore we have six anyons:
σ1 = (σ, q1 = 1), σ̃1 = (σ, q1 = 3), I1 = (I, q1 = 0), Ĩ1 =
(I, q1 = 2), ψ1 = (ψ, q1 = 0), ψ̃1 = (ψ, q1 = 2). It is easy
to show that the self statistics is θσ1 = θσ̃1 = 3

8π , which is
a sum of the self statistics of θ (θσ = 1

8π ) and q1 = 1, 3

anyon in the U(1)4 sector (θq1 = q2
1

4 π ). Meanwhile Ĩ2, ψ1

are fermions and I1, ψ̃1 are bosons. We can also check that
the mutual statistics between ψ̃1 and the other anyons is 0
mod 2π , which means that both I1 and ψ̃1 are trivial anyons.
Similarly we can check that Ĩ1 and ψ1 are equivalent. σ1 and
σ̃1 are also indistinguishable. As a result, there are only three
anyons I1, ψ1, σ1 in the q1 = 0 sector (with the assumption
that qa = 0).

Next we turn to the q2 = 1 sector. Now σ is bounded to
even q1 and I, ψ are bounded to odd q1. Similarly we have six
anyons: σ2 = (σ, q1 = 0), σ3 = (σ, q1 = 2), I2 = (I, q1 =
1), I3 = (I, q1 = 3), ψ2 = (ψ, q1 = 1), ψ3 = (ψ, q1 = 3).
We find that θσ2 = 1

8π and θσ3 = 9
8π , thus σ2 and σ3 are

different. Although the self statistics of I2 and I3 are the
same (θI2 = θI3 = 1

4π ), the fusion rules I2 × I2 = ψ1 and
I2 × I3 = I1 show that they are different. Similarly we can
argue that ψ2 and ψ3 are different.

Combining the q2 = 0 and q2 = 1 sectors, there are in total
9 anyons in the qa = 0 case. Now we can choose to attach the
m particle generated by (q1, q2, qa) = (0, 0, 1). In total, there
are 18 anyons.
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