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Abstract—The recent development in machine learning, espe-
cially in deep neural networks (DNN), has enabled learning-based
end-to-end communication systems, where DNNs are employed
to substitute all modules at the transmitter and receiver. In
this article, two end-to-end frameworks for frequency-selective
channels and multi-input and multi-output (MIMO) channels
are developed, where the wireless channel effects are modeled
with an untrainable stochastic convolutional layer. The end-to-end
framework is trained with mini-batches of input data and channel
samples. Instead of using pilot information to implicitly or
explicitly estimate the unknown channel parameters as in current
communication systems, the transmitter DNN learns to transform
the input data in a way that is robust to various channel
conditions. The receiver consists of two DNN modules used for
channel information extraction and data recovery, respectively. A
bilinear production operation is employed to combine the features
extracted from the channel information extraction module and
the received signals. The combined features are further utilized
in the data recovery module to recover the transmitted data.
Compared with the conventional communication systems, per-
formance improvement has been shown for frequency-selective
channels and MIMO channels. Furthermore, the end-to-end
system can automatically leverage the correlation in the channels
and in the source data to improve the overall performance.

Index Terms—Wireless communications, pilot-free end-to-end
communications, joint source channel coding.

I. INTRODUCTION

The development of modern wireless communications has
significantly improved our daily life. A full-fledged successful
communication system takes advantage of various technical
advances and realizes them in respective modules. As shown
in Fig. 1(a), a chain of signal processing modules are designed
in both the transmitter and the receiver to compensate for the
channel effects and mitigate interference so that the data can
be reliably transmitted from the transmitter to the receiver.
However, these modules are often developed and optimized
individually and the overall performance optimality may not
be duly achieved. Moreover, the channel characteristics change
with a variety of factors, e.g., the operating frequency and the
propagation environment. As a result, some of these modules
should be designed to be adaptive to the varying environment in
order to obtain the best performance, which is often a difficult
task.
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Fig. 1: Structures of (a) a conventional wireless communication
system and (b) an end-to-end learning based communication
system.

Recently, deep learning is reshaping the wireless commu-
nication system design, where the data-driven approaches
can improve and complement the conventional model-based
methods [1, 2, 3, 4, 5, 6]. End-to-end communication paradigms
based on deep learning have been designed [2, 4, 7, 5] and have
attracted increasing attention. For end-to-end communications,
both the transmitter and the receiver are represented by
deep neural networks (DNN) as shown in Fig. 1(b). The
transmitter DNN learns to transform the transmitted data into
an embedding vector and send over the wireless channel
while the receiver DNN learns to recover the transmitted
data from the received signals. The DNNs in the end-to-end
pipeline are trained in a supervised manner to minimize an
end-to-end loss, which measures the inconsistency between the
recovered data and the transmitted data. Since it is a purely
data-driven method with no pre-assumed channel models as
a prerequisite, it can potentially provide a universal solution
to various communication scenarios. Although the end-to-end
paradigm has shown promising performance under additive
white Gaussian noise (AWGN) channels [2], how to extend
this framework to general wireless channels, such as frequency-
selective channels and multi-input and multi-output (MIMO)
channels, is still challenging.

Conventionally, a common practice to deal with the fading
channels is to insert pilots in the data blocks, which are known
to the receiver in advance. The receiver first estimates the
current channel parameters with the help of the pilots and
recovers the transmitted data via solving an inverse problem
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with the estimated channel parameters. Nevertheless, this
paradigm is not compatible with end-to-end communication
systems. The usage of pilots complicates the design to a large
degree since the receiver has to take two heterogeneous sources,
i.e., the received data and the estimated channel parameters, as
input and solve an inverse problem without any prior knowledge.
In the existing literature, the end-to-end learning system is
designed under the conventional communication framework,
such as orthogonal frequency-division multiplexing (OFDM)
and singular value decomposition (SVD) based MIMO, which
decomposes the channel into independent subchannels.

In this paper, we propose a deep learning based end-to-end
communication system for general wireless channels, where
the conventional modules, including source coding, channel
coding, modulation, etc., have been replaced with a DNN
at the transmitter and one at the receiver. This problem is
formulated as training a deep auto-encoder network with an
untrainable stochastic convolutional layer, which represents the
wireless channel. Convolutional neural networks (CNNs) are
utilized in both the transmitter and the receiver and a training
algorithm with mini-batches of input samples and channels
is proposed. Instead of using pilots to implicitly or explicitly
estimate the unknown channel parameters, the transmitter learns
to encode the input data in a way that is robust to various
channel conditions. The receiver consists of two DNN modules
used for channel information extraction and data recovery,
respectively. A bilinear production operation is employed to
combine the features extracted from the channel information
extraction module and the received signals. The combined
features are further used in the data recovery module to recover
the transmitted data. The proposed pilot-free end-to-end system
is tested under two commonly-used wireless scenarios, i.e., the
frequency-selective channel and the flat-fading MIMO channel.
From the experiments, the end-to-end system can successfully
leverage a variety of correlation in a data-driven manner and
achieve superior results. The main contributions of the paper
are as follows,

• We develop a pilot-free end-to-end paradigm for general
wireless channels, including frequency-selective channels
and flat-fading MIMO channels, where the wireless
channels are modeled as a stochastic convolutional layer.

• We design a channel feature extraction module, whose
outputs are incorporated for data recovering via a bilinear
production. In this way, the channel information can be
efficiently utilized at each position for data reconstruction.

• We show the effectiveness of the pilot-free end-to-end
communication system under the frequency-selective chan-
nels and flat-fading MIMO channels, showing especially
its ability to save the pilot resources and leverage the
correlation in wireless channels and source data.

Part of the work has been published in [8]. Compared with
the previous work, we have extended the pilot-free system to
structured data transmission, where the end-to-end framework
outperforms the system with the source coding and the wireless
transmission designed separately.

II. RELATED WORKS

In this section, we briefly review recent advances in deep
learning for physical layer communications, deep learning for
inverse problems, and adversarial layers in deep learning.

A. Deep Learning in Physical Layer Communication Systems

Deep learning has been used to enhance the traditional
communication modules. Deep learning based approaches can
improve the channel decoding performance [9, 10, 11, 12, 13].
Deep learning can also be utilized for channel estimation [14,
15] and signal detection [16, 17, 18]. More information on this
topic can be found in [19, 20] and the references therein.

Apart from improving the traditional communication mod-
ules, deep learning based end-to-end communication systems
have been developed recently, where both the transmitter
and the receiver are represented by DNNs. First proposed in
[2], the framework has similar performance as the traditional
approaches with block structures under the AWGN channels.
The end-to-end framework has also been adopted within the
OFDM system [21] and SVD precoding based MIMO system
[22], where the channels are viewed as a group of independent
sub-channels.

Recently, how to learn an end-to-end communication sys-
tem without prior knowledge of channel models has been
investigated. In [23], a reinforcement learning based approach
has been developed to optimize the transmitter DNN without
knowing the channel transfer function or channel state infor-
mation (CSI). In [24], a model-free end-to-end communication
framework has been designed with the stochastic perturbation
approach. Recently, we have developed a conditional generative
adversarial net (GAN) based approach in [5] for building end-
to-end communications, where the channel effects are modeled
by a conditional GAN. The end-to-end system can be trained
with the conditional GAN as a surrogate channel to allow
the gradients to back-propagate from the receiver DNN to the
transmitter DNN.

B. Deep Learning on Inverse Problems

Our proposed method in this paper is also related to
solving the inverse problems and recover the original data
with learning approaches. In fact, deep learning has shown its
ability in solving inverse problems, especially in the image
processing area, such as denoise and deblur [25, 26], where the
degeneration can be expressed as the original images convoluted
with a kernel. The prevalent approaches include learning the
end-to-end mapping with CNNs [27, 28, 29] and learning the
posteriors with GAN [30, 31, 32, 33].

For most of the inverse problems encountered in the image
processing area, the noised and distorted image can be restored
by learning the ‘prior knowledge’ in the original images, such
as the shapes and textures [34]. In contrast, the input data
in the end-to-end framework can be independent bitstreams
without any useful prior knowledge and the transmitter DNN
should learn to form the constellation of the transmitted signal
with redundancy so that the receiver can infer the channel
information implicitly, which is then leveraged for recovering
the transmitted data.
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C. Joint Source-and-Channel Coding

Recently, the auto-encoder based system has been applied to
data compression and has shown superior results to the conven-
tional approaches. Therefore, the end-to-end communication
system can be trained for transmission of structured data, such
as images and texts, where the auto-encoder learns to compress
the data and encode the data simultaneously. The auto-encoder
has been used for joint source and channel coding in a binary
symmetric channel (BSC) channel [7], an AWGN channel [35],
and a slow Rayleigh fading channel[36].

In this paper, the proposed end-to-end communication system
includes source encoding and decoding seamlessly when the
system is employed to transmit structured data, such as images
and videos. We demonstrate that the end-to-end system is
better than the system with the source coding and the wireless
transmission designed separately.

III. PROBLEM FORMULATION

In this section, we will provide necessary background
information about the learning based end-to-end communication
system, with which the key problem in learning end-to-
end communication systems for general wireless channels is
formulated.

A. Auto-Encoder based End-to-End Communication Frame-

work

As shown in Fig. 1, a general baseband wireless communi-
cation system includes a transmitter, a receiver, and a wireless
channel, where the transmitter and the receiver can be optimally
designed and the wireless channel is random and unknown. In
operation, the information source provides the transmitter data,
s, for transmission, which can be either binary bit-streams or
any structured data, such as images and videos. The transmitted
data is encoded and transformed into a complex base-band
signal x and after further modulation to a prescribed frequency,
sent to the antenna for radio transmission. At the receiver, the
wireless channel effects are compensated and the transmitted
data is reconstructed from the received signal y.

As shown in Fig. 1(b), the learning based end-to-end
communication paradigm follows the structure of the auto-
encoder, where the transmitter DNN and the receiver DNN
correspond to the auto-encoder and the auto-decoder, respec-
tively. The source data, s ∈ R

p, is encoded by the auto-
encoder network at the transmitter into an embedded vector,
x ∈ R

q, x = fE(s;ΘE), where fE represents the auto-
encoder function and ΘE denotes the trainable parameters.
The embedded vector is then transmitted via the wireless
channel and the receiver gets the channel output, y. The
auto-decoder network learns to recover the transmitted data, ŝ,
based on the received signal, i.e., ŝ = fD(y;ΘD), where fD
and ΘD represent the auto-decoder function and the trainable
parameters, respectively. In this way, the chain of conventional
signal processing modules at the transmitter, such as encoding
and modulation, are represented by the auto-encoder and
the modules at the receiver, such as channel estimation and
decoding, are represented by the auto-decoder. The parameters
of auto-encoder and decoder in the end-to-end paradigm are

learned in a supervised manner with measured or simulated
data. An end-to-end loss function, L(s, ŝ), which measures the
data recovery accuracy, is employed as the training objective
for the end-to-end framework.

B. Wireless Channels as an Untrainable Stochastic Convolu-

tional Layer

The reason that the end-to-end communication system toward
general wireless channels is difficult to learn is that the end-
to-end data recovery loss depends not only on the trainable
parameters of DNNs, ΘE and ΘD, but also on the channel
realization h. In a wide range of scenarios, the wireless channels
are modeled as time-varying linear systems with additive noise
and discrete time-varying channel models can be attained by
sampling the continuous channel [37]. The channel output
is expressed as a weighted summation of the current input
symbols and previous input symbols if there exists inter-symbol
interference. The weights are considered to be consistent for
symbols within the block but may vary across blocks.

Hence, the wireless channel can be formulated as a convo-
lutional operation and realized by a convolutional layer, which
has been developed in [38] to efficiently extract features from
images. Convolutional layers differ from fully connected layers
in the shared-weight architecture and translational invariance
characteristics. In a convolutional layer, every neuron only
connects locally to several neurons in the previous layer and
the connection weights are shared by all neurons within the
layer. The weight, w, of a 1D convolutional layer is a tensor
of ni × no × k, where the ni and no represent the numbers of
feature maps in the input and output layers, respectively, and
k denotes the kernel size. The output at position l of feature
map j can be expressed as

zjl = σ(

ni
∑

i=1

k
∑

m=1

w[i, j,m]xi
l−m), (1)

where σ is the activation function and xi
l−m is the input at

position l −m of feature map i.
It is straightforward to represent the wireless channel with a

1D convolutional layer. For a channel with an impulse response
denoted by a real vector [h0, h1, ..., hL−1], the numbers of
feature maps ni and no are set as one. The kernel size k is
determined by the length of the channel memory while the
weights are determined by the channel response vector. When
a complex channel response is considered, the real part and
the imaginary part of the channel input and output are both
represented by two feature maps. The weight w is a tensor of
L× 2× 2. In addition, by further increasing feature maps, the
convolutional layer can also be used to represent the MIMO
channels. Given the channel response vector, h ∈ C

Nt×Nr×NL ,
the weight w can be represented as

w =

[[

<(h0) =(h0)
−=(h0) <(h0)

]

, . . . ,

[

<(hL−1) =(hL−1)
−=(hL−1) <(hL−1)

]]

.

Although a wireless channel can be represented with a
commonly used convolutional layer [38], the weights of the
convolutional layer are untrainable and take different values
for different blocks, which is different from the commonly
used convolutional layer.
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C. Key Issue

In a traditional communication system, a set of prescribed
pilot symbols known to the receiver in advance are inserted for
channel estimation. The receiver first estimates the channel pa-
rameters according to the received pilot data and then recovers
the transmitted data with the estimated channel. Nevertheless,
the design of the learning end-to-end communication system
becomes much more difficult with the pilots for estimating the
channel since two heterogeneous sources need to be taken into
consideration at the receiver, i.e., the received data and the
estimated channel parameters. Also, the optimal pilot design
depends on the particular scenario and is a complicated issue.

Instead of using pilots explicitly in our framework, the
transmitter DNN learns to encode the transmitted data into
embedding vectors that are robust to the channel effects, which
can be regarded as adding pilots implicitly through learning.
Since the wireless channel is represented by an untrainable
stochastic convolutional layer with addictive noise, the key
problem is formulated as follows.

Given channels h ∼ pc(h) and data s ∼ pd(s), find the

encoding and decoding functions such that the end-to-end loss

L is minimize, that is

min
ΘE ,ΘD

L = Eh∼pc(h),s∼pd(s)L(fD(fh(fE(s;ΘE));ΘD), s),

(2)
where L(·, ·) is used to measure the distance between the

recovered and the input data and fh represents the wireless

channel function, including a stochastic convolution layer and

the additive noise layer.

Loss function L can be customized under different scenarios.
When source data vector s represents the bitstreams, the loss
function can be binary cross-entropy. When source data vector s
represents imagery data, the loss function can be the peak signal-
to-noise ratio (PSNR) or the multi-scale structural similarity
index measure (MS-SSIM), etc.

IV. PILOT-FREE END-TO-END COMMUNICATION SYSTEMS

Instead of using the pilot data explicitly, we propose a pilot-
free end-to-end learning approach to address channel estimation
issue. In this section, we are going to present the learning
based end-to-end communication paradigm for general wireless
channels in detail, where the overview of the training algorithm,
the bilinear operations employed at the receiver DNN, and
implementation details will be shown. A toy example is also
provided to illustrate how the pilot-free end-to-end system
works.

A. Overview

The proposed approach follows the structure of learning
based end-to-end communication system from the previous
works [2, 5, 6, 7], where DNNs are employed in both
the transmitter and the receiver. 1D CNN is chosen in our
framework for both the transmitter and the receiver DNNs
for two reasons. First, for a wideband wireless channel, the
channel output is the result of the linear convolution of the
input with the impulse response of the channel [5]. Therefore,
it is a natural choice to use convolutional layers in order to

deal with the convolutional channel effects. Second, previous
works have shown that using CNN is effective in realizing the
coding gain with strong generalization ability to handle unseen
codewords [6].

In order to train the end-to-end networks with the stochastic
channel layer representing the channel, a simple but effective
training algorithm is used with mini-batches of input data
samples s in combination with the channel realization h. Thus,
the training set consists of two types of data: the input sample
dataset, S, and the channel sample dataset, H. The training
algorithm is illustrated in Algorithm 1. In the vanilla stochastic
gradient descent (SGD) algorithm, the gradient is noisy for each
updating since only a mini-batch of samples are considered.
Therefore, the expected loss on the channel set can be estimated
with a mini-batch of channels as well for each updating. For
each mini-batch of the input samples, a mini-batch of channel
samples are sampled from the channel set. The gradients for
updating the weights of the neural networks are obtained by
accumulating the gradients, g, under each channel from the
channel mini-batch,

g =
∑

h∈Hi

5ΘL(fD(yh;ΘD), s), (3)

where Hi is a minibatch of channel samples and yh is the
channel output under channel realization h. With the attained
g, the parameters (ΘE and ΘD) of the network are updated.

Algorithm 1 Training Pilot-free End-to-end Communication
System

1: Require: Learning rate η
2: Require: Initial parameters Θ = [ΘE,ΘD]
3: g← 0
4: for i = 0, 1, ... do . Loops of samples
5: Sample a minibatch s of samples from S
6: for j = 0, 1, ... do . Loops of channel realization
7: Sample a channel h from H
8: x← fE(s,ΘE)
9: yh = fh(x,h)

10: g← g +5ΘL(fD(yh;ΘD), s)

11: Θ← Θ− ηg

Remark 1 Compared with end-to-end systems, where the

channel effects are modeled as a black-box [5, 23], the

proposed approach relies less on the accessibility of the real

channel. Online training is necessary for the black-box end-to-

end systems since a large number of input and output pairs

of the channel should be recollected after each update of

the transmitter DNN. In our approach, the wireless channel

models are used and therefore the training can be offline once

a training channel set H is collected or simulated.

B. Why Pilot is Unnecessary: A Toy Example

Here we provide a toy example to show why DNN can
effectively recover the transmitted data without requiring pilots
for channel estimation.

Example: A CNN based pilot-free end-to-end system is
build for Rayleigh fading channels with binary input of size
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Fig. 2: A toy example on Rayleigh fading channel. (a) BER
under different block length. (b) Constellation under Rayleigh
fading channel.

[K, 2], where K is the block size. In the transmitter, we use
two convolutional layers with kernel sizes of one. Therefore,
every two bits are encoded independently with others. Two
fully connected layers are used at the receiver. Therefore, all
received signals are involved in recovering each bit. The DNN
structure used in this example is shown in Appendix A.

As shown in Fig. 2(a), with an increase of the block size
K, the bit-error rate (BER) of the end-to-end system improves.
Since every two bits are encoded independently, the constella-
tion generated by the transmitter DNN can be easily drawn as
in Fig. 2(b), which, unlike the conventional quadrature phase-
shift keying (QPSK) modulation, is asymmetrical to the origin.
With this asymmetrical constellation, the phase and gain of the
channel can be inferred with multiple received data and the
reliability of the inference increases with the block size, which
leads to the performance shown in Fig. 2(a). This example
shows the end-to-end system can generate the constellation of
the transmitted signal to infer the channel information implicitly,
which explains why pilots are unnecessary in our system.

C. Bilinear Receivers

Although our proposed end-to-end approach is pilot-free,
it is still necessary to infer the current wireless channel
because the end-to-end recovering loss relies on the current
channel to a large degree. Without the pilots, the channel
information can only be obtained from the received data y.
However, the output of each neuron in convolutional layers
only depends on the input data within its receptive field. As
a result, the received data, y, cannot be fully leveraged for
channel information extraction via the convolutional layers
since the channel information contained outside the receptive
field cannot be used for reconstruction of the transmitted data.
To address this problem, two DNN modules are employed
at the receiver for channel information extraction and data
recovery, respectively. As shown in Fig. 3, the receiver DNN
in the proposed end-to-end framework includes the channel
information extraction module and data recovery module.
To fully leverage the received data for channel information
extraction, fully connected layers are exploited to obtain the
global channel features, which are then combined with the
received data via a bilinear production. The convolutional
layers are employed in the data recovering module to further
analyze the bilinear features and recover the transmitted data.

The bilinear operation of CNN is shown in Fig. 4. This
structure is widely used in computer vision for combining
features together [39]. With the bilinear operation, the received
signal, y ∈ R

[K×Nr], is augmented at each position by
the extracted channel feature, z ∈ R

lz , from the channel
information extraction module. In particular, the received signal
is first reshaped into a vector and channel feature z is then
multiplied to each item of the vector. As a result, an augment
signal Y ∈ R

K·Nr×lz is obtained via Y = vec(y)⊗z, where
⊗ represents outer product operation. The augment signal Y is
further reshaped into a matrix of size [K, lz ×Nr]. Therefore,
the bilinear operation increase the number of feature maps
of the received signal by lz times, as shown in Fig. 4. The
gradients of loss L with respect to the bilinear operation can
be expressed as

∂L

y
= z

∂L

Y
, (4)

∂L

z
= vec(y)

∂L

Y
. (5)

D. Implementation Details

The details of the CNN structure used in each model of
the proposed method are shown in Appendix B. The binary
cross-entropy loss is utilized when the input are the bitstreams,

L(s, ŝ) =
∑

n

(sn log ŝn + (1− sn) log(1− ŝn)), (6)

where sn and ŝn are the nth elements of s and ŝ, respectively.
Since sn ∈ {0, 1} and ŝs is the output of the Sigmoid function,
representing a probability value between 0 and 1, the cross-
entropy loss increases as the predicted probability diverges
from the actual label.

The MS-SSIM [40] is chosen as the loss function when
the images are considered as the transmitted data. The SSIM
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Fig. 3: Structures of proposed end-to-end communication system

Fig. 4: Bilinear combination of channel extracted features and
received signal.

metric compares various patches in two images on luminance,
contrast, and structure and can be expressed as,

SSIM(s, ŝ) =
(2µsµŝ + c1)(2σsŝ + c2)

(µ2
s + µ2

ŝ
+ c1)(σ2

s + σ2
ŝ
+ c2)

, (7)

where µs, µŝ, σs, and σŝ denote mean pixel intensity and the
standard deviations of pixel intensity in patches of s and ŝ,
respectively, the variable σsŝ denotes the sample correlation
coefficient between corresponding pixels of patches in s and
ŝ. MS-SSIM extends this single-scale measure by conducting
SSIM over multiple scales through a process of multiple stages
of sub-sampling of size 2. The proposed end-to-end framework
is trained under a fixed signal-to-noise ratio (SNR) and tested
with different SNRs.

V. EXPERIMENTS

In this section, the proposed pilot-free end-to-end communi-
cation system is tested under several different scenarios. We first
show that the pilot-free end-to-end communication system can
work effectively under the frequency-selective fading channels
and flat-fading MIMO channels. We then show that it can also

leverage the correlation in the source data to further improve
the transmission performance by including the source coding
in the end-to-end paradigm.

A. Frequency-Selective Fading Channel

Experimental Settings: When the delay spread of a channel
is comparable with or larger than the symbol duration, inter-
symbol interference exists and the corresponding channel
is called the frequency-selective channel. The output of the
frequency-selective channel is formulated as y = h~ x+ n,
where h and x are the channel impulse response and the channel
input, respectively, ~ denotes the linear convolution operation,
and n denotes the channel noise. Hence, the frequency-selective
channel is modeled as multi-tap filtering. There have been
some statistical models to characterize the distribution of h.
The complex Gaussian distribution assumption is prevalent
for rich scattering environment. The strengths and delays of
multiple taps are characterized by the power delay profile (PDP),
p = {pi}. An eight-tap channel with equal average power is
used in our experiments, that is pi = 1, for i = 1, · · ·, 8.

Baselines: The proposed end-to-end system is compared
with two benchmarks. The first one is using OFDM system
to deal with the frequency-selectivity. QPSK is employed for
modulation and the block length is set as 128 samples and the
length of cycle prefix is 16 samples. In the OFDM system,
additional overhead is necessary since the pilots are inserted
for estimating the channel, which has the length of 16 in our
experiment, i.e., 12.5% overhead for channel estimation. For
channel coding, we use the convolutional codes with rate 0.5
[41]. The proposed pilot-free end-to-end communication system
is also compared with the conditional GAN based end-to-end
approach in [6], where pilots are used for channel modeling
and data recovering. Similar to the coherent OFDM system,
additional pilots are require in the conditional GAN system.

End-to-End Model Training: The model structure is pre-
sented in detail in Appendix A. The training and test dataset
are with 3× 108 and 1× 108 samples, respectively. The binary
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Fig. 5: BER curves on frequency-selective channel.

cross entropy loss and Adam optimizer are used. The training
batch size is 1, 000 and the learning rate is 10−4. The model
is trained with SNR = 15 dB, and tested with SNR ranging
from 0 dB to 20 dB.

Experimental Results: Fig. 5 demonstrates that the end-
to-end communication system (labeled as ‘E2E’) can achieve
better BER performance than the least square (LS) channel
estimation approach and comparable performance with the
minimum mean-square error (MMSE) approach. The condi-
tional GAN based end-to-end approach performs better than
the pilot-free approach because of the additional information
provided by the pilots.

B. MIMO Channel

The MIMO is a critical technique in future communication
systems. We use multiple filters to address multiple antennas
in the pilot-free communication system.

Experimental Settings: A system with four transmitter
antennas and four receiver antennas over a narrow-band channel
is considered in this experiment. The channel matrix H is
modeled as independent complex Gaussian distribution, where
the channel output can be expressed as y = Hx+ n, where x

is the transmit signal vector, n is the noise vector, and y is
the received signal vector. For correlated channels, the channel
matrix can be expressed as Hc =

√
RtH

√
Rr, where H is

the independent channel used above and Rt and Rr represent
the transmitter and the receiver channel correlation matrices,
respectively. The correlation matrices can be expressed as

Rt=



















1 ρt ρ4t . . .
ρt 1 ρt . . .
...

. . .

ρ
(Nt−1)2

t . . . 1



















,Rr=



















1 ρr ρ4r . . .
ρr 1 ρr . . .
...

. . .

ρ
(Nr−1)2

r . . . 1



















,

(8)

where ρt and ρr denote the correlation coefficients in the
transmitter and receiver while Nt and Nr denote the numbers

of antennas in the transmitter and the receiver, respectively.
ρt = ρr = 0 for independent channel.

Baselines: The pilot-free end-to-end system is compared
with zero-forcing (ZF) and MMSE signal detection approaches.
The block size is set as 256 in this experiment. Both approaches
require additional overhead for channel estimation (12.5% each
block in our experiment) and MMSE is used for channel
estimation. QPSK and convolutional code with rate 0.5 are
used as modulation and channel coding, respectively.

End-to-end Model Training: The detailed model of the
MIMO end-to-end system is illustrated in Appendix A. The
binary cross entropy loss in (6) is used and the training and
testing sets are 3× 108 and 1× 108, respectively. The binary
cross entropy loss and Adam optimizer are used. The training
batch size is 1, 000 and the learning rate is 10−4, as in Section
V-A.

Experimental Results: The performance of the proposed
method and the baseline are shown in Fig. 6(a) for independent
channels. Maximum-likelihood (ML) detection [42] achieves
the best performance. The end-to-end system outperforms the
ZF detection approach by a large margin and is also better the
MMSE detection approach when SNR is larger than 12.5 dB.
If perfect CSI is available for MMSE, the performance can
be improved about 5dB. In addition, both baseline approaches
require additional overhead for channel estimation, which can
be saved by the proposed approach.

The performance of our end-to-end method with different cor-
relation coefficients is shown in Fig. 6(b), where ρ = ρt = ρr.
The end-to-end approach and the baselines are evaluated with
SNRs equal to 5dB and 10dB. With the end-to-end approach,
the correlation of the channel can be leveraged automatically
to improve the performance significantly while the correlation
of the channel degenerates the performance in terms of BER
in the baseline systems. As shown in Fig. 6(a) and (b), the
MMSE approach with perfect CSI (labeled as ‘MMSE-CSI’)
outperforms the end-to-end system when ρt = ρr = 0.
But when ρt = ρr = 0.5, the pilot-free end-to-end system
can achieve similar results with the MMSE approach with
perfect CSI. In addition, when ρt = ρr = 0.9, the baseline
approaches can hardly handle the channel correlation even
with the perfect CSI while the pilot-free end-to-end approach
remains unaffected.

C. End-to-End based Wireless Image Transmission

Besides the transmission of the binary data stream, the data-
driven end-to-end communication system can also be exploited
for structure data transmission. We take the wireless image
transmission as an example. Conventionally the images need to
be compressed first into binary data streams, which are further
transmitted using a wireless communication system. While for
end-to-end communication systems, image compression and
recovery can be performed via the end-to-end transmitter and
receiver DNNs, respectively.

Experimental Settings: The experiments are conducted
on three image datasets, i.e., the ImagenetVal [43], Kodak
1, and B100 [44]. The images are compressed and encoded

1http://r0k.us/graphics/kodak
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Fig. 6: (a) BER curves on MIMO channel. (b) BER with channel correlation ρ.

with either the baseline system or the end-to-end image
transmission system. The encoded signal is then transmitted
via the wireless channels to the receiver, where the original
images are recovered. Although the images are with different
sizes, the encoded data is grouped into blocks with a fixed
length (128 used in our experiments) for wireless transmission.
The multi-path channel, as in Section V-A, is considered in
the experiments.

Baselines: The end-to-end communication approach is com-
pared with the baseline systems, where the image compression
system and the wireless communication system are designed
separately. Several image compression benchmarks are selected
for comparison, including a CNN based compression approach
[45] and the two conventional image compression approaches,
i.e., BPG and JPEG2000. The details of the image compression
baselines are described in Appendix B. In order to measure
the improvement brought by the joint design of source coding
and wireless transmission, the images are first compressed into
binary compressed data with the baseline image compression
approaches, the binary data is then grouped into blocks (128
used in our experiments) and transmitted with the bitstream
end-to-end communication system used in V-A. The original
images are recovered with the output of the bitstream end-to-
end communication system at the receiver.

The conventional image compression and recovery methods
are very sensitive to the errors introduced during the wireless
transmission. For instance, the JPEG files often break down
completely with only a few errors. The performance drops
dramatically for the CNN based approach as well since the
arithmetic coding, which is sensitive to the errors, is used to
further compress the extracted feature. In order to make a
fair comparison, we assume that a re-transmit communication
protocol is used for the baseline systems, where the block
will be re-transmitted if there exists any error in the current
block during the transmission. Therefore, the source decoding
is conducted without error and the expectation of the total
blocks transmitted will increase by 1/(1 − pe) times, where
pe is the block-error rate. For simplicity, we assume that the
errors in each block can be detected without any additional
cost, which makes the comparison a little unfair against the

proposed end-to-end approach.
End-to-End Model Training: Compared to the bitstream

end-to-end communication systems used in Section V-A and
V-B, the image end-to-end system incorporated 2D convolu-
tional layer for image compression and recovery. The detailed
model structure is illustrated in Appendix A. The model is
trained with the training set of ImageNet dataset. The input
images are cropped from the training set, with size 256× 256
without any augmentation. The MS-SSIM is used as the training
loss, where the implementation and weights follow [40]. The
batch-size is 32 and the learning rate is 10−3.

Experimental Results: Fig. 7 shows the MS-SSIM perfor-
mance under different SNRs with only J

256 blocks transmitted,
where J is the number of pixels. Since the length of the block
is 128, the bit per-pixel (bpp) is 0.5 for the baseline systems
if there is no transmission error. The source compression rates
for the baseline systems increase with the increasing pe. From
the figure, the proposed approach (labeled as ‘Joint E2E’)
outperforms the baselines by a large margin with the joint
training of the source coding and communications. Among the
three baselines, the CNN based compression approach (labeled
as ‘Separate E2E’) achieves better performance than the
other two conventional compression approaches. The baseline
systems have an advantage by using the global compression
approaches with context information. While in our system, the
global compression is discarded and the encoded vectors for
transmission are obtained locally and independently. However,
this disadvantage is offset by the power of joint training.
Therefore, even for the high SNR area, where the error of
the communication is negligible, the joint training approach
can still outperform the baselines. As the noise increases, the
performance of the other systems drops quickly due to the
increased error rate while the joint training approach is more
robust to the channel noise.

D. Robustness

When deployed in the real environment, the channel distribu-
tions may differ from the training channel distribution, which
may degrade the performance. If the distributional difference
is large, the model should be fine-tuned or retrained with the

Authorized licensed use limited to: QSIO. Downloaded on August 11,2021 at 16:03:52 UTC from IEEE Xplore.  Restrictions apply. 



2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3061464, IEEE

Transactions on Cognitive Communications and Networking

9

12 13 14 15 16 17 18
SNR(dB)

0.90

0.92

0.94

0.96

0.98

1.00

M
S-
SS

IM

(a) MS-SSIM on Kodak

Joint E2E
Separate E2E
BPG
JPEG2000

12 13 14 15 16 17 18
SNR(dB)

0.90

0.92

0.94

0.96

0.98

1.00

M
S-

SS
IM

(b) MS-SSIM on ImageNetVal

Joint E2E
Separate E2E
BPG
JPEG2000

12 13 14 15 16 17 18
SNR(dB)

0.90

0.92

0.94

0.96

0.98

1.00

M
S-
SS
IM

(c) MS-SSIM on B100

Joint E2E
Separate E2E
BPG
JPEG2000

Fig. 7: Performance of our approach on Kodak, ImageNetVal, and B100.

new data. But we still wish the system to be robust for the
small variance in the channels. The robustness of the proposed
end-to-end system is tested in both types of channels, where
there exists a discrepancy in the channel distributions used in
the training and test stages.

The robustness to the PDP is tested in the frequency-selective
channels. The equal average power is used during the training,
i.e. pi = 1, while the test channels are generated with new
PDPs obtained by randomly adding or subtracting ∆ in pi
used in the training. The BER performance of the end-to-end
model (labeled as ‘mismatch E2E’) against ∆ is shown in Fig.
8(a) with the SNR fixed at 15 dB. Although the end-to-end
approach is trained with a different PDP, it shows robustness to
the discrepancy in PDP. The performance stays nearly constant
for ∆ < 0.5.

The robustness to the channel correlation coefficient ρ is
tested in the MIMO channels. The model is trained with ρ =
0.5 and tested with ρ ranging from 0 to 0.9. As shown in
Fig. 8(b), the end-to-end method also shows robustness to the
discrepancy in ρ. The model trained with ρ = 0.5 achieves
similar performance with models trained and tested in the
corresponding correlation coefficient.

E. Complexity Analysis

We compare the computation complexity of the proposed
system and the baselines. The direct comparison between the
end-to-end approach and the traditional communication system
is difficult since the complexity is affected by many parameters
of the particular architecture used. In Table I, the complexity
of the proposed approach and each component in the baseline
system is listed. The computational complexity of the CNN is
O(∑l=1:L Nk2l Fl−1Fl), where the N is the block size, L is
the number of the layers, kl is the kernel size of the lth layer,
and Fl−1 and Fl are the number of filters in the l − 1th layer
and the lth layer, respectively.

For the OFDM system, the computational complexity of the
fast Fourier transform (FFT) is O(N logN) and the channel
estimation complexity is O(N3

p ), where the Np is the number
of the pilot used. The complexity of Viterbi decoding is
O(N2k), where k is the length of the memory. In general,
the computation complexity of the end-to-end system grows
linearly with the block length N but when the number of layer
L and the number of feature map Fl are large, the computation
complexity becomes large. When the multiple antennas are
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Fig. 8: Robustness on frequency-selective channel and MIMO
channel. (a) Robustness to PDP, where a distortion ∆ is
considered. (b) Robustness to ρ for the model trained with
ρ = 0.5.

employed in the transmitter and the receiver, the feature maps
of the output of the transmitter and the input of the receiver will
be increased correspondingly. The computational complexity
will grow linearly with the number of the antenna if the number
of feature maps in the other layers remains constant. It will
grow quadratically with the number. In the baseline system,
the detection complexity is O(N3

r ) for both ZF and MMSE
detection, where Nr is the number of receiver antenna.

To complete our discussion of computational complexity, we
have measured the average run time of the proposed algorithm
and the baseline approach on a Windows server with an Intel
i7 CPU and an Nvidia 1080Ti GPU. We choose MMSE and
OFDM as baseline used in frequency-selective channels and
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TABLE I: Model Complexity

Model Number of Flops Operation
FFT O(N log(N))

MIMO ZF O(N3
rN)

MIMO MMSE O(N3
rN)

MMSE Channel Estimation O(N3
p )

Convolutional Code O(N2k)
End-to-End O(

∑
l=1:L Nk2

l
Fl−1Fl)

MMSE detection used in MIMO channels. The average running
time is about 3.5 × 10−2 and 2.2 × 10−2 seconds for each
block under MIMO and frequency-selective channel system,
respectively, while the average running time for the end-to-end
system is about 2.5× 10−3 seconds.

VI. CONCLUSION

In this paper, we have proposed a pilot-free deep auto-
encoder based end-to-end communication system for wireless
channels. We show that the end-to-end communication system
can be modeled as a deep auto-encoder system with a stochastic
convolutional layer since linear channels can be model as a
convolutional operation. We propose a training procedure with
mini-batches of input samples and of the channels. In addition,
an additional channel extraction model is employed in the
receiver to make sure the channel information is extracted
globally. For the frequency-selective channels and the flat-
fading MIMO channels, the end-to-end models are effectively
trained without pilot information and show better performance
compared with the traditional baselines. Our proposed approach
can successfully address the impact of unknown channels,
which provides a new solution to build the end-to-end system
for the wireless communications. In the future, there are many
directions to be explored, including how to develop an end-
to-end system that can be adaptive to different channels and
SNRs.

APPENDIX A
DEEP STRUCTURES

Toy Example Model Structure: There are two 1D con-
volutional layers in the transmitter DNN with kernel size 1.
The filter numbers are 256 and 2. Relu activation function is
used in the first layer and a power normalization layer is used
in the second layer for normalizing the power of the output.
The receiver DNN consists of two fully connected layers. The
number of neurons are 256 and 2×K, respectively, where K
is the block size. Relu activation function is used in the first
layer and Sigmoid function is used in the second layer to map
the output to the interval [0, 1].

Frequency-selective and MIMO End-to-end Communi-

cation Model Structures: The structures of the DNNs used
in the transmitter and the receiver are shown in Table II.
There are four 1D convolutional layers in the transmitter and
six convolutional layers in the receiver. The output of the
transmitter is normalized to fit the power constraints. The
differences between the models used in the frequency-selective
channels and in the MIMO channels are the numbers of filters
in the last convolutional layer of the transmitter DNN and

TABLE II: Model Parameters of Pilot-free End-to-End System

Type of layer Parameters Output size
(Frequency-
selective)

Output size
(MIMO)

Transmitter

Input Input layer 128× 1 64× 4
Conv+Relu kernel = 5, filter =

256
128× 256 64× 256

Conv+Relu kernel = 3, filter =
128

128× 128 64× 128

Conv+Relu kernel = 3, filter =
64

128× 64 64× 64

Conv kernel = 3, filter =
2Nt

128× 2 64× 8

Normalization Power normaliza-
tion

128× 2 64× 8

Wireless Channel

Conv kernel = channel
memory, filter =
2Nr

135× 2 64× 8

Gaussian
Noise

NA 135× 2 64× 8

Receiver

Conv+Relu kernel = 5, filter =
256

135× 256 64× 256

Conv+Relu kernel = 5, filter =
128

135× 128 64× 128

Conv+Relu kernel = 5, filter =
128

135× 128 64× 128

Conv+Relu kernel = 5, filter =
128

135× 128 64× 128

Conv+Relu kernel = 5, filter =
64

135× 64 64× 64

Conv+Relu kernel = 5, filter =
64

135× 64 64× 64

Conv+Relu kernel = 5, filter =
64

135× 64 64× 64

Conv+Sigmoid kernel = 3, filter =
Nt

128× 1 64× 4

Channel Feature Extractor

Conv+Relu kernel = 5, filter =
256

135× 256 64× 256

Conv+Relu kernel = 3, filter =
128

135× 128 64× 128

Conv+Relu kernel = 3, filter =
64

135× 64 64× 64

Conv kernel = 3, filter =
2

135× 2 64× 2

FC +Relu 100 100 100
FC 40 40 40

receiver DNN, which change with the number of transmitter
antennas Nt.

End-to-End Wireless Image Transmission Model Struc-

ture: The structure of the image transmission end-to-end sys-
tem requires additional 2D convolutional and deconvolutional
layers to compress and recover the image, respectively. The
structure follows the architecture in [45] and is shown in
Table III. The output of the 2D convolutional layers is of size
R
8 × C

8 × 32, where R and C represent the height and width
of the input image, respectively. Then the features of every
four positions are grouped as a block and transmitted with a
bitstream end-to-end system. Therefore, there are J

256 blocks in
all. At the receiver, the output of bitstream end-to-end system
of all blocks will form the feature map of size R

8 × C
8 × 32,

which is considered as the input of the 2D deconvolutional
layers to recover the original image.
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Fig. 9: Examples of recovered data
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TABLE III: 2D Convolutional and Deconvolutional Layers
used in Wireless Image End-to-End System

Type of layer Parameters Output size
Transmitter

Input Input layer R× C × 3

Conv+Relu kernel = 5×5, stride = 2, filter
= 64

R
2
×

C
2
×64

Conv+Relu kernel =5× 5, stride = 2, filter
= 128

R
4
×

C
4
×128

15× Res Block
kernel =3× 3, stride = 1, filter
= 128

R
4
×

C
4
×128

kernel =3× 3, stride = 1, filter
= 128

R
4
×

C
4
×128

skip connection R
4
×

C
4
×128

Conv kernel =5× 5, stride = 2, filter
= 32

R
8
×

C
8
×32

Receiver

Deconv+Relu kernel = 3×3, stride = 2, filter
= 128

R
4
×

C
4
×128

15× Res Block
kernel =3× 3, stride = 1, filter
= 128

R
4
×

C
4
×128

kernel =3× 3, stride = 1, filter
= 128

R
4
×

C
4
×128

skip connection R
4
×

C
4
×128

Deconv+Relu kernel = 5×5, stride = 2, filter
= 64

R
2
×

C
2
×64

Deconv kernel =5× 5, stride = 2, filter
= 3

R× C × 3

APPENDIX B
IMAGE COMPRESSION BASELINES

Conventional Image Compression Baselines: We use
the Kakadu implementation2 for JPEG2000. BPG3 is based
on HEVC, the state-of-the-art in video compression, and
outperforms JPEG2000. We use BPG in the nondefault 4:4:4
chroma format.

CNN based Image Compression: The deep compression
baseline follows [45]. The architecture consists of an encoder,
a quantizer, and a decoder, where the encoder and the quantizer
are used at the transmitter while the decoder is used at
the receiver. The encoder E maps an input image into an
embedding vector z = E(s). The quantizer Q discrete the
coordinates of z, obtaining ẑ with ẑ = Q(z), which is then
encoded into a bitstream. With the decoder D, the reconstructed
image ŝ = D(ẑ) can be obtained from the quantized vector ẑ.

The training objective is to make the representation z

compact while the reconstruction error d(·, ·), measured by
MSE or MS-SSIM, small. The E and D are modeled with 2D
CNNs and the loss function is expressed as,

L = d(s, ŝ) + βH(z), (9)

where H(z) denotes the cost of encoding z to bits, i.e.,

the entropy of z and β is the trade-off weight of the two
components.

APPENDIX C
EXAMPLES OF RECOVERED IMAGES

In this section, we provide several examples of recovered
images of different approaches, shown in Fig. 9, which are

2http://kakadusoftware.com/
3https://bellard.org/bpg/

obtained when SNR is set as 12dB.
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