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Abstract— Autonomous robots that are capable of operating
safely in the presence of imperfect model knowledge or external
disturbances are vital in safety-critical applications. In this
paper, we present a planner-agnostic framework to design and
certify safe tubes around desired trajectories that the robot is
always guaranteed to remain inside. By leveraging recent results
in contraction analysis and £;-adaptive control we synthesize
an architecture that induces safe tubes for nonlinear systems
with state and time-varying uncertainties. We demonstrate with
a few illustrative examples' how contraction theory-based £;-
adaptive control can be used in conjunction with traditional
motion planning algorithms to obtain provably safe trajectories.

Index Terms—feedback motion planning, robust trajectory
tracking, £,-adaptive control, contraction theory, control con-
traction metrics, robust adaptive control, nonlinear reference
S.

I. INTRODUCTION

Motion planning algorithms generate optimal open-loop
trajectories for robots to follow; however, any uncertainty
in the system can potentially drive the robot far away from
the desired path. For instance, quadrotors experience blade-
flapping and induced drag forces that are dependent on the
velocity, ground effects that are dependent on the altitude,
and external wind effects that are often unaccounted for by
the motion planner, [2]. Accurate modeling of these uncer-
tainty effects on system dynamics can be very expensive and
time-consuming. A widely accepted approach to account for
uncertainty in motion planning is through feedback [3, Chap-
ter 8]. In practice, ancillary tracking controllers or model
predictive control (MPC) schemes are employed to alleviate
this problem. However, the presence of the uncertainties is
not explicitly considered in the control design process, and
instead the performance is achieved with hand-tuned con-
troller parameters and experimental validation. Without valid
safety certificates, the uncertainty might drive the system
unstable and far enough away from the desired trajectory,
resulting in collisions with obstacles, Fig. 1a.

Robust trajectory tracking controllers using classical Lya-
punov stability theory have been designed for helicopters
[4], hovercraft [S5], marine vehicles [6], and several other
autonomous robots, which exhibit nonlinear behavior. These
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Fig. 1. Although the planned path is collision free (purple), the robot’s
actual trajectory (dashed-blue) might lead to a collision with the obstacles
(gray) in the environment due to model discrepancies or external distur-
bances. (b) A feedback policy ensures that the robot stays inside of the
(orange) tube which is too wide to pass between the obstacles without
colliding (c) The safe feedback controller proposed in this paper guarantees
that the robot’s trajectory never escapes the tube, which itself is also
collision-free.

approaches rely on backstepping techniques, sliding-mode
control, passivity-based control, or other robust nonlinear
control design tools [7, Chapter 14]. However, the classical
methods do not provide a ‘one size fits all’ procedure for the
constructive design of tracking controllers for a large class
of nonlinear systems. Unless the problem has a very specific
structure that can be exploited, a control Lyapunov function
(CLF) has to be found which can be prohibitively difficult for
general nonlinear systems because the feasibility conditions
do not appear as linear matrix inequalities (LMI), unlike in
case of linear systems.

Advances in computational resources and optimization
toolboxes available to autonomous robots have led to active
developments in the field of robust MPC. The two large
classes of methods of interest are min-max MPC [8], [9],
[10] and tube-based MPC [11], [12], [13], [14], [15]. Min-
max MPC approaches consider the worst-case disturbance
that can affect the system making them overly conservative.
If the uncertainty is too large or the robot is planning over
a long horizon, a min-max MPC based approach may even
render the optimization infeasible. Tube-based MPC methods
address these issues by employing an ancillary controller to
attenuate disturbances and ensure that the robot stays inside
of a ‘tube’ around the desired trajectory. However, with the
exception of [15], these methods assume the existence of
a stabilizing ancillary controller and its region of attraction
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along the desired trajectory. Moreover, the resulting tubes are
of fixed width, which may be overly conservative depending
on the operating conditions (see Fig. 1b). This issue is partly
addressed for feedback linearizable systems in [15] by using
sliding-mode boundary layer control to construct tubes of
any desired size during the MPC optimization procedure.
Furthermore, unlike classical methods, the MPC-based ap-
proaches while applicable to larger class of systems incur a
heavy computational load and are not always amenable to
real-time applications.

Contraction theory-based approaches [16], [17] bridge the
gap between classical and optimization-based methods, and
provide a constructive control design procedure for nonlinear
systems. In [18], the authors introduce contraction analysis
as a tool for studying stability of nonlinear systems using
differential geometry. In particular, the authors show that the
‘contracting’ or convergent nature of solutions to nonlinear
systems can be derived from the differential dynamics of
the system. Since the differential dynamics for nonlinear
systems are of linear-time varying (LTV) form, all the results
from linear systems theory can be leveraged for nonlinear
systems through the contraction analysis framework. In [16],
constructive control design techniques from linear systems
theory can be used to find a control contraction metric
(CCM), which is analogous to CLFs in the differential
framework. This is significantly easier than directly finding
the CLFs for nonlinear systems, because the feasibility
conditions for CCMs are represented as LMIs. In [19], a
design procedure for synthesizing CCM-based controllers
is given, which induces fixed-width tubes in the presence
of bounded external disturbances, excluding modeling un-
certainties. However, as discussed before, fixed-width tubes
might result in infeasibility of the problem and result in
more work for the planner to find a more conservative path
that produces feasible tubes. More recently, in [20] a model
reference control architecture in conjunction with CCM-
based feedback is proposed for handling uncertainties in the
system.

In this paper, we present an approach for safe feedback
motion planning for control-affine nonlinear systems that
relies on contraction theory-based solution for exponential
stabilizability around trajectories and £;-adaptive control for
handling uncertainties and providing guarantees for transient
performance and robustness. In £; control architecture, es-
timation is decoupled from control, thereby allowing for ar-
bitrarily fast adaptation subject only to hardware limitations,
[21]. The L£; control has been successfully implemented
on NASA’s AirStar 5.5% subscale generic transport aircraft
model [22], Calspan’s Learjet [23], and unmmaned aerial
vehicles [24], [25]. In [26], the authors presented the analysis
for the £-adaptive control architecture with nonlinear time-
varying reference systems. However, the stabilizability of the
nominal nonlinear model and associated safety certificates
were simply assumed. In this paper, we present a constructive
design of feedback strategy for nonlinear systems using
CCMs and L;-adaptive control that provides strong guar-
antees of transient performance and robustness for a large

class of control-affine nonlinear systems. Furthermore, we
show how this control architecture induces tubes that can be
flexibly changed to ensure safety based on the uncertainty in
the system and the environment. In particular, this flexibility
is provided by the architecture of the £;-adaptive control by
decoupling the control loop from the estimation loop [21].
In this way, the width of the certifiable tubes can be adjusted
allowing the safe operation of a robot in tight confines.
The manuscript is organized as follows. The problem
statement and the assumptions are provided in Section II.
The proposed controller in presented in Section III and the
stability analysis of the closed-loop system is provided in
Section IV. Due to space limitations the description of the
notations, preliminaries, simulation examples, and proofs
have been moved to the extended version of this paper [1].

II. PROBLEM STATEMENT

We consider systems for which the evolution of dynamics

can be represented as

&(t) =F(x(t), u(t))

=f(x(t)) + B(z(t))(u(t) + h(t, (1)),
with initial condition z(0) = =z9, where z(t) € R" is
the system state and u(t) € R™ is the control input. The
functions f(z) € R™ and B(z) € R™*™ are known, and

h(t,x) € R™ represents the uncertainties. The nominal
dynamics (h = 0) are therefore represented as

& (t) =F ((t), u(t))
=f(x(t)) + B(z(t))u(t),

Consider a desired control trajectory u*(t) € R™ and the
induced desired state trajectory x*(t) € R™ from any planner
based on nominal dynamics

it (t) = F(a*(t), u*(t)),

(1a)
(1b)

(2a)

x(0) = . (2b)

x*(0) = xj. (3)

Together, (z*(t),u*(t)) is referred to as the desired state-
input trajectory pair. The planner ensures that the desired
state-trajectory «*(¢) remains in a compact safe set X C R",
for all ¢ > 0.

The goal is to design a control input u(t) so that the state
z(t) of the uncertain system in (1) remains ‘close’ to the
desired trajectory z*(¢) while also ensuring z(¢) € X, for all
t > 0. In order to rigorously define the notion of ‘closeness’,
we need the following definition:

Definition 2.1: Given a positive scalar p and the desired
state trajectory z*(t), Q(p,z*(t)) denotes the p-norm ball
around z*(t), i.e.

Qp,a™(t)) ={y eR" | ly—2"@O <p}. &

Clearly Q(p,z*(t)) induces a tube centered around z*(t),
where the tube is given by

O(p) == Qp, 2" (1)), 5)
t>0

with p > 0 as the radius.
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The problem under consideration can now be stated as
follows: given the desired trajectory z*(¢) € X and a positive
scalar p, design a control input u(t) such that the state of
the uncertain system (1) satisfies:

x(t) € Qp, x*

Note the condition that 2(p, z*(t)) C X is dependent on the
desired trajectory x*(t) (given by the planner) and the tube
width p (chosen by the user). To ensure that this control-
independent condition is satisfied, we place the following
assumption.

Assumption 2.1: Given the positive scalar p, the desired
state trajectory satisfies x*(t) € X,, for all ¢ > 0, where

B(p) :=={y eR" | lyll < p},  (6)

and the desired control input u*(¢) is bounded for all ¢ > 0.
Remark 2.1: The implication of Assumption 2.1 is that if
the state trajectory satisfies x(t) —2*(t) € B(p) and z*(¢) €
X,, for all £ > 0, then the definition of the Pontryagin set
difference [27, Chapter 3] implies that x(t) € Q(p, z*(t)) C
X, for all t > 0.
Next, we place assumptions on the boundedness and con-
tinuity properties of the system functions and uncertainties.
Assumption 2.2: The functions f(x) € R", B(z) €
R™*™ and h(t,z) € R™ are continuous, bounded, and
Lipschitz in z, uniformly in ¢, for all x € X and t > 0.
Moreover, B(z) has full column rank for all x € X.
Assumption 2.3: The derivatives gf( ), %—f(m), %(t,x),
and ah 7 (t, ) are bounded for all z € & and ¢ > 0.
leen any p > 0, based on Assumptions 2.1 to 2.3, we
have that for all 2 € O(p) and t > 0 the following hold

() C X, Vt>o.

X, =X ©B(p),

N 0
WHSAmﬂﬁAﬂ‘;MSAm 72
X
".||oB ob;
”B§A37§:HS B., §: <A, (7b)
i=1 j=1
0BT
T
18| < &g z =2 70
oh Ooh
< — | < <
|R]| < A, ’8xH < Ap,, ‘81& H < Ap,, (7d)

where the function arguments are omitted for brevity,
b; denotes the j'* column of B(z), Bf(z) =
(BT(l‘)B(J}))_l BT(x) denotes the Moore-Penrose
inverse, which is guaranteed to exist by Assumption 2.2.

Contraction theory allows to synthesize feedback laws so
that, in the absence of uncertainties, the state of the nominal
dynamics in (2) tracks a feasible desired trajectory z*(t). A
more detailed introduction to contraction theory is available
in [1, Sec. 3]. We place the following assumption on the
nominal dynamics.

Assumption 2.4: The nominal dynamics in Eq. (2) admit a
control contraction metric M (x) for all x € X’ with positive
scalars \, o, and @, as in [1, Definition 3.1].

III. CONTRACTION THEORY BASED L1-ADAPTIVE
CONTROL

In this section we introduce the structure of the proposed
controller for the uncertain nonlinear system in Eq. (1).
Consider the following feedback decomposition

u(t) = ue(t) + ua(t), (8)

where u. : R>9g — R™ is the contraction theory based
control designed to guarantee universal exponential stability
(UES) of the nominal dynamics in Eq. (2), and u, : R>9 —
R™ is the £, control signal. The overall architecture of the
proposed feedback is illustrated in Fig. 2. We refer to the
uncertain system in Eq. (1) with the feedback law Eq. (8)
as the £ closed-loop system. Before we proceed with the
description of the individual components of the controller,
we introduce the following list of constants that are of
importance for the results presented in this paper:

oM

Ap, = sup (x )
z€0(p) ;1 axl
Ay, = 2Ap + #, (10)
1 AH/T(@PWML%IM>
As, == - sup < , an
’ 22e0(p) \ @oo(BT(z)L71(2))
Air = Af-‘r-AB(H]Im S)HE Ah-i-Au*-f—pAg )
(12)
A; = Af—‘rAB(QAh—‘rAu* —l—pAgu), (13)
3 ] 2
A, = 4)\(P)Ah(Aht + Athz) 4Ah ’ (14)
AP)AQ) A(P)
Aqi= (Bpg8s + (IsC) g, + 1Am) A ) As,
(15)
Ag = LB‘;A@ (16)
ApAur A
Ay =a (ABA;YS + % + ABmAj?) . an

A7 = \/E<Af + (Ah + Ayr + pAéu)Abw+ (18)
8 (0%

(o2 ))

where F'(z) is defined as

F(x):=—-0;W(x)+2 [gi(m‘)W(J;)]

and W(x) = M(z)~!
L(z)"L(z) = W(x).

+ 2AW (),
s

is referred to as the dual metric, while

A. Contraction theory based control: u.(t)

We propose the following law
ue(t) = u(t) + ke(z” (1), 2(t)),

where, for the feedback term, we use the law constructed
in [16, Sec. IV.A], which is the solution to the following

19)

1580

Authorized licensed use limited to: University of lllinois. Downloaded on August 24,2021 at 02:07:49 UTC from IEEE Xplore. Restrictions apply.



!

CCM PFeedback

Uncertain System

C(s) State Predictor ——
' L
Adaptation Law

L1-adaptive controller

Contraction theory
based controller

2

Fig. 2. Architecture of CCM-based L1-adaptive control

quadratic program:

ko(z* (), z(t)) = aigeﬁgn I1K[|%, (20a)
st 29, (L) M (2(t))dr(t) — 27, (0,8) M (2*(1))2* (1)

< oNE(z (1), 2 (1)), (20b)

with M (x) being the CCM, 7(s,t), s € [0,1], being the
minimizing geodesic with 7(1,¢t) = x(t) and 7(0,t) =
x*(t), and £(-,-) being the Riemannian energy computed
along the geodesic. For more details about geodesics and
Riemannian energy with regard to contraction theory see [1,
Sec. 3]. Additionally, 2y (t) = F(z(t), u*(t) + k).

Remark 3.1: As explained by the authors in [19, Sec. 5.1],
the solution to the quadratic program in (20) can be obtained
analytically given the minimizing geodesic 7(-,t). Alter-
natively, one may use the differential controller proposed
in [16], albeit at the expense of a larger control effort.

B. Li-adaptive control: uq(t)

The computation of the signal wu,(¢) depends on three
components illustrated in Fig. 2; namely, the state-predictor,
the adaptation law, and a low-pass filter. Similar to [10], we
define the state-predictor as

B(t) = Fa(t) uclt) + ua(t) + 6(1) + Ani(t),

with #(0) = =z, and where Z(t) € R™ is the state of the
predictor, Z(t) = Z(t) — x(t) is the state prediction error,
and A,, € R™*"™ is an arbitrary Hurwitz matrix.

The uncertainty estimate 6(t) in Eq. (21) is governed by
the following adaptation law

5(t) = T Projy, (6(t), ~B(z)  PE(1)),

2

5(0) € H, (22)

where I' > 0 is the adaptation rate, H = {y € R™ | ||y|| <
Ap} is the set in which the uncertainty estimate is restricted
to remain in. Furthermore, S™ > P > 0 is the solution to the
Lyapunov equation A P+PA,,, = —Q for some S" > Q -
0. Moreover, Projy, (-, -) is the projection operator standard
in adaptive control literature [28], [29].

Finally, the control law w,(t) is defined as the following
Laplace transform

(23)

where C(s) is a low-pass filter with bandwidth w and
satisfies C'(0) = I,,. Note that there is an abuse of notation
when we denote both the geodesic interval parameter and
the Laplace variable by s. The delineation between the two
is clear from the context.

C. Filter bandwidth and adaptation rate

The design of the L;-adaptive controller involves the
design of a strictly proper and stable low-pass filter C(s)
with C'(0) = I,,. Let the bandwidth of this filter be w.
In the manuscript, for the sake of simplicity, we choose
C(s) = ;%5 Lm- As we will see in Section IV, the bandwidth
w of the low-pass filter C(s) in Eq. (23) and the adaptation
rate ' in Eq. (22) are tunable parameters. However, these
entities need to satisfy a few conditions mentioned below.
The reasoning behind these conditions will be made clear in
the subsequent section.

Suppose that Assumption 2.4 holds. Then, for arbitrarily
chosen positive scalars € and p,, define

a
pr = \/&Hxa — ol +¢

p = pr~+ Pa.

(24)
(25)

Furthermore, suppose that Assumptions 2.1 to 2.3 hold.
Define

_ « Ay, Ap, + Ap, Az,
Gw) _QPABQ (|2)\ — w] 2 \w ) , (263)
_ Ay, Aht + Ahz Air
Ga(w) =alv, <2)\ — W 22w > , (260)
ANAB + Ay
Ga(w) =0, (icdw) : (26¢)

where A; , Ay,, and A‘i,, are known positive scalars
defined in Egs. (10), (12) and (17) respectively. Then, the
bandwidth w of the low-pass filter C'(s) and the adaptation
rate need to verify the following conditions

5(.%‘6, xo)

PP+ Glw), (272)
a >((w) + (3(w), (27b)
VT > Ag (27¢)

pa(a = Ga(w) = (3(w))’
where Ay is another known positive scalar defined in
Eq. (16).

Remark 3.2: Based on the definition of p, in Eq. (25) and
the bounds on the Riemannian energy &(x*(¢), z(t)) as de-
scribed in [1, Sec. 3], the inequality p? > &(z§, z0)/a holds.
Furthermore, since (;(w), (2(w), and (5(w), all converge to
zero as w increases, the bandwidth conditions in (27a)-(27b)
can always be satisfied by choosing a large enough w.

IV. PERFORMANCE ANALYSIS

In this section we analyze the performance of the uncertain
system in Eq. (1) with the £; control feedback u(¢) defined
in Eq. (8). As in [10], to derive the bounds between the
desired trajectory x*(t) and the state x(¢) of the uncertain
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Qp, 2*(t))

Fig. 3.

system, we first introduce the following intermediate system,
which we refer to as the reference system:

& (t) =F (2. (1), —nr (1))
=f(@:(t)) + B(@, (1)) (te,r (t) — nr(t) + h(t, 2, (1)),

(28)
Ue,r (t) =u”(t) + ke(2" (1), 2 (1)), (28b)
ne(8) =C(s)L[h(t, z,(t))], x-(0) =z, (28¢)

where k. is defined in Eq. (20) using z, in place of x. The
main feature of the reference system is that it defines the
best achievable performance, given the perfect knowledge
of uncertainty, i.e. it reflects that the cancellation of the
uncertainty h(t, z,-(t)) can happen only within the bandwidth
of the low-pass filter.

The analysis consists of two parts: we first derive bounds
between the desired trajectory and the reference system
|[z*(t) — x.(t)]|]. Then we derive the bounds between
the states of the reference system and the actual system
|z (t) — x(t)]]. Recall that we refer to the actual system as
the £, closed loop system, which is given by Eq. (1) with
the control law in Eq. (8). Finally, the triangle inequality
produces the desired bound on ||z*(t) — z(t)]|. In this way,
the reference system behaves as an ‘anchor system’ for the
analysis. These bounds are illustrated in Fig. 3. Furthermore,
we provide the justification of treating the bandwidth w of
C(s) and the adaptation rate T' as tuning-knobs. Indeed,
the upcoming analysis will show that we can ensure that
x(t) € Q(p,x*(t)) (see Eq. (4)) for all ¢t > 0.

We begin with the bound between the reference system
state and desired state trajectory. This corresponds to the
green tube in Fig. 3. The proofs for all the claims in this
section are provided in [1, Appendix B].

Lemma 4.1: Let all the assumptions hold and let p, be
as defined in Eq. (25). If the conditions in (27a)-(27b) hold,
then for any desired state trajectory x*(t) the state x,(t) of
the reference system in (28) satisfies

oc

@“ <l =z

e < o = gl

The performance bounds/tubes for the analysis of the CCM based L£1-adaptive controller.

Next, we compute the bounds between the reference
system in Eq. (28) and the £; closed-loop system (Eq. (1)
with Eq. (8)).

Lemma 4.2: Suppose that the stated assumptions and the
conditions in Eq. (27) hold. Additionally, assume that the
trajectory of the £y closed-loop system satisfies z(t) €
Q(p,z*(t)), for all ¢ € [0,7], for some 7 > 0, with
Q(p,x*(t)) and p defined in Eq. (4) and Eq. (25), respec-

tively. Then,
[0,7]
ﬁoc

e, — 227 < pa,

where p, is given in Eq. (25).

We now use Lemmas 4.1-4.2 to state the main result of
the paper.

Theorem 4.1: Suppose that the stated assumptions and
conditions in Eq. (27) hold. Consider a desired state tra-
jectory z*(t) as in (3) and the state of the £; closed-loop
system defined via (1) and (8). Then we have

x(t) € Qp,x*(t)), Vt>0, (32)
and the uniform ultimate bound, given by
z(t) € Q0(w, T),x2*(t)) C Qp,z*(t)), Vt>T >0.
(33)
Here, the ultimate bound is defined as
3(w, T) := p(w, T) + pa, (34)

where the positive scalars p and p, are defined in (25), and
w(w, T) is defined in Lemma 4.1.

A few critical comments are in order for the performance
analysis. Let us first discuss the implication of the uniform
bound p in Eq. (32). As per the definition in Eq. (25),
p = pr + pg. It is evident from the definition that p is
lower bounded by the initial condition difference ||zf — x|
and the positive scalars o and @ which are associated with
the CCM M (z) of the nominal dynamics. Furthermore,
as per the proof of Lemma 4.2, since p, o 1/v/T, the

z.(t) € Qp,, z* (1)), V>0, (29) adaptation rate I' can be increased to the maximum value
allowable by the computation hardware to guarantee the
and is uniformly ultimately bounded as smallest p,, and thus, the smallest uniform bound p. How-
2o (t) € Qu(w,T),2*(t)) C Qp,,a*(t), Vt>T >0, ©Ver the fact remains that the uniform bound p guaranteed
(30) by the £;-controller for the tracking remains lower bounded
where the ultimate bound is defined as by ||z§ — xo||. The only way this bound can be further
reduced is if the underlying planner which provides the de-
(w, T) = \/eQATE(IS»iEO) 4 Gw). 31) sired state-input pair (z*(t), v*(t)) can minimize ||z — xo||.
a Theorem 4.1 also provides the (uniform) ultimate bound
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via 6(w,T) defined in Eq. (34). As already mentioned,
pa o 1/V/T. Furthermore, from the definition of ¢;(w)
in Eq. (26a), it is evident that by choosing a large enough
w, there will always exist a known 0 < 7" < oo such that
d(w,t) < p, for all t > T, for any chosen 5 > 0. Therefore,
we can always arbitrarily shrink the tube O(§) by choosing
appropriate bandwidth w and rate of adaptation I'. This fea-
ture of the CCM-based L;-controller is very advantageous,
since, for example, this capability will allow the safe navi-
gation of a robot through tight and cluttered environments.
This improved performance, however, comes at the cost of
reduced robustness that should be taken into consideration.
The rate of adaptation I is obviously limited by the available
computational hardware. More importantly, the role of the
low-pass filter C(s) in the £;-control architecture (Fig. 2) is
to decouple the control loop from the estimation loop [21].
Thus, increasing the bandwidth w of C(s) in order to get a
tighter tube will lead to the wu,(t) component of the £;-input
to behave as a high-gain signal, thus possibly sacrificing
desired robustness levels [30]. Therefore, this trade-off must
always be taken into account during the planning phase.
Finally, it is important to note the semiglobal nature of the
presented results, that for any arbitrarily large (but finite)
tube width p > 0 and desired trajectory z*(¢) in X, that the
tube O(p) can be made invariant by appropriately selecting
the adaptation rate and filter bandwidth.

V. CONCLUSIONS

We present a control methodology to enable safe feedback
motion planning that relies on contraction theory and £;-
adaptive control. The proposed controller enables the apriori
computation of uniform and ultimate-bounds which induce
‘tubes’ that can be taken into account by any planner of
choice. In this way, the safety of the system is always
guaranteed in the presence of uncertainties. Furthermore, by
using the control law’s filter bandwidth and adaptation rate
as tuning knobs, the width of the tubes can be adjusted ar-
bitrarily as a trade-off between performance and robustness.
The extended version of the paper with the preliminaries,
simulation examples, and proofs can be found in [1].
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