
1.  Introduction
China faces the concurrent challenges of mitigating anthropogenic climate change and improving air qual-
ity. China contributes ∼30% of global CO2 emissions in 2014 (Boden et al., 2017) and ambient pollution 

Abstract  Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) 
reduction co-benefits. As such, China has aggressively incentivized EV adoption, however much remains 
unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power 
generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts 
of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that 
assess the potential co-benefits of EVs during an extreme winter air quality event. We find that regardless 
of power generation source, heavy-duty vehicle (HDV) electrification consistently improves air quality in 
terms of NO2 and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant 
exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). 
However, HDV electrification does not reduce GHG emissions without enhanced emission-free electricity 
generation. In contrast, due to differing emission profiles, light-duty vehicle (LDV) electrification in China 
consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health 
improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and 
CO2 reductions for LDV electrification are nearly double those of HDV electrification in present-day 
(155M vs. 87M US$), but are within ∼25% when enhanced emission-free generation is used to power 
them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and 
that continued emission reductions in the power generation sector will have the greatest human health 
and economic benefits.

Plain Language Summary  Electric vehicles (EVs) offer potential air quality and climate 
change co-benefits, but due to varying power generation and vehicle types, and because air pollution 
chemistry is nonlinear, it is not clear to what extent EVs could provide mediation, especially during 
extreme air pollution episodes. China is both rapidly adopting EVs and frequently experiences poor air 
quality. We use an air quality model that simulates the complex interplay between weather and air quality 
to examine the potential co-benefits of EVs in China during a historical pollution episode. We simulate 
both light- and heavy-duty vehicle adoption to show their individual benefits, and demonstrate the need 
for low-emission electricity generation to maximize co-benefits. Overall, we find that heavy-duty fleet 
electrification consistently improves air quality and reduces mortality, but offers little climate change 
benefits without enhanced emission-free electricity generation. Light-duty vehicles, however, offer large 
climate change benefits but few air quality improvements, highlighting the need for cross-modal adoption 
strategies.
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accounts for ∼17% of its annual deaths (Rohde et  al.,  2015). Mitigation strategies that simultaneously 
target both challenges, such as the electrification of the transportation sector, are desirable and needed 
(Haines, 2017; Patz, 2020). China's transportation sector contributes ∼9% of its total CO2 emissions (Zheng 
et al., 2018) and is responsible for 100,000+ annual air pollution related premature deaths (Anenberg et al.,).  
While electric vehicles (EVs) remove on-road CO2 and tailpipe pollutant emissions and precursors, electric-
ity demands increase emissions from fossil fuel-based electricity generating units (EGUs), which comprise 
63% of China's grid mix in 2016 (IEA, 2017).

Recent studies suggest that extreme pollution episodes will constitute a disparate share of China's future in-
creases in air quality-related mortality (Hong et al., 2019). Additionally, some have suggested the underlying 
meteorological conditions of the formation and persistence of extreme events (L. Zhang et al., 2015) have 
increased in likelihood due to anthropogenic climate change (Callahan et al., 2019; Cai et al., 2017; Zou 
et al., 2017, 2020), though others suggest the link is uncertain (Shen et al., 2018; Z. Xu et al., 2020). One such 
extreme pollution episode occurred in January 2013, when over 600M people across China were exposed 
to extremely high levels of fine particulate matter (PM2.5) during a series of pollution episodes (Sheehan 
et al., 2014). Conditions in Beijing were particularly dire: visibility was reduced to <1 km (Sun et al., 2014), 
emergency room visits increased ∼30% (Ferrreri et al., 2018), and ∼690 premature deaths occurred with 
health impacts totaling 250M+ US$ (Gao et al., 2015). These episodes—often referred to as Airpocalypse in 
popular media (Beech, 2013; Kaiman, 2013)—motivated significant pollution control efforts in the trans-
portation and energy sectors (Zhang et al., 2019), including a strong regulatory push toward “New Energy 
Vehicles” like EVs (Reuters, 2020).

A simple accounting of the displacement of on-road to EGU-based emissions can be used to quantify net CO2 
changes due to EV adoption (e.g., Huo et al., 2015; Peters et al., 2020), but pollutant emission changes are 
heterogeneous in space and time, and the efficacy of emissions to produce pollution depends on numerous 
complicating nonlinear chemical and meteorological factors—unlike spatially well-mixed and nonreactive 
CO2. Therefore, efforts to evaluate air quality impacts of EV adoption must use a chemistry-transport model 
(CTM) to capture complexities of air pollution chemistry, transport, and timing. CTM-based analyses of EV 
adoption in China are limited despite growing widespread deployment (e.g., He et al., 2018). Moreover, com-
parisons are challenging due to methodological differences, and key findings can diverge. For example, Peng 
et al. (2018) found that coal-intensive (75%) electrification of 30% of on-road vehicles does not reduce GHG 
emissions but could avoid 41k+ deaths, while Liang et al. (2019) found that 27% EV adoption could reduce 
GHG emissions and avoid 17k+ premature deaths. Both studies simulate electrification of multiple modal 
types, that is, light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs), which prevents disentangling each 
mode's co-benefits. Indeed, the impact of electrifying one mode could mask impacts from others. For example, 
Huo et al. (2015) used an emission accounting approach and found that in contrast to Peng et al. (2018), elec-
trification of only LDVs could reduce GHG emissions even under coal-intensive electrification.

To clarify benefits and tradeoffs of EV adoption in China, we focus on each mode's potential to reduce CO2 emis-
sions and mitigate extreme winter pollution events. We utilize open-source data and an emission remapping 
algorithm (Schnell et al., 2019) to estimate changes that result from different EV scenarios (Table 1). To con-
strain differing emission profile impacts of modal choice we independently assess replacement of equal elec-
tricity-demand fractions of China's HDV and LDV fleets (i.e., 40%). We use a regional chemistry-climate model 
and quantify changes in CO2 and air pollutants from a baseline simulation to each EV scenario. Public health 
impacts and costs are calculated across seven health endpoints (Gao et al., 2015) caused by acute PM2.5 and NO2 
exposure, which we compare to monetary consequences of CO2 emission changes. Further experiments inves-
tigate EGU emission rate sensitivities, potential co-benefits of renewable energy adoption, and consequences of 
coal-only power generation. EV adoption scenarios are simulated using meteorological conditions from Janu-
ary 2013 to assess the potential for air quality remediation during an extreme pollution episode.

2.  Materials and Methods
2.1.  Electric Vehicle Adoption Experiments

Each simulation is run from December 22, 2012 to January 31, 2013, with the first 10 days discarded as mod-
el spin-up. Our control simulation is referred to as BASE. Our primary electrification (HDV_2015) experi-
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ment replaces a total of 1.5M HDVs (∼40% of the fleet), with ∼33% of these HDVs placed in cities from He 
et al. (2018); hence, “EV-forward cities” (Figure 1). It is not clear when 40% HDV fleet electrification could 
be attained, though China has plans for 400K e-HDVs by 2020 (IEA, 2018) and Peng et al. (2018) simulate 
30% by 2030; in any case, our scenarios are not meant to be representative of any particular policy pathway. 
We assume an average operating efficiency of 1.3 kWh km−1, similar to the specifications of an electric bus 
or truck (e.g., https://www.nrel.gov/docs/fy16osti/65274.pdf; https://www.tesla.com/semi). The electricity 
sector emission rates reflect those from the National Bureau of Statistics (2015). To highlight the impact 
of recent EGU emission reductions, we perform an experiment (HDV_2010) using emission rates for coal-
fired EGUs set to 2010 levels (Liu et al., 2015), as well as an experiment that only uses these coal-fired EGUs 
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Scenario name Scenario description

BASE Baseline January 2013 scenario

HDV_* ∼40% of HDV fleet electrified (1.5 M vehicles)

LDV_* ∼40% of LDV fleet electrified (39.2 M vehicles)

*_COAL EVs powered by coal-fired EGUs using 2010 emission rates

*_2010 EVs powered by EGUs with 2010 emission rates

*_2015 EVs powered by EGUs with 2015 emission rates

*_REN EVs powerd by 50% renewables

*_2014 Scenario nudged to January 2014 meteorology

NO_TRA All on-road sector emissions removed from grid cells in China

NO_ENE All power sector emissions removed from grid cells in China

Abbreviations: EGU, electricity generating unit; EV, Electric vehicle; HDV, heavy-duty vehicle; LDV, light-duty vehicle.

Table 1 
Summary of Modeling Experiments

Figure 1.  Number of electric vehicles introduced at each 12 km grid cell. (a) e-HDV, (b) e-LDV. EV forward cities (see Materials and Methods) are shown in 
green. EV, Electric vehicle; HDV, heavy-duty vehicle; LDV, light-duty vehicle.

https://www.nrel.gov/docs/fy16osti/65274.pdf
https://www.tesla.com/semi
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(HDV_COAL). We also simulate a scenario (HDV_REN) in which 50% of the marginal electric demand to 
charge the EVs comes from emission-free sources (e.g., wind, water, and solar). For reference, these sources 
are projected to make by ∼40% of the grid mix by 2020 (IEA, 2017). Emission rates for all generation types 
except coal-fired EGUs remain the same as in HDV_2015 throughout other experiments.

We compare the co-benefits of e-HDV versus e-LDV adoption by using the total electricity demand from 
the HDV experiments to instead electrify a fleet of LDVs. The equivalent of each HDV* experiment is also 
performed for LDVs. For e-LDVs, we use operating efficiencies of 0.16 kWh km−1, which represents a new 
compact EV (e.g., 2019  Tesla Model 3; https://www.fueleconomy.gov/feg/evsbs.shtml); these parameters 
lead to an equivalent LDV adoption of 39.2M vehicles (coincidently, like HDV, ∼40% of the fleet; Figure 1b). 
To capture a greater uncertainty range for changes in CO2 emissions, we compare results using a battery 
efficiencies for e-LDVs of 0.12 and 0.18 kWh km−1 (Huo et al., 2015), and use the same relative scaling 
for e-HDVs (i.e., 0.975 and 1.4625 kWh km−1). Although the total electricity demand is the same between 
e-HDV and e-LDV experiments, the spatial distribution of the demand differs slightly due to differing intra- 
and inter-province fleet distributions. In general, LDVs are more concentrated in the most economically de-
veloped regions (Figure S1); that is, the national capital region of Beijing-Tianjin-Hebei (BTH), the Yangtze 
River Delta (YRD: Shanghai, Zhejiang, and Jiangsu), and the Pearl River Delta (PRD: Guangdong). In ad-
dition to January 2013, we also simulate HDV_2015 and LDV_2015 for a relatively “clean” month (January 
2014) to compare EV-impacts for an extreme episode month to a “normal” month.

2.2.  Health Impact and Monetary Value Calculations

We calculate the acute health impacts and economic losses that result from surface PM2.5 and NO2 exposure 
over the January 2013 episode following the methods of Gao et al. (2015), who apply a Poisson regression 
model (Guttikunda & Goel, 2013) to estimate the number of cases of mortality and morbidity over seven 
health endpoints, including premature mortality, respiratory and cardiovascular hospital admissions, out-
patient visits (ages 0–14 and 14+), bronchitis, and asthma (Table S1). The number of cases (∆E) is estimated 
as Equation 1:

 


E POP IR
ei C

   








  

1
1 1#grids

� (1)

where ∆POP is the population exposed to the incremental concentration ΔC in the 12 km model grid cell 
i, IR is the incidence rate of the health endpoints, and β is the concentration-response function. For NO2, 
the only health endpoint we calculate is premature mortalty and our β values come from Chen et al. (2018). 
For PM2.5, we use updated, more conservative β values from Chen et al. (2017) for all-cause mortality, but 
apply the same input data and parameters as Gao et al. (2015) in our calculations for other health endpoints: 
we use the Gridded Population of the World v4 for the year 2015 for population data (https://sedac.ciesin.
columbia.edu/data/collection/gpw-v4) and β and IRs are from a range of sources (Table S1). The β values 
represent the increase in daily mortality and morbidity cases due to a 10 µg m−3 increase in two-day average 
PM2.5 or NO2 and the IRs were converted from an annual to a daily value assuming cases are equally distrib-
uted. Like Gao et al. (2015), we also use the WHO 24-h average PM2.5 guideline value of 25 µg m−3 to obtain 
the incremental concentration ∆C; that is, we assume no health impacts are incurred below this value. For 
NO2 we use a reference value of zero. We calculate the monetary value associated with each health endpoint 
using the unit loss values from Table 2 of Gao et al. (2015), which are taken from Huang and Zhang (2013). 
We note, however, the monetary valuation depends on methodology, data source, and the exposure-re-
sponse functions used to calculate impacts (Li et al., 2018). To calculate the avoided (or added) health and 
economic impacts due to fleet electrification, we subtract the impacts of the sensitivity simulation from the 
impacts calculated for BASE.

2.3.  Air Quality Model Description

Our experiments use the two-way coupled Weather Research and Forecasting (WRF, v3.8; Skamarock 
et  al.,  2008) and Community Multi-scale Air Quality (CMAQ, v5.2; Byun et  al.,  2006) modeling system 
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(WRF-CMAQ; Wong et al., 2012). WRF is run with 30 vertical levels from the surface to 50 hPa at 12 km 
horizontal resolution extending from 17.6°S–49.6°N and 95.8°E–134.2°E (244 × 294 grid cells). The lowest 
model layer is ∼30 m thick, with the first ∼7 layers in the bottom 1 km. Initial and time-varying bound-
ary conditions are provided by the NCEP FNL Operational Model Global Tropospheric Analyses dataset 
(https://rda.ucar.edu/datasets/ds083.2/). The model is run with analysis nudging above the boundary layer 
using Four Dimensional Data Assimilation (FDDA) with nudging coefficients of 3.0 × 10−4 s−1 for tem-
perature and winds and 1.0 × 10−4 s−1 for water vapor mixing ratio. The model physics options include 
the Morrison 2-moment microphysics scheme (Morrison et al., 2009), version 2 of the Kain-Fritsch (KF2) 
cumulus cloud parameterization (Kain, 2004), the Asymmetric Convective Model version 2 (ACM2) for the 
planetary boundary layer (Pleim, 2007a, 2007b), and the Pleim-Xiu land surface model (Xiu & Pleim, 2001) 
with soil moisture nudging (Pleim & Gilliam, 2009; Pleim & Xiu, 2003) during the 10-day spin-up period. 
We use the Rapid Radiative Transfer Model for GCMs (RRTMG) for both our shortwave and longwave ra-
diation schemes, for which the two-way model has been developed to use. WRF is run with a 60 s time step 
and a 20 min radiation time step. CMAQ is run with the CB05 gas phase mechanism with version 6 of the 
aerosol module (AERO6) and aqueous/cloud chemistry. CMAQ is coupled to WRF at a frequency of 1:5 (i.e., 
CMAQ is run every 5 min). Sensitivity tests over our domain show only small differences in simulated PM2.5 
abundances for higher frequency coupling. Initial and time-varying chemical boundary conditions are from 
MOZART-4/GEOS5 (https://www.acom.ucar.edu/wrf-chem/mozart.shtml).

Anthropogenic emissions were generated with raw inputs from EDGAR version 4.3.2 (http://edgar.jrc.
ec.europa.eu/overview.php?v=432_AP, last access April 10, 2020) using the methods of Wang et al. (2014). 
Primary PM and VOCs are speciated to model species based on the SPECIATE 4.2 database (Hsu & Di-
vita, 2008). Biogenic emissions are generated using the Model of Emissions of Gases and Aerosols from 
Nature (MEGAN) version 2.10 (Guenther et al., 2006), while open burning emissions are generated based 
on the Fire Inventory from NCAR (Wiedinmyer et al., 2011). Emissions of dust and sea salt are calculated 
online. Although the EDGAR emissions represent year 2010, total Chinese emissions in 2013 are similar 
(Zheng et al., 2018). In general, transportation emissions increased and power sector emission decreased 
over the 2010–2013 time period. Onroad and power sector emissions were processed separately and merged 
after modifications for individual scenarios. The premerged processed emissions that exclude onroad and 
power sectors were anomalously high in some grid cells, which compounded PM2.5 simulation biases. To 
remedy these biases, we smoothed the 50 largest anomalous values of each emitted species in each emis-
sion layer prior to merging with the unmodified onroad and power sector emissions. Anomalous values 
were smoothed by averaging the eight neighboring grid cells. Grid cell smoothing sensitivity tests were 
performed until a near-zero mean bias over Beijing was attained.

2.4.  Model Evalution

Figure S2 compares the time series of WRF-CMAQ simulated daily averaged surface temperature, relative 
humidity, and 10  m wind speed as compared to NOAA National Centers for Environmental Prediction 
Integrated Surface Database (https://www.ncdc.noaa.gov/isd/data-access). Our comparisons are with ob-
servations sites closest to the U.S. Embassy locations that measure PM2.5. Overall, the model performs very 
well for these variables at these locations. WRF generally underestimates surface temperatures (mean bias 
[MB] = −0.4 to −1.5) but matches daily variability well—correlations (r) range from 0.85 to 0.97. Relative 
humidity performance is good over Beijing (MB = −3%, r = 0.84), though over Chengdu, WRF is biased low 
by over 20% (r = 0.66). Wind speed is also simulated well, with MBs ranging from −1.2 to 0.2 m s−1 and high 
correlations, particularly over Shanghai and Guangzhou.

Figure S3 shows the hourly and daily averaged PM2.5 time series for WRF-CMAQ as compared to surface ob-
servations from United States Embassy sites in Beijing, Shanghai, Guangzhou, and Chengdu (http://www.
stateair.net/web/historical/1/1.html). The model is biased high over three of the four locations, ranging 
from −0.7 µg m−3 (−0.4%) over Beijing to 88 µg m−3 (106%) over Guangzhou. The lowest (highest) bias gen-
erally occurs during midday (evening) when PM2.5 is at a minimum (maximum). Comparing the observed 
timeseries to the average time series of the nine grid cells around the observation site reveals extremely pro-
nounced spatial variability that the emissions or model may not appropriately delineate. For example, Bei-
jing's bias decreases from −0.7 to −69 µg m−3; Shanghai from 65 to 21 µg m−3; Guangzhou from 88 to 67 µg 
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m−3; and Chengdu from 33 to −8.4 µg m−3. Over Beijing, Shanghai, and Chengdu, WRF-CMAQ matches 
both the hourly (Pearson correlation, rhour = 0.51–0.74) and daily (rday = 0.64–0.88) variability of PM2.5 well, 
but it performs poorly over Guangzhou (rday = 0.21). Comparisons with Guangzhou’s adjacent grid cells 
yield similarly poor agreement. We attempted to remedy the poor performance in the vicinity of Guangzhou 
by testing several WRF physics options (e.g., cumulus physics, stronger nudging and/or nudging in the 
boundary layer, number of vertical layers, time step(s), etc.). Using stronger nudging coefficients within the 
boundary layer and at the surface slightly improved the performance over Guangzhou in terms of match-
ing daily variability, but doing so increased the bias in the four cities substantially, and so we retained our 
original parameters. We also perform a sensitivity simulation without the aerosol-radiation feedback, which 
reduces PM2.5 concentrations (and thus decreases the bias at three of the four sites), but it decreases the 
correlation at each site (orange lines in Figure S3). On the final two days of our simulation (January 30–31), 
we observe a substantial high bias in simulated PM2.5 over Beijing, which accounts for nearly 30% of the 
total monthly deaths. This bias occurs in the model whether the feedback is included or not. We suspect this 
bias results partly from too little vertical diffusion common during the shallow stable boundary layer that 
occurred during the period and that coincided with other conditions conducive to pollutant accumulation 
(i.e., high humidity and low wind speeds; Figure S2).

2.5.  Emission Remapping

We construct our vehicle electrification emission datasets using the methods described in Schnell 
et al. (2019). We slightly modify the methods due to differences in data sources and modeling system. Our 
electrification emissions (E ) are calculated as Equation 2:

   0
, , , , , , , ,

ICE EGU
s t j s t j s t j s t jE E E E� (2)

where 0
, ,s t jE  is the unmodified CMAQ-ready emissions (i.e., hourly, on the 12 km grid, and speciated to the 

chemical mechanism) for species s at hour t and grid cell xj, , ,
ICE
s t jE  are the emissions associated with conven-

tional internal combustion engine vehicles (ICEVs) transitioned to EVs, and , ,
EGU
s t jE  is the emissions from 

electric generating units (EGUs) that power the added EVs.

2.5.1.  Emissions of Replaced Internal Combustion Vehicles

We calculate the emissions of the replaced ICEVs as:

     


         , , , , , , , , , , , , , ,
1

1 1 1
M

ICEV ICEV ONR TW RW BW
s t j m j m s j m s t j TW s j m RW s j m BW s j m

m
E fEV fE E r E r E r E� (3)

where ,j mfEV  is the fraction of the ICE vehicles in grid cell j and mode m converted to EVs, , ,
ICEV
s j mfE  is the frac-

tion of on-road transportation emissions from mode m, , ,
ONR
s t jE  is the total on-road emissions, and , ,

TW
TW s j mr E , 

, ,
RW

RW s j mr E , and , ,
BW

BW s j mr E  are respectively the scaled non-exhaust emissions of tire wear, road wear, and brake 
wear. For , ,

ICEV
s j mfE , we use province-level data from the GAINS model that is linearly interpolated to 2013 

using 2010 and 2015 data. To calculate ,j mfEV , we first determine the number of vehicles of each mode in 
each grid cell using GAINS vehicle fleet counts, which we map onto our 12 km grid using the on-road emis-
sions of NOx (NO + NO2) as weights for HDVs; for LDVs, we use CO. We then choose the total number of 
ICEVs to transition and distribute them accordingly. First, we distribute a fraction of the total EVs to the 30 
cities that collectively represent over 80% of the EVs in 2015 (He et al., 2018) using their battery EV market 
size as a weight. To determine in which grid cells those EVs are placed, we choose the smallest box around 
the city center (i.e., 1, 9, 25, etc.) such that 100% of the ICEVs in the center grid cell can be replaced and no 
more than 75% in the surrounding cells. This method leads to an unrealistic EV adoption “footprint” for 
the city of Lanzhou, so we do not simulate enhanced EV adoption there. Also, due to the near-overlapping 
proximity of Xiangtan and Zhuzhou, we combine them into a single megacity. We then proportionately 
distribute the remaining EVs outside the top 30 EV cities according to the vehicle fleet (i.e., grid cells with 
more vehicles have greater adoption). We estimate the particulate emissions of tire, road, and brake wear 
using GAINS data for the fraction of total on-road emissions associated with these sources. For simplicity, 
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we assume the EVs that replace ICEVs have the same curb weight and also regenerative braking, that is, we 

adopt best-case estimates for , ,
TW

TW s j mr E , , ,
RW

RW s j mr E , and , ,
BW

BW s j mr E  of 1.0, 1.0, and 0.0, respectively.

2.5.2.  Emissions From EGUs That Power EVs

We calculate the EGU emissions that power EVs as:

 , , , , ,
EGU EGU
s t j s t j t jE ER V� (4)

where , ,
EGU
s t jER  is the average emission rate (g Wh−1 or moles Wh−1) of species s for the EGUs in grid cell xj, 

and ,t jV  is the marginal electricity generation (Wh) assigned to grid cell xj. We calculate , ,
EGU
s t jER  by co-locat-

ing all EGUs (including emission-free EGUs: solar, hydro, wind, and nuclear) in the Global Power Plant 
Database (Byers et al., 2018) to a model grid cell. The grid cell average emission rate is calculated as the 
weighted average of the individual EGU emission rates with the weights equal to the EGUs’ estimated gen-
eration. Because our emissions are prescribed on an hourly basis, we are able to improve upon the methods 
of Schnell et al. (2019) by only allowing solar generation to be used during the day (we assume 7 a.m. to 
5 p.m.), effectively increasing nighttime emission rates. EGU emission rates are from the National Bureau 
of Statistics (2015), which provides rates for NOx, SO2, total PM, the fraction of total PM that is PM2.5, PM10, 
and PM2.5–10, and the BC and OC fractions of PM2.5 for each province and EGU type. For model-simulated 
species without EGU emission rates (i.e., VOCs), we assume a conservative scaling factor equal to the lowest 
emission increase (associated with and only applied to EGU emissions). Since PM2.5 emissions are highly 
speciated in the model emissions (18 species) but the EGU emission rates only provide the fraction of PM2.5 
that is OC and BC, we set the emission rate of “PMOTHR” (i.e., the unspeciated PM2.5 model emission 
species) equal to the emission rate of PM2.5 minus the emission rates of BC and OC. For some experiments 
(*2010), we set coal-fired EGU emission rates to those in Liu et al. (2015), leaving all other EGU types the 
same. We scale BC and OC emission rates by the PM2.5 rate change between the two datasets. For CO2, 
we use Liu et al. (2015) emission rates for coal-fired EGUs in *2010 experiments, and linearly interpolate 
to 2013 for the *2015 experiments. For all scenarios, we use U.S. emission rates for gas-fired and oil-fired 
plants, which are respectively assumed to be 50% of the CO2 emission rate of coal-fired EGUs and 743.4 g 
kWh−1 (US DOE, 2016).

2.5.3.  Marginal Electricity Generation

The marginal electricity generated at a grid cell xj required to power EVs at each of K grid cells xk is:



 
   , , , ,

1 1

M K

t j k j t k m
m k

V w Q� (5)

where ,t kQ  is the electricity requirement for the adopted EVs and 
,k jw  is a combination of two individual 

weights, which are functions of distance ( ,
D
k jw , Equation 6a) and the estimated average electric load ( ,

L
k jw , 

Equation 6b).
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





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� (6a)

 ,
L
k j jw L x� (6b)

where Dmin is a minimum distance parameter that prevents a singularity when xj and xk are the same grid 
cell (i.e., ,

D
k jw  = ∞, which would remap all of the additional electricity required from a grid cell to itself) is set 

to 100 km. This means that all EGUs within a 100 km radius of the grid cell that requires electricity receive 
equal distance weighting. Dmax is a maximum distance parameter set to 1,000 km.
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2.5.4.  Electricity Required to Power EVs

The electricity need for the EVs in grid cell xk is calculated as:

         
11 1

, , , , ,1 vkt
t k m eff j m t k mQ TL CE EV fEV w VKT� (7)

where TL fractional transmission loss (assumed to be 5%), CE  is the charging efficiency (85%, Huo 
et al., 2015; Tarroja et al., 2016), effEV  is the efficiency (km Wh−1) of the adopted EV, ,j mfEV  as above is the 
fraction of the ICEVs transitioned to an EV, and , ,t k mVKT  is the vehicle kilometers traveled by mode m in 
grid cell xk and time t. Schnell et al. (2019) used VKT to calculate the electricity need for monthly averaged 
emissions; however, because our hourly emissions have an imposed diurnal profile associated with anthro-
pogenic activities (e.g., morning rush hour), we make a slight modification ( vktw ), which scales the hourly 
VKT by its inverse (conserving total daily VKT); that is, the diurnal cycle of EV charging (Q) and VKT are 
inversely proportional. The GAINS model provides province-level VKT, which we map onto our 12 km grid 
in the same way as with the vehicle fleet. effEV  is experiment dependent.

3.  Results
3.1.  Baseline Historic Extreme Pollution Event

Simulated January 2013 average PM2.5 concentrations range from ∼10 µg m−3 over remote areas of Chi-
na to ∼200–350 µg m−3 over the North and Central China Plain (NCP) in our baseline historic scenario 
(BASE; Figure 2a), consistent with observations (Wang et al., 2014). High-population, high-emission, yet 
geographically diverse megacities of Beijing, Shanghai, and Guangzhou are simulated as pollution hotspots, 
in addition to the Sichuan basin due to its confining topography. NO2, another pollutant with adverse health 
effects and has potential for reduction through EV adoption, is similarly elevated in megacities, throughout 
the NCP, and along major highways (Figure 2b). We estimate that across China acute exposure to PM2.5 and

NO2 during the January 2013 episode led to ∼32k premature deaths, ∼1M hospital admissions, ∼8M out-
patient visits, ∼3M cases of bronchitis, and ∼2M cases of asthma, with total economic losses of 14.7B US$ 
across seven health endpoints (Table S1).

While monthly average PM2.5 concentrations were high in many locations during January 2013, the 
core event and damages were particularly acute in Beijing (e.g., Ferreri et al., 2018; Gao et al., 2015; Sun 
et al., 2014). During the period of peak PM2.5 concentrations (10–15 January), modeled PM2.5 across Beijing 
exhibits a strong north-south gradient, ranging from ∼50 µg m−3 in the north to over 300 μg m−3 in the 
south (Figure 2b). Observations at the US Embassy recorded concentrations that ranged from 56–886 µg 
m−3, while our model simulates concentrations of 69–539 µg m−3 over the Embassy and misses the peak 
day magnitude (Figure 2d). Across all Beijing grid cells, simulated concentrations range from 5–875 µg m−3 
(Figure 2d). During the most severe days of the episode (10–15 January, Figures 2c and 2d), we estimate 
122 premature deaths from exposure to PM2.5 and NO2 in Beijing, whereas for the month, we calculate a 
total of 486 premature deaths, with a total economic impact of over 132M US$ summed across seven health 
endpoints (Table S1).

3.2.  Co-Benefits of e-HDV and e-LDV Adoption

We scrutinize the benefits and tradeoffs of EV policy and implementation decisions on the mitigation of 
extreme pollution events using metrics that capture emission rates, public health impacts, and/or economic 
costs (Figure 3 and Table S2). Compared to BASE, a 40% conversion to e-HDVs (1.5M vehicles; Figure 1a) 
powered by 2015 electricity generation emissions rates (HDV_2015, Table 1) would have avoided 562 (95% 
CI: 410, 723) premature mortalities in China for the month, following an average PM2.5 reduction over Chi-
na of 0.85 ± 0.82 µg m−3 and NO2 reduction of 0.58 ± 0.13 parts per billion (ppb) (Figure 4). However, such 
a transition would increase CO2 emissions by 2.6 Mt Jan−1 (i.e., a CO2-tradeoff). The combined monetary 
impacts of a CO2 increase (valued at $47 per ton CO2 (Liang et al., 2019), a loss of 121M US$) with those of 
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seven health endpoints (a savings of 208M US$) largely offset one another such that e-HDV adoption yields 
a total savings of 87M US$ for the month (Figure 3b).

We compare the co-benefits of e-HDV adoption with a scenario that uses the total electricity demand required 
for 40% e-HDV adoption to instead electrify a fleet of LDVs (LDV_2015). Because of their substantially small-
er per-kilometer electricity requirement, significantly more LDVs are electrified (39.2M; Figure 1b), though 
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Figure 2.  Summary of surface PM2.5 for the January 2013 pollution episode over China. (a) Modeled monthly mean PM2.5 concentrations in BASE over the 
model domain. The Beijing province is denoted by the green circle, and the orange dots are the location of coal-fired EGUs, (b) as (a) but for NO2, (c) Modeled 
peak episode (10–15 Jan) concentrations over Beijing. (d) Time series of hourly PM2.5 abundance observed at the U.S. Embassy (orange in [c]), the model grid 
cell that contains the Embassy, and the min/max of all grid cells inside Beijing.
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coincidently, this is also ∼40% of the existing LDV fleet. Air quality improvements for e-LDV adoption are 
less than for e-HDVs since HDVs contribute more to the on-road emission fraction of both NOx and primary 
PM2.5. e-LDV adoption avoids 145 (95% CI: 38, 333) premature deaths due to a China-averaged PM2.5 (NO2) re-
duction of 0.16 ± 0.27 µg m−3 (0.02 ± 0.05 ppb). The adoption of e-LDVs avoids ∼25% of the number of deaths 
as e-HDVs, however, e-LDVs dramatically reduce CO2 emissions (2.2 Mt Jan−1) such that the combined eco-
nomic impacts of CO2 reductions and human health impacts yield a total savings of 156M US$ (Figure 3b).

Province-level CO2, PM2.5, NO2, and associated mortality changes (Figure S4) are expectedly more variable 
than national averages, but can provide insight into regionally targeted cross-modal EV adoption planning. 
Similar to previous work (Liang et al., 2019), we find the major metropolitan regions of Beijing-Tianjin-He-
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Figure 3.  Summary of EV adoption co-benefits and tradeoffs for each e-HDV and e-LDV adoption and power 
generation scenario. (a) CO2 emission reduction (Mt Jan−1) and avoided premature mortality (deaths/January). Top 
x-axis provides the carbon intensity of the power sector that correspond with the bottom x-axis CO2 emission changes 
for combined e-HDV + e-LDV adoption. Uncertainty bars for CO2 are the range of battery efficiencies; for premature 
mortality, the 95% confidence interval of β (exposure-response). Plots at right shows the change in average PM2.5 and 
NO2 over grid cells in China. (b) Monetary cost or savings (million US$/January) of EV adoption, shown individually 
for CO2 and health/air quality, and their sum (right, filled bars). EV, Electric vehicle; HDV, heavy-duty vehicle; LDV, 
light-duty vehicle.
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Figure 4.  Mean changes PM2.5 (a–h, µg m3) and NO2 (i–p, ppb) changes for each experiment.
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bei (BTH), Yangtze River Delta (YRD), and the Pearl River Delta (PRD) (Figure S1) generally experience 
the largest air quality improvements for both e-LDV and e-HDV adoption scenarios, and thus experience 
larger reductions in mortality. For HDV_2015, 48% of total avoided mortality occurs in these three regions; 
for LDV_2015, 59%. Provinces in these regions also contribute 86% of total CO2 emission reductions for 
LDV_2015 while for HDV_2015, only 7 of the 30 provinces in our domain decrease their CO2 emissions—
three of which are in the major metropolitan regions.

For a month with less extreme meteorology (January 2014), we find that e-HDV health gains are 14% less 
than those in 2013 due to a smaller reduction in domain-averaged PM2.5; for e-LDVs, NO2 is reduced similar-
ly to 2013, but the average PM2.5 reduction over China is just 0.01 µg m−3 (Table S2). Thus, while both e-HDV 
and e-LDV adoption improve air quality during an extreme meteorological set up, e-LDV adoption results in 
negligible PM2.5 changes during less (un)favorable/extreme meteorological conditions.

Overall, we find that EV-induced PM2.5 changes and resultant avoided premature mortality due to acute 
PM2.5 and NO2 exposure are modest for this extreme event—a consequence of the small fraction of both 
primary and precursor PM2.5 emissions in the on-road sector (e.g., 13.2% of NOx emissions and 3.5% of 
black carbon emissions in the on-road sector; Table S3). Indeed, in an experiment that removes all on-road 
emissions over China (NO_TRA), average China NO2 decreases by 0.5 ppb, average PM2.5 only decreases by 
3.2 µg m−3, avoiding 1878 premature deaths. Over grid cells where we previously simulated EV adoption the 
PM2.5 (NO2) reduction is 4.0 µg m−3 (0.8 ppb), and 11.2 µg m−3 (3.0 ppb) over Beijing (Figure S5; Table S2). 
PM2.5 reductions are also modest because reduced on-road sector emissions in our EV experiments are offset 
by increases in power generation emissions, which constitute a much greater fraction of PM2.5 (Table S3). 
Comparatively, removing all emissions associated with power generation (NO_ENE) decreases average 
PM2.5 (NO2) by 21.2 µg m−3 (0.3 ppb) over China, by 25.1 µg m−3 (0.4 ppb) over EV adoption grid cells, and 
by 32.0 µg m−3 (1.2 ppb) over Beijing, leading to 7k+ avoided premature deaths and total health impacts of 
3.4B US$ (Figure S5 and Table S2).

3.3.  CO2 Benefits and Tradeoffs

CO2 reduction with EV adoption is dependent on battery charging demand. For our EV adoption scenarios 
to be CO2-neutral, the electricity generation mix must have an average CO2 emission rate less than ∼480 g 
CO2 kWh−1 for e-HDVs and ∼1,015 g CO2 kWh−1 for e-LDVs, though these emission rates vary by −11% to 
+33% over a range of battery efficiency values (i.e., distance-per-charge; Methods). Based on these CO2-neu-
tral rates alone, it is clear that e-LDV adoption can achieve net-negative CO2 emissions much more readily 
than e-HDV. Indeed, all e-LDV scenarios can reduce CO2 emissions, except in a scenario when e-LDVs 
have low battery efficiencies and are solely powered by coal-fired EGUs prior to recent emission reductions 
(LDV_COAL; Figure 3a and Table S2). Conversely, for e-HDV adoption, only in the scenario that assumes 
a uniform 50% marginal (i.e., the newly required electricity for EVs) carbon-free power generation (HDV_
REN; Table 1) are CO2 emissions reduced (5.4 Mt yr−1). Likewise, the 50% decarbonized scenario for e-LDVs 
avoids 64.4 Mt yr−1 of CO2, 37.7 tons more than avoided by LDV_2015.

Since our e-LDV and e-HDV experiments require equivalent electricity demands and both electrify ∼40% of 
their respective fleets, we can compute that an across-the-board 40% adoption of e-LDVs and e-HDVs would 
require an average CO2 emission rate of ∼750 g CO2 kWh−1 (top x-axis in Figure 3a). By combining the CO2 
emissions changes for e-LDVs plus e-HDVs, we can also assess our results against recent work that electri-
fies multiple modes simultaneously (Liang et al, 2019; Peng et al., 2018). To be sure, our experiments are not 
directly comparable since Peng et al. (2018) electrify “all on-road vehicles” and Liang et al. (2019) electrify 
modes at differing rates (greater for LDVs). In any case, we find that combined e-LDV and e-HDV adoption 
under the 2015 EGU infrastructure would increase CO2 emissions slightly (+0.3 Mt Jan−1, −3.7 to +2.3 over 
the battery efficiency uncertainty range; see Materials and Methods), which aligns with the negligible or 
modest GHG reductions for cross-modal electrification found previously.

3.4.  Air Quality Benefits and Tradeoffs

The adoption of 1.5M e-HDVs in China decreases average PM2.5 by 0.9 ± 0.8 µg m−3 during an extreme 
pollution episode over the portion of China in our modeling domain (Figure 3a and Table S2). Reductions 
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largely follow the pattern of average PM2.5 and occur at nearly all locations except near a cluster of coal 
plants (orange markers, Figure 2a) on the Shandong and Hebei border, as well as a few grid cells in western 
Yunnan. For grid cells that include “EV-forward cities” with enhanced EV adoption (see Materials and 
Methods), decreases are larger (−2.2 ± 0.9 µg m−3; Table S2). Percent reductions in PM2.5 are more homo-
geneous, across the country (∼2%) with slightly larger reductions in EV-forward cities. NO2 changes over 
China (−0.12 ± 0.26 ppb) follow major roadways and are largest in the major metropolitan regions and 
EV-forward cities (−1.29 ± 0.76 ppb).

For e-LDV adoption, the magnitude of mean PM2.5 changes over all of our averaging locations and all ex-
periments are < 1 μg m−3, with increases for LDV_COAL and decreases for all other scenarios (Table S2 and 
Figure 4). All experiments have domain-average NO2 decreases—and e-HDV experiments have 3–5× the 
decrease as e-LDV. The PM2.5 decreases in LDV_2015 occur primarily in the southern half of the domain, 
with most of the North and Central China Plain (except Beijing and Tianjin) experiencing little change or 
PM2.5 increases (Figure 4).

All e-HDV adoption scenarios result in improvements in air quality and thus decreases in mortality, even 
when the entirety of the electricity demand is powered by coal-fired EGUs. For e-LDVs, however, only after 
recent emission reduction policies (i.e., 2015 emission rates) does PM2.5 air quality improve, and then only 
slightly—NO2 decreases on average in all experiments (Figure 4). These results align well with previous 
findings in that cross-modal strategies improve air quality (Liang et al., 2019; Peng et al., 2018), while solely 
e-LDV adoption would increase air pollutant emissions unless EGU emission rates are reduced below early 
2010s levels (Huo et al., 2015); that is, the switch from AQ-tradeoffs to co-benefits for LDV_COAL/2010 to 
LDV_2015/REN in Figure 3a.

Under scenarios with significantly higher EGU emission rates, the impact of high-emitting coal-fired units 
becomes more apparent, and the transition from net-positive to net-negative PM2.5 air quality benefits oc-
curs for most locations. Under HDV_COAL, many regions see an increase in PM2.5 compared to the do-
main-wide decreases for HDV_2015, although a swath from Beijing to Chengdu and the Shandong province 
still experiences PM2.5 decreases. For LDV_COAL, Beijing, Tianjin, and a few grid cells in Guangxi and 
Shanghai experience PM2.5 decreases, but the majority of the country's average PM2.5 increases by over 2 μg 
m−3.

While the benefits of enhanced renewable power generation are clear in terms of CO2 emissions, it has a 
surprisingly small impact on air quality in our simulations. To be sure, emission rates from the National 
Bureau of Statistics (2015) that are used in the *_2015 scenarios (Table S4) are significantly lower than those 
used in recent analyses for “present-day” rates (e.g., Huo et al., 2015), thus the difference in the emission 
rate of power sector pollutants between 2015 and REN is relatively small compared to the change from 2010 
to 2015. For HDV_REN, PM2.5 (NO2) is reduced by 1.1 μg m−3 (0.2 ppb) over EV adoption cells which leads 
to 575 avoided deaths over China, 1.8× that compared to HDV_2010. For LDVs under 2010 emission rates, 
although NO2 decreases (−0.02 ppb) average PM2.5 increases (+0.63 μg m−3) resulting in mortality increases 
(59 deaths incurred), but slightly decreases in the REN scenario (∆PM2.5 = −0.17 μg m−3, ∆NO2 = −0.03 
ppb, and 310 deaths avoided).

Changes in peak PM2.5 (95P) are substantially more heterogeneous (Figure 5 and Table S5), and are predom-
inantly affected by proximity to power generation infrastructure. Under HDV_2015, 95P PM2.5 decreases 
over most of the domain, and are largest in EV-forward cities (−4.5 ± 2.9 µg m−3) including a 15.5 µg m−3 
reduction over Beijing. However, some areas near clusters of coal-fired EGUs in the North China Plain see 
large increases (>10 µg m−3), demonstrating a clear example of a “spillover effect” (Fang et al., 2019); that 
is, the transfer of urban traffic emissions to rural power generation sites. For LDV_2015 (and further for 
LDV_2010 and LDV_COAL) PM2.5 hotspots near coal-fired EGUs grow in number, extent, and magnitude 
as they are offset by fewer on-road reductions compared to HDV_2015. The spatial pattern of NO2 and PM2.5 
changes in Figure 5 demonstrates the necessity of a CTM to quantify air quality impacts due to emission 
changes; that is, NO2 is a relatively short-lived pollutant, so changes are largely restricted to emission source 
regions. PM2.5, however, can be transported over much longer distances and also forms secondarily down-
wind of source regions.
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4.  Conclusions and Discussion
We have evaluated the potential co-benefits—quantified in terms of avoided acute health impacts and CO2 
emissions—of hypothetical widespread EV adoption in China during an extreme pollution episode. We have 
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Figure 5.  95th percentile PM2.5 (a–h, µg m3) and NO2 (i–p, ppb) changes for each experiment.
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compared our results across vehicle types targeted for electrification (i.e., HDVs vs. LDVs) and demonstrat-
ed the sensitivities of the actualized co-benefits of EV adoption to power plant emission rates. Overall, we 
have shown that the air quality benefits of EV adoption during the January 2013 are modest, with e-HDVs 
yielding air quality improvements for all power generation scenarios, and e-LDVs requiring emission rate 
reductions beyond 2010 levels (Figure 3). The reverse is true for CO2 reductions: that is, e-LDVs reduce CO2 
emissions for all power generation scenarios except when powered by all coal-fired electricity generation, 
while e-HDVs only reduce CO2 in a scenario that assumes 50% emission-free marginal electricity genera-
tion. Co-benefits are predominately realized in high-population urban centers and industrialized provinces.

A key difference between our work and others examining EV adoption in China is that we only consider 
acute health impacts and do not consider chronic exposure. Previous annual (i.e., considering chronic expo-
sure) work (Liang et al., 2019) estimated that ∼22% of total avoided premature mortality from EV adoption 
was driven by surface ozone reductions, which we do not consider here since we simulate a cold-season 
month when ozone is not generally elevated and thus not a health risk.

Future work will be performed an increasingly higher resolution, as emission reductions may not always 
reduce all pollution types, a result that may otherwise be unresolved by a coarser resolution model. Indeed, 
The COVID-19 lockdowns of 2020 have revealed the importance of chemical regime in determining how 
a region may respond to abrupt emission changes (e.g., Diffenbaugh et al., 2020 and references therein). 
Future work that focuses on the warm season could investigate the urban ozone sensitivity of e-HDV versus 
e-LDV adoption fractions, as their electrification could impact NOx/VOC ratios differently, especially within 
the urban core. Other improvements are potentially more fundamental, such as designing the modeling 
framework to maximize use of the results by policymakers and stakeholders, as recent evidence suggests 
harmonization across studies could be improved (Hess et al., 2020).

China's chemical landscape is rapidly evolving due to widespread industrialization and substantial pollutant 
remediation efforts at national and provincial levels. Due to policy-driven changes in energy sector emis-
sion rates alone, we find that in less than a decade the air quality benefits of e-LDV adoption switch from 
a net-negative to a net-positive. Further, air quality will likely continue to improve as the power generation 
sector decarbonizes and reduces allowable emission rates from fossil fuel-fired EGUs—indeed, an e-LDV 
purchased in 2013 will be “cleaner” in 2020 than when it was new. Moreover, if reduced fossil fuel-fired 
energy generation projections are actualized (IEA, 2017), by 2030 the CO2 reduction potential from e-LDV 
adoption will more than double compared to 2015. In any case, recent work suggests that EVs will reduce 
CO2 emissions even without rapid decarbonization of the energy sector in most of the world (Knobloch 
et al., 2020). In terms of the extreme winter pollution episode mitigation potential of EVs, we find a notable 
but modest role for widespread EV adoption; however, the long-term benefits are likely at least an order 
of magnitude greater based on similar pollutant reductions in other EV studies (Liang et al., 2019; Peng 
et al., 2018). We estimate that acute PM2.5 and NO2 exposure during the January 2013 extreme pollution 
episode led to ∼32k premature deaths and economic losses of 14.7B US$ across seven health endpoints. 
Our simulations demonstrate that widespread (40%) e-HDV adoption would reduce just ∼1%–2% of these 
premature deaths, while removal of all on-road transportation sector emissions leads to an ∼6% reduction 
in deaths. Removal of all energy sector emissions however, produces an ∼24% drop in premature deaths. 
Clearly then, carbon- and pollutant-free energy generation is central to the actualization of air quality and 
climate co-benefits of vehicle electrification in China.

Data Availability Statement
The WRF-CMAQ two-way model source code can be downloaded here (WRF: https://www2.mmm.ucar.
edu/wrf/users/download/get_sources.html; CMAQ: https://github.com/USEPA/CMAQ). GAINS data is 
available here: https://iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html. Global Power 
plant database data is available here: https://datasets.wri.org/dataset/globalpowerplantdatabase. Evalu-
tion and plotting scripts and selected model output data (hourly surface PM2.5 for BASE, HDV_2015, and 
LDV_2015) is available at https://doi.org/10.6084/m9.figshare.12885425.v1. Due to model output size limi-
tation, specific model output requests can be made to the corresponding author.
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