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Abstract
In this work, we explore systematically various SO(2)-rotation-inducedmultiple dark–dark
(DD) soliton breathing patterns obtained from stationary and spectrally stable multiple
dark–bright (DB) and DD waveforms in trapped one-dimensional, two-component atomic
Bose–Einstein condensates. The stationary states stemming from the associated linear limits
(as the eigenfunctions of the quantum harmonic oscillator problem) are parametrically
continued to the nonlinear regimes by varying the respective chemical potentials, i.e. from the
low-density linear limits to the high-density Thomas–Fermi (TF) regimes. We perform a
Bogolyubov–de Gennes spectral stability analysis to identify stable parametric regimes of
these states, finding a wide range of stability intervals in the TF regimes for all of the states
considered herein. Upon applying an SO(2)-rotation to stable steady states, one-, two-, three-,
four-, and many DD soliton breathing patterns are observed in the numerical simulations.
Furthermore, analytic solutions up to three DB solitons in the homogeneous setting, and
three-component systems are also investigated.

Keywords: dark–dark solitons, dark–bright solitons, solitary waves, Bose–Einstein
condensates, multicomponent condensates

(Some figures may appear in colour only in the online journal)

1. Introduction

Bose–Einstein condensates (BECs) have attracted a significant
amount of attention over more than two decades for investigat-
ing macroscopic quantum phenomena [1, 2]. One major theme
of research concerns (effectively) nonlinear coherent structure
solutions in the form of solitary waves that are supported by

∗ Author to whom any correspondence should be addressed.

these quantum gases [3], which share many similarities with
nonlinear optics [4]. A large variety of solitary waves has been
studied in the context of BECs, ranging from bright solitons
in attractive condensates [5] to dark solitons [6], vortices [7],
and vortical filaments as well as rings [8–10] in repulsive
condensates.

One important extension of these studies is the investigation
of multicomponent condensates supporting, e.g. dark–bright
(DB), dark–dark (DD), dark–antidark (DAD) structures in
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repulsive condensates [11–15]; see, e.g. [16], for a relatively
recent review summarizing some of the early work on the sub-
ject both in atomic physics, as well as in nonlinear optics. It
should be noted in passing that the bright soliton cannot be
sustained on its own in a single repulsive condensate but exists
as a result of the effective trapping of the dark soliton in the
other component. It is also relevant to mention that the study of
such structures has motivated extensions thereof also in higher
dimensions [17–19]. In recent years, there has been a signifi-
cant number of further efforts to extend this multi-component
understanding to a variety ofmore complex settings, including,
e.g. the one of three-component condensates [20], that of mag-
netic solitons in both binary [21] and even spinor [22] BECs,
and very recently the examination of multiple DAD states in
two-component systems [23].

Our primary focus herein will be more concretely on the
two-component setting. In this case and when only inco-
herent coupling between the components is involved, the
system trivially supports the U(1)× U(1) symmetry. In the
special Manakov case [24], in which all the intra- and inter-
component interaction strengths are equal, there is an addi-
tional SU(2) symmetry [25]; see the next section for details.
One particularly interesting result is that this SU(2)-symmetry
can induce the formation of the so-calledDDbreathing or beat-
ing dynamics upon rotating stationary and stable DB soliton
solutions [26]. This rotation has been exploited to produce sin-
gle DD states from corresponding single DB ones, and these
DD states have been studied in various (both one- and higher-
dimensional) settings [17, 19, 26–28]. In the integrable Man-
akov case, generalizedN-soliton states in the formofDD states
can be obtained leveraging techniques from integrability [29,
30]. Here, on the other hand, we will focus on multiple-wave
patterns obtained from the linear limit of the quantum har-
monic oscillator. These states can be generalized to DB soliton
crystal states bearing arbitrary manyDBs [31]. Note that in the
present work, we are primarily interested in stable patterns,
looking for stable DB solitons, although the symmetry is not
limited to stable structures or even stationary states.

Given the above state of the field, the main purpose of the
present work is to offer a systematic study of multiple DB
solitons or more precisely DB and DD mixtures, and their
associated stable multiple DD soliton breathing patterns via
an SU(2) rotation. Even more, the recent experimental devel-
opments enabling both the sequential and alternating seeding
of dark and antidark structures in the two components [23]
suggest that this direction is especially timely and worthwhile
to study. Additionally, two further and more recent experi-
ments have since appeared indicating the tremendous control
presently available at the level of creation of patterns with
phase windings, such as dark solitary waves. The first one
in single-component condensates illustrated how to leverage
both amplitude and phase engineering in order to controllably
produce dark solitary waves of any accessible (within this fam-
ily of solutions) speed [32]. The second leveraged a spatially
localized spin rotation realized with a steerable laser beam in
order to generatemultiple dark–bright–bright (vector) solitons
with a high degree of experimental control so as to exam-
ine their collisions at different relative phases [33]. Moreover,

the latter work represents the first experimental realization of
a system very close to the three-component vector Manakov
model, considered herein, due to the operation of the experi-
ment in a regime where the spin-dependent effects are signifi-
cantly suppressed. The above experimental developments pave
the way for the more complex, yet potentially dynamically
robust multiple-winding patterns presented in what follows.

We focus on the case of a 1D two-component conden-
sate confined in a harmonic trap. A key feature of our study
is that we explore these structures systematically from the
low-density linear limits to the high-density Thomas–Fermi
(TF) regimes, and their Bogolyubov–de Gennes (BdG) spec-
tra are computed in the realm of spectral stability analysis.
These computations shed light on potentially stable paramet-
ric regimes in the chemical potentials in which bound modes
are long lived ones (and observed in our simulations). Such
a methodology can be utilized to construct a whole series of
topologically distinct stationary states. To that end, a com-
ponent with n > 0 solitons stemming from the quantum har-
monic oscillator eigenfunction |n〉 is progressively coupled
to m = 0, 1, . . . , n− 1 solitons in the other component stem-
ming from the state |m〉. These states are therefore expected to
exist as the two components decouple in the low-density lin-
ear limits. We assume (without loss of generality) n > m � 0
and refer to the composite structure as state Snm, where S
stands for both state and soliton. For each integer n, there
is a total of n distinct stationary states; so that n also corre-
sponds to the number of distinct DD breathing patterns. Note
that this enumeration accounts for the (definite parity) states
with m = 0, . . . , n− 1, and is relevant in the vicinity of the
linear limit. In principle, this does not preclude the potential
of other (asymmetric) states to arise in regimes of high nonlin-
earity, without persisting all the way to the linear limit. There-
fore, the number of patterns grows rapidly for these composite
structures. For example, up to n = 4, there exist 10 breath-
ing patterns; in general, for given n, the number of breathing
patterns is n(n+ 1)/2. In the specific case of n = 2, our pro-
cedure automatically reproduces both the in-phase (coupled
with m = 0) and the out-of-phase (coupled with m = 1) DB
solitons, resulting (upon rotation) in their corresponding DD
breathing patterns [26].

It is straightforward to see that in Sn0 the bright solitary
waves are all in phase as the second component is uniform in
phase, while in Sn,n−1 (here a comma is added for clarity) the
bright ones are fully out of phase as the roots of neighboring
orthogonal polynomials alternate [34]. Interestingly, the fully
in-phase DB will produce, upon rotation, an out-of-phase DD
breathing pattern, as each of the DB solitary waves converts
into a DD one. As m grows from 0 to n− 1, the number of
dark solitons in the second component increases by one suc-
cessively, and the resulting rotated patternswill convert each of
the DBs into a DD, while collocated zero crossings will be pre-
served under the transformation. The breathing patterns are, in
fact, reminiscent of a 1Dmass-spring systemwith fixed bound-
ary conditions, and for n masses, there are n normal modes
increasingly out of phase. See figure 1 for a schematic diagram
of the S4m states and an explanation of how they are modified
upon rotation.
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Figure 1. Schematic diagram showing the mixing of various topologically distinct states can cause the dark solitons (nodes of ψ1) to shift in
different directions. Here, the S4m states are shown. The arrows indicate how the corresponding dark soliton positions shift upon adding the
bright field, as a result of an SO(2) rotation (with δ = π/4 below); when subtracting, the arrows flip to the opposite direction instead. It is
observed that as the number of nodes m increases in the second component, the shifting of the dark solitons in the first component becomes
increasingly in phase. See figure 4 for numerically exact field configurations and the resulting DD beating patterns.

In this work, we explore all the distinct states up to n = 4.
For higher n, the computation gets increasingly tedious as well
as more expensive. One reason is that the number of combina-
tions grows with n as mentioned above, and importantly so
does the number of unstable modes of the states. This behav-
ior is strongly reminiscent of the one-component counterpart
of dark soliton clusters, where a state containing more dark
solitons requires a larger chemical potential (or atomic den-
sity) to get stabilized [35]. Indeed, as is discussed also in [16],
the larger number of windings leads to a higher number of
unstable eigendirections; these are chiefly unstable due to reso-
nances in the vicinity of the linear limit, but progressively lead
to fewer and further between resonances/instabilities as the
chemical potentials become larger. This, in turn, necessitates
higher chemical potentials (or densities) in order to stabilize
the configurations compared with the low-lying structures. In
order to reach large chemical potentials, both a larger domain
(to ensure that the patterns identified are located comfort-
ably within the condensate) and a finer spacing (to accurately
resolve the solitonic structures) are required to achieve high
accuracy in numerical computations. For higher n, we exam-
ine only the state Sn0 which typically has a wider region of
stability (in chemical potentials) among the different values of
m. In this work, we have explored the cases with n = 5, 6, . . . ,
up to 10, thus forming a DB ‘mini-lattice’. In fact, our results

involve quite substantial computations, despite our work being
restricted to 1D: for example, to stabilize theS10,0 structure, we
have to reach chemical potentials on the order of 100.

In addition to breathing patterns in a harmonic trap, we dis-
cuss the homogeneous setting with up to three soliton struc-
tures (and the states that emerge from their rotation); finally,
we extend our considerations to three-component systems. In
the former case, we are interested in exact solutions of bound
DB solitons and the corresponding DD breathing waveforms.
In the latter case, the number of stationary states is even higher
due to the different combinations of the pertinent eigenstates.
For clarity in this case, we introduce the shorthand notation
Smnp (m > n > p� 0) which stems itself from the coupling
of the harmonic oscillator states |m〉, |n〉, and |p〉. We shall not
explore all of these structures in detail in this work, but rather
our goal is to illustrate prototypical examples involving them
and demonstrate the applicability of our current approach in
tracing states from the linear limits. In the three-component
case, we will explore SU(3) rotated breathing patterns, again
using stable stationary solitonic structures as a starting point
for performing the corresponding rotations.

Our presentation is organized as follows. In section 2, we
introduce the model, the SU(2) (and SO(2)) symmetry and
the various numerical methods employed in this work. Next,
we present our numerical and analytical results in section 3.
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Finally, our conclusions and a number of open problems for
future consideration are given in section 4.

2. Models and methods

We first present the mean-field Gross–Pitaevskii equation
(GPE) and the SU(2) symmetry for a two-component conden-
sate at the Manakov limit. Then, we discuss our methodology
for constructing stationary solitons from the linear limits, and
the numerical methods employed in the nonlinear realm for
identifying stationary states, performing stability analysis, and
dynamics. Finally, we briefly describe the analytical method
and the generalization to three-component systems.

2.1. Computational setup,dimensional reduction and SU(2)
symmetry

In the framework of mean-field theory, and for sufficiently low
temperatures, the dynamics of a strongly transversely confined
1D two-component repulsive BEC in a time-independent trap
V = V(x), is described by the following coupled dimension-
less GPEs [3]:

i
∂ψ1

∂t
= −1

2
∂2ψ1

∂x2
+ Vψ1 +

(
g11|ψ1|2 + g12|ψ2|2

)
ψ1, (1a)

i
∂ψ2

∂t
= −1

2
∂2ψ2

∂x2
+ Vψ2 +

(
g21|ψ1|2 + g22|ψ2|2

)
ψ2, (1b)

where ψ1 = ψ1(x, t) and ψ2 = ψ2(x, t) are two complex
scalar macroscopic wavefunctions. In order to study the
SU(2)-induced breathing patterns, we consider mainly in this
work the Manakov limit g11 = g12 = g21 = g22 = 1, although
effects of weak deviations are also considered in our sub-
sequent discussion. Such effects are encountered, e.g. in the
study of hyperfine states of 87Rb [1–3]. The condensates,
unless otherwise specified, are confined in a harmonic mag-
netic trap of the form:

V =
1
2
ω2x2, (2)

where the trapping frequency ω is set (without loss of gener-
ality) to ω = 1. Stationary states with chemical potentials μ1

and μ2 for the first and second components, respectively, are
constructed by considering the Ansätze:

ψ1(x, t) = ψ0
1(x)e

−iμ1t,

ψ2(x, t) = ψ0
2(x)e

−iμ2t, (3)

which lead to the stationary equations:

−1
2
d2ψ0

1

dx2
+ Vψ0

1 +
(
|ψ0

1 |2 + |ψ0
2 |2

)
ψ0
1 = μ1ψ

0
1,

−1
2
d2ψ0

2

dx2
+ Vψ0

2 +
(
|ψ0

1 |2 + |ψ0
2 |2

)
ψ0
2 = μ2ψ

0
2 . (4)

We briefly outline the dimensional reduction and the
subsequent scaling analysis of the dimensional multicom-
ponent GPE here, as we have used an ‘unconventional’
scaling effectively setting ω = g = 1. Starting from the

3D GPE in physical units, we first apply the dimen-
sional reduction from 3D to 1D by using the (separation
of variables) ansatz ψ j(x, y, z, t) = ψ j(x, t)φ0(y, t)φ0(z, t) and
V = m(ω2

x x
2 + ω2

⊥y
2 + ω2

⊥z
2)/2, where φ0 is the transverse

quantum harmonic oscillator ground state. Having this ansatz
and the 3D GPE at hand, we take the inner products of the
GPE with both φ0(y, t) and φ0(z, t), thus arriving at an effec-
tive one-dimensional GPE (still in physical units). Next, we
apply the regular scaling of the quantum harmonic oscilla-
tor [36] to set the GPE in a dimensionless form, and a sub-
sequent scaling of the wavefunction in order to set the non-
linearity coefficient to 1, finally yielding equations (1a) and
(1b). In summary, our length is measured in units of the axial
harmonic oscillator length �x =

√
�/(mωx), time in units of

1/ωx , and the chemical potential in units of �ωx. The number
of particles in the jth component is Nj =

1
g1D

∫
|ψ j|2dx with

g1D = 2ω⊥as
ωx�x

, and as stands for the s-wave scatting length.
While we cannot obtain N j analytically, we can estimate
the total number of particles in the pertinent TF regime.
Indeed, and within the TF radius

√
2μ1, the total density

profile is approximately max(μ1 − V(x), 0) in our setting
which in turn yields Ntotal = N1 + N2 ≈ 2

3g1D
(
√
2μ1)3. For

example, μ1 = 100 corresponds to approximately a total of
104 atoms which are experimentally accessible. However, the
dimensional reduction also requires that μ j � g1D�x/(8as) =
ω⊥/(4ωx) in addition to ωx/ω⊥ � 1 [3]. In BEC experiments,
we have the more experimentally realistic case corresponding
to ωx/ω⊥ ∼ 0.01 with �x ∼ 10−6 m and as ∼ 10−9 m [23, 37]
which in turn suggests μ1 � 25. On the other hand, if
ωx/ω⊥ ∼ 0.001 (representing a setup not-currently-realized,
to our knowledge, but plausibly accessible within state-of-the-
art BEC settings), it will require μ1 � 250. With the latter
choice, and upon using, e.g. μ1 = 150, one could reach atom
numbers of a few thousand atoms which are realistic in dark
soliton experiments [38]. As we shall see below, it is straight-
forward to stabilize low-lying structures, yet the stabilization
of more complex ones, e.g. S10,0, may be harder to achieve.

We now turn our focus on the U(1)× U(1) symmetry
of the system of equations (1a) and (1b), and additionally
its SU(2) symmetry in the Manakov case (where all inter-
action coefficients are set to unity therein). In particular, if
(ψ1,ψ2)T is a solution to the system (1a) and (1b), then
(ψ1 exp(iθ1),ψ2 exp(iθ2))T also is, where θ1 and θ2 are two
real constants. In the Manakov case, it is straightforward to
show that (

ψ′
1

ψ′
2

)
= U

(
ψ1

ψ2

)
=

(
α −β∗

β α∗

)(
ψ1

ψ2

)
, (5)

is also a solution,whereUU† = I, |α|2 + |β|2 = 1, and the star
(∗) denotes complex conjugation. Note that the total density
profile is invariant upon rotation, i.e. |ψ1|2 + |ψ2|2 = |ψ′

1|2 +
|ψ′

2|2. In this work, we explore the subset of SO(2) rotations:(
ψ′
1

ψ′
2

)
=

(
cos δ sin δ
− sin δ cos δ

)(
ψ1

ψ2

)
, (6)

and focus on the most symmetric case using δ = π/4.
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For the two-component case, we identify stationary states
by using a finite element method for the spatial discretiza-
tion and employing Newton’s method for the underlying root-
finding problem. The linear harmonic oscillator states (which
are suitable in the low density limit where the cubic nonlin-
ear terms can be neglected) are used as initial guesses near the
respective linear limits. The obtained solutions (upon conver-
gence of Newton’s method in this weakly nonlinear regime)
are parametrically continued to large chemical potentials by
performing a sequential continuation. Since our goal in the
present work is to identify stable stationary states, we com-
pute the BdG stability spectrum (see, e.g. [3] for a discussion
thereof for the multi-component system) along the (μ1, μ2)
parametric continuation line considered and select a stable
solution which will be rotated subsequently. The interested
reader can also find details of the BdG stability matrix in [17];
in short, and given a stationary solution ψ0

j (x) to the two-
component GPE (i.e. j = 1, 2), the BdG matrix (and its spec-
trum) is obtained by introducing the following perturbation
Ansätze:

ψ̃ j(x, t) = e−iμ jt
{
ψ0
j (x)+ ε

(
a j(x)e

λt + b∗j(x)e
λ∗t
)}

,

j = 1, 2, (7)

where ε � 1. The eigenvalues λ with λ = λr + iλi of the
resulting BdG matrix (see [17]) determine whether a solution
is (spectrally) stable or not. In particular, if all λr = 0, then a
solution is deemed stable; otherwise it is unstable. Our dynam-
ics of either the original stationary states or of the rotated
(and expected to be breathing) ones is performed by using the
standard fourth-order Runge–Kutta method.

The analytical multiple DB soliton solutions and the rota-
tion thereof for the homogeneous setting [39] are also used
in order to produce breathing states. In this work, we dis-
cuss the two and three DB soliton states, and then their cor-
responding rotated breathing patterns. It is worth noting that
these solutions generally cannot be tuned to be fully stationary,
despite the fact that they can be approximately stationarywhen
multiple solitons are well separated. This can also be under-
stood intuitively (as in the trapped case discussed above) since
the stationarity stems from the interplay between the pairwise
interaction of the DB structures and the restoring effect of the
trap on each of the waves [11]. For homogeneous settings, the
absence of the latter does not allow an equilibrium configu-
ration given the absence of a counterbalance for the former.
Nevertheless, the SO(2) rotation and symmetry is not limited
to stationary states, and applies to these dynamic cases as well.
Consequently, several time scales can manifest themselves in
the dynamics, in contrast to the periodic solutions rotated from
stationary states.

The computational setup for the three-component system
is similar to that of the two-component case. The pertinent
equation ofmotion and the correspondingBdG stabilitymatrix
will be presented in section 3.2 and appendix B, respec-
tively. It should be noted in passing that the same form of
the perturbation Ansätze of equation (7) is used for investi-
gating the BdG spectrum in the three-component system but
now with j = 1, 2, 3. In this system, there are three chemical

potentials, extending from the linear limits to the TF regimes in
the (μ1, μ2, μ3) parameter space. In this work, we investigate
the states S210 and S310, including their existence, stability, and
SU(3)-induced breathing dynamics. Here, it is important to
comment on the nature of the corresponding model. It is well-
known that the spinor condensate mean-field model [40, 41]
that has recently been explored also experimentally for various
solitonic configurations [20, 22] is nontrivially different from
the Manakov model. In particular, the latter contains only the
spin-independent part of the hyperfine state interactions, while
the former contains also the spin-dependent part coupling the
phases of the different components [40, 41]. Here, motivated
also by multi-component nonlinear optical problems [25], we
restrict our considerations to the Manakov case, however, we
note that a more detailed consideration of the spin-dependent
effect on these states would be of interest in its own right.

2.2. Constructing irreducible topologically distinct
stationary states from the linear limits

It is known that a rotated single DB soliton (formed by the cou-
pling of a |1〉 state with a |0〉 one) produces a DD breathing
state, and has been extensively studied (see, [26, 27]). How-
ever, there are two cases for two DB solitons [42]: (a) the
in-phase case where the bright peaks have the same phase
and (b) the out-of-phase case where the bright peaks have
the opposite phase. These solitons (in the linear limit) involve
the coupling of the |2〉 state in the first component with the
|0〉 state and the |1〉 state in the second component, respec-
tively [31]. Those states can be continued to the high den-
sity regimes in the (μ1, μ2) parameter space. In our work, we
take a simple linear trajectory from the linear limit to a final
high-density regime. Because of the linear trajectory, we can
only refer to μ1 for simplicity if the respective initial and final
chemical potentials �μi and �μ f are given due to the constraint
�μ = �μi + ε(�μ f − �μi), ε ∈ (0, 1]. For a given μ1, one can cal-
culate the parameter ε, and then μ j, for j �= 1. Consequently
in what follows, we will present the BdG analysis results as
a function of μ1. These states are conveniently labeled as S10,
S20, and S21 in the above notation, respectively.

These considerations can be generalized to any pair of har-
monic oscillator states. Specifically, the state |n〉 can be cou-
pled successively with the |m〉 state, thus forming the Snm state
with m = 0, 1, 2, . . . , n− 1. It should be noted that not all of
these structures are DB solitons. For example, the state S31

has three dark solitons in the first component but with only
two out-of-phase bright peaks at the sides, in the second com-
ponent. Between these peaks, naturally per the anti-symmetric
nature of the m = 1 state lies a dark solitonic structure in the
second component. Therefore, the state S31 is a stationary state
concatenating a DB wave on the one end, with a DD one in the
middle and a DB structure on the other end. It is noted in pass-
ing that the DD structure is expected to exist whenever both n
and m are odd. Finally, for each integer n, there is a total of n
distinct stationary states and corresponding breathing patterns
stemming from the linear limit; this is noted because in princi-
ple states that do not terminate at the linear limit may exist in
the highly nonlinear regime.
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Figure 2. Panel (a): the BdG spectrum (λ = λr + iλi) of the DB soliton along a linear trajectory from the linear limit (1.5, 0.5) to a typical
large-density limit (16, 14) in the (μ1, μ2) parameter space. Note that the spectrum is shown as a function of μ1 only because of the linear
trajectory constraint. Red and blue curves denote unstable (real parts of eigenvalues λr in red) and stable (imaginary parts of eigenvalues λi
in blue) modes, respectively. Here, the DB spectrum is entirely imaginary. The stationary DB profile at the end of the parametric line is
illustrated, along with the induced DD oscillating patterns. i.e. the DB pattern is SO(2)-rotated and fed into the time evolution dynamics in
order to observe this dynamical phenomenology. Here and in the contour plots that will follow throughout the manuscript, the density (|ψi|2,
i = 1, 2) will be shown for the different components as a function of space and time. The DB, as well as its rotated variant are fully stable
and robust. Panels (b) and (c): same as (a) but for the S2m family from the linear limit (2.5,m+ 0.5) to a typical large-density limit (16, 14).
The bright solitons are in phase for m = 0 (b) and out of phase for m = 1 (c), the in-phase two-DB state is fully stable, but the out-of-phase
one has several (here seven) weak instability peaks. Note that the real part of the eigenvalues for S21 is enlarged by a factor of 10 for
visualization purposes, i.e. we have plotted 10λr and λi in this spectrum and the maximum growth rate is approximately 0.5/10 = 0.05. All
of the breathing patterns in this work are integrated and found to be robust up to t = 1000.

We have omitted the structures stemming from the same
linear states, i.e. Smn with m = n. Although they are topolog-
ically distinct ones, they require same chemical potentials in
the two components due to the fact that from equation (4),
one can derive the condition 〈ψ0

1 |ψ0
2〉(μ1 − μ2) = 0. In other

words, if the two fields are not orthogonal, they must have the
same chemical potential. This strongly suggests that the two
field profiles in Smm are identical up to a scaling factor, which
is numerically confirmed. Consequently, such a state can be
viewed as a splitting of the corresponding single-component
state. If ψ1D is a stationary state of the one-component sys-
tem, then (cos(δ)ψ1D, sin(δ)ψ1D)T is a solution of the two-
component system with the same interaction strengths. The
action of rotation matrices as considered above will, thus,
not produce genuinely new states in this case. Therefore, we
focus on states of distinct quantum numbers, both for the two-
component but also for the following three-component system.
In a sense, we investigate all the irreducible topologically dis-
tinct states. The construction can be further generalized to the
three-component system, where state Smnp is expected to be
formed by coupling the harmonic oscillator states |m〉, |n〉, and
|p〉, wherem > n > p� 0. In this work, for proof-of-principle
purposes, we only explore two specific yet typical low-lying
states S210 and S310, focusing on their existence, stability, and
the SU(3)-induced breathing patterns.

3. Results

3.1. Multiple dark–dark breathing patterns in two
components

The single DB soliton appears to be very robust and is found to
be fully stable over the parameter ranges considered, as illus-
trated in the left panel of figure 2. The same is true for the two
DB solitons in phase (see the middle panel of the figure). On

the other hand, the two DB solitons out of phase encounter
a series of instabilities, a total of seven unstable peaks along
the parametric line. These instabilities are in line with what is
known about both multiple dark solitons (in one-component
condensates) [3] and also about multiple DB and even DAD
solitary waves in two-component condensates; for a recent dis-
cussion, see, e.g. [23]. In particular, a so-called negative Krein
(or energy) signature mode associated with the out-of-phase
vibration of the two DB solitary waves becomes resonant with
modes of the background cloud sequentially. The first of these
resonances in the vicinity ofλi = 2 can be observed in the right
panel of figure 2 (this also corresponds to the largest insta-
bility (red) ‘bubble’). However, most of the peaks are rather
narrow and all of the peaks are rather weak, i.e. they corre-
spond to low growth rates of the associated instability. Note
that the real part of the eigenvalues is enlarged by a factor of
10 for ease of visualization, i.e. the maximum growth rate is
only about 0.5/10 = 0.05. Therefore, there are wide intervals
of stability for these low-lying states. It is interesting that the
DD breathing patterns involve the conversion of each of the
DB structures into a DD, creating new phase alternations (e.g.
in the bright component) as a consequence of the emergence
of the DD states.

Next, we focus on the S3m family as shown in figure 3.
In this family, all the states considered bear unstable modes;
in fact all the states have at least three potentially unstable
modes because of n = 3. Furthermore, the number of poten-
tial instabilities grows with m. In this context, it is reasonable
to expect that for states Snm, the maximal number of poten-
tially unstable eigendirections is n+ m. However, it is impor-
tant to emphasize that there are again wide ranges of stabil-
ity. The associated instability bubbles will bear quite small
growth rates, with the exception of the first one associated
with resonances emerging for small chemical potentials (par-
ticle numbers) right off of the linear limit. From a structural
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Figure 3. Same as figure 2, but for the S3m family of m = 0 (a), m = 1 (b), and m = 2 (c) from the linear limits (3.5,m+ 0.5) to a typical
large-density limit (16, 14) in the (μ1, μ2) parameter space. Here, even the in-phase state has an unstable mode, although it is rather weak.
The states get progressively more unstable as m increases, i.e. as the number of dark soliton increases in the second component. Note that the
second state S31 consists of a DB (left end), DD (middle), and DB (right end) structure.

Figure 4. Same as figure 2, but for the S4m family of m = 0 (a), m = 1 (b), m = 2 (c), and m = 3 (d) from the linear limits (4.5,m+ 0.5)
and up to a typical large-density limit (20, 16) in the (μ1, μ2) parameter space. The top left quartet of panels concerns the S40 state, the top
right the S41 configuration, while, respectively, the bottom left and right constitute the S42 and S43 states. In this case too, the initial
conditions obtained as a result of the SO(2) rotations lead to robust breathing states.

perspective, we can observe in the corresponding configura-
tions that each of the DBs is converted, as a result of the

transformation, into a DD structure. On the other hand, a DD
remains a DD when a collocated DD state exists, as in the case
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Figure 5. Same as figure 2, but for the Sn0 states of n = 5 (a), n = 6 (b), and n = 7 (c) from the linear limits (n+ 0.5, 0.5) to typical
large-density limits. The final chemical potentials are (30, 25), (40, 35), (100, 88) for n = 5, 6, and 7, respectively. Note that the number of
unstable modes increases by 1 as n increases by 1.

Figure 6. Same as figure 2, but for the S80, S90, and S10,0 states of n = 8 (a), n = 9 (b), and n = 10 (c) from the linear limits to (100, 88),
(160, 140), (160, 140), respectively. The number of unstable modes continues to grow by one as the number of dark solitons grows by one,
upon examining the closely spaced unstable modes. Note that 10 DB solitons require as large as μ1 ≈ 100 to be fully stabilized.

of S31 where the relevant zero crossing will be preserved even
after the SO(2) rotation. Similar features to the above ones can
be detected for the S4m family as shown in figure 4. Here, again
the S40 state is the one that features the smallest number of
instability bubbles, although it is relevant to note that off of the
linear limit both the S40 and the S43 state feature two such bub-
bles (while S41 and S42 have only one associated instability).
Nevertheless, all selected (spectrally) stable states at the DB
level yield a number of stable internal vibrations upon SO(2)
rotating the former ones. This is demonstrated in the bottom
sets of space-time contour plots within the figures 3 and 4.

Motivated by this observation, we next only look at
Sn0 states for n = 5, 6, . . . , 10. The results are presented in
figures 5 and 6. Naturally, per the above observations, and
in line with the results of [3], the number of unstable modes,
stemming from the linear limits, increases by one whenever a
dark soliton is added to the first component.This trendmakes it
challenging to stabilize multiple DB solitons. Indeed, for the
S10,0 state, we need chemical potentials of the order of 100
to fully stabilize this structure. However, for these sufficiently
high values of the chemical potential, our direct numerical sim-
ulations confirm the presence of breathing rotated states with a
large number of DD structureswhich lead to the corresponding
internal vibrations and the associated breathing patterns. Since
such initial conditions have been realized in the recent exper-
iments of [23], it should, in principle, be possible to visualize
and resolve the relevant dynamics.

The DD beating patterns have been obtained so far from
perfectly stationary states; nevertheless, it is important to study
the dynamics deviating from stationarity. In the parametric
regime where a state is stable, it is expected that perturbations
(such as initial speed) applied to it will remain bounded. This
is confirmed through the following three examples. The vari-
ous vibrational modes of states S10 (oscillation mode) and S20

(in-phase and out-of-phase oscillation modes) are excited by
adding the corresponding BdG eigenvectors to the stationary
solutions keeping the field norms unchanged. It is observed
that the DD beating patterns remain robust existing on top
of the above vibrations. In these dynamics, the internal exci-
tation frequency is present and the dynamics is no longer a
simple harmonic motion. It is also possible to set up intrin-
sic nonstationary states in the homogeneous setting where the
trapping potential is absent. The appendixA has a collection of
such analytical examples, ranging from nearly stationary ones
(DB solitons seeded apart) to highly excited ones (DB solitons
seeded much closer). It is interesting that these states can be
spatially bounded and also exhibit several time scales in the
beating dynamics, including the nearly stationary states.

Finally, we study the effects of weak deviations from the
perfectly symmetric Manakov limit using the experimentally
relevant values g11 = 1.03, g22 = 0.97, and g12 = g21 = 1
[15, 43]. In particular, figure 7 illustrates the breathing pat-
terns corresponding to the S41 state, where the stable dynam-
ics is suddenly subjected to the above interaction parameters
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Figure 7. Weak disorder for few solitons caused by slight deviations from the perfectly symmetric Manakov limit using the experimentally
relevant values g11 = 1.03, g22 = 0.97, and g12 = g21 = 1 [15]. Here, the breathing patterns emanating from the S41 state are illustrated,
where the stable dynamics is suddenly subjected to the above interaction parameters starting from t = 0. Note that the ground state breathing
mode is immediately excited, and the two condensates breathe in a correlated manner (a); see the boundary undulation of the condensates.
The DD soliton breathing mode is finally also excited (around t = 700) and the breathing patterns become distorted. Nevertheless, the DD
soliton breathing patterns remain robust (b) and (c) for several hundred periods before getting disordered.

Figure 8. Same as figure 7 but for breathing patterns emanating from the S80 state. From about t = 10 onwards, the dark soliton ‘lattice’
gradually undergoes a transition towards a ‘gaseous’ state (a). In this state, the dark solitons frequently collide, thus generating dark bands in
the density profiles. In addition, the background becomes highly excited and fragmented (b) and (c). See the text for more details.

starting from t = 0 (i.e. a quench to the above values of the
interaction coefficients). Note that the ground state breath-
ing mode is immediately excited, and the two condensates
breathe in a correlated (out of phase) manner; see the rele-
vant condensate boundaries. A DD soliton breathing mode is
finally also excited (around t = 700) and the breathing patterns
become distorted. Nevertheless, the soliton breathing patterns
remain robust for several hundred periods before getting disor-
dered. Similar behavior is found for other patterns, where some
patterns persist for somewhat shorter periods (e.g. patterns
resulting from S21 and S30) and others remain robust for a
much larger number of periods (e.g. patterns resulting from
S31 and S40).

Strong disorder can manifest quickly and in a pronounced
manner for many solitons for the same parameters. A typical
time evolution for the state S80 is shown in figure 8. In addi-
tion to the aforementioned weak disorder, the dark ‘lattice’ in
each component can quickly evolve from a more ‘crystalline’
into a ‘gaseous’ state (in line with the terminology of [31]),
where the synchronizationof theDD soliton vibrations is grad-
ually lost. The states then become so disordered that there is
no clearly discernible stationary or periodic pattern. Indeed,
dark solitons in the two components frequently collide form-
ing some ‘dark bands’ in the density profile. The backgrounds
of both states are also highly excited with this phenomenology

persisting up to the time horizon of the very long evolution
simulations shown in figure 8.

3.2. Three-component dark–dark–dark (DDD) breathing
patterns

In the last section of our present work, we turn our focus
to the three-component case. In particular, the GPEs can be
generalized to the following system:

i
∂ψ1

∂t
= −1

2
∂2ψ1

∂x2
+
(
g11|ψ1|2 + g12|ψ2|2 + g13|ψ3|2

)
ψ1

+ V(x)ψ1, (8a)

i
∂ψ2

∂t
= −1

2
∂2ψ2

∂x2
+
(
g21|ψ1|2 + g22|ψ2|2 + g23|ψ3|2

)
ψ2

+ V(x)ψ2, (8b)

i
∂ψ3

∂t
= −1

2
∂2ψ3

∂x2
+
(
g31|ψ1|2 + g32|ψ2|2 + g33|ψ3|2

)
ψ3

+ V(x)ψ3, (8c)

where ψ j(x, t) ( j = 1, 2, 3) are similarly the macroscopic
wavefunctions and gi j (i, j = 1, 2, 3) are the interaction coeffi-
cients with g21 ≡ g12, g31 ≡ g13, g32 ≡ g23. Note that we will
explore the Manakov case herein corresponding to gi j = 1.
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As discussed in the introduction, in addition to its mathemat-
ical interest, this scenario has been touched upon in nonlin-
ear optical multi-component settings; a corresponding BEC
framework would also need to incorporate the spin-dependent
aspect of interactions within the spinor condensates [40, 41].
The Manakov setting features an SU(3) symmetry of the sys-
tem. The external potential assumes the same parabolic form
of V(x) =

(
1/2

)
ω2x2 with ω = 1. Consequently, stationary

states can be constructed by assuming

ψ j(x, t) = ψ0
j (x)e

−iμ jt (9)

which transform equations (8a)–(8c) into the steady-state sys-
tem:

− 1
2
d2ψ0

1

dx2
+
(
g11|ψ0

1 |2 + g12|ψ0
2 |2 + g13|ψ0

3 |2
)
ψ0
1

+ V(x)ψ0
1 − μ1ψ

0
1 = 0, (10a)

− 1
2
d2ψ0

2

dx2
+
(
g12|ψ0

1 |2 + g22|ψ0
2 |2 + g23|ψ0

3 |2
)
ψ0
2

+ V(x)ψ0
2 − μ2ψ

0
2 = 0, (10b)

− 1
2
d2ψ0

3

dx2
+
(
g13|ψ0

1 |2 + g23|ψ0
2 |2 + g33|ψ0

3 |2
)
ψ0
3

+ V(x)ψ0
3 − μ3ψ

0
3 = 0, (10c)

that we solve numerically. The computational set up is simi-
lar to the two-component case, tracing states from their linear
limits to a TF regime. For completeness, the BdG stability
analysis is presented in the appendix B. It is also relevant to
mention that restricting thismatrix to its 4× 4 submatrix of the
top left elements and setting ψ3 = 0, one retrieves naturally as
a special case the corresponding two-component BdG stabil-
ity matrix. Since our goal is to illustrate the generality of our
method, we will only examine in detail here two prototypical
examples, namely the low-lying S210 and S310 states.

We perform the continuation of both states S210 and S310

over the chemical potentials from the associated linear lim-
its to a TF regime of (μ1, μ2, μ3) = (20, 18, 16). The left and
right panels of figure 9 correspond to the BdG spectra of S210

and S310, respectively. It should be noted that although both
branches have intervals of instabilities (see the red colored,
‘instability bubbles’ in the pertinent panels), there exist wide
intervals of stability where the solutions are expected to be
long lived. Upon selecting stable steady states (according to
our spectral stability analysis results), we SU(3)-rotate them in
order to explore the possibility of forming breathing yet robust
patterns in the three-component case. Generally, this can be
done by means of a unitary matrix U = eiHθ, where H is a lin-
ear combination of the so-called Gell–Mann matrices [44]. To
be more specific, we focus on a relatively symmetric rotation
for simplicity (other ones and consequently other patterns are
possible) dictated by the following unitary matrix [28]:

U =
1√
3

⎛
⎝1 1 1
1 − exp(iπ/3) exp(i2π/3)
1 exp(i2π/3) − exp(iπ/3)

⎞
⎠ . (11)

Figure 9. The BdG spectra (λ = λr + iλi) for the states S210 (left)
and S310 (right) as a function of μ1. Here, the states emanate from
the linear limits and our continuation terminates close to a TF
regime with (μ1, μ2, μ3) = (20, 18, 16). Note that both states
feature wide intervals of stability. The real parts in both panels are
multiplied by a factor of 10 for visualization purposes.

Figures 10 and 11 summarize our results for the S210

and S310, respectively. In particular, the top panels therein
showcase the spatial distribution of the densities of the
respective components for the unrotated (dashed-dotted lines)
and rotated (solid lines) solutions. The bottom panels in
the figures offer the spatio-temporal evolution of the sub-
sequent dark–dark–dark (DDD) beating patterns (|ψ1(x, t)|2,
|ψ2(x, t)|2, and |ψ3(x, t)|2 are shown from left to right). Natu-
rally, there are two dark solitons in each component for the
rotated S210 whereas there exist three for the rotated S310.
The beating dynamics of S210 is robustly periodic, featuring
a single-period internal vibration of the state. Upon examina-
tion, this is a coincidence resulting from our chosen param-
eters, where μ1 − μ2 = μ2 − μ3, yielding only one period,
i.e. 2π/(μ1 − μ2) ≈ 3.6664. This agrees very well with the
results of our simulations. On the other hand, two frequen-
cies are genuinely present for the S310 beating dynamics, as
the above relation has not been selected in our initial data.
Beating patterns for the S210 state in the homogeneous setting,
i.e. without an external trapping potential, were studied ana-
lytically for particular solutions [28]. However, in the present
work,we demonstrate that this state exists and is, in fact, robust
over a wide range of parameters.

Here, we summarize the key findings of this section for both
two-component and three-component systems:

(a) We have systematically constructed a series of complex,
stationary and breathing soliton states from their bifurcat-
ing linear limits to the TF regimes in both two- and three-
component systems, and find that they can all feature wide
parametric intervals of stability in the TF regimes for the
solitons considered herein.

(b) The two-component stationary soliton Snm produces n
DD beating patterns after applying a unitary rotation to
the former. The pattern gets increasingly in phase as m
increases from 0 to n− 1.

(c) The three-component stationary soliton Snmp after unitary
rotation produces DDD beating patterns. These patterns
are typically more complex with multiple frequencies
present in the oscillation dynamics.

(d) The above beating patterns are robust and observable
if the starting point (prior to rotation) consists of a
dynamically stable state. This is so even if the stable initial
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Figure 10. Summary of results for the S210 state. Top row: the densities |ψ j|2 ( j = 1, 2, 3) of the steady-state profiles for μ1 = 14.998 146,
μ2 = 13.284 432, and μ3 = 11.570 432 are shown with dashed-dotted black lines, and the SU(3) rotated versions of them are shown with
solid blue, red, and green lines, respectively. Bottom row: spatio-temporal evolutions of the densities |ψ1(x, t)|2 (left panel), |ψ2(x, t)|2
(middle panel), and |ψ3(x, t)|2 (right panel) are shown where the initial states employed are the SU(3) rotated states of the top row.

Figure 11. Same as figure 10 but for the S310 state with chemical potentials μ1 = 15.283 574, μ2 = 13.283 574, and μ3 = 11.569 574. Note
that there are genuinely two frequencies involved in this DDD breathing dynamics.

stationary state is perturbed before rotation, or interaction
parameters deviate slightly from the Manakov limit.

Finally, these beating dynamics should be readily accessi-
ble experimentally, e.g. in hyperfine states of 87Rb conden-
sates, given the substantial recent developments in manipu-
lating cold atoms. In particular, DD (or DDD in the three-
component counterpart) solitons may be directly generated
in condensate counterflow experiments [45]. Alternatively, it

should be possible to first prepare, e.g. DB structures in a
controlled manner using combined density and phase engi-
neering [32, 46, 47] and subsequently rotate to DD structures
using Rabi oscillations [48] and the spatially dependent con-
trol thereof that has been recently used experimentally to cre-
ate multi-soliton patterns [23]. It should also be noted that
the recent work of [33] that appeared after the submission of
the present work offered another example of the type of con-
trol that is available presently with multi-component solitons.
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The utilization of spatially dependent spin rotations realized
via steerable laser beams enables the local coherent trans-
fer of atoms across components and the controlled creation
of dark–bright–bright solitons with arbitrary phases so as to
examine their collisions. These techniques and their local den-
sity and phase control are strongly suggestive that the types of
dynamically robust patterns proposed herein should be exper-
imentally accessible. Indeed, the work of [33] is important
for yet another reason, namely that it realized for the first
time experimentally the three-component model with equal
density-dependent interactions, i.e. the three-componentMan-
akov model, that we also touch upon herein.

4. Conclusions and future challenges

The present work offered a systematic study of distinct SO(2)-
induced multiple DD breathing patterns from stationary and
stable DB and DD bound modes. In particular, we studied the
existence and stability of these structures from their respec-
tive linear limits to typical TF regimes, where they are found
to possess wide parametric intervals of spectral stability. We
found that for n solitons, there are n distinct coherent pat-
terns that stem from the linear limit and which range from
fully in-phase to fully out-of-phase ones. Analytical results in
the homogeneous setting are also discussed: here the rotation
typically involves the breathing of dynamically non-stationary
configurations. Moreover, we presented a generalization of
our approach to the three-component GPE system to illustrate
prototypical case examples showcasing the generality of the
considerations discussed herein.

Motivated by this work, there are multiple avenues for
future study that we plan to pursue. One natural extension
of our work is to generalize considerations to higher dimen-
sions. In 2D, vortex clusters and/or dark soliton filaments filled
with bright components of various relative phases are possible,
generating, e.g. various vortex cluster-vortex cluster breathing
patterns. In 3D, vortex filaments and/or dark soliton surfaces
filled with bright components of various relative phases are
relevant for future studies. Importantly, recent experimental
progress, including, e.g. the configurations reported in [23],
suggests that such states can be accessed as initial conditions
in state-of-the-art experiments and hence the corresponding
vibrational dynamics should, in principle, be experimentally
tractable. It is not readily obvious that one can find a systematic
way to construct all the topologically distinct states and breath-
ing patterns as in 1D since new states can bifurcate away from
the linear limit [49]. In addition, there are also different pos-
sible combinations of linear eigenmodes. For instance, |1, 0〉
(where the separated by comma indices denote here the lin-
ear eigenstates in the different spatial dimensions) produces a
dark soliton stripe, while (|1, 0〉+ i|0, 1〉)/

√
2 produces a sin-

gle vortex, starting from essentially the same basis. An addi-
tional challenge concerns the (in)stability properties of these
structures. It is relevant to seek suitable potential configura-
tions to stabilize, e.g. some dark soliton filaments and surfaces
against their transverse instabilities by adding external pinning
potentials. It is also challenging to stabilize certain multiple
vortical filament structures, and preliminary data suggest that

even the double vortex rings filled by either in-phase or out-of-
phase bright components are extremely difficult to stabilize, at
least in a spherical trap. In this situation, one can either further
increase the chemical potentials or explore instead other trap
settings.

Finally, systematic studies of the three-component system
and even beyond that are also interesting; notice, in that vein,
both the F = 1 and F = 2 spinor systems are presently exper-
imentally accessible in atomic condensates [40, 41]. In our
work, we have studied a few selected examples of three-
component structures, focusing, in particular, on the Manakov
case. Yet, more complex structures should be accessible under
physically realistic (spinor) perturbations, but also in higher
dimensions. Research work along these lines are currently in
progress, and will be reported in future publications.
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Appendix A. Multiple dark–dark soliton breathing
patterns in a homogeneous setting

The multi-DB solutions here are calculated using a modified
Darboux transformation in the homogeneous setting [50]. Two
typical quasi-static solutions along with the symmetric SO(2)
rotated solutions are depicted in figure 12 where the panel (a)
of the figure shows the evolution of two well-separated DB
solitons; essentially these waves are sufficiently far away from
each other and, hence, do not feel the presence of each other
over the time scale of the simulation. As a result, over the
horizon of the simulation shown in panel (a) of figure 12, the
internal beating of each of the two DD solitary waves occurs
with different frequencies. When the solitons are initialized
closer, the interaction between them affects the beating pat-
terns as illustrated in figure 12(b). Similarly, the cases for three
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Figure 12. Space-time density evolutions of two DB solitons and DD breathing patterns for well-separated (a) and closely initialized (b)
cases. The top panels show the bright-soliton component and the dark-soliton component, and the lower panels show the rotated DD
breathing patterns. The well-separated solitons yield effectively isolated beating DD solitons, while the nonlinear interaction between
solitons changes the beating patterns significantly.

DB solutions and the rotated dynamics are shown in figure 13.
Figure 13(a) shows the evolution of three well-separated DB
solitons, again with very distinct breathing frequencies. As
the initial DBs are brought closer, the beating patterns again
become strongly affected by the interaction between solitons;
cf figure 12(b). These beating patterns are found to be stable
against weak perturbations. The resulting pattern being highly
evolving over time remains spatially localized. Note, however,
that this would no longer be true in the attractive case [51] due
to modulational instability of the (density) background.

Appendix B. Linear stability analysis of the
three-component GPE

Upon substituting equation (7) (with j = 1, 2, 3) into
equations (8a)–(8c), we obtain at order O(ε) an eigenvalue
problem of the form:

ρ

⎛
⎜⎜⎜⎜⎜⎜⎝

a1
b1
a2
b2
a3
b3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 A14 A15 A16

−A∗
12 −A11 −A∗

14 −A∗
13 −A∗

16 −A∗
15

A∗
13 A14 A33 A34 A35 A36

−A∗
14 −A13 −A∗

34 −A33 −A∗
36 −A∗

35
A∗
15 A16 A∗

35 A36 A55 A56

−A∗
16 −A15 −A∗

36 −A35 −A∗
56 −A55

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

a1
b1
a2
b2
a3
b3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

where the distinct matrix elements are given by:

A11 = −1
2
d2

dx2
+ 2g11|ψ0

1 |2+g12|ψ0
2 |2 + g13|ψ0

3 |2+V(x)− μ1,

A12 = g11
(
ψ0
1

)2
,

A13 = g12ψ
0
1

(
ψ0
2

)∗
,

A14 = g12ψ
0
1ψ

0
2,

A15 = g13ψ
0
1

(
ψ0
3

)∗
,

A16 = g13ψ
0
1ψ

0
3,

A33 = −1
2
d2

dx2
+ g12|ψ0

1 |2 + 2g22|ψ0
2 |2+g23|ψ0

3 |2 + V(x)− μ2,

A34 = g22
(
ψ0
2

)2
,

A35 = g23ψ
0
2

(
ψ0
3

)∗
,

A36 = g23ψ
0
2ψ

0
3,

A55 = −1
2
d2

dx2
+ g13|ψ0

1 |2 + g23|ψ0
2 |2+2g33|ψ0

3 |2 + V(x)− μ3,

A56 = g33
(
ψ0
3

)2
.

Here, ρ = iλ is the eigenvalue with the associated
eigenvector:

W(x) = (a1(x) b1(x) a2(x) b2(x) a3(x) b3(x))
T.

The eigenvalue computations for the three-component case
were performed by using the FEAST eigenvalue solver [52]
where (usually) 100 eigenvalues were computed with 10−8

tolerance on the residuals.
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Figure 13. Similar to the previous figure but now for the three DB soliton case, once again when well-separated (a) and nonlinearly
interacting (b).
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[49] Charalampidis E G, Boullé N, Farrell P E and Kevrekidis
P G 2020 Bifurcation analysis of stationary solutions of
two-dimensional coupled Gross–Pitaevskii equations using
deflated continuation Commun. Nonlinear Sci. Numer. Simul.
87 105255

[50] Ling L, Zhao L-C and Guo B 2015 Darboux transformation and
multi-dark soliton for N-component nonlinear Schrödinger
equations Nonlinearity 28 3243

[51] Zhao L-C, Duan L, Gao P and Yang Z-Y 2019 Vector rogue
waves on a double-plane wave background Europhys. Lett.
125 40003

[52] Kestyn J, Polizzi E and Tang T P 2016 Feast eigensolver for
non-Hermitian problems SIAM J. Sci. Comput. 38 S772

15

https://doi.org/10.1103/physreve.61.3093
https://doi.org/10.1103/physreve.61.3093
https://doi.org/10.1088/0953-4075/45/11/115301
https://doi.org/10.1088/0953-4075/45/11/115301
https://doi.org/10.1103/physreva.93.063623
https://doi.org/10.1103/physreva.93.063623
https://doi.org/10.1103/physreve.97.062201
https://doi.org/10.1103/physreve.97.062201
https://doi.org/10.1111/j.1467-9590.2011.00525.x
https://doi.org/10.1111/j.1467-9590.2011.00525.x
https://doi.org/10.1088/1751-8113/45/8/085205
https://doi.org/10.1088/1751-8113/45/8/085205
https://doi.org/10.1103/physreve.91.032905
https://doi.org/10.1103/physreve.91.032905
https://doi.org/10.1103/physreva.101.053629
https://doi.org/10.1103/physreva.101.053629
https://doi.org/10.1103/physrevlett.125.170401
https://doi.org/10.1103/physrevlett.125.170401
https://doi.org/10.1088/0951-7715/23/8/001
https://doi.org/10.1088/0951-7715/23/8/001
https://doi.org/10.1103/physrevlett.87.130402
https://doi.org/10.1103/physrevlett.87.130402
https://doi.org/10.1103/physrevlett.101.130401
https://doi.org/10.1103/physrevlett.101.130401
https://doi.org/10.1103/physrevlett.110.200406
https://doi.org/10.1103/physrevlett.110.200406
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1103/revmodphys.85.1191
https://doi.org/10.1103/revmodphys.85.1191
https://doi.org/10.1364/ol.24.000327
https://doi.org/10.1364/ol.24.000327
https://doi.org/10.1103/physrevlett.99.190402
https://doi.org/10.1103/physrevlett.99.190402
https://doi.org/10.1103/physrev.125.1067
https://doi.org/10.1103/physrev.125.1067
https://doi.org/10.1103/physrevlett.106.065302
https://doi.org/10.1103/physrevlett.106.065302
https://doi.org/10.1038/44095
https://doi.org/10.1038/44095
https://doi.org/10.1103/physreva.63.051601
https://doi.org/10.1103/physreva.63.051601
https://doi.org/10.1103/physreva.78.023635
https://doi.org/10.1103/physreva.78.023635
https://doi.org/10.1016/j.cnsns.2020.105255
https://doi.org/10.1016/j.cnsns.2020.105255
https://doi.org/10.1088/0951-7715/28/9/3243
https://doi.org/10.1088/0951-7715/28/9/3243
https://doi.org/10.1209/0295-5075/125/40003
https://doi.org/10.1209/0295-5075/125/40003
https://doi.org/10.1137/15m1026572
https://doi.org/10.1137/15m1026572

	Dark–dark soliton breathing patterns in multi-component Bose–Einstein condensates
	1.  Introduction
	2.  Models and methods
	2.1.  Computational setup, dimensional reduction and SU(2) symmetry
	2.2.  Constructing irreducible topologically distinct stationary states from the linear limits

	3.  Results
	3.1.  Multiple dark–dark breathing patterns in two components
	3.2.  Three-component dark–dark–dark (DDD) breathing patterns

	4.  Conclusions and future challenges
	Acknowledgments
	Data availability statement
	Appendix A.  Multiple dark–dark soliton breathing patterns in a homogeneous setting
	Appendix B.  Linear stability analysis of the three-component GPE
	ORCID iDs
	References


