Advances in Applied Mathematics 124 (2021) 102099

Contents lists available at ScienceDirect =
Advances in Applied Mathematics MaTEATES
www.elsevier.com/locate/yaama
On some configurations of oppositely charged )
trapped vortices in the plane

Emilie Dufresne **, Heather A Harrington ",
Jonathan D. Hauenstein ¢, Panayotis G Kevrekidis ¢,

Paolo Tripoli

& Department of Mathematics, University of York, York, YO10 5DD, United

Kingdom

P Mathematical Institute, University of Ozford, Andrew Wiles Building, Radcliffe
Observatory Quarter, Woodstock Road, Ozford, OX2 6GG, United Kingdom

¢ Department of Applied and Computational Mathematics and Statistics, University
of Notre Dame, Notre Dame, IN 46556, USA

d Department of Mathematics and Statistics, University of Massachusetts Amherst,

Amherst, MA 01003-4515, USA

€ School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, United Kingdom

ARTICLE INFO

ABSTRACT

Article history:

Received 19 November 2018
Received in revised form 3 August
2020

Accepted 4 August 2020

Available online 16 December 2020

MSC:
81U30

Keywords:

Bose-Einstein condensates

Standing wave vortex configurations
in the plane

Symbolic computational methods
Invariant theory

* Corresponding author.

Our aim in the present work is to identify all the possible
standing wave configurations involving few vortices of different
charges in an atomic Bose-Einstein condensate (BEC). In
this effort, we deploy the use of a computational algebra
approach in order to identify stationary multi-vortex states
with up to 6 vortices. The use of invariants and symmetries
enables deducing a set of equations in elementary symmetric
polynomials, which can then be fully solved via computational
algebra packages. We retrieve a number of previously identified
configurations, including collinear ones and polygonal (e.g.
quadrupolar and hexagonal) ones. However, importantly, we
also retrieve a configuration with 4 positive charges and 2
negative ones, which is unprecedented, to the best of our
knowledge, in BEC studies. We corroborate these predictions
via numerical computations in the fully two-dimensional PDE

E-mail addresses: emilie.dufresne@york.ac.uk (E. Dufresne), harrington@maths.ox.ac.uk
(H.A. Harrington), hauenstein@nd.edu (J.D. Hauenstein), kevrekid@math.umass.edu (P.G. Kevrekidis),

paotripoli@gmail.com (P. Tripoli).

https://doi.org/10.1016/j.aam.2020.102099

0196-8858/© 2020 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aam.2020.102099
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yaama
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aam.2020.102099&domain=pdf
mailto:emilie.dufresne@york.ac.uk
mailto:harrington@maths.ox.ac.uk
mailto:hauenstein@nd.edu
mailto:kevrekid@math.umass.edu
mailto:paotripoli@gmail.com
https://doi.org/10.1016/j.aam.2020.102099

2 E. Dufresne et al. / Advances in Applied Mathematics 124 (2021) 102099

system of the Gross-Pitaevskii type which characterizes the
BEC at the mean-field level.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The explosion of interest in the theme of atomic Bose-Einstein condensates (BECs)
[56,54,36] has had significant implications in the study of associated nonlinear coherent
structures, including vortices, as well as vortex lines and vortex rings [55]. In particular,
settings involving the emergence and precessional dynamics of one or few vortices (see
e.g. [2,28,12,52,23,46,51] for some typical examples), as well as the exploration of higher
charged vortices and their potential decay to lower charged ones (see, e.g., [60,33]) have
been topics that garnered considerable interest within the atomic and nonlinear commu-
nities and motivated numerous associated experiments. Vortical patterns not only in two
but also in higher dimensions (e.g., filaments in the form of lines and rings in 3d) were
also produced by means of dynamical instabilities such as the extensively studied trans-
verse instability [3,19,37]. The topic of one [35] and few vortices (possibly of different
signs [58,25,50,27]) remains under active experimental investigation still to this day.

The study of BECs at the mean-field level at (and very close to) zero temperatures is
well established to be described by the famous Gross-Pitaesvkii (GP) partial differential
equation (PDE) [56,54,36]. When rewriting the equation for the complex wavefunction
into a system of equations for the density p and velocity v = V¢ (where ¢ is the phase
of the complex field) one obtains a system strongly reminiscent of the Euler equations
in fluid dynamics. For a recent, detailed account of this connection, see, e.g., [11]. The
role of the quantum features arises through the so-called quantum pressure term. This
analogy can be utilized to approximate the vortex dynamics and interactions within the
GP system by those of point vortices in the fluid setting; for a recent discussion of how
to utilize configurations of the latter to prove the existence of steady or co-traveling
states in the former, see, e.g., [40]. There is a history of connections between the theory
of different types of polynomials and the study of vortices in fluids [34,5,4]. Recent years
have seen an attempt to extend such considerations to the more complex (in that it bears
an external trapping potential) setting of BECs, including extensions of relevant multi-
vortex configurations [6] and associated polynomial generating function techniques [7].
It is along these lines of associating the equations for the vortex positions (and their con-
jugates) with a system of polynomial equations and using symbolic algebraic techniques
to tackle the latter that we proceed in the present study.

Solving polynomial equations is central to algebraic geometry. Over the past century
many approaches have been developed, and with them, many algorithms. Fifty years
ago, Buchberger proposed the Grobner basis algorithm for solving polynomial systems
[13], which was improved by Faugere [20], and is now the central tool in computational
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algebraic geometry (see, for example, [14]). Grobner bases are implemented in several
packages, from general symbolic software such as Mathematica [32] and Maple [42], to
specialized software such as Magma [10], Singular [16] and Macaulay2 [26]. Despite the
computational complexity of Grobner bases being double exponential in the worst case,
there has been much success in using Grébner basis techniques to solve problems in a
wide range of applications including shear flow, nonlinear mechanics, chemical reactions,
dynamical systems, statistics, systems biology and computer vision, among many others
[53,41,18,24,57,38,29,1].

Our aim here is to use such methods to fully characterize all possible solutions of the
system of vortex equations for stationary configurations involving up to 5 vortices and
offer all the computationally tractable solutions for 6 vortices. There are two natural
avenues for obtaining polynomial equations to describe the vortex positions. We either
consider the conjugate variables of the vortex positions or separate the equations in terms
of real and imaginary parts. However, solving these systems using standard Grébner basis
approaches is computationally out of reach [43] (see Table 2). The next step is then to
attempt to exploit any symmetries in the equations. The system of equations for the
vortex positions (see Equation (6)) is symmetric in the variables, that is, it is invariant
under the action of a permutation group. However individual equations in the system
are not invariant. If the system was given by algebraic equations, then theoretically
there is a system consisting of invariant equations which has the same solutions and
can be rewritten in terms of a basic set of invariants (see [62,17]). However using the
standard algorithms in invariant theory is, again, computationally intractable for the
vortex equations.

While all the general approaches fail for the vortex problem, one can tailor ideas from
computational algebra and invariant theory to gain new insight about vortex configu-
rations. For example, Faugére and Svartz [21] proposed a general approach for systems
with an action of the permutation group and they specialized their approach to find
configurations of up to 8 single charged vortices. Here we extend this analysis to the
equally relevant case of vortices with opposite charges. While vortex configurations of
the same charge are rigidly rotating, those with opposite charges can be genuinely sta-
tionary [36]. For the latter, we specifically first construct a family of symmetric equations
in the variables and their conjugates whose set of common zeros includes the solutions to
the ODE approximation of the vortex problem. Next, from these equations we deduce a
set of equations in the elementary symmetric polynomials in the variables. The common
zero set of these equations, again, includes the solutions to the ODE approximation of
the vortex problem. Finally we solve the system in the elementary symmetric polyno-
mials and we convert the solutions into the original variables. Practical considerations
presently prohibit an exhaustive study of larger (than 6, as considered herein) numbers
of vortices, although this is an interesting and practically important topic for further
study. Once we have these solutions, our final step is to come full circle and check the
existence of such configurations in the original PDE problem. This is explored in some
detail (and at different levels of approximation) in Section 5.
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Our paper is organized as follows. In Section 2 we explain how to translate the under-
lying PDE to polynomial systems. The theoretical results and proofs of the two charged
vortex problem using algebraic approaches is presented in Section 3. In Section 4 we
give the results from the computational algebra for the configurations of vortices and
the benchmarking of the various approaches, showing that the direct approaches fail.
In Section 5, we show that numerical solutions of the PDE corroborate the presently
identified solution, as well as all the ones for smaller vortex numbers. Finally, in the last
section, we give conclusions and suggest some directions for future work.

2. From vortices to algebra

The original PDE problem involves identifying standing wave solutions of the two-
dimensional Gross—Pitaevskii equation of the form [56,54]:

1
iy = —§Au + Jul?u + Vu, (1)

where A represents the two-dimensional Laplacian and the external trapping potential
V/(r) is assumed to be parabolic, i.e., V(r) = $Q2r?, where r = 2+ y* and (2 is the trap.
Notice that this dimensionless version of the GP equation has been obtained through well-
established reductions of the dimensional one, as detailed, e.g., in [36]. We use solutions
of the form wu(x,y,t) = e U (z,y) with chemical potential u and subsequently solve
the nonlinear steady state problem for U(x,y) via a fixed point iteration.

When identifying solutions bearing vortices, we can attempt to capture the effective
dynamics of the vortices through the following ordinary differential equations:

= Sjwprzj + Z (2)

1<k#j<n Zj—

Here S; are the charges of the vortices, wy, is their precession frequency inside the
parabolic trap, 7 is v/—1 and the complex number z; represents the planar position of
the j-the vortex. Near the center of the trap it is reasonable to assume that vortices
have a nearly constant precession frequency wp,. This has been described, e.g., recently
in [35]. The second term captures the inter-vortex interactions of the j-th vortex with
all the other vortices (summed over k). Notice that this is a velocity-induced interaction,
i.e., each vortex induces a velocity field at the location of all the others, as is the case
for vortices in inviscid, incompressible fluid (point) vortices. Notice that this description
is progressively more accurate for larger values of the chemical potential u, whereby the
vortices approach the limit of point vortices with (decreasing width and thus) no internal
structure.

However, the ground state of the system, i.e., the background over which the vortices
are located decreases in its density as one moves radially outwards, due to the presence
of the parabolically confining external potential. As has been extensively examined since
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early on [22] (see also the recent discussion of [35]), this has an implication of radially
increasing the precession frequency according to

wpr (0)
wpr(|25]) = [ VD (3)

m

In turn, this leads to the amended version of the equations of motion as:

.. Wr
izj =5 pv(\ )J+ Z (4)

1- 1<k;£]<n

However, it turns out that the interactions between the vortices are also affected by
the presence of the external potential. In particular, the interactions between the vortices
as characterized in Equation (2) assume the presence of a homogeneous background in
which the vortices move. A spatially inhomogeneous background, present in the case of
the trap, modifies (i.e., screens) the inter-vortex interactions in a way that has been
recently captured, e.g., in [64]. As discussed in this work and its references, the effect
of the presence of a spatially inhomogeneous background can, in turn, be captured by a
modulating factor, leading to a further revised form of the equations. The latter account
for the inhomogeneous background in both the individual vortex precession and in the
inter-vortex interactions by equations:

S
izjzsjl_ sz Y ’“_. (5)

1<kZj<n |Zk| %k

Our aim in the present work is to explore equilibrium multi-vortex configurations
involving vortices of both charges, i.e., with S; = 1. In particular, we will more specifi-
cally assume that we have M vortices with S; = 1 and N vortices with §; = —1. We will
denote the former with the positions x1,...,xa in the complex plane C and the latter
with the positions y1, ..., yn in the same plane. Our analysis will take place at the level
of the simplest equation for the vortices, namely Equation (2). However, in Section 5,
we will illustrate the connections of this setting with the full original problem, as well as
the more elaborate (and more accurate) variations of the form of Equations (4) and (5).
At the level of Equation (2), splitting the equations for positive and negative charges,
according to the symbolism above, we obtain the steady state formulation:

M N
l'i:—;xl JZJ—'_jlel yj :17 .M,

g " (6)
Yi = _; vi — ; — x] =1, N

j=1

Note that the solutions of this system present many symmetries:



[ E. Dufresne et al. / Advances in Applied Mathematics 124 (2021) 102099

Lemma 2.1 (Symmetries of the vortex equations). The set of solutions to the system (6)
is invariant under up to the following three different group actions.

o The product of symmetric groups Sy X Sy acts by permuting the wvariables via
(01,02) T = To, 3y, (01,02) * Yj = Yo (5)-

o The group of complex numbers of modulus 1 acts via \ - x; = Ax; and X\ - y; = \y;.
This corresponds to rotations of the complex plane around the origin.

o The cyclic group of order 2 acts via conjugation. This correspond to reflection of the
complex plane with respect to the real axis.

Moreover, when M = N, the set of solutions to the system (6) is invariant under an
additional group action.

o The cyclic group of order 2 acts by exchanging x; and y;.

Proof. This is verified via straightforward computations. O
2.1. Obtaining algebraic equations: direct approaches

System (6) fails to be algebraic because of the presence of the conjugation operator. In
the next two subsections, we discuss two direct approaches for converting this problem
into an algebraic problem, which provides the possibility to use algebraic methods. Both
approaches end up doubling the number of variables and equations. We show in Section 4
that these approaches can only succeed in their practical implementation, if the resulting
system is suitably reduced.

2.1.1. Conjugate variables
A first method of converting system (6) to an algebraic system is to introduce a

new sets of variables Xi,... X, Y1,... Yy representing the complex conjugates of the
variables z1,...x5, Y1, .. yn- Therefore we obtain the following equations:
Moo Yo
Xi=-> + L i=1,... M, (E™)
— L — Ty i — Yy
J#i 1
j=1
Moo Moo
YVi=-> -+ —— i=1,...N, (EW)
i y’b_yj jzlyz_x]
j=1
<N Yo )
i=- =1,...M E"
v ZXi—X X,—y, '~ ooh (E:)
j#i 7=l J
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We now have 2(M + N) equations in 2(M + N) variables.

Remark 2.2. Each of the symmetries described in Lemma 2.1 extends to the solutions of
this new system naturally.

Polynomial equations for this system are obtained from these equations by clearing
the denominators. Let us denote by D the discriminant D = [],;(z;i — z;) - []; ; (@i —
Y;) - 1liz;(yi —y;) and by D the discriminant in the conjugate variables D = [], . (X; —
X;)- 1L ;(Xi—Y5)- H#j_(Y,; —Y;). Since we cleared the denominators, we need to exclude
solutions where D and D are zero. This is done by introducing two new variables h and
H and by adding to the system the equations h-D —1=0and H-D —1 = 0. If we solve
the system without doing this step, then we will find infinitely many solutions. Finally,
to reduce the dimension of the set of solutions, we need to remove the symmetry given
by the multiplicative action of complex numbers of modulus 1 mentioned in Remark 2.2.
To do so, we impose the condition that some non-zero variable of the system is real. We
do this in the following way:

(1) we subdivide the system into two subsystems corresponding to the cases 1 = 0 and
x1 # 0. In particular, the first subsystem is obtained by adding the new equation
x1 = 0, the second subsystem is obtained by adding a new variable a and the new
equation a-z; —1 =0,

(2) we add the new equation y; — Y7 = 0 to the subsystem where 21 = 0 (i.e., we assume
y1 # x1 = 0 is real) and we add the new equation x; — X; = 0 to the subsystem
where 21 # 0 (i.e., we assume x1 # 0 is real).

The two systems so obtained can be solved using standard algebraic geometric tools and
in the cases considered yield finitely many solutions. To get the solutions of system (6)
we now just need to select those solutions where z; = X; and Y = Y;.

2.1.2. Real and imaginary parts

An alternative approach to describe system (6) as a polynomial system consists in dou-
bling up the number of equations and variables by considering real and imaginary parts
separately. We introduce 2M + 2N variables a1, ...,ap,b1,...,bp,¢1,...,¢N,d1, ... dN.
We substitute the variables in system (6) via z; = a; ++/—1b; and y; = ¢; + v/—1d; and
we clear the denominators. Separating the real and imaginary parts of the resulting
M + N equations, we get a system of 2M + 2N real polynomial equations, two for each
equation of system (6). Finding solutions to system (6) is now equivalent to finding real
solutions to this new system. The discriminant D can be written as D = [[,,;(a; +

\/—_lbi —aj— \/—_H)]) . Hm.(ai + \/—_lbZ —Cj— \/—_ldj) . Hi?éj(ci + \/—_ldl —Cj— \/—_ld])
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The discriminant D can be written as a sum D = D¢ + v/—1Djn,, where D, and Djn,
are real polynomials. We now add to the systems an extra variable h and the equation
h+Dye-Dim —1 = 0 to ensure that the real and the imaginary part of D are not both zero.
Here, the multiplicative action of complex numbers of modulus 1 becomes the group of
rotations around the origin in the real plane. We get rid of this 1-dimensional symmetry
by requiring that one of x; = a; + +/—1b1 or y1 = ¢1 + /—1d; is purely imaginary:

(1) we subdivide the system into two subsystems corresponding to the cases a; +
vV=1b; = 0 and a; + +/—1b; # 0. In particular, the first subsystem is obtained
by adding the new equations a; = 0 and b; = 0, the second subsystem is obtained
by adding a new variable k and the new equation k- a1 - by —1 =0,

(2) we add the new equation ¢; = 0 to the subsystem where a; + +/—1b; = 0 and we
add the new equation a; = 0 to the subsystem where a; + +/—1b; # 0.

Real solutions of this system can now be obtained either by finding all complex solu-
tions with symbolic methods and then picking out the real solutions, or by approximation
with numerical algebraic geometry (see Section 4).

3. Obtaining algebraic equations: exploiting the symmetries

In this section we exploit the invariance of system (7) under the action of Sp; x Sy
to obtain a new set of equations. The equations we obtain are not simpler to the eye, far
from it, but will prove to be better for symbolic computations (See Section 4).

In the rest of this section we explain how to exploit the symmetries described in
Lemma 2.1 and Remark 2.2 in order to go further with computations than what can be
achieved with the direct approaches. We focus on the action of the product of symmetric
groups. Our starting point is the conjugate variables system. Invariant theory of finite
groups suggests that since the system is invariant there exists a set of invariant equations
which have the same set of common zeros [62]. Furthermore these invariant equations
can be written as polynomials in a finite generating set of the polynomial invariants [17].
The idea is then to solve for the value of these generators, with the hope that this compu-
tation is more feasible than the direct computation. There are two main problems with
this plan. First, the symbolic methods for performing this “symmetrization” and “rewrit-
ing” rely on Grobner bases and so are quickly computationally intractable. Second, the
set of generating invariants for the action on the variables x;, X;,y;, Y; is complicated.
If we consider only the action on the variables x;,y;, then a generating set is simple

enough, indeed one may take the elementary symmetric polynomials egﬂ”), ey eg\”j) in the

variables x1, ..., x5 and the elementary symmetric polynomials egy), ey eg\z,’) in the vari-

ables y1,...,yn, given by e,(f) = > rc(m), 1=k I Lies @i and e,(cy) =21y, 1=k L Lier ¥ir
respectively.

We take an indirect approach inspired by the methodology utilized by Faugere and
Svartz towards solving for the (rigidly rotating) configurations of vortices of a single
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charge [21]. The first step is to construct a set of invariant equations, written in terms of
invariants in the variables x;, X;, y;, Y;, whose set of common zeros includes the solutions
to System (6) (i.e. those common zeros of the conjugate variable system such that X; = z;
and Y; = 7;). From these, we then deduce symmetric equations in the x;, y; whose set of
common zeros includes the solutions to System (6). The rewriting is done at the same
time. The section ends with an explanation of our solution procedure.

3.1. Invariant equations

In this section we introduce some invariant equations that are satisfied by the solutions
to the vortex problem.

To start, we provide a useful compact form of the conjugate system. We set P(z) =
Hf\il(z —z;) and Q(z) = Hf\il(z — ;). We have the following Lemma.

Lemma 3.1. The system {Efz),Efm),E§y)7E§y) |i=1,...,M,j=1...N} is equivalent

to:
P// / P// / X
X; = — /(xl) (”“"Z), @ = /( Do Q) Ly
2P /(/zz) (;Tv) 2P /(/ ) Q(,X1> (7)
P
o @ P Q) PE
2Q'(yi)  Plys) 2Q(Y;)  P(V)
Proof. The proof of [21, Lemma 1] shows that Zﬁéz m = 2PP/(I Combining with
%((ZZ)) = Zjvzl nyj we get that equation EZ( ) can be rewritten as X; = QPI;,((?)) + %((;:)).

Similar computations hold for the other equations. O

We denote by s( *) the Newton sum sl(f) = wal x;, and we define 7 (=) = Zi\il ok X;.
Similarly, we denote s(y) Zf\il y¥, and r,(cy) = Zl LUrY;.

Theorem 3.2. For every k > 0, the solutions to System (6) satisfy the equation

G r]iy) _

1 k—1 1 k—1 k k—1
=0 =0 =0

Proof. We have

M M ki ky
(z) k _ xiP (l‘z) le (xl)
i) = ;x Xi=-)_ Pl T Zl e (8)

By the proof of [21, Theorem 4] we have — Zf‘il x'ggiéf;) =-1 (Zf:o (@ )S](f)z 1) +
k (@)

sk 1- As a result,
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1 k—1
o )
r® = -5 (ZSEL s 1) sk )+ ZZ — 9)
=0 =1 j=1 v
Similarly we have
W= M Nk
S 1D SN PR TN o ob e (10)
=0 =1 j= 1

If we sum Equation (9) and Equation (10) we obtain

e ) = (11)
k—1 k—1 M N _k_ .k
1 (2) g(=) k@ _ 1 () ;) kW T Y
Let us assume k£ > 1. We have z] = an 10 &2 yj =1 Tt follows that
M Nk gk M N k-l k—1 (
DD DD DD DD D ) DAL L (12)
im1j=1 Vi Yi i=1 j=1m=0 m=0

Therefore, for k > 1, the statement follows immediately from Equation (11) and
Equation (12).
Finally, we consider the case k = 0. We have

() 1 1

z ZX ;;mi_ijr;;xi_yj (13)
j#1
M 1 M 1 N M 1 N M 1 14
__Z;Iwz—xj_mf Tj— i+;; z—yg_m;xi—yg’ (14)
1<J 1<J
(15)
= 1]21 —.131

and therefore r(x) + r(y) =0 as desired. O
3.2. Equations in the elementary symmetric functions

In Theorem 3.2 we introduced a set of invariant equations to describe the vortex

()

problem. For practical uses, the presence of r,;’ and r,(cy) in these equations produces

two disadvantages:
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(1) they involve both the variables z;’s, y;’s and their conjugates X;’s, Y;’s,
(2) there is no easy formula to express 7, in terms of the elementary symmetric func-
tions in the z;’s and X;’s.

We remind the reader that, on the other hand, there exist well known formulas to express
the Newton sums sl(f)’s in terms of the elementary symmetric functions eff)’s. In this
section we obtain a new set of invariant equations for the vortex problem that avoid
these issues.

(=) (@) o) %)][Z} in the symmetric polynomials

Given a polynomial F' € Kle;”,...€,/,e;
e™s and s and in the extra Varlable z, we Wish to express in a compact way the
sum Zf\il F(x;) + Z§V=1 F(y;). To do so, we consider the transformations .* and .~

defined by

B K[egm), . .eg\ﬁ),egy) . .653)][2] — K[egm), . .eg\ﬁ),egy) . .eg\?)]
a2 — Zak(sgf) + s,(cy)),

and

S K[egz), .. .es\:f[),egy) . es\?)][z] — K[egz), .. .es\:f[),egy) . ..esg)}
S apzk — Zak(s,(f) - s,iy)),

where the ay’s are polynomials not involving the variable z. In other words, .#* acts
by expanding F in the variable z and then replacing the power z* with the expression

(sl(f) + séy)) which, we remind, can be expressed in terms of the symmetric polynomials

s and e{)’s.

Let F,G € K[egx), eg\? (y)...eg\?)][z] be two polynomials, and write them as
F =Y fpz¥ and G = Y gr2*. Then, their sum F + G can be written as F + G =
S (fr + gr)2. Tt follows that .S=(F + G) = S*(F) + .#%(G). Similarly, given
F e K[egx), eg\z) e(y) . eg\?)][z] and a polynomial h € K[egm),...eg\?,egy)...e%)]
not involving the variable z, we have .#*(hF) = h.#*(G). However, in general, for
F,Ge K\, ... e e eW]z], we have SE(FG) # #%(F).#*(G). These prop-
erties sum up to say, in the language of commutative algebra, that .+ and % are

morphisms of K[e{”,...el e . W)

-modules, but not homorphisms of rings. As
mentioned above, the transformations . and .~ allow to write in a convenient way

sums of the type Zf\il F(x;) + Z;\Izl F(y;).

Lemma 3.3. For every F € K[egx), .. eg\f[), egy) . eg\”,’)][z] we have
M N
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Proof. We write F(z) = 3", axz". We have

M N
Yi(F) = Zaksl(f) + Zaksl(cy) = ZZakxf + ZZakyf
k k

koi=1 k=1
M N M N
:ZZakxfiZZakyf:ZF(xi):tZF(yj). O (16)
i=1 k =1 k i=1 j=1

Corollary 3.4. For every F' € K[egz), . .eg\?, egy) e es\z‘;)][z] we have S*(FPQ) = 0.

Proof. We have /*(FPQ) = Y10, F(ai)P(z:)Q(x:) £ Y00y Fly;)Qy;)P(y;) = 0,
since P(z;) = Q(y;) =0foreveryi=1,...,Mandj=1,...,N. O

We are now ready to write expressions for Sl(f), Slgy), R,(f) and ngy) in terms of .+
and ..

Let D be the resultant of PQ and (PQ)’. By definition the resultant of the polynomi-
als PQ and (PQ)’ in one variable z is a polynomial in their coefficients that vanishes
if and only if PQ and (PQ)’ have a common root. In particular, it is an element of
K[egw, . eg\?, egy) .. .egf“;)], and it can be explicitly computed as the determinant of the
Sylvester matrix.

Remark 3.5. The resultant of PQ and (PQ)’ is the expression in terms of the elementary
symmetric polynomials of the discriminant introduced in Section 2. Indeed, PQ and
(PQ)’ have a common root if and only if PQ has a double root, which happens only if
two among x1,...,Zn, Y1, - - -, YN coincide.

The discriminant D also satisfies the equation

B(2)P(2)Q(2) + C(2)(P(2)Q(2))’ (17)
= B(2)P(2)Q(2) + C(2)(P'(2)Q(2) + P(2)Q'(2)) = D,

for some B,C € K[e{™,...e{% e .. Y]2].
‘We then have

M M k
(@) _ k_ —P"(x;)Q(x;) + 2P () Q' (w;)
ST =2 X = ) ( 2P/ (2,)Q(x;) ) "
Denote
A(z) := ;0(2)(=P"(2)Q(2) + 2P'(2)Q'(z) — P(2)Q"(2)) (19)

We have
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@ _ < Alz:) S Al:) ’
i Z(c;(xi)%i)@(xi)) Z(c<mi><P'<xi>Q<xi>+P<xi>@<xi>)> » (20)

i=1 i=1

where we are using on both numerator and denominator the fact that P(x;) = 0 for
i=1,..., M.
Similarly, for S®) we get the expression

N kN .
() _ Aly;) _ Aly;)
E _;<C<yj>P<yj>Q’<yj>> ‘;(c<yj><P'<yj>Q<yj>+P<yj>cz'<yj>>> -2
So, now
M kN i
(z) (v) _ A(z;) A(yj)
5 =3 (5—pariean) i;<p_3<yj>p(yj>Q<yj)) (22)
A\ S (Aw) )1 [ 4
= (T) iZ( D > T DF ;A%)’“i;fx@j)’f
O

The same computation for R,(f) + R,(Cy) yields

M N
" 1 1
R;(C Unt R;(Cy) = Dk (Z zi A(z;)* + ZyjA(yj)k) = ﬁy+(3Ak(2’))-
i=1 j=1
We are now ready to state the main theorem of this section.

Theorem 3.6. The solutions to the vortex problem satisfy, for every k > 0,

k

I
-

LA ) =~ 30 (T AE) (F7 (AT (@) + (AR R)),

N | —
Il
=}

i
Proof. We rearrange the conjugate equation of Theorem 3.2.

k—1
x 1 T T x
R]i )+Rl(cy) _ _52(5( )S( )l 1+S(y)s(y) +Zs( )S(yz 1+ (S]Sy 1+Sk 1) (23)

i=0
We can also write

k—1
’E 1 x x
= (TS sl ) -

=0

k-1 k-1
1 1
5 (E :S(x)SlE:y)z 1t § :Sl(cxz 1S(y)> =5 E (Si(x)sl(cy_)i—l +Sl(cx—)i—lsi(y))'

1=0 =0 =0

k—1

1=0
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This allows to rewrite the Equation (23) as

»
,d

(S(w Sl(f i S(y)S Y) _ S’(Z)Sl(cy)' S(I) S(y))

k—i—1 7 —i—1 k—i—1

. 1
R;)+R§f)=—§

Il
=]

i

K
+ 5 (S + 57,

We have R,(f)—i—R,gy) = 55 T (24%(2)) and S(I 1+S(y) = 517" (A*"1(2)). Moreover

we have

S(m)sl(cm)z 1+S Sk i—1 Si(m)sl(cyf)ifl_sl(ci)iflsi(y) :(Si(w) Sy )(Sl(cwz 1_Sk i— 1)

K2

= ( S (Al >>) (ﬁymwuz»).

Equation (23) now can be written as
1 k
o (24%(2) (24)
1 — (i — o pk—ie1 1
= —gpe L7 (77 (A @) + g (7 (A )

and the statement follows at once. O

Remark 3.7. For k = 0 it reduces to eg 2 4 egy) =0, for k£ =1 it reduces to 0 = 0.
3.3. From solutions to the invariant system to solutions of (6)

In this section we explain how to obtain solutions for the System (6) using the sym-
metric system.

The first step will be to solve the invariant system obtained in Theorem 3.6. In this
case we will be aiming for complete, exact solutions. The main idea will be for each k£ > 0
to write

k

|
—_

I = %yﬂmk(z)) + % (L (A(2) (& (AF Y (z2))) - §y+(Ak—1(z)).

3

I
=

By construction the hy’s are polynomial functions in the elementary symmetric poly-

nomials e(lx), .. eg\? and egy), .. .,65\3,’). By Remark 3.7, we have hy = eﬁ”) + egy) and
hy = 0. As the polynomial functions e{™,... e\ and e*,... e are algebraically

independent, we can think of them as coordinate functions on CM+N_ Our first step
is then to find all points p of CM*+V which satisfy hy(p) = 0 for all k. As polynomial
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rings in finitely many variables are Noetherian, we know that there exists K > 0 such
that the set of common zeros of hg,...,hg coincides with the set of common zeros of
all hy’s. Unfortunately, this finiteness result is not constructive, and it is very hard to
determine a priori how many hy’s are sufficient. Furthermore, the formulas for the hy’s
are rather complicated and each addition makes the symbolic computation less likely to
be tractable. Accordingly we make a choice to consider only hq, ha,...,harrn—1. This
ensures that the number of equations is the same as the number of variables after elim-
inating egy) via the relation egm) + egy) = 0. The set of common zeros of these functions
is potentially bigger than the set of common zeros of all the hx’s, but we know this set
will include the set of solutions to the System (6).

Proposition 3.8. Fquip K[eg‘r), ceey eg\f[), egy), ceey eg\?)] with the structure of a graded ring

by declaring egx) and e§y) to have degree i and j, respectfully. Then, for each k > 0

equation hy, is homogeneous of degree (k — 1) ((1\24) + (];) +2MN — 1).

Proof. As noted in the proof of Theorem 3.6, equation (24) is simply a rewriting of the
conjugate of the equation in Theorem 3.2. As this equation is homogeneous of degree
k—1 in the variables x1,...,Zap, y1,- - -, YN, the conjugate is homogeneous of degree 1—k
(indeed, Equations Efx) and EfI) express X; and Y; as homogeneous rational functions
of degree —1 in the variables 1, ..., 2, Y1, - - -, Yy~ ). Next, we note that the discriminant

D =[G — ) (=)™~ H(wi —y) [ [ — )

i#] i#]

is homogeneous of degree (1‘2/1) + (g) +2M N in the variables x1, ..., %, Y1, - - ., yn- It fol-

lows that the equation hy, is homogeneous of degree (k — 1) ((]2”) + (];]) +2MN — 1) in
the variables z1,...,Zp, Y1, .., yn. The conclusion then follows since hy, is invariant and
the grading in the statement of the proposition is the grading obtained by taking the de-
gree of the elementary symmetric polynomials in the variables z1,...,zap, 41, ..., yn. O
Remark 3.9. The fact that the polynomials hj are homogeneous means that if (egm)

geeey

eg\f[), egy), ol eg\?)) is a common zero, then so is (tegx), ol tMegé), tegy), ... ,tNeg\'?)) for
every t € C. Equivalently, if (x1,..., 2,41, .-,yN) IS a solution, so is (tz1,...,tx,

tyi,...,tyn) for every t € C. This is not surprising. The action of the multiplicative
group of complex numbers with modulus 1 on the solutions of Equations (6) implies
that for every solution (x1,..., T, Y1,-..,yn) the set {(tx1, ..., txpr, tys, ..., tyn) |t €
C and |t| = 1} is contained in the set of solutions of Equations (6) and so in the common
zeroes of the hy’s. But as the hi’s are polynomials, their common zeroes must contain
the Zariski closure of this set, namely {(tx1,...,txar, ty1, ..., tyn) |t € C}.

Question 1. Are the sets of common zeros of System (6) and the symmetric system from
Theorem 3.6 finite up to symmetry?
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Zero-dimensional common zero sets of polynomials are finite, meaning that we could
potentially list all solutions. With this in mind, we break down the problem into sub-

classes by dehomogenizing. Specifically, choosing an order on the variables, say starting

with egm), we divide the system into two cases, when egm) = 0 and when egm) # 0. By

Remark 3.9 if there is a solution with egx) # 0, then up to multiplying by a complex

) = 1. Thus we add the equation egx) =1 to the subsys-

tem. Next we consider the case where egx) is zero. Setting a variable to zero does not

x
number we can assume that e;

break the homogeneity and so we can again dehomogenize by setting the second variable
to 1, say egm) = 1. We continue like this until we run out of variables or the equations
become trivial.

For every solution in the elementary symmetric polynomials we find one corresponding
solution in the x;’s and y;’s. This is done by solving the system obtained by plugging

the solution in the egx)’s and ez(-y)’s in the equations defining the elementary symmetric

polynomials e!”) = D ji<cji iyt g, and e = D jicgi Yin e Y

What we need to do next is on the one hand to remove the arbitrary choices we made
when dehomogenizing (for example assuming egw) = 1), and on the other hand check if
the common zero of the hy’s we obtained is a solution of the original System (6). We do
both at the same time. For every solution in the z;’s and y;’s, we are looking for A € C
such that Azq, ..., A\yy satisfy system (6). Since we can scale by any complex number of
modulus 1, we can restrict this search to A real and positive. Supposing z; # 0, we use
the ith equation of system (6) rewritten as

s ST TE ST .
j=1

This allows us to determine the value which could work. We use the remaining equations
of system (6) to check if this works for all.

Summary of solution procedure:

We start with the equations hg, ho, ..., hpr4n—1,hD — 1.

For ¢ from 1 to M:

(1) We dehomogenize the system by imposing the extra conditions egm) =...= 61@1 =0,
el(.gg) =1

(2) We find the (finitely many) solutions to the subsystem obtained in Step (1), for
example using Maple PolynomialSystem function.

(3) For each solution in the elementary symmetric polynomials, we find one correspond-
ing solution in the x;’s and y;’s by solving the polynomial systems obtained by
substituting each solution in the definition of the elementary polynomials as de-
scribed above.
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(4) For every solution in the z;’s and y;’s, we check whether Az1,..., \yn satisfy sys-
tem (6) for some A > 0.

3.4. Exzample of equations obtained for small cases

In this section we give the equations obtained by applying the procedure described
in the case M = 1, N = 2 and explain that the size of the equations gets out of hand
quickly by giving the number of terms in the polynomials given by our formulas.

We start by writing P(z) = e(()m)z2 - egm)z - egy) = 2% - egz)z - eéy) and Q(z) =
eéy)z—egy) = z—i—egm). Please notice that, for both P and @), we have used eém) = egy) =1,

and egﬁ) = —egy). This allows us to only work with the two variables egx) and eéy).
We then compute the Sylvester matrix Sylv of PQ and (PQ)":
10 —(e)24e el elv) 0
0 1 0 —(e{™)2 4 e el e
Sylv=13 0 —({”)2+el¥ 0 0
0 3 0 —(e{™)2 &) 0
0 0 3 0 — (2 4 eV

From the Sylvester matrix we can compute the discriminant D

D = det(Sylv) = —4(ef™)° + 12(ef")) ey + 15(ef”)(e5”)? + 4(ey”)? =
((er”)? = 4ef) (1) + e /2)%.

The polynomial C' can also be computed by the Sylvester matrix. Denote by M = (m; ;)
the adjoint matrix, we have

C =ms5+2msa+ 2°ms 3 = 22(—6(egm))2 + Geéy)) - 9zegz)eéy) + 4((€§I)>2 - eéy))Q.

We can now use Equation (19), and write

1 x T x T
A= (2 (6(e") + 6ef) — 9zei7ey”) 1 4((ef”)? — e)?) (22 — def”).

Finally, we can write the equation ho. Please note that, by Corollary 3.4, we are
allowed to replace A with its remainder modulo PQ. We obtain

ha = —16(ef”)" 1 — 4(ef”)%ey” +356(e”)7 (e5”)? — 209(ef™)* (e — 473(ef”) ()"
— 14Oegm)(e;y))5

As a further optimization we can apply before solving the equations, we divide ho by
the highest possible power of the factors of the discriminant. And note that requiring
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that the discriminant is non-zero is equivalent to requiring that the product of its factors
is non-zero. We finally get the system of equations:

Hy = =16(e;”)” = 52(e}”)e” + 14017 (¢)* = 0 (26)
hD' = h((ef™)? = 4e5”)((ef)) + €5 /2) = 1
To solve the equations, we consider two cases.
e Case 1, egx) = 1. By replacing egx) with 1 in the equations we get two solutions.
First solution: h = —1%0, e?) =1, eéy) =-1i
Second solution: h = — 2%, e =1, el = -1

o Case 2, egw) =1, egy) = 0. By replacing in the system we get & = 1 and the trivial

equation, which means that egw) =0, egy) =1 is again a solution.
Third solution: h = i, egm) =0, eéy) =1.

Once we have obtained the solutions in the elementary symmetric polynomials, we
translate them into solution in the x1,y;,y2 variables. This is done by plugging the
solutions obtained into the definition of the elementary symmetric powers.

()

61 =X,
€§y) =Y + Y2,
egy) = Y1Y2.

We now get three solutions, namely

e Solution 1: 1 =1, y; = —1.17, yo = 0.17;
e Solution 2: 1 =1, y; =~ —0.5 — 0.574, ys =~ —0.5 + 0.574;
e Solution 3: 1 =0, y; = —1, ys = 1.

For each one of them, we need to test whether, for some A, (Az1, Ay1, Ay2) solve Equa-
tion (6). This is easily done: we obtain three linear equations in |A|> and we have to
determine whether they have a common solution. In the case discussed, only the third
solution provides a solution to Equation (6), namely for || = v/2/2.

Table 1 compares the degree and number of monomials of the equations we get for
different values of M and N. The numbers refer to the equations after dividing by factors
of the discriminant, as in Equation (26).

4. Results and benchmark

In this section, we present the solutions we have found and give details of the computa-
tions performed. The invariant equations described in the previous section are extremely
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Table 1
Degree and number of monomials of the equations for different values of M and N. The numbers refer to
the equations after dividing by factors of the discriminant.

M =2 M =3 M =4 M=5 M =2 M =3 M =3
N=1 N=1 N=1 N =1 N =2 N =2 N =3
n of variables 2 3 4 5 3 4 5
ho degree 5 10 14 24 10 14 19
hao n monomials 3 15 71 575 16 124 912
hs degree - 6 10 37 6 10 37
hs n monomials - 6 36 4153 9 49 12132
hy degree 28 42 28 37
hy n monomials - — 419 5708 - 785 12148
hs degree — — - 55 — — 55
hs n monomials 20765 63136

long. We first attempted to write them in the software Macaulay2 [26]. This was, how-
ever, extremely demanding in terms of processor time and memory requirements. The
same operation was far more efficient using the software Maple [42]. One possible reason
for this difference, is that Maple does not expand products of polynomial (in our case,
the powers of A) unless required to do so.

Classical numerical methods, such as Newton’s method, often require some initial
guess and lead to one approximate solution. However, there can be multiple solutions
to a given system of equations, and there is no guarantee that one will find all of them.
Given a system of polynomial equations, we use techniques developed in computational
algebraic geometry and commutative algebra to compute all solutions.

e Symbolic AG: The most common symbolic method is based on the computation of
a Grobner basis for the system. Grobner bases provide a systematic way to symbol-
ically find the set of common zeroes of a system of polynomials. Grébner bases are
(typically very long) lists of generators of the system of polynomial equations with
good algebraic properties which can be understood as a multivariate generalization
of Gaussian elimination. For more details, see [14].

e Numerical AG: Numerical algebraic geometry methods are based on “homotopy
continuation”. The system is put in a continuous deformation (a homotopy) to an ap-
propriate “known” start system with similar properties. The solutions of the known
system are tracked over C using homotopy continuation, which provides numerical
approximations of all the distinct or isolated complex solutions of the original sys-
tem, and these can be certified. By running homotopy continuation with appropriate
generic homotopy parameter over C, not R, numerical algebraic geometry techniques
with probability 1 find all solutions along the path [47]. For details see [8,61]. Since
formulation is important for numerical conditioning, Section 4.1 considers an alter-
native formulation which is better conditioned.
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Table 2

Running time in seconds of the two approaches on the invariant system as well as on the systems described
in Subsection 2.1. The first five computations was performed on a standard office desktop (Intel i3 3.40 GHz
with 7.7 GB ram) The Bertini optimized computations were performed with 1 processor for the (2,1) case
and 64 processors in parallel for the other cases.

Method M =2 =2 M =3 M =3
N=1 N =2 N=1 N =2
Invariants equations with 1.6 2.7 2.2 42.6
Maple
Real and imaginary part with 0.2 3.8 1.7 ran out of memory
Maple (Sec 2.1.1)
Real and imaginary part with 988 > 10000 > 10000 > 10000
Bertini (Sec 2.1.1)
Conjugate variables with 0.4 6.5 2.4 ran out of memory
Maple (Sec 2.1.2)
Conjugate variables with 2401 > 10000 > 10000 > 10000
Bertini (Sec 2.1.2)
Reconditioned system with 0.3 8.0 7.8 80.9

Bertini (Sec 4.1)

We attempted to compute the solutions of the vortex problem following both of these
approaches. As exact method, we used the function PolynomialSystem contained in the
package SolveTools of the software Maple [42]. We used Bertini [9], an open numerical
algebraic geometry software, which contains an implementation of homotopy continua-
tion and numerically solves for all solutions.

Table 2 compares the running time (in seconds) of the two approaches on the invari-
ant system as well as on the systems described in Section 2.1. The computations were
performed on a standard office desktop (Intel i3 3.40 GHz with 7.7 GB ram).

4.1. Improving the conditioning of the system

One approach for creating a polynomial system from the rational equations (Ej("")),
(Ef‘w), (E,§:E>), (Ef"” )} is to clear denominators as in Section 2.1. Although this does not
add variables, it increases the degrees which negatively impacts the numerical condition-
ing of the system. An alternative approach to constructing a polynomial system which
has improved conditioning at the expense of more variables is to introduce a new variable
for each rational term. For example, one introduces (%)) new variables Rz;; equal to

L_ wherei=1,...,M and j =i+1,..., M yielding the bilinear constraint

Ty —Ty

the term
R"Ei’j . (IEi — Ij) =1. (27)

For j < i, one has Rx;; = —Rx; ;. After introducing new variables Ry; ;, RX; ;, RY; j,
Rzy; ;, and RXY; ; similarly, the equations (EZ§1'>), (Efw), (El@), (EL-("U)) simply reduce
to linears. Hence, the only nonlinearity arises from the bilinear constraints for the new
variables such as (27). In fact, the resulting system is naturally multihomogeneous so

one can employ multihomogeneous regeneration [30,31] to efficiently solve.
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Table 3
Number of solutions found for different values of M and N. For M = 3, N = 3 and for M = 4, N = 2 there
may be more solutions.

M=1 M=2 M =2 M =3 M =3 M =4 M =3 M =4
N=1 N=1 N =2 N=1 N =2 N=1 N =3 N =2
|sol’s| 1 1 2 0 1 0 >2 >1
Table 4

List of solutions found. The positions of the positively charged z; and negatively charged
y; vortices are provided that solve Equations (6).

(1,1) T = —V2/2 ~ —0.707 y1 = V2/2 ~ 0.707
(2,1) 1 = —\/2/2 =~ —0.707 y1 =0
x2 = V/2/2 =~ 0.707
(2,2) 1 = —\/2/2 = —0.707 y1 = —V/2/2i = —0.707i
x2 = V2/2 =~ 0.707 Y2 = V/2/2i = 0.7074
(2,2) oy = VEERV2VESZ g 977 yp = —VERRVRVEZ2 o 977
To = _#‘/5_2 ~ —0.212 Yo = % ~ 0.212
(3,2) z1 ~ 0 y1 = 158 ~ —0.366
@o = —{/2 & —0.930 y2 = L3=1 ~0.366
z3 = /3 ~0.930
(3,3) 1 =2/2 ~ 0.707 y1 = —V2/2 =~ —0.707
Ty = 7% ~ —0.354 + 0.612i Yo = 1;\%5 ~ 0.354 + 0.612i
3 = 7% ~ —0.354 — 0.612¢ Yz = % ~ 0.354 — 0.612¢
(3,3) x1 & —0.476 y1 ~ 0.476
x5 ~ 0.162 Y2 & —0.162
zs A~ 1.112 ys ~ —1.112
(4,2) o1 = —/ 120 = —0.600 y1 = —/ 320 ~ —0.285i
@y = — /122210 o _0.242 Yo 3=v10 ~ (.285¢
wg = \/1B=0I0 ~ 0,242
@y = /220 % 0.600i

4.2. List of solutions

Table 4 contains all the solutions of the system for different values of M and N. For
M =3,N =3 and for M =4, N = 2 the computation of the main component (egz) =1)
did not terminate when using Maple, but Bertini was able to solve the corresponding
preconditioned systems. Nonetheless, Maple was able to compute all solutions where
Z(-x) or egy) equals zero. For all other values of M and N in the

Table 4, the Bertini computation was completed, providing computational proof that no

at least one variable e

more solutions are present. In Fig. 1 we provide a visualization of the configurations we
found. The two colors correspond to the two possible charges.
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(a) ' (b)
(c) ()
(©) 3

Fig. 1. The solutions to the vortex problem for: M =2, N =1, (a); M =2, N =2, (b); M =3, N =2, (¢);
M =3, N=3,(d); M =4, N =2, (e).

5. Connection to the GP PDE results

Many of the above obtained configurations have been previously identified at the
level of the GP equation. In particular, for instance, the vortex dipoles (M = N = 1)
have emerged as the lowest order configuration that destabilizes a planar dark soli-
ton state [39,44,45] and have also been obtained experimentally via different tech-
niques [52,46], enabling the observation of their precessional dynamics. Importantly,
n [46], the stationary form of the configuration directly related to the considerations
herein, was also experimentally identified. Furthermore, in some of these works [44,45],
it was argued that the aligned configurations of the tripole with M = 2, N = 1 (which
was also observed experimentally in [59]), the aligned quadrupole with M = 2, N = 2,
then the aligned states with M = 3, N = 2, as well as that with M = 3, N = 3 (and
so on) are all byproducts of subsequent progressive further destabilizations of the dark
soliton stripe. That is, for such a stripe [44], each additional destabilization produces
a stationary configuration with one additional vortex along the former dark line soli-
ton. This is an intriguing cascade of bifurcations from the stripe which explains the
emergence of aligned alternating charge vortex configurations, each with one additional
charge with respect to the previous one. Each of these arises through a (supercritical)
pitchfork bifurcation which, in turn, justifies that each of these has an additional unsta-
ble eigendirection with respect to the previous one. Consequently, the vortex dipole is
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Fig. 2. The first panel shows the density field |u|? from a PDE computation of Equation (1) involving
M = N = 3 vortices in a hexagonal configuration. This is shown by a two-dimensional contour plot in
the (z,y) plane. The second panel illustrates the corresponding phase, revealing the alternating nature of
the charges. Finally, the third panel illustrates the results of the linear stability analysis around such a
configuration. The spectral plane (A, ;) of the associated linearization is illustrated for the corresponding
eigenvalues A = A +i)\;. The presence of two (essentially indistinguishable on the scale of this panel) pairs
of purely real eigenvalues establishes the exponential instability of such a solution. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

the most robust among these configurations, bearing no real eigenvalues (and no expo-
nential instabilities), but only an internal, potentially resonant via a Hamiltonian Hopf
bifurcation, mode in the system. Then the tripole would bear one exponentially unstable
eigendirection, the aligned quadrupole two such, and so on.

It is important here to highlight that some of the early existence and even stability
results on the subject were obtained in the works of [15,48,49]. In these works, in addition
to some of the aligned configurations, including the dipole and tripole, the first example
of a canonical polygon of alternating vortices, namely the quadrupole was identified. It
was, in fact, found that this configuration too did not bear any exponential instabilities
but could become unstable through an oscillatory instability. The work of [45] offered a
more systematic viewpoint on these polygonal configurations (see also [6]). There, it was
found that these states too were a result of the destabilization of a dark solitonic stripe,
but this time a radial one, the so-called ring dark soliton or RDS configuration (first
proposed in the BEC context in [63]). In particular, as soon as this state emerges (in the
linear limit of the system) it is degenerate with the vortex quadrupole. Then, its next
(further) destabilizing bifurcation gives birth to a vortex hexagon, the subsequent one to
a vortex octagon, then to a decagon and so on. All of these lead to canonical polygons
involving alternating pairs of vortices, each of which has one more (again) unstable
eigendirection than the previous one, i.e., the hexagon is generically unstable due to
pairs of eigenvalues emerging as a result of the destabilization of the RDS. Moreover, the
method of generating functions was used to illustrate that states with M = N, can be
used to construct polygons of angle ¢ = 7 /N (at a fixed radius) between the alternating
charges.

To give a canonical example in the context of configurations considered herein, we
briefly refer to the case of the hexagon. In Fig. 2, we provide a typical scenario involving
the case of 4 = 2 and 2 = 0.1. We consider the different layers of approximation, starting



24 E. Dufresne et al. / Advances in Applied Mathematics 124 (2021) 102099

0.2

’ 1.4 -1 :
. 1.2 2 .
_05 1 '05 0.1 o ° o
- o 00~
0.5 0.4 0.5 01!l° . o
0.2 2
1 .
1050 05 1 02

1050 05 1 : 002 0 o002
X Re())

Im()\)

—_

Fig. 3. Same as the previous configuration, but now for the principal configuration discovered herein, namely
the stationary solutions involving M = 4 positive and N = 2 negative charges. For details regarding the
positions of the vortices and the comparison with the corresponding theoretical prediction, see the text.
The last panel showcases the instability of this newly established configuration, by virtue of showing its
two pairs of real eigenvalues (exponential instabilities) and one pair of complex eigenvalues (oscillatory
instability).

with Equation (2), which is the one also tackled via our algebraic techniques. At that
level, as is established in [7] (and also found herein) the positions of the vortices are
cube roots of unity for both the positive and negative charges, displaced by /3 with
respect to each other. The radius of the solutions, as shown also in Table 3 (for the
complex (3,3) roots) is v/2/2 ~ 0.707. This radius is given in units of the Thomas-Fermi
radius Rrp = 1/211/Q. As seen in Fig. 2, the realistic radius is closer to 0.35Ryp in the
full numerical (PDE) computations. This difference is reflected by the more accurate
nature of Equations (4) and (5). It is worthwhile to note that given the equidistant
from the origin nature of this configuration as regards the vortices, in this case these
two equations [(4) and (5)] yield the same prediction. For both of them, the equilibrium
radius is found to be R? = (2w,,(0) + R;7)~". For the parameters above, R = 7.564 =
0.378 Rrp; notice that this is very close to the numerical result, the difference being
justified by the deviation of the above u = 2 scenario from the Thomas-Fermi limit of
large values of u. Nevertheless, it is clear that the qualitative picture is accurate in all
the effective particle descriptions and that the improved models can yield an even semi-
quantitatively accurate characterization. It is relevant to note that the stability results
of Fig. 2 indicate that this is an unstable configuration due to two nearly identical
pairs of real eigenvalues, suggesting an exponential growth of perturbations along the
corresponding eigendirections.

All of the above configurations have also been summarized in the compendium of [36]
and it is interesting to note that they include all the configurations that we have obtained
in the present work except for the M = 4, N = 2 state of Fig. 5. It is thus the latter that
we now turn our attention to more systematically, as it is unprecedented in earlier both
existence and stability studies, to the best of our knowledge. This configuration consists
of 4 plus and 2 minus (or vice versa) charged vortices with the inner ones constituting a
quadrupole —with slightly unequal distances from the origin along the two axes—, while
the last two are aligned with one of the axes and oppositely charged to the rest of
the vortices along the same line. A typical example of this configuration was obtained
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and is shown in Fig. 3. Importantly, in this example our numerical observations once
again bear some difference in comparison to the prediction of Table 3. In particular,
numerically we find the vortices to be located as follows. The +1 charges are located at
21,2 = £0.1875Rrpi (along the imaginary axis) and at x3 4 = 0.3875Ryp, while the —1
charges are at y; o = £0.15Ryp (cf. with the values in Table 3). The latter four vortices
are located on the real axis, although clearly the entire configuration is freely amenable
to azimuthal rotations. It is for this reason that we now resort to the progressively more
accurate representations of Equations (4) [which accounts for the radial dependence of
the vortex precession frequency| and then Equations (5) [which additionally incorporates
the effect of the inhomogeneity of the background in the inter-vortex interaction]. The
former yields a prediction of x1 5 = £0.158 Rrri and 34 = +0.331RpFp while y; 0 =
+0.134Rrp. Finally, the most accurate available description of Equations (5) leads to
the following numbers z1 2 = £0.179R7rFri, 34 = 0.413Rrp, while y; » = £0.154Rrp.
This latter description is the most accurate one —to the best of our knowledge— that is
obtained by a particle model, being limited only by the deviation from the Thomas-Fermi
limit. That is, the prediction would only be better for larger values of u. Nevertheless,
the conclusion that we reach is that the configuration predicted by the computer algebra
techniques is qualitatively consonant with the configuration identified in the full system.
Nevertheless, the more elaborate (and more accurate) models such as ultimately that of
Equations (5) are needed in order to most adequately capture the quantitative specifics of
the vortex locations. In that light, the tools developed herein can be useful in unraveling
configurations possibly with quite limited symmetry characteristics which may not be
easily identifiable differently. It should also be added that we have explored the dynamical
stability of this configuration and have found it to be dynamically unstable, as shown in
Fig. 3. In particular, as can be observed in the figure, it bears two pairs of real eigenvalues
and a complex eigenvalue quartet with nontrivial growth rates. The former lead to an
exponential growth along the respective eigendirections, while the latter corresponds to
an oscillatory growth due to the complex nature of the eigenvalues.

6. Conclusions & future challenges

In the present work, we have made an attempt to bring to bear tools from the theory
of Grobner bases and associated computational algebra to the case of a problem in-
volving stationary configurations of oppositely charged vortices in atomic Bose-Einstein
condensates. More specifically, we have started from the corresponding PDE system (of
the Gross-Pitaevskii type) and have discussed different layers of reduction approxima-
tions characterizing the dynamics of the vortices. The first layer is a quasi-homogeneous
one, the next involves the dependence of the precession frequency of a single vortex on
the distance, while the most elaborate one also accounts for the inhomogeneity of the
background in affecting inter-vortex interactions. For computational simplicity reasons,
we have utilized the simplest one of these descriptions and deduced from its correspond-
ing steady state problem, a set of equations in the elementary symmetric polynomials
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in the variables. We have brought to bear computational algebra packages that have
enabled us, in this adapted formulation, to find all possible stationary configurations
involving up to 5 vortices of combined positive and negative charges and all station-
ary configurations involving 6 vortices except for the case of 5 positive and 1 negative
charges (or vice versa). Most configurations among these have been already obtained in
the literature of BECs, most notably the configurations with high symmetry (axial ones
with all the vortices on a line, or polygonal ones with them sitting at the vertices of a
canonical polygon). We have discussed in some further detail one of these cases, namely
a canonical hexagon, consisting of 3 plus and 3 minus charged vortices. Nevertheless,
already in the case of 6 charges, we have presented an unprecedented —to the best of
our knowledge— configuration, namely one with 4 positive and 2 negative charges (or
vice versa). We have studied such a configuration at the level of our different layers of
ODE approximation in comparison with computations of the original PDE. In all the
cases considered, while admittedly we have utilized (for computational simplicity) the
computer algebra package in the simplest setting of Equation (2), we have found that
the identified configurations in all cases, persist in the full PDE problem. Additionally,
we have shown how the more adequate (but at the same time more complex) polynomial
equations of the models of Equations (4) and (5) can then facilitate a more accurate cap-
turing of the precise vortex locations in connection with the full PDE problem, providing
in this way a more definitive characterization of the states.

We believe that this larger scale program has numerous directions for potential further
development. A natural question concerns the limitations of this effort regarding the at-
tempt to seek all the possible configurations with higher numbers of charges. Presently,
this task seems somewhat limited by computational capabilities, but it seems reason-
ably likely that advances in either the algorithmic developments or the computational
hardware may be able in the near future to circumvent this issue and offer us an unprece-
dented ability to obtain all stationary vortex configurations of higher numbers of charges.
A complementary effort may be developed in the direction of bringing to bear similar
algebraic techniques but for the more complex and thus more cumbersome systems, such
as those of Equations (4) and especially so Equations (5). Finally, there are numerous
additional directions where one can extend present considerations. While a large vein
of potential work can be opened by considering three-dimensional settings, we limit our
considerations to the 2d case, but involving potentially traveling configurations. There
exist works such as those of [34] and more recently [40] which have discussed intriguing
algebraic connections including those with the so-called Adler-Moser polynomials (see
also references therein). Nevertheless one can envision important, physically relevant
variations where the vortices are confined in one direction in the plane, while traveling
in the other direction. There, it is conceivable that the nice algebraic structure of the
Adler-Moser polynomials disappears, yet a computer algebra characterization of steadily
propagating solutions may well be possible. These different directions are currently under
consideration and progress along them will be reported in future publications.
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