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Our aim in the present work is to identify all the possible 
standing wave configurations involving few vortices of different 
charges in an atomic Bose-Einstein condensate (BEC). In 
this effort, we deploy the use of a computational algebra 
approach in order to identify stationary multi-vortex states 
with up to 6 vortices. The use of invariants and symmetries 
enables deducing a set of equations in elementary symmetric 
polynomials, which can then be fully solved via computational 
algebra packages. We retrieve a number of previously identified 
configurations, including collinear ones and polygonal (e.g. 
quadrupolar and hexagonal) ones. However, importantly, we 
also retrieve a configuration with 4 positive charges and 2
negative ones, which is unprecedented, to the best of our 
knowledge, in BEC studies. We corroborate these predictions 
via numerical computations in the fully two-dimensional PDE 
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system of the Gross-Pitaevskii type which characterizes the 
BEC at the mean-field level.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The explosion of interest in the theme of atomic Bose-Einstein condensates (BECs) 
[56,54,36] has had significant implications in the study of associated nonlinear coherent 
structures, including vortices, as well as vortex lines and vortex rings [55]. In particular, 
settings involving the emergence and precessional dynamics of one or few vortices (see 
e.g. [2,28,12,52,23,46,51] for some typical examples), as well as the exploration of higher 
charged vortices and their potential decay to lower charged ones (see, e.g., [60,33]) have 
been topics that garnered considerable interest within the atomic and nonlinear commu-
nities and motivated numerous associated experiments. Vortical patterns not only in two 
but also in higher dimensions (e.g., filaments in the form of lines and rings in 3d) were 
also produced by means of dynamical instabilities such as the extensively studied trans-
verse instability [3,19,37]. The topic of one [35] and few vortices (possibly of different 
signs [58,25,50,27]) remains under active experimental investigation still to this day.

The study of BECs at the mean-field level at (and very close to) zero temperatures is 
well established to be described by the famous Gross-Pitaesvkii (GP) partial differential 
equation (PDE) [56,54,36]. When rewriting the equation for the complex wavefunction 
into a system of equations for the density ρ and velocity v = ∇φ (where φ is the phase 
of the complex field) one obtains a system strongly reminiscent of the Euler equations 
in fluid dynamics. For a recent, detailed account of this connection, see, e.g., [11]. The 
role of the quantum features arises through the so-called quantum pressure term. This 
analogy can be utilized to approximate the vortex dynamics and interactions within the 
GP system by those of point vortices in the fluid setting; for a recent discussion of how 
to utilize configurations of the latter to prove the existence of steady or co-traveling 
states in the former, see, e.g., [40]. There is a history of connections between the theory 
of different types of polynomials and the study of vortices in fluids [34,5,4]. Recent years 
have seen an attempt to extend such considerations to the more complex (in that it bears 
an external trapping potential) setting of BECs, including extensions of relevant multi-
vortex configurations [6] and associated polynomial generating function techniques [7]. 
It is along these lines of associating the equations for the vortex positions (and their con-
jugates) with a system of polynomial equations and using symbolic algebraic techniques 
to tackle the latter that we proceed in the present study.

Solving polynomial equations is central to algebraic geometry. Over the past century 
many approaches have been developed, and with them, many algorithms. Fifty years 
ago, Buchberger proposed the Gröbner basis algorithm for solving polynomial systems 
[13], which was improved by Faugère [20], and is now the central tool in computational 
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algebraic geometry (see, for example, [14]). Gröbner bases are implemented in several 
packages, from general symbolic software such as Mathematica [32] and Maple [42], to 
specialized software such as Magma [10], Singular [16] and Macaulay2 [26]. Despite the 
computational complexity of Gröbner bases being double exponential in the worst case, 
there has been much success in using Gröbner basis techniques to solve problems in a 
wide range of applications including shear flow, nonlinear mechanics, chemical reactions, 
dynamical systems, statistics, systems biology and computer vision, among many others 
[53,41,18,24,57,38,29,1].

Our aim here is to use such methods to fully characterize all possible solutions of the 
system of vortex equations for stationary configurations involving up to 5 vortices and 
offer all the computationally tractable solutions for 6 vortices. There are two natural 
avenues for obtaining polynomial equations to describe the vortex positions. We either 
consider the conjugate variables of the vortex positions or separate the equations in terms 
of real and imaginary parts. However, solving these systems using standard Gröbner basis 
approaches is computationally out of reach [43] (see Table 2). The next step is then to 
attempt to exploit any symmetries in the equations. The system of equations for the 
vortex positions (see Equation (6)) is symmetric in the variables, that is, it is invariant 
under the action of a permutation group. However individual equations in the system 
are not invariant. If the system was given by algebraic equations, then theoretically 
there is a system consisting of invariant equations which has the same solutions and 
can be rewritten in terms of a basic set of invariants (see [62,17]). However using the 
standard algorithms in invariant theory is, again, computationally intractable for the 
vortex equations.

While all the general approaches fail for the vortex problem, one can tailor ideas from 
computational algebra and invariant theory to gain new insight about vortex configu-
rations. For example, Faugère and Svartz [21] proposed a general approach for systems 
with an action of the permutation group and they specialized their approach to find 
configurations of up to 8 single charged vortices. Here we extend this analysis to the 
equally relevant case of vortices with opposite charges. While vortex configurations of 
the same charge are rigidly rotating, those with opposite charges can be genuinely sta-
tionary [36]. For the latter, we specifically first construct a family of symmetric equations 
in the variables and their conjugates whose set of common zeros includes the solutions to 
the ODE approximation of the vortex problem. Next, from these equations we deduce a 
set of equations in the elementary symmetric polynomials in the variables. The common 
zero set of these equations, again, includes the solutions to the ODE approximation of 
the vortex problem. Finally we solve the system in the elementary symmetric polyno-
mials and we convert the solutions into the original variables. Practical considerations 
presently prohibit an exhaustive study of larger (than 6, as considered herein) numbers 
of vortices, although this is an interesting and practically important topic for further 
study. Once we have these solutions, our final step is to come full circle and check the 
existence of such configurations in the original PDE problem. This is explored in some 
detail (and at different levels of approximation) in Section 5.
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Our paper is organized as follows. In Section 2 we explain how to translate the under-
lying PDE to polynomial systems. The theoretical results and proofs of the two charged 
vortex problem using algebraic approaches is presented in Section 3. In Section 4 we 
give the results from the computational algebra for the configurations of vortices and 
the benchmarking of the various approaches, showing that the direct approaches fail. 
In Section 5, we show that numerical solutions of the PDE corroborate the presently 
identified solution, as well as all the ones for smaller vortex numbers. Finally, in the last 
section, we give conclusions and suggest some directions for future work.

2. From vortices to algebra

The original PDE problem involves identifying standing wave solutions of the two-
dimensional Gross–Pitaevskii equation of the form [56,54]:

iut = −1
2Δu + |u|2u + V u, (1)

where Δ represents the two-dimensional Laplacian and the external trapping potential 
V (r) is assumed to be parabolic, i.e., V (r) = 1

2Ω2r2, where r = x2 +y2 and Ω is the trap. 
Notice that this dimensionless version of the GP equation has been obtained through well-
established reductions of the dimensional one, as detailed, e.g., in [36]. We use solutions 
of the form u(x, y, t) = e−iμtU(x, y) with chemical potential μ and subsequently solve 
the nonlinear steady state problem for U(x, y) via a fixed point iteration.

When identifying solutions bearing vortices, we can attempt to capture the effective 
dynamics of the vortices through the following ordinary differential equations:

iżj = Sjωprzj +
∑

1≤k �=j≤n

Sk

z̄j − z̄k.
(2)

Here Sj are the charges of the vortices, ωpr is their precession frequency inside the 
parabolic trap, i is 

√
−1 and the complex number zj represents the planar position of 

the j-the vortex. Near the center of the trap it is reasonable to assume that vortices 
have a nearly constant precession frequency ωpr. This has been described, e.g., recently 
in [35]. The second term captures the inter-vortex interactions of the j-th vortex with 
all the other vortices (summed over k). Notice that this is a velocity-induced interaction, 
i.e., each vortex induces a velocity field at the location of all the others, as is the case 
for vortices in inviscid, incompressible fluid (point) vortices. Notice that this description 
is progressively more accurate for larger values of the chemical potential μ, whereby the 
vortices approach the limit of point vortices with (decreasing width and thus) no internal 
structure.

However, the ground state of the system, i.e., the background over which the vortices 
are located decreases in its density as one moves radially outwards, due to the presence 
of the parabolically confining external potential. As has been extensively examined since 
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early on [22] (see also the recent discussion of [35]), this has an implication of radially 
increasing the precession frequency according to

ωpr(|zj |) = ωpr(0)
1 − V (|zj |)

μ

. (3)

In turn, this leads to the amended version of the equations of motion as:

iżj = Sj
ωpr(0)

1 − V (|zj |)
μ

zj +
∑

1≤k �=j≤n

Sk

z̄j − z̄k
. (4)

However, it turns out that the interactions between the vortices are also affected by 
the presence of the external potential. In particular, the interactions between the vortices 
as characterized in Equation (2) assume the presence of a homogeneous background in 
which the vortices move. A spatially inhomogeneous background, present in the case of 
the trap, modifies (i.e., screens) the inter-vortex interactions in a way that has been 
recently captured, e.g., in [64]. As discussed in this work and its references, the effect 
of the presence of a spatially inhomogeneous background can, in turn, be captured by a 
modulating factor, leading to a further revised form of the equations. The latter account 
for the inhomogeneous background in both the individual vortex precession and in the 
inter-vortex interactions by equations:

iżj = Sj
ωpr(0)

1 − V (|zj |)
μ

zj +
∑

1≤k �=j≤n

V (|zj |)
V (|zk|)

Sk

z̄j − z̄k
. (5)

Our aim in the present work is to explore equilibrium multi-vortex configurations 
involving vortices of both charges, i.e., with Sj = ±1. In particular, we will more specifi-
cally assume that we have M vortices with Sj = 1 and N vortices with Sj = −1. We will 
denote the former with the positions x1, . . . , xM in the complex plane C and the latter 
with the positions y1, . . . , yN in the same plane. Our analysis will take place at the level 
of the simplest equation for the vortices, namely Equation (2). However, in Section 5, 
we will illustrate the connections of this setting with the full original problem, as well as 
the more elaborate (and more accurate) variations of the form of Equations (4) and (5). 
At the level of Equation (2), splitting the equations for positive and negative charges, 
according to the symbolism above, we obtain the steady state formulation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi = −
M∑

j �=i
j=1

1
xi − xj

+
N∑

j=1

1
xi − yj

, i = 1, . . . M,

yi = −
N∑

j �=i
j=1

1
yi − yj

+
M∑

j=1

1
yi − xj

, i = 1, . . . N.

(6)

Note that the solutions of this system present many symmetries:
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Lemma 2.1 (Symmetries of the vortex equations). The set of solutions to the system (6)
is invariant under up to the following three different group actions.

• The product of symmetric groups SM × SN acts by permuting the variables via 
(σ1, σ2) · xi = xσ1(i), (σ1, σ2) · yj = yσ2(j).

• The group of complex numbers of modulus 1 acts via λ · xi = λxi and λ · yi = λyi. 
This corresponds to rotations of the complex plane around the origin.

• The cyclic group of order 2 acts via conjugation. This correspond to reflection of the 
complex plane with respect to the real axis.

Moreover, when M = N , the set of solutions to the system (6) is invariant under an 
additional group action.

• The cyclic group of order 2 acts by exchanging xi and yi.

Proof. This is verified via straightforward computations. �
2.1. Obtaining algebraic equations: direct approaches

System (6) fails to be algebraic because of the presence of the conjugation operator. In 
the next two subsections, we discuss two direct approaches for converting this problem 
into an algebraic problem, which provides the possibility to use algebraic methods. Both 
approaches end up doubling the number of variables and equations. We show in Section 4
that these approaches can only succeed in their practical implementation, if the resulting 
system is suitably reduced.

2.1.1. Conjugate variables
A first method of converting system (6) to an algebraic system is to introduce a 

new sets of variables X1, . . . XM , Y1, . . . YN representing the complex conjugates of the 
variables x1, . . . xM , y1, . . . yN . Therefore we obtain the following equations:

Xi = −
M∑

j �=i
j=1

1
xi − xj

+
N∑

j=1

1
xi − yj

, i = 1, . . . M, (E(x)
i )

Yi = −
N∑

j �=i
j=1

1
yi − yj

+
M∑

j=1

1
yi − xj

, i = 1, . . . N, (E(y)
i )

xi = −
M∑

j �=i

1
Xi − Xj

+
N∑

j=1

1
Xi − Yj

, i = 1, . . . M, (Ē(x)
i )
j=1
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yi = −
N∑

j �=i
j=1

1
Yi − Yj

+
M∑

j=1

1
Yi − Xj

, i = 1, . . . N. (Ē(y)
i )

We now have 2(M + N) equations in 2(M + N) variables.

Remark 2.2. Each of the symmetries described in Lemma 2.1 extends to the solutions of 
this new system naturally.

Polynomial equations for this system are obtained from these equations by clearing 
the denominators. Let us denote by D the discriminant D =

∏
i�=j(xi − xj) ·

∏
i,j(xi −

yj) ·
∏

i�=j(yi − yj) and by D̄ the discriminant in the conjugate variables D̄ =
∏

i�=j(Xi −
Xj) ·

∏
i,j(Xi −Yj) ·

∏
i�=j(Yi −Yj). Since we cleared the denominators, we need to exclude 

solutions where D and D̄ are zero. This is done by introducing two new variables h and 
H and by adding to the system the equations h ·D −1 = 0 and H · D̄ −1 = 0. If we solve 
the system without doing this step, then we will find infinitely many solutions. Finally, 
to reduce the dimension of the set of solutions, we need to remove the symmetry given 
by the multiplicative action of complex numbers of modulus 1 mentioned in Remark 2.2. 
To do so, we impose the condition that some non-zero variable of the system is real. We 
do this in the following way:

(1) we subdivide the system into two subsystems corresponding to the cases x1 = 0 and 
x1 �= 0. In particular, the first subsystem is obtained by adding the new equation 
x1 = 0, the second subsystem is obtained by adding a new variable a and the new 
equation a · x1 − 1 = 0,

(2) we add the new equation y1 −Y1 = 0 to the subsystem where x1 = 0 (i.e., we assume 
y1 �= x1 = 0 is real) and we add the new equation x1 − X1 = 0 to the subsystem 
where x1 �= 0 (i.e., we assume x1 �= 0 is real).

The two systems so obtained can be solved using standard algebraic geometric tools and 
in the cases considered yield finitely many solutions. To get the solutions of system (6)
we now just need to select those solutions where xi = X̄i and yi = Ȳi.

2.1.2. Real and imaginary parts
An alternative approach to describe system (6) as a polynomial system consists in dou-

bling up the number of equations and variables by considering real and imaginary parts 
separately. We introduce 2M +2N variables a1, . . . , aM , b1, . . . , bM , c1, . . . , cN , d1, . . . dN . 
We substitute the variables in system (6) via xi = ai +

√
−1bi and yi = ci +

√
−1di and 

we clear the denominators. Separating the real and imaginary parts of the resulting 
M + N equations, we get a system of 2M + 2N real polynomial equations, two for each 
equation of system (6). Finding solutions to system (6) is now equivalent to finding real 
solutions to this new system. The discriminant D can be written as D =

∏
i�=j(ai +√

−1bi − aj −
√

−1bj) ·
∏

i,j(ai +
√

−1bi − cj −
√

−1dj) ·
∏

i�=j(ci +
√

−1di − cj −
√

−1dj). 
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The discriminant D can be written as a sum D = Dre +
√

−1Dim, where Dre and Dim
are real polynomials. We now add to the systems an extra variable h and the equation 
h ·Dre ·Dim −1 = 0 to ensure that the real and the imaginary part of D are not both zero. 
Here, the multiplicative action of complex numbers of modulus 1 becomes the group of 
rotations around the origin in the real plane. We get rid of this 1-dimensional symmetry 
by requiring that one of x1 = a1 +

√
−1b1 or y1 = c1 +

√
−1d1 is purely imaginary:

(1) we subdivide the system into two subsystems corresponding to the cases a1 +√
−1b1 = 0 and a1 +

√
−1b1 �= 0. In particular, the first subsystem is obtained 

by adding the new equations a1 = 0 and b1 = 0, the second subsystem is obtained 
by adding a new variable k and the new equation k · a1 · b1 − 1 = 0,

(2) we add the new equation c1 = 0 to the subsystem where a1 +
√

−1b1 = 0 and we 
add the new equation a1 = 0 to the subsystem where a1 +

√
−1b1 �= 0.

Real solutions of this system can now be obtained either by finding all complex solu-
tions with symbolic methods and then picking out the real solutions, or by approximation 
with numerical algebraic geometry (see Section 4).

3. Obtaining algebraic equations: exploiting the symmetries

In this section we exploit the invariance of system (7) under the action of SM × SN

to obtain a new set of equations. The equations we obtain are not simpler to the eye, far 
from it, but will prove to be better for symbolic computations (See Section 4).

In the rest of this section we explain how to exploit the symmetries described in 
Lemma 2.1 and Remark 2.2 in order to go further with computations than what can be 
achieved with the direct approaches. We focus on the action of the product of symmetric 
groups. Our starting point is the conjugate variables system. Invariant theory of finite 
groups suggests that since the system is invariant there exists a set of invariant equations 
which have the same set of common zeros [62]. Furthermore these invariant equations 
can be written as polynomials in a finite generating set of the polynomial invariants [17]. 
The idea is then to solve for the value of these generators, with the hope that this compu-
tation is more feasible than the direct computation. There are two main problems with 
this plan. First, the symbolic methods for performing this “symmetrization” and “rewrit-
ing” rely on Gröbner bases and so are quickly computationally intractable. Second, the 
set of generating invariants for the action on the variables xi, Xi, yi, Yi is complicated. 
If we consider only the action on the variables xi, yi, then a generating set is simple 
enough, indeed one may take the elementary symmetric polynomials e(x)

1 , . . . , e(x)
M in the 

variables x1, . . . , xM and the elementary symmetric polynomials e(y)
1 , . . . , e(y)

N in the vari-
ables y1, . . . , yN , given by e(x)

k :=
∑

I⊆[M ],|I|=k

∏
i∈I xi and e(y)

k :=
∑

I⊆[N ],|I|=k

∏
i∈I yi, 

respectively.
We take an indirect approach inspired by the methodology utilized by Faugère and 

Svartz towards solving for the (rigidly rotating) configurations of vortices of a single 
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charge [21]. The first step is to construct a set of invariant equations, written in terms of 
invariants in the variables xi, Xi, yi, Yi, whose set of common zeros includes the solutions 
to System (6) (i.e. those common zeros of the conjugate variable system such that Xi = xi

and Yi = yi). From these, we then deduce symmetric equations in the xi, yi whose set of 
common zeros includes the solutions to System (6). The rewriting is done at the same 
time. The section ends with an explanation of our solution procedure.

3.1. Invariant equations

In this section we introduce some invariant equations that are satisfied by the solutions 
to the vortex problem.

To start, we provide a useful compact form of the conjugate system. We set P (z) =∏M
i=1(z − xi) and Q(z) =

∏N
i=1(z − yi). We have the following Lemma.

Lemma 3.1. The system {E
(x)
i , Ē(x)

i , E(y)
j , Ē(y)

j | i = 1, . . . , M, j = 1 . . . N} is equivalent 
to: ⎧⎪⎪⎨

⎪⎪⎩
Xi = − P ′′(xi)

2P ′(xi)
+ Q′(xi)

Q(xi)
, xi = − P ′′(Xi)

2P ′(Xi)
+ Q′(Xi)

Q(Xi)
, i = 1, . . . M,

Yi = − Q′′(yi)
2Q′(yi)

+ P ′(yi)
P (yi)

, yi = − Q′′(Yi)
2Q′(Yi)

+ P ′(Yi)
P (Yi)

, i = 1, . . . N.

(7)

Proof. The proof of [21, Lemma 1] shows that 
∑M

j �=i
j=1

1
xi−xj

= P ′′(xi)
2P ′(xi) . Combining with 

Q′(z)
Q(z) =

∑N
j=1

1
z−yj

we get that equation E(x)
i can be rewritten as Xi = − P ′′(xi)

2P ′(xi) + Q′(xi)
Q(xi) . 

Similar computations hold for the other equations. �
We denote by s(x)

k the Newton sum s(x)
k =

∑M
i=1 xk

i , and we define r(x)
k =

∑M
i=1 xk

i Xi. 
Similarly, we denote s(y)

k =
∑M

i=1 yk
i , and r(y)

k =
∑M

i=1 yk
i Yi.

Theorem 3.2. For every k ≥ 0, the solutions to System (6) satisfy the equation

rk
(x) + r

(y)
k =

− 1
2

(
k−1∑
i=0

s
(x)
i s

(x)
k−i−1

)
+ k

2 s
(x)
k−1 − 1

2

(
k−1∑
i=0

s
(y)
i s

(y)
k−i−1

)
+ k

2 s
(y)
k−1 +

(
k−1∑
i=0

s
(x)
i s

(y)
k−i−1

)
.

Proof. We have

r
(x)
k =

M∑
i=1

xk
i Xi = −

M∑
i=1

xk
i P ′′(xi)
2P ′(xi)

+
M∑

i=1

xk
i Q′(xi)
Q(xi)

. (8)

By the proof of [21, Theorem 4] we have − 
∑M

i=1
xk

i P ′′(xi)
2P ′(xi) = −1

2

(∑k−1
i=0 s

(x)
i s

(x)
k−i−1

)
+

k s
(x)
k−1. As a result,
2
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r
(x)
k = −1

2

(
k−1∑
i=0

s
(x)
i s

(x)
k−i−1

)
+ k

2 s
(x)
k−1 +

M∑
i=1

N∑
j=1

xk
i

xi − yj
. (9)

Similarly we have

r
(y)
k = −1

2

(
k−1∑
i=0

s
(y)
i s

(y)
k−i−1

)
+ k

2 s
(y)
k−1 +

M∑
i=1

N∑
j=1

−yk
j

xi − yj
. (10)

If we sum Equation (9) and Equation (10) we obtain

rk
(x) + r

(y)
k = (11)

− 1
2

(
k−1∑
i=0

s
(x)
i s

(x)
k−i−1

)
+ k

2 s
(x)
k−1 − 1

2

(
k−1∑
i=0

s
(y)
i s

(y)
k−i−1

)
+ k

2 s
(y)
k−1 +

M∑
i=1

N∑
j=1

xk
i − yk

j

xi − yj
.

Let us assume k ≥ 1. We have 
xk

i −yk
j

xi−yj
=

∑k−1
m=0 xm

i yk−m−1
j . It follows that

M∑
i=1

N∑
j=1

xk
i − yk

j

xi − yj
=

M∑
i=1

N∑
j=1

k−1∑
m=0

xm
i yk−m−1

j =
k−1∑
m=0

s(x)
m s

(y)
k−m−1. (12)

Therefore, for k ≥ 1, the statement follows immediately from Equation (11) and 
Equation (12).

Finally, we consider the case k = 0. We have

r
(x)
0 =

M∑
i=1

Xi = −
M∑

i=1

M∑
j=1
j �=1

1
xi − xj

+
N∑

i=1

M∑
j=1

1
xi − yj

(13)

= −
M∑

i,j=1
i<j

1
xi − xj

−
M∑

i,j=1
i<j

1
xj − xi

+
N∑

i=1

M∑
j=1

1
xi − yj

=
N∑

i=1

M∑
j=1

1
xi − yj

, (14)

r
(y)
0 =

N∑
i=1

M∑
j=1

1
yj − xi

, (15)

and therefore r(x)
0 + r

(y)
0 = 0 as desired. �

3.2. Equations in the elementary symmetric functions

In Theorem 3.2 we introduced a set of invariant equations to describe the vortex 
problem. For practical uses, the presence of r(x)

k and r(y)
k in these equations produces 

two disadvantages:
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(1) they involve both the variables xi’s, yj ’s and their conjugates Xi’s, Yj ’s,
(2) there is no easy formula to express r(x)

k in terms of the elementary symmetric func-
tions in the xi’s and Xi’s.

We remind the reader that, on the other hand, there exist well known formulas to express 
the Newton sums s(x)

k ’s in terms of the elementary symmetric functions e(x)
k ’s. In this 

section we obtain a new set of invariant equations for the vortex problem that avoid 
these issues.

Given a polynomial F ∈ K[e(x)
1 , . . . e

(x)
M , e(y)

1 . . . e
(y)
N ][z] in the symmetric polynomials 

e
(x)
i ’s and e(y)

i ’s and in the extra variable z, we wish to express in a compact way the 
sum 

∑M
i=1 F (xi) ±

∑N
j=1 F (yj). To do so, we consider the transformations S + and S −

defined by

S + : K[e(x)
1 , . . . e

(x)
M , e

(y)
1 . . . e

(y)
N ][z] → K[e(x)

1 , . . . e
(x)
M , e

(y)
1 . . . e

(y)
N ]∑

akzk �→
∑

ak(s(x)
k + s

(y)
k ),

and

S − : K[e(x)
1 , . . . e

(x)
M , e

(y)
1 . . . e

(y)
N ][z] → K[e(x)

1 , . . . e
(x)
M , e

(y)
1 . . . e

(y)
N ]∑

akzk �→
∑

ak(s(x)
k − s

(y)
k ),

where the ak’s are polynomials not involving the variable z. In other words, S ± acts 
by expanding F in the variable z and then replacing the power zk with the expression 
(s(x)

k ± s
(y)
k ), which, we remind, can be expressed in terms of the symmetric polynomials 

e
(x)
i ’s and e(y)

i ’s.
Let F, G ∈ K[e(x)

1 , . . . e
(x)
M , e(y)

1 . . . e
(y)
N ][z] be two polynomials, and write them as 

F =
∑

fkzk and G =
∑

gkzk. Then, their sum F + G can be written as F + G =∑
(fk + gk)zk. It follows that S ±(F + G) = S ±(F ) + S ±(G). Similarly, given 

F ∈ K[e(x)
1 , . . . e

(x)
M , e(y)

1 . . . e
(y)
N ][z] and a polynomial h ∈ K[e(x)

1 , . . . e
(x)
M , e(y)

1 . . . e
(y)
N ]

not involving the variable z, we have S ±(hF ) = hS ±(G). However, in general, for 
F, G ∈ K[e(x)

1 , . . . e
(x)
M , e(y)

1 . . . e
(y)
N ][z], we have S ±(FG) �= S ±(F )S ±(G). These prop-

erties sum up to say, in the language of commutative algebra, that S + and S + are 
morphisms of K[e(x)

1 , . . . e
(x)
M , e(y)

1 . . . e
(y)
N ]-modules, but not homorphisms of rings. As 

mentioned above, the transformations S + and S − allow to write in a convenient way 
sums of the type 

∑M
i=1 F (xi) ±

∑N
j=1 F (yj).

Lemma 3.3. For every F ∈ K[e(x)
1 , . . . e

(x)
M , e(y)

1 . . . e
(y)
N ][z] we have

S ±(F ) =
M∑

F (xi) ±
N∑

F (yj).

i=1 j=1
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Proof. We write F (z) =
∑

k akzk. We have

S ±(F ) =
∑

k

aks
(x)
k ±

∑
k

aks
(y)
k =

∑
k

M∑
i=1

akxk
i ±

∑
k

N∑
j=1

akyk
j

=
M∑

i=1

∑
k

akxk
i ±

N∑
j=1

∑
k

akyk
j =

M∑
i=1

F (xi) ±
N∑

j=1
F (yj). � (16)

Corollary 3.4. For every F ∈ K[e(x)
1 , . . . e

(x)
M , e(y)

1 . . . e
(y)
N ][z] we have S ±(FPQ) = 0.

Proof. We have S ±(FPQ) =
∑M

i=1 F (xi)P (xi)Q(xi) ±
∑N

j=1 F (yj)Q(yj)P (yj) = 0, 
since P (xi) = Q(yj) = 0 for every i = 1, . . . , M and j = 1, . . . , N . �

We are now ready to write expressions for S(x)
k , S(y)

k , R(x)
k and R(y)

k in terms of S +

and S −.
Let D be the resultant of PQ and (PQ)′. By definition the resultant of the polynomi-

als PQ and (PQ)′ in one variable z is a polynomial in their coefficients that vanishes 
if and only if PQ and (PQ)′ have a common root. In particular, it is an element of 
K[e(x)

1 , . . . e
(x)
M , e(y)

1 . . . e
(y)
N ], and it can be explicitly computed as the determinant of the 

Sylvester matrix.

Remark 3.5. The resultant of PQ and (PQ)′ is the expression in terms of the elementary 
symmetric polynomials of the discriminant introduced in Section 2. Indeed, PQ and 
(PQ)′ have a common root if and only if PQ has a double root, which happens only if 
two among x1, . . . , xM , y1, . . . , yN coincide.

The discriminant D also satisfies the equation

B(z)P (z)Q(z) + C(z)(P (z)Q(z))′ (17)

= B(z)P (z)Q(z) + C(z)(P ′(z)Q(z) + P (z)Q′(z)) = D,

for some B, C ∈ K[e(x)
1 , . . . e

(x)
M , e(y)

1 . . . e
(y)
N ][z].

We then have

S
(x)
k =

M∑
i=1

Xk
i =

M∑
i=1

(
−P ′′(xi)Q(xi) + 2P ′(xi)Q′(xi)

2P ′(xi)Q(xi)

)k

. (18)

Denote

A(z) := 1
2C(z)(−P ′′(z)Q(z) + 2P ′(z)Q′(z) − P (z)Q′′(z)). (19)

We have
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S
(x)
k =

M∑
i=1

(
A(xi)

C(xi)P ′(xi)Q(xi)

)k

=
M∑

i=1

(
A(xi)

C(xi)(P ′(xi)Q(xi) + P (xi)Q′(xi))

)k

, (20)

where we are using on both numerator and denominator the fact that P (xi) = 0 for 
i = 1, . . . , M .

Similarly, for S(y) we get the expression

S
(y)
k =

N∑
j=1

(
A(yj)

C(yj)P (yj)Q′(yj)

)k

=
N∑

j=1

(
A(yj)

C(yj)(P ′(yj)Q(yj) + P (yj)Q′(yj))

)k

. (21)

So, now

S
(x)
k ± S

(y)
k =

M∑
i=1

(
A(xi)

D − B(xi)P (xi)Q(xi)

)k

±
N∑

j=1

(
A(yj)

D − B(yj)P (yj)Q(yj)

)k

(22)

=
M∑

i=1

(
A(xi)

D

)k

±
N∑

j=1

(
A(yj)

D

)k

= 1
Dk

⎛
⎝ M∑

i=1
A(xi)k ±

N∑
j=1

A(yj)k

⎞
⎠

= 1
Dk

S ±(Ak(z)).

The same computation for R(x)
k + R

(y)
k yields

R
(x)
k + R

(y)
k = 1

Dk

⎛
⎝ M∑

i=1
xiA(xi)k +

N∑
j=1

yjA(yj)k

⎞
⎠ = 1

Dk
S +(zAk(z)).

We are now ready to state the main theorem of this section.

Theorem 3.6. The solutions to the vortex problem satisfy, for every k ≥ 0,

1
D

S +(zAk(z)) = −1
2

k−1∑
i=0

(
S −(Ai(z))

) (
S −(Ak−i−1(z))

)
+ k

2S +(Ak−1(z)).

Proof. We rearrange the conjugate equation of Theorem 3.2.

R
(x)
k +R

(y)
k = −1

2

k−1∑
i=0

(S(x)
i S

(x)
k−i−1+S

(y)
i S

(y)
k−i−1)+

k−1∑
i=0

S
(x)
i S

(y)
k−i−1+ k

2 (S(y)
k−1+S

(x)
k−1). (23)

We can also write

k−1∑
i=0

S
(x)
i S

(y)
k−i−1 = 1

2

(
k−1∑
i=0

S
(x)
i S

(y)
k−i−1 +

k−1∑
i=0

S
(x)
i S

(y)
k−i−1

)
=

1
2

(
k−1∑

S
(x)
i S

(y)
k−i−1 +

k−1∑
S

(x)
k−i−1S

(y)
i

)
= 1

2

k−1∑
(S(x)

i S
(y)
k−i−1 + S

(x)
k−i−1S

(y)
i ).
i=0 i=0 i=0
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This allows to rewrite the Equation (23) as

R
(x)
k + R

(y)
k = −1

2

k−1∑
i=0

(S(x)
i S

(x)
k−i−1 + S

(y)
i S

(y)
k−i−1 − S

(x)
i S

(y)
k−i−1 − S

(x)
k−i−1S

(y)
i )

+ k

2 (S(y)
k−1 + S

(x)
k−1).

We have R(x)
k +R

(y)
k = 1

Dk S +(zAk(z)) and S(x)
k−1+S

(y)
k−1 = 1

Dk−1 S +(Ak−1(z)). Moreover 
we have

S
(x)
i S

(x)
k−i−1 + S

(y)
i S

(y)
k−i−1 − S

(x)
i S

(y)
k−i−1 − S

(x)
k−i−1S

(y)
i = (S(x)

i − S
(y)
i )(S(x)

k−i−1 − S
(y)
k−i−1)

=
(

1
Di

S −(Ai(z))
) (

1
Dk−i−1 S −(Ak−i−1(z))

)
.

Equation (23) now can be written as

1
Dk

S +(zAk(z)) (24)

= − 1
2Dk−1

k−1∑
i=0

(
(
S −(Ai(z))

) (
S −(Ak−i−1(z))

)
) + k

2Dk−1 (S +(Ak−1(z))),

and the statement follows at once. �
Remark 3.7. For k = 0 it reduces to e(x)

1 + e
(y)
1 = 0, for k = 1 it reduces to 0 = 0.

3.3. From solutions to the invariant system to solutions of (6)

In this section we explain how to obtain solutions for the System (6) using the sym-
metric system.

The first step will be to solve the invariant system obtained in Theorem 3.6. In this 
case we will be aiming for complete, exact solutions. The main idea will be for each k ≥ 0
to write

hk := 1
D

S +(zAk(z)) + 1
2

k−1∑
i=0

(
S −(Ai(z))

) (
S −(Ak−i−1(z))

)
− k

2S +(Ak−1(z)).

By construction the hk’s are polynomial functions in the elementary symmetric poly-
nomials e(x)

1 , . . . , e(x)
M and e(y)

1 , . . . , e(y)
N . By Remark 3.7, we have h0 = e

(x)
1 + e

(y)
1 and 

h1 = 0. As the polynomial functions e
(x)
1 , . . . , e(x)

M and e
(y)
1 , . . . , e(y)

N are algebraically 
independent, we can think of them as coordinate functions on CM+N . Our first step 
is then to find all points p of CM+N which satisfy hk(p) = 0 for all k. As polynomial 
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rings in finitely many variables are Noetherian, we know that there exists K ≥ 0 such 
that the set of common zeros of h0, . . . , hK coincides with the set of common zeros of 
all hk’s. Unfortunately, this finiteness result is not constructive, and it is very hard to 
determine a priori how many hk’s are sufficient. Furthermore, the formulas for the hk’s 
are rather complicated and each addition makes the symbolic computation less likely to 
be tractable. Accordingly we make a choice to consider only h0, h2, . . . , hM+N−1. This 
ensures that the number of equations is the same as the number of variables after elim-
inating e(y)

1 via the relation e(x)
1 + e

(y)
1 = 0. The set of common zeros of these functions 

is potentially bigger than the set of common zeros of all the hk’s, but we know this set 
will include the set of solutions to the System (6).

Proposition 3.8. Equip K[e(x)
1 , . . . , e(x)

M , e(y)
1 , . . . , e(y)

N ] with the structure of a graded ring 
by declaring e

(x)
1 and e

(y)
j to have degree i and j, respectfully. Then, for each k ≥ 0

equation hk is homogeneous of degree (k − 1) 
((

M
2

)
+

(
N
2
)

+ 2MN − 1
)

.

Proof. As noted in the proof of Theorem 3.6, equation (24) is simply a rewriting of the 
conjugate of the equation in Theorem 3.2. As this equation is homogeneous of degree 
k−1 in the variables x1, . . . , xM , y1, . . . , yN , the conjugate is homogeneous of degree 1 −k

(indeed, Equations E(x)
i and E(x)

i express Xi and Yi as homogeneous rational functions 
of degree −1 in the variables x1, . . . , xM , y1, . . . , yN ). Next, we note that the discriminant

D =
∏
i�=j

(xi − xj)(−1)MN
∏
i,j

(xi − yj)
∏
i�=j

(yi − yj)

is homogeneous of degree 
(

M
2

)
+

(
N
2
)
+2MN in the variables x1, . . . , xM , y1, . . . , yN . It fol-

lows that the equation hk is homogeneous of degree (k − 1) 
((

M
2

)
+

(
N
2
)

+ 2MN − 1
)

in 
the variables x1, . . . , xM , y1, . . . , yN . The conclusion then follows since hk is invariant and 
the grading in the statement of the proposition is the grading obtained by taking the de-
gree of the elementary symmetric polynomials in the variables x1, . . . , xM , y1, . . . , yN . �
Remark 3.9. The fact that the polynomials hk are homogeneous means that if (e(x)

1 , . . . ,

e
(x)
M , e(y)

1 , . . . , e(y)
N ) is a common zero, then so is (te(x)

1 , . . . , tM e
(x)
M , te

(y)
1 , . . . , tN e

(y)
N ) for 

every t ∈ C. Equivalently, if (x1, . . . , xM , y1, . . . , yN ) is a solution, so is (tx1, . . . , txM ,

ty1, . . . , tyN ) for every t ∈ C. This is not surprising. The action of the multiplicative 
group of complex numbers with modulus 1 on the solutions of Equations (6) implies 
that for every solution (x1, . . . , xM , y1, . . . , yN ) the set {(tx1, . . . , txM , ty1, . . . , tyN ) | t ∈
C and |t| = 1} is contained in the set of solutions of Equations (6) and so in the common 
zeroes of the hk’s. But as the hk’s are polynomials, their common zeroes must contain 
the Zariski closure of this set, namely {(tx1, . . . , txM , ty1, . . . , tyN ) | t ∈ C}.

Question 1. Are the sets of common zeros of System (6) and the symmetric system from 
Theorem 3.6 finite up to symmetry?
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Zero-dimensional common zero sets of polynomials are finite, meaning that we could 
potentially list all solutions. With this in mind, we break down the problem into sub-
classes by dehomogenizing. Specifically, choosing an order on the variables, say starting 
with e(x)

1 , we divide the system into two cases, when e(x)
1 = 0 and when e(x)

1 �= 0. By 
Remark 3.9 if there is a solution with e(x)

1 �= 0, then up to multiplying by a complex 
number we can assume that e(x)

1 = 1. Thus we add the equation e(x)
1 = 1 to the subsys-

tem. Next we consider the case where e(x)
1 is zero. Setting a variable to zero does not 

break the homogeneity and so we can again dehomogenize by setting the second variable 
to 1, say e(x)

2 = 1. We continue like this until we run out of variables or the equations 
become trivial.

For every solution in the elementary symmetric polynomials we find one corresponding 
solution in the xi’s and yj ’s. This is done by solving the system obtained by plugging 
the solution in the e(x)

i ’s and e(y)
i ’s in the equations defining the elementary symmetric 

polynomials e(x)
i =

∑
j1<...<ji

xj1 · . . . · xji
and e(y)

i =
∑

j1<...<ji
yj1 · . . . · yji

.
What we need to do next is on the one hand to remove the arbitrary choices we made 

when dehomogenizing (for example assuming e(x)
1 = 1), and on the other hand check if 

the common zero of the hk’s we obtained is a solution of the original System (6). We do 
both at the same time. For every solution in the xi’s and yj ’s, we are looking for λ ∈ C

such that λx1, . . . , λyN satisfy system (6). Since we can scale by any complex number of 
modulus 1, we can restrict this search to λ real and positive. Supposing xi �= 0, we use 
the ith equation of system (6) rewritten as

λ2 = 1
xi

⎛
⎜⎜⎝−

M∑
j �=i
j=1

1
xi − xj

+
N∑

j=1

1
xi − yj

⎞
⎟⎟⎠ . (25)

This allows us to determine the value which could work. We use the remaining equations 
of system (6) to check if this works for all.

Summary of solution procedure:
We start with the equations h0, h2, . . . , hM+N−1, hD − 1.
For i from 1 to M :

(1) We dehomogenize the system by imposing the extra conditions e(x)
1 = . . . = e

(x)
i−1 = 0, 

e
(x)
i = 1.

(2) We find the (finitely many) solutions to the subsystem obtained in Step (1), for 
example using Maple PolynomialSystem function.

(3) For each solution in the elementary symmetric polynomials, we find one correspond-
ing solution in the xi’s and yj ’s by solving the polynomial systems obtained by 
substituting each solution in the definition of the elementary polynomials as de-
scribed above.
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(4) For every solution in the xi’s and yj ’s, we check whether λx1, . . . , λyN satisfy sys-
tem (6) for some λ > 0.

3.4. Example of equations obtained for small cases

In this section we give the equations obtained by applying the procedure described 
in the case M = 1, N = 2 and explain that the size of the equations gets out of hand 
quickly by giving the number of terms in the polynomials given by our formulas.

We start by writing P (z) = e
(x)
0 z2 − e

(x)
1 z − e

(y)
2 = z2 − e

(x)
1 z − e

(y)
2 and Q(z) =

e
(y)
0 z−e

(y)
1 = z+e

(x)
1 . Please notice that, for both P and Q, we have used e(x)

0 = e
(y)
0 = 1, 

and e(x)
1 = −e

(y)
1 . This allows us to only work with the two variables e(x)

1 and e(y)
2 .

We then compute the Sylvester matrix Sylv of PQ and (PQ)′:

Sylv =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −(e(x)
1 )2 + e

(y)
2 e

(x)
1 e

(y)
2 0

0 1 0 −(e(x)
1 )2 + e

(y)
2 e

(x)
1 e

(y)
2

3 0 −(e(x)
1 )2 + e

(y)
2 0 0

0 3 0 −(e(x)
1 )2 + e

(y)
2 0

0 0 3 0 −(e(x)
1 )2 + e

(y)
2

⎞
⎟⎟⎟⎟⎟⎠

From the Sylvester matrix we can compute the discriminant D

D = det(Sylv) = −4(e(x)
1 )6 + 12(e(x)

1 )4e
(y)
2 + 15(e(x)

1 )2(e(y)
2 )2 + 4(e(y)

2 )3 =

((e(x)
1 )2 − 4e

(y)
2 )((e(x)

1 )2 + e
(y)
2 /2)2.

The polynomial C can also be computed by the Sylvester matrix. Denote by M = (mi,j)
the adjoint matrix, we have

C = m5,5 + zm5,4 + z2m5,3 = z2(−6(e(x)
1 )2 + 6e

(y)
2 ) − 9ze

(x)
1 e

(y)
2 + 4((e(x)

1 )2 − e
(y)
2 )2.

We can now use Equation (19), and write

A = 1
2(z2(−6(e(x)

1 )2 + 6e
(y)
2 ) − 9ze

(x)
1 e

(y)
2 + 4((e(x)

1 )2 − e
(y)
2 )2)(2z − 4e

(x)
1 ).

Finally, we can write the equation h2. Please note that, by Corollary 3.4, we are 
allowed to replace A with its remainder modulo PQ. We obtain

h2 = −16(e(x)
1 )11 − 4(e(x)

1 )9e
(y)
2 + 356(e(x)

1 )7(e(y)
2 )2 − 209(e(x)

1 )5(e(y)
2 )3 − 473(e(x)

1 )3(e(y)
2 )4

− 140e
(x)
1 (e(y)

2 )5

As a further optimization we can apply before solving the equations, we divide h2 by 
the highest possible power of the factors of the discriminant. And note that requiring 
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that the discriminant is non-zero is equivalent to requiring that the product of its factors 
is non-zero. We finally get the system of equations:

{
h′

2 = −16(e(x)
1 )5 − 52(e(x)

1 )3e
(y)
2 + 140e

(x)
1 (e(y)

2 )2 = 0
hD′ = h((e(x)

1 )2 − 4e
(y)
2 )((e(x)

1 )2 + e
(y)
2 /2) = 1

(26)

To solve the equations, we consider two cases.

• Case 1, e(x)
1 = 1. By replacing e(x)

1 with 1 in the equations we get two solutions.
First solution: h = −100

81 , e(x)
1 = 1, e(y)

2 = −1
5 .

Second solution: h = −98
81 , e(x)

1 = 1, e(y)
2 = −4

7 .
• Case 2, e(x)

1 = 1, e(y)
2 = 0. By replacing in the system we get h = 1

4 and the trivial 
equation, which means that e(x)

1 = 0, e(y)
2 = 1 is again a solution.

Third solution: h = 1
4 , e(x)

1 = 0, e(y)
2 = 1.

Once we have obtained the solutions in the elementary symmetric polynomials, we 
translate them into solution in the x1, y1, y2 variables. This is done by plugging the 
solutions obtained into the definition of the elementary symmetric powers.

⎧⎪⎪⎨
⎪⎪⎩

e
(x)
1 = x1,

e
(y)
1 = y1 + y2,

e
(y)
2 = y1y2.

We now get three solutions, namely

• Solution 1: x1 = 1, y1 ≈ −1.17, y2 ≈ 0.17;
• Solution 2: x1 = 1, y1 ≈ −0.5 − 0.57i, y2 ≈ −0.5 + 0.57i;
• Solution 3: x1 = 0, y1 = −i, y2 = i.

For each one of them, we need to test whether, for some λ, (λx1, λy1, λy2) solve Equa-
tion (6). This is easily done: we obtain three linear equations in |λ|2 and we have to 
determine whether they have a common solution. In the case discussed, only the third 
solution provides a solution to Equation (6), namely for |λ| =

√
2/2.

Table 1 compares the degree and number of monomials of the equations we get for 
different values of M and N . The numbers refer to the equations after dividing by factors 
of the discriminant, as in Equation (26).

4. Results and benchmark

In this section, we present the solutions we have found and give details of the computa-
tions performed. The invariant equations described in the previous section are extremely 
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Table 1
Degree and number of monomials of the equations for different values of M and N . The numbers refer to 
the equations after dividing by factors of the discriminant.

M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 3
N = 1 N = 1 N = 1 N = 1 N = 2 N = 2 N = 3

n of variables 2 3 4 5 3 4 5
h2 degree 5 10 14 24 10 14 19
h2 n monomials 3 15 71 575 16 124 912

h3 degree – 6 10 37 6 10 37
h3 n monomials – 6 36 4153 9 49 12132

h4 degree – – 28 42 – 28 37
h4 n monomials – – 419 5708 – 785 12148

h5 degree – – – 55 – – 55
h5 n monomials – – – 20765 – – 63136

long. We first attempted to write them in the software Macaulay2 [26]. This was, how-
ever, extremely demanding in terms of processor time and memory requirements. The 
same operation was far more efficient using the software Maple [42]. One possible reason 
for this difference, is that Maple does not expand products of polynomial (in our case, 
the powers of A) unless required to do so.

Classical numerical methods, such as Newton’s method, often require some initial 
guess and lead to one approximate solution. However, there can be multiple solutions 
to a given system of equations, and there is no guarantee that one will find all of them. 
Given a system of polynomial equations, we use techniques developed in computational 
algebraic geometry and commutative algebra to compute all solutions.

• Symbolic AG: The most common symbolic method is based on the computation of 
a Gröbner basis for the system. Gröbner bases provide a systematic way to symbol-
ically find the set of common zeroes of a system of polynomials. Gröbner bases are 
(typically very long) lists of generators of the system of polynomial equations with 
good algebraic properties which can be understood as a multivariate generalization 
of Gaussian elimination. For more details, see [14].

• Numerical AG: Numerical algebraic geometry methods are based on “homotopy 
continuation”. The system is put in a continuous deformation (a homotopy) to an ap-
propriate “known” start system with similar properties. The solutions of the known 
system are tracked over C using homotopy continuation, which provides numerical 
approximations of all the distinct or isolated complex solutions of the original sys-
tem, and these can be certified. By running homotopy continuation with appropriate 
generic homotopy parameter over C, not R, numerical algebraic geometry techniques 
with probability 1 find all solutions along the path [47]. For details see [8,61]. Since 
formulation is important for numerical conditioning, Section 4.1 considers an alter-
native formulation which is better conditioned.
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Table 2
Running time in seconds of the two approaches on the invariant system as well as on the systems described 
in Subsection 2.1. The first five computations was performed on a standard office desktop (Intel i3 3.40 GHz 
with 7.7 GB ram) The Bertini optimized computations were performed with 1 processor for the (2,1) case 
and 64 processors in parallel for the other cases.

Method M = 2 M = 2 M = 3 M = 3
N = 1 N = 2 N = 1 N = 2

Invariants equations with 
Maple

1.6 2.7 2.2 42.6

Real and imaginary part with 
Maple (Sec 2.1.1)

0.2 3.8 1.7 ran out of memory

Real and imaginary part with 
Bertini (Sec 2.1.1)

988 > 10000 > 10000 > 10000

Conjugate variables with 
Maple (Sec 2.1.2)

0.4 6.5 2.4 ran out of memory

Conjugate variables with 
Bertini (Sec 2.1.2)

2401 > 10000 > 10000 > 10000

Reconditioned system with 
Bertini (Sec 4.1)

0.3 8.0 7.8 80.9

We attempted to compute the solutions of the vortex problem following both of these 
approaches. As exact method, we used the function PolynomialSystem contained in the 
package SolveTools of the software Maple [42]. We used Bertini [9], an open numerical 
algebraic geometry software, which contains an implementation of homotopy continua-
tion and numerically solves for all solutions.

Table 2 compares the running time (in seconds) of the two approaches on the invari-
ant system as well as on the systems described in Section 2.1. The computations were 
performed on a standard office desktop (Intel i3 3.40 GHz with 7.7 GB ram).

4.1. Improving the conditioning of the system

One approach for creating a polynomial system from the rational equations (Ē(x)
i ), 

(Ē(y)
i ), (E(x)

i ), (E(y)
i ) is to clear denominators as in Section 2.1. Although this does not 

add variables, it increases the degrees which negatively impacts the numerical condition-
ing of the system. An alternative approach to constructing a polynomial system which 
has improved conditioning at the expense of more variables is to introduce a new variable 
for each rational term. For example, one introduces 

(
M
2

)
new variables Rxi,j equal to 

the term 1
xi−xj

where i = 1, . . . , M and j = i + 1, . . . , M yielding the bilinear constraint

Rxi,j · (xi − xj) = 1. (27)

For j < i, one has Rxj,i = −Rxi,j . After introducing new variables Ryi,j, RXi,j , RYi,j , 
Rxyi,j , and RXYi,j similarly, the equations (Ē(x)

i ), (Ē(y)
i ), (E(x)

i ), (E(y)
i ) simply reduce 

to linears. Hence, the only nonlinearity arises from the bilinear constraints for the new 
variables such as (27). In fact, the resulting system is naturally multihomogeneous so 
one can employ multihomogeneous regeneration [30,31] to efficiently solve.
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Table 3
Number of solutions found for different values of M and N . For M = 3, N = 3 and for M = 4, N = 2 there 
may be more solutions.

M = 1 M = 2 M = 2 M = 3 M = 3 M = 4 M = 3 M = 4
N = 1 N = 1 N = 2 N = 1 N = 2 N = 1 N = 3 N = 2

|sol’s| 1 1 2 0 1 0 ≥ 2 ≥ 1

Table 4
List of solutions found. The positions of the positively charged xi and negatively charged 
yi vortices are provided that solve Equations (6).

(1, 1) x1 = −
√

2/2 ≈ −0.707 y1 =
√

2/2 ≈ 0.707
(2, 1) x1 = −

√
2/2 ≈ −0.707 y1 = 0

x2 =
√

2/2 ≈ 0.707

(2, 2) x1 = −
√

2/2 ≈ −0.707 y1 = −
√

2/2i ≈ −0.707i

x2 =
√

2/2 ≈ 0.707 y2 =
√

2/2i ≈ 0.707i

(2, 2) x1 =
√

2+2
√

2
√

2−2
2 ≈ 0.977 y1 = −

√
2+2

√
2

√
2−2

2 ≈ −0.977

x2 = −
√

2−2
√

2
√

2−2
2 ≈ −0.212 y2 =

√
2−2

√
2

√
2−2

2 ≈ 0.212

(3, 2) x1 ≈ 0 y1 = 1−
√

3
2 ≈ −0.366

x2 = − 4
√

3
4 ≈ −0.930 y2 =

√
3−1
2 ≈ 0.366

x3 = 4
√

3
4 ≈ 0.930

(3, 3) x1 =
√

2/2 ≈ 0.707 y1 = −
√

2/2 ≈ −0.707
x2 = − 1−i

√
3

2
√

2 ≈ −0.354 + 0.612i y2 = 1+i
√

3
2

√
2 ≈ 0.354 + 0.612i

x3 = − 1+i
√

3
2

√
2 ≈ −0.354 − 0.612i y3 = 1−i

√
3

2
√

2 ≈ 0.354 − 0.612i

(3, 3) x1 ≈ −0.476 y1 ≈ 0.476
x2 ≈ 0.162 y2 ≈ −0.162
x3 ≈ 1.112 y3 ≈ −1.112

(4, 2) x1 = −
√

1−
√

10
6 ≈ −0.600i y1 = −

√
3−

√
10

2 ≈ −0.285i

x2 = −
√

13−4
√

10
6 ≈ −0.242 y2 =

√
3−

√
10

2 ≈ 0.285i

x3 =
√

13−4
√

10
6 ≈ 0.242

x4 =
√

1−
√

10
6 ≈ 0.600i

4.2. List of solutions

Table 4 contains all the solutions of the system for different values of M and N . For 
M = 3, N = 3 and for M = 4, N = 2 the computation of the main component (e(x)

1 = 1) 
did not terminate when using Maple, but Bertini was able to solve the corresponding 
preconditioned systems. Nonetheless, Maple was able to compute all solutions where 
at least one variable e

(x)
i or e

(y)
i equals zero. For all other values of M and N in the 

Table 4, the Bertini computation was completed, providing computational proof that no 
more solutions are present. In Fig. 1 we provide a visualization of the configurations we 
found. The two colors correspond to the two possible charges.
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Fig. 1. The solutions to the vortex problem for: M = 2, N = 1, (a); M = 2, N = 2, (b); M = 3, N = 2, (c); 
M = 3, N = 3, (d); M = 4, N = 2, (e).

5. Connection to the GP PDE results

Many of the above obtained configurations have been previously identified at the 
level of the GP equation. In particular, for instance, the vortex dipoles (M = N = 1) 
have emerged as the lowest order configuration that destabilizes a planar dark soli-
ton state [39,44,45] and have also been obtained experimentally via different tech-
niques [52,46], enabling the observation of their precessional dynamics. Importantly, 
in [46], the stationary form of the configuration directly related to the considerations 
herein, was also experimentally identified. Furthermore, in some of these works [44,45], 
it was argued that the aligned configurations of the tripole with M = 2, N = 1 (which 
was also observed experimentally in [59]), the aligned quadrupole with M = 2, N = 2, 
then the aligned states with M = 3, N = 2, as well as that with M = 3, N = 3 (and 
so on) are all byproducts of subsequent progressive further destabilizations of the dark 
soliton stripe. That is, for such a stripe [44], each additional destabilization produces 
a stationary configuration with one additional vortex along the former dark line soli-
ton. This is an intriguing cascade of bifurcations from the stripe which explains the 
emergence of aligned alternating charge vortex configurations, each with one additional 
charge with respect to the previous one. Each of these arises through a (supercritical) 
pitchfork bifurcation which, in turn, justifies that each of these has an additional unsta-
ble eigendirection with respect to the previous one. Consequently, the vortex dipole is 



E. Dufresne et al. / Advances in Applied Mathematics 124 (2021) 102099 23
Fig. 2. The first panel shows the density field |u|2 from a PDE computation of Equation (1) involving 
M = N = 3 vortices in a hexagonal configuration. This is shown by a two-dimensional contour plot in 
the (x, y) plane. The second panel illustrates the corresponding phase, revealing the alternating nature of 
the charges. Finally, the third panel illustrates the results of the linear stability analysis around such a 
configuration. The spectral plane (λr, λi) of the associated linearization is illustrated for the corresponding 
eigenvalues λ = λr + iλi. The presence of two (essentially indistinguishable on the scale of this panel) pairs 
of purely real eigenvalues establishes the exponential instability of such a solution. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

the most robust among these configurations, bearing no real eigenvalues (and no expo-
nential instabilities), but only an internal, potentially resonant via a Hamiltonian Hopf 
bifurcation, mode in the system. Then the tripole would bear one exponentially unstable 
eigendirection, the aligned quadrupole two such, and so on.

It is important here to highlight that some of the early existence and even stability 
results on the subject were obtained in the works of [15,48,49]. In these works, in addition 
to some of the aligned configurations, including the dipole and tripole, the first example 
of a canonical polygon of alternating vortices, namely the quadrupole was identified. It 
was, in fact, found that this configuration too did not bear any exponential instabilities 
but could become unstable through an oscillatory instability. The work of [45] offered a 
more systematic viewpoint on these polygonal configurations (see also [6]). There, it was 
found that these states too were a result of the destabilization of a dark solitonic stripe, 
but this time a radial one, the so-called ring dark soliton or RDS configuration (first 
proposed in the BEC context in [63]). In particular, as soon as this state emerges (in the 
linear limit of the system) it is degenerate with the vortex quadrupole. Then, its next 
(further) destabilizing bifurcation gives birth to a vortex hexagon, the subsequent one to 
a vortex octagon, then to a decagon and so on. All of these lead to canonical polygons 
involving alternating pairs of vortices, each of which has one more (again) unstable 
eigendirection than the previous one, i.e., the hexagon is generically unstable due to 
pairs of eigenvalues emerging as a result of the destabilization of the RDS. Moreover, the 
method of generating functions was used to illustrate that states with M = N , can be 
used to construct polygons of angle φ = π/N (at a fixed radius) between the alternating 
charges.

To give a canonical example in the context of configurations considered herein, we 
briefly refer to the case of the hexagon. In Fig. 2, we provide a typical scenario involving 
the case of μ = 2 and Ω = 0.1. We consider the different layers of approximation, starting 
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Fig. 3. Same as the previous configuration, but now for the principal configuration discovered herein, namely 
the stationary solutions involving M = 4 positive and N = 2 negative charges. For details regarding the 
positions of the vortices and the comparison with the corresponding theoretical prediction, see the text. 
The last panel showcases the instability of this newly established configuration, by virtue of showing its 
two pairs of real eigenvalues (exponential instabilities) and one pair of complex eigenvalues (oscillatory 
instability).

with Equation (2), which is the one also tackled via our algebraic techniques. At that 
level, as is established in [7] (and also found herein) the positions of the vortices are 
cube roots of unity for both the positive and negative charges, displaced by π/3 with 
respect to each other. The radius of the solutions, as shown also in Table 3 (for the 
complex (3,3) roots) is 

√
2/2 ≈ 0.707. This radius is given in units of the Thomas-Fermi 

radius RT F =
√

2μ/Ω. As seen in Fig. 2, the realistic radius is closer to 0.35RT F in the 
full numerical (PDE) computations. This difference is reflected by the more accurate 
nature of Equations (4) and (5). It is worthwhile to note that given the equidistant 
from the origin nature of this configuration as regards the vortices, in this case these 
two equations [(4) and (5)] yield the same prediction. For both of them, the equilibrium 
radius is found to be R2 = (2ωpr(0) + R−2

T F )−1. For the parameters above, R = 7.564 =
0.378RT F ; notice that this is very close to the numerical result, the difference being 
justified by the deviation of the above μ = 2 scenario from the Thomas-Fermi limit of 
large values of μ. Nevertheless, it is clear that the qualitative picture is accurate in all 
the effective particle descriptions and that the improved models can yield an even semi-
quantitatively accurate characterization. It is relevant to note that the stability results 
of Fig. 2 indicate that this is an unstable configuration due to two nearly identical 
pairs of real eigenvalues, suggesting an exponential growth of perturbations along the 
corresponding eigendirections.

All of the above configurations have also been summarized in the compendium of [36]
and it is interesting to note that they include all the configurations that we have obtained 
in the present work except for the M = 4, N = 2 state of Fig. 5. It is thus the latter that 
we now turn our attention to more systematically, as it is unprecedented in earlier both 
existence and stability studies, to the best of our knowledge. This configuration consists 
of 4 plus and 2 minus (or vice versa) charged vortices with the inner ones constituting a 
quadrupole –with slightly unequal distances from the origin along the two axes–, while 
the last two are aligned with one of the axes and oppositely charged to the rest of 
the vortices along the same line. A typical example of this configuration was obtained 
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and is shown in Fig. 3. Importantly, in this example our numerical observations once 
again bear some difference in comparison to the prediction of Table 3. In particular, 
numerically we find the vortices to be located as follows. The +1 charges are located at 
x1,2 = ±0.1875RT F i (along the imaginary axis) and at x3,4 = 0.3875RT F , while the −1
charges are at y1,2 = ±0.15RT F (cf. with the values in Table 3). The latter four vortices 
are located on the real axis, although clearly the entire configuration is freely amenable 
to azimuthal rotations. It is for this reason that we now resort to the progressively more 
accurate representations of Equations (4) [which accounts for the radial dependence of 
the vortex precession frequency] and then Equations (5) [which additionally incorporates 
the effect of the inhomogeneity of the background in the inter-vortex interaction]. The 
former yields a prediction of x1,2 = ±0.158RT F i and x3,4 = ±0.331RT F while y1,2 =
±0.134RT F . Finally, the most accurate available description of Equations (5) leads to 
the following numbers x1,2 = ±0.179RT F i, x3,4 = 0.413RT F , while y1,2 = ±0.154RT F . 
This latter description is the most accurate one –to the best of our knowledge– that is 
obtained by a particle model, being limited only by the deviation from the Thomas-Fermi 
limit. That is, the prediction would only be better for larger values of μ. Nevertheless, 
the conclusion that we reach is that the configuration predicted by the computer algebra 
techniques is qualitatively consonant with the configuration identified in the full system. 
Nevertheless, the more elaborate (and more accurate) models such as ultimately that of 
Equations (5) are needed in order to most adequately capture the quantitative specifics of 
the vortex locations. In that light, the tools developed herein can be useful in unraveling 
configurations possibly with quite limited symmetry characteristics which may not be 
easily identifiable differently. It should also be added that we have explored the dynamical 
stability of this configuration and have found it to be dynamically unstable, as shown in 
Fig. 3. In particular, as can be observed in the figure, it bears two pairs of real eigenvalues 
and a complex eigenvalue quartet with nontrivial growth rates. The former lead to an 
exponential growth along the respective eigendirections, while the latter corresponds to 
an oscillatory growth due to the complex nature of the eigenvalues.

6. Conclusions & future challenges

In the present work, we have made an attempt to bring to bear tools from the theory 
of Gröbner bases and associated computational algebra to the case of a problem in-
volving stationary configurations of oppositely charged vortices in atomic Bose-Einstein 
condensates. More specifically, we have started from the corresponding PDE system (of 
the Gross-Pitaevskii type) and have discussed different layers of reduction approxima-
tions characterizing the dynamics of the vortices. The first layer is a quasi-homogeneous 
one, the next involves the dependence of the precession frequency of a single vortex on 
the distance, while the most elaborate one also accounts for the inhomogeneity of the 
background in affecting inter-vortex interactions. For computational simplicity reasons, 
we have utilized the simplest one of these descriptions and deduced from its correspond-
ing steady state problem, a set of equations in the elementary symmetric polynomials 



26 E. Dufresne et al. / Advances in Applied Mathematics 124 (2021) 102099
in the variables. We have brought to bear computational algebra packages that have 
enabled us, in this adapted formulation, to find all possible stationary configurations 
involving up to 5 vortices of combined positive and negative charges and all station-
ary configurations involving 6 vortices except for the case of 5 positive and 1 negative 
charges (or vice versa). Most configurations among these have been already obtained in 
the literature of BECs, most notably the configurations with high symmetry (axial ones 
with all the vortices on a line, or polygonal ones with them sitting at the vertices of a 
canonical polygon). We have discussed in some further detail one of these cases, namely 
a canonical hexagon, consisting of 3 plus and 3 minus charged vortices. Nevertheless, 
already in the case of 6 charges, we have presented an unprecedented –to the best of 
our knowledge– configuration, namely one with 4 positive and 2 negative charges (or 
vice versa). We have studied such a configuration at the level of our different layers of 
ODE approximation in comparison with computations of the original PDE. In all the 
cases considered, while admittedly we have utilized (for computational simplicity) the 
computer algebra package in the simplest setting of Equation (2), we have found that 
the identified configurations in all cases, persist in the full PDE problem. Additionally, 
we have shown how the more adequate (but at the same time more complex) polynomial 
equations of the models of Equations (4) and (5) can then facilitate a more accurate cap-
turing of the precise vortex locations in connection with the full PDE problem, providing 
in this way a more definitive characterization of the states.

We believe that this larger scale program has numerous directions for potential further 
development. A natural question concerns the limitations of this effort regarding the at-
tempt to seek all the possible configurations with higher numbers of charges. Presently, 
this task seems somewhat limited by computational capabilities, but it seems reason-
ably likely that advances in either the algorithmic developments or the computational 
hardware may be able in the near future to circumvent this issue and offer us an unprece-
dented ability to obtain all stationary vortex configurations of higher numbers of charges. 
A complementary effort may be developed in the direction of bringing to bear similar 
algebraic techniques but for the more complex and thus more cumbersome systems, such 
as those of Equations (4) and especially so Equations (5). Finally, there are numerous 
additional directions where one can extend present considerations. While a large vein 
of potential work can be opened by considering three-dimensional settings, we limit our 
considerations to the 2d case, but involving potentially traveling configurations. There 
exist works such as those of [34] and more recently [40] which have discussed intriguing 
algebraic connections including those with the so-called Adler-Moser polynomials (see 
also references therein). Nevertheless one can envision important, physically relevant 
variations where the vortices are confined in one direction in the plane, while traveling 
in the other direction. There, it is conceivable that the nice algebraic structure of the 
Adler-Moser polynomials disappears, yet a computer algebra characterization of steadily 
propagating solutions may well be possible. These different directions are currently under 
consideration and progress along them will be reported in future publications.
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