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Dark-antidark spinor solitons in spin-1 Bose gases
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We consider a one-dimensional trapped spin-1 Bose gas and numerically explore families of its solitonic
solutions, namely antidark-dark-antidark (ADDAD), as well as dark-antidark-dark (DADD) solitary waves. Their
existence and stability properties are systematically investigated within the experimentally accessible easy-plane
ferromagnetic phase by means of a continuation over the atom number as well as the quadratic Zeeman energy. It
is found that ADDADs are substantially more dynamically robust than DADDs. The latter are typically unstable
within the examined parameter range. The dynamical evolution of both of these states is explored and the
implication of their potential unstable evolution is studied. Some of the relevant observed possibilities involve,
e.g., symmetry-breaking instability manifestations for the ADDAD, as well as splitting of the DADD into a right-
and a left-moving dark-antidark pair with the antidarks residing in a different component as compared with prior
to the splitting. In the latter case, the structures are seen to disperse upon long-time propagation.
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I. INTRODUCTION

Since their experimental realization two-and-a-half
decades ago, Bose-Einstein condensates (BECs) have been
of substantial interest due to their ability to provide a
controllable playground for exploring macroscopic quantum
phenomena [1,2]. Coherent structures supported by such
weakly interacting gases have played a central role in the
relevant research efforts [3], sharing many common features
with other fields including nonlinear optics [4] and water
waves [5]. Thus, numerous wave patterns have been studied
in BECs, ranging from dark solitons [6], vortices and
vortex lines [7,8], vortex rings [9] to more complex entities
including, e.g., hopfions [10] and potentially long-lived
vortex knots [11,12]. On the more practical side, some of
these excitations such as the dark solitons have been proposed
as potential qubits with remarkably long lifetimes [13].

In addition to the exploration of the most prototypical
settings involving single-component BECs, in recent years the
study of multicomponent BECs has been of particular interest
and has been summarized also in recent reviews [3,14]. Within
this setting, the study of genuinely spinorial Bose gases has
contributed to a wide range of new phenomena since its in-
ception [15]. More specifically, it has offered the potential for
fractional, as well as non-Abelian vortices, for the manifes-
tation of spin textures and transitions between them, for the
study of spin mixing and numerous other effects involving
the spin degree of freedom, as summarized, among others,
in the reviews of Refs. [16,17]. This is a field of substantial
ongoing activity, including, e.g., among other recent develop-
ments, the observation of universal dynamics of spinor gases
far from equilibrium [18].
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Due to their long coherence times, solitonic states are of
particular interest in these systems. Naturally, the multicom-
ponent settings offer numerous possibilities for such states.
Taking a two-component system with zero background in
one of the components, dark-bright solitons are well known
solutions [14,19,20]. In this setting, one of the components
forms a potential well whose absence of atoms invites its
filling by atoms of the second component. If the atoms of
the second component lie solely in that region, we talk about
dark-bright solitonic states (assuming that the first component
harbors also the phase jump associated with a dark soliton).
Advancing this idea to three-component systems leads to two
prototypical configurations featuring either two dark and one
bright or one dark and two bright components. Such states
are typically known as dark-bright-dark (DBD) or bright-
dark-bright (BDB) solitons. The formation of such solitary
wave excitations involving the three components has been
experimentally observed in spin-1 Bose gases [21,22]. In the
latter work, the collisional properties (i.e., polarization shifts
in the vector degree of freedom) of the emerging BDB soli-
tons have been systematically investigated by making use of
recent advances enabling a high level of experimental control.
A very recent theoretical study showed that DBD and BDB
solitons are principal constituents of the phase diagram of
nonlinear excitations in one-dimensional trapped spin-1 Bose
gases [23].

Somewhat similar states can be found in the presence
of a ground-state-like background in all components. In the
case of a two-component system, these states are referred
to as dark-antidark solitons [24]. The antidark component
is characterized by a higher concentration of atoms on
top of the nonzero background in the well created by the
dark component. Such solutions have been theoretically pro-
posed, numerically explored, and experimentally identified
in Ref. [25]. A recent study expanded upon this idea ex-
perimentally and theoretically exploring states involving up
to six dark-antidark structures [26]. Furthermore, related

©2020 American Physical Society


https://orcid.org/0000-0002-7714-3689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.053323&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1103/PhysRevA.102.053323

C.-M. SCHMIED AND P. G. KEVREKIDIS

PHYSICAL REVIEW A 102, 053323 (2020)

configurations hinging on the idea of the complementarity of
the components also occur in studies addressing two-species
magnetic solitons in multicomponent BECs [27-29].

Our aim here is to numerically study the three-component
variants of dark-antidark states in one-dimensional spin-1
Bose gases. In particular, we are interested in structures on
top of a ground state involving all three components, a feature
critical towards formulating antidark states. This naturally
arises within the experimentally accessible easy-plane ferro-
magnetic phase of the spin-1 system [30]. In analogy to the
dark-bright case, we then have two prototypical configurations
involving antidark structures: On the one hand, it is possible to
generate states where two components are of the dark soliton
type, while only one is antidark; or, on the other hand, to pro-
duce a setting with one dark solitonic component harboring
two antidarks in the other two components. In each of these
cases, the dark soliton(s) play(s) the role of an effective at-
tractive potential collecting additional atoms and thus forming
a density bump (i.e., the antidark solitary wave) on top of a
finite background in the remaining component(s). We label
these states as dark-antidark-dark (DADD) and antidark-dark-
antidark (ADDAD), respectively. Naturally, a state where all
three components are dark solitary waves is also present. Yet,
given that the latter is more proximal to a single-mode ap-
proximation [16,17] and that here we are interested in antidark
states, we will not focus on these three-component dark states
herein.

We find that the ADDAD state is far more dynamically
robust than the DADD state, which is unstable throughout the
examined parameter regime. The dynamical breakup of the
ADDAD state (when it is unstable) leads to an asymmetric
distribution of the antidarks, involving an oscillatory magne-
tization dynamics. The unstable DADD typically splits into
a left- and right-moving dark-antidark pair in the dynamical
evolution in which the distribution of dark and antidark soli-
tary waves among the components is different from the initial
one. Eventually, the resulting patterns appear to disperse on
long timescales in our numerical simulations. In addition to
the generic variation of the number of atoms, the spinor gas
offers the possibility to vary the quadratic Zeeman energy
which enables a multiparametric exploration of the stability of
the solitonic structures. By means of the respective parameter
continuation, we find that the larger the quadratic Zeeman en-
ergy and the smaller the atom number, the more dynamically
robust the corresponding ADDAD state.

Our presentation is structured as follows. In Sec. II, we
examine the theoretical model. In Sec. III, we introduce nu-
merical methods to study key features of the ADDAD and
DADD states. In Sec. IV, we discuss numerical results for
both states. Finally, in Sec. V, we summarize our findings and
present our conclusions, as well as a number of directions for
future studies.

II. MODEL

In present-day experiments, atoms are typically confined
in harmonic trapping potentials. To reach a quasi-one-
dimensional regime, highly anisotropic traps with longitudinal
and transverse trapping frequencies selected to satisfy the con-
dition w; < w are used. While we focus hereafter on such

configurations, we do note that the physical considerations
leading to the coherent structures presented in this work are
still fully valid in a homogeneous Bose gas.

For the applicability of our study to experimental sys-
tems, we numerically examine the respective one-dimensional
model of a spin-1 Bose gas in a highly anisotropic trap. In this
case, the three-dimensional wave functions can be separated
into a longitudinal and transverse part. The transverse wave
function, being in the ground state of the respective harmonic
oscillator, can then be integrated out to obtain the following
system of coupled one-dimensional Gross—Pitaevskii equa-
tions (GPEs) for the longitudinal part [16,17,31]:

ihd e = HoWay + gt + c1 (W ol = [¥1 1) ¥
+ v, (1)

ihd o = Howo + c1 (1Y > + [¥—1 )0 + 211y .
2)

Here, Y1) = ¥4i(x,t) and ¥y = Yo(x,t) are the com-
plex classical bosonic fields that correspond to the
magnetic sublevels mp = £1,0 within the F =1 hyper-
fine manifold. The asterisk denotes complex conjugation.
The spin-independent part of the Hamiltonian is Hy =
—[12/2M)18} + (1/2)Mwix* + coner, Where nige = 1> +
[¥o]? 4+ |1_1|? is the total density and M denotes the mass of
the atoms. Consequently, the total atom number is obtained as
N = [ dx ny. The parameter ¢ is the quadratic Zeeman en-
ergy shift proportional to an external magnetic field along the
z direction. It leads to an effective detuning of the mp = +1
components with respect to the mp = 0 component. We have
also already absorbed a possible homogeneous linear Zee-
man shift in the definition of the fields. The parameters ¢y =
c§P/@ra® ) and ¢; = P/ 2rd?), with a; = /E/(Mwy )
being the transverse harmonic-oscillator length, characterize
the effectively one-dimensional density-density and spin-spin
coupling. In the longitudinal direction, the motion in the trap
is characterized by the oscillator length ay = \/ii/(Mw)). The

above-stated three-dimensional coupling constants c(()SD) and
ch) are given by

<OD) _ 4 i*(ap + 2az) O A (ar — ap)
‘ v ! .

in terms of the s-wave scattering lengths ag and a;. In the case
of ¢; < 0, the system is ferromagnetic, while for ¢; > 0 it is
antiferromagnetic. The characteristic length scale associated
with the spin degree of freedom is the spin healing length
& = h/~/2Mnyy|c1], which varies over the trap due to the in-
homogeneity of the density. The spin healing length typically
sets the order of magnitude of the width of three-component
solitonic excitations in the spin-1 system.

For our numerical studies, we use experimentally
accessible parameters for 8’Rb. This sets the mass M to the
respective rubidium mass. We take our one-dimensional trap
geometry to be characterized by (o), ®1)=27 X
(2.5, 250) Hz, which is close to the one realized in Ref. [22].
The one-dimensional density-density coupling ¢y is then
inferred from Eq. (3) using the s-wave scattering lengths
ap = 101.8ag and a, = 100.4ap [31], with Bohr radius

3)
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ap, and the transverse oscillator length a; = 0.682 um.
Furthermore, we set the spin-spin coupling to ¢; = —c(/200,
which is in the ballpark of the experimentally relevant value
for 8Rb in the F = 1 hyperfine manifold.

We obtain a dimensionless form of the equations of motion
by rescaling the physical parameters by a suitable length scale
£. This means that ¥ = x/¢,f = th/(MEz), Iﬁilﬁo = wil,m/z,
G =qMe*/i?, &1 = co1ME/R?, & = wyME*/h, where the
overbars denote the dimensionless quantities. Suppressing
the overbar, the dimensionless form of the equations of mo-
tion is equivalent to Eqgs. (1) and (2) with =1 and Hy =
—(1/2)3)3 + (1/2)a)ﬁ)c2 + coNtor-

We perform our numerical simulations on a one-
dimensional grid with N, = 512 grid points subject to periodic
boundary conditions. A choice of £ = a; = 6.82 um has been
made to practically facilitate the numerical computations, yet
our results are reported below in physical units or dimension-
less ratios and hence are independent of the concrete selection
of £.

For a parametric exploration, we vary the total atom num-
ber N as well as the quadratic Zeeman energy q. Depending on
the quantitative relation between ¢ and the energy associated
with the spin interaction, the system favors different spin
configurations. This causes the spin-1 Bose gas to feature
distinct phases within the plane spanned by the two energy
scales. In order for three-component dark-antidark solitons to
exist, we need a nonzero background density in all three mp
components. Such a background configuration is generically
realized within the easy plane phase of the spin-1 Bose gas. In
a recent numerical study using the computational technique of
the so-called accelerated continuous-time Nesterov (ACTN)
scheme, it was found that for a trapped spin-1 system in one
spatial dimension with vanishing z component of the magne-
tization, the system is in the easy-plane phase for quadratic
Zeeman energies g € (0, 2np|c|) in the case of ¢y < 0 [30].
Here, n,, denotes the peak density of the condensate. Since the
backdrop of the easy-plane phase is critical for the existence
of the dark-antidark states of interest, we solely focus on a
parametric exploration in the above-stated regime of quadratic
Zeeman energies.

For the discussion of the magnetic properties of the soli-
tons, recall that the different components of the spin vector in
a spin-1 system are given by

1
Fe= E[WO(WT +¥I)+ W+ YDyl “4)

F, = %woo/fl* ) = =YL ()
F = |y > — [y ]%, (6)
Fi = F, +iF, = V2[y1 9 + ovr™, 1, (7)

where the complex field F'| denotes the transverse component
of the spin. Both the integral of the modulus squared of the
magnetization vector, as well as that of the z component of
the magnetization are conserved quantities in the dynamics of
Egs. (1) and (2).

We remark that we restrict our discussion in this work
to the case of ADDAD and DADD states where either the
two darks or two antidarks reside in the mg = £1 com-

ponents. Furthermore, we generally converge to a single
soliton solution with a symmetric distribution in the mp =
41 components implying a vanishing local and global F,
magnetization.

III. NUMERICAL METHODS

Our numerical investigation of the ADDAD and DADD
states involves three steps:

(1) To find these solitonic structures for a given parameter
set within the easy-plane phase of a spin-1 Bose gas, we
employ an exact Newton-Raphson (hereafter referred to, for
simplicity, as just Newton) iterative scheme to the dimension-
less, time-independent versions of the equations of motion (1)
and (2), see Appendix A. For details on the applied Newton
iterative scheme, see Appendix B and Ref. [30]. To converge
to the ADDAD state within the easy-plane phase, we start the
Newton iteration with the initial “guess”

wl -V 1
w |~ [ ek, ) [ 501, @
(/] ‘o 1

where x( is the center position of the soliton and A quanti-
fies the width of the hyperbolic tangent. The Heaviside theta
function ® is defined as ®(z) = 1 for z > 0. We place the
soliton at the trap center such that we set xo = 0. We further
take the parameter A to be on the order of the spin heal-
ing length & at the trap center. We choose a Thomas-Fermi
(inverted parabolic) background profile [2] as we work in a
regime of comparatively large N where the energy associated
with the nonlinear terms is considerably larger than the ki-
netic energy. Due to the density-density coupling ¢y being
two orders of magnitude larger than the spin-spin coupling
c1, it is reasonable to take a one-dimensional Thomas-Fermi
profile characterized by cy, the trapping potential V(x) =
(1 /2)Ma)ﬁx2, and the corresponding Thomas-Fermi chemi-

cal potential prr = (1/2)(3v/McowyN/2)*/3. The associated
Thomas-Fermi radius Rrg is defined via V(x = Rtg) = U1E.
It is worthwhile to note that, near the linear limit, i.e., for a
weak nonlinearity (small N), the Thomas-Fermi profile has
to be replaced by a Gaussian to obtain an adequate initial
guess for the Newton iteration scheme. For the system studied
in this work, we find that the background profile gradually
approaches a Gaussian for N < 250; for such small values of
N, the mean-field description is no longer expected to remain
valid, yet it is of mathematical interest in its own right. We
remark that the Newton iteration converges to the desired
solitonic state for both the Thomas-Fermi and the Gaussian
background density profile. However, we generally observe
that the more accurate the initial guess, the faster the conver-
gence of the Newton iteration. Irrespective of the background
profile, the presence of the hyperbolic tangent profile in the
component bearing the dark soliton will spontaneously play
the role of an attractive potential well leading to a mass of
atoms in the other two components.
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To converge to the DADD state, we start the Newton itera-
tion with the initial “guess”

" — tanh [";—i‘"]
vo | ~ ﬂ%—@m%fﬁ) 1 .9
Ve ’ tanh [0 ]

As indicated also above, converging to the ADDAD or DADD
state does not require any knowledge about the form of the
antidark(s) in the initial “guess” for the Newton scheme. The
crucial part is the presence of a phase jump and an amplitude
suppression in the desired dark component(s).

(2) Upon converging to the ADDAD and DADD states
by means of the Newton scheme for a particular set of pa-
rameters, we subsequently study their stability properties.
These properties are extracted by numerically solving the
Bogoliubov-de Gennes (BdG) equations, obtained by consid-
ering small perturbations about the solitonic states to linear
order. To obtain the BAG equations, we take the ansatz

U (x, 1) = [@(x) + €8 (x, 1)]e ™, (10)

with m = %1, 0 labeling the three hyperfine components and
®,,(x) being the wave function of each component of the
respective solitonic state obtained from the Newton scheme.
Here, 1 is the corresponding chemical potential, € is a small
parameter with € < 1, and 81, is the perturbation about the
solitonic state. For the perturbation, we write

SYm(x, 1) = Uy (x)e ™ 4 v} (x)e™, (11)

with mode frequency @ and mode functions u,,, v,,. For the
resulting BAG equations and further details on the method,
see Appendix C and Ref. [30]. Solving the BdG equations
yields the eigenmodes and the respective mode frequencies
of excitations about the investigated state. If all mode fre-
quencies are real, the state is dynamically stable. Eigenmodes
corresponding to mode frequencies with a nonzero imaginary
part are dynamically unstable as they grow in time. Their
growth rate y is given by the magnitude of the imaginary part
of the mode frequency. Due to a finite accuracy of the solver
used to evaluate the BdG equations, we consider eigenmodes
to be unstable only when the imaginary part is larger than
1073, Unstable modes can be of two different kinds. If the
mode frequencies are purely imaginary, we speak of an ex-
ponential instability as the associated mode occupation grows
exponentially in time. If the mode frequencies are complex,
the instability is of oscillatory nature, i.e., the growth is ac-
companied by oscillations.

(3) In the case that the BAG analysis reveals the ADDAD
or DADD state to be dynamically unstable for a given parame-
ter setting, we aim at investigating the dynamical evolution of
the respective state. We then compute the time evolution of the
mean-field model by solving the equations of motion (1) and
(2) in dimensionless form by means of a spectral split-step
algorithm. As initial configurations for the respective simu-
lations, we take the ADDAD and DADD states as obtained
from the Newton scheme and add a small perturbation to the
unstable eigendirection(s) resulting from the respective BdG
analysis in order to seed the instability.
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FIG. 1. A typical example of an antidark-dark-antidark

(ADDAD) state for N = 10000 and g = 0.5n,|c,|. (a) Densities
of the three components |,,|>, m = £1,0, and the total density
> . [¥uml* (solid gray line). The total density shows a small
suppression at the position of the ADDAD state. The mp =0
component carries the dark soliton (dash-dotted orange line).
(b) Main frame shows amplitudes of the different components of
the magnetization |F,|, with v =z, L. The ADDAD state has no
F, magnetization (dashed green line), but features a dark soliton
in the transversal spin F, = |F\|exp{i6fF} characterized by an
amplitude suppression (see solid black line in the main frame) and a
corresponding phase jump (see solid black line in the inset).

IV. NUMERICAL RESULTS

In this section, we present our numerical results concerning
the ADDAD and DADD states. We start by investigating the
key features of the ADDAD states in Sec. IV A followed by
the DADD states in Sec. IV B.

A. ADDAD solitons

A typical example of the ADDAD structure obtained by
means of the exact Newton scheme for a total atom number of
N = 10000 and a quadratic Zeeman energy of g = 0.5 np|c|]
is shown in Fig. 1. It can be seen that the dark soliton in the
mg = 0 component [dashed-dotted line in Fig. 1(a)] creates
an effective potential attracting atoms from the two other
components [dotted blue and dashed red lines in Fig. 1(a)],
and forming the antidark spikes in these. Given the symmetry
of the mp = =1 states, there is no F, magnetization in this case
[see green dashed line in Fig. 1(b)], yet the imprint of the dark
soliton leads the transverse component of the magnetization
F, to possess also a dark solitonic structure characterized by
an amplitude suppression and an associated phase jump [black
solid lines in Fig. 1(b)].

Performing the BdG analysis, we find that the potential
instability of the ADDAD is characterized by one unstable
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FIG. 2. Real and imaginary parts of the normalized mode func-
tions u,,, v, with m = £1,0 of the unstable eigendirection of the
ADDAD state for N = 10000 and g = 0.5n,|c;| as obtained from
the numerical evaluation of the respective BAG equations. The
corresponding mode frequency is purely imaginary, leading to an
exponential growth of the depicted unstable eigenmode.

eigendirection associated with the presence of one dark soli-
ton. When an instability is present, the corresponding mode
frequency is purely imaginary, resulting in an exponential
growth of the unstable mode. From the respective mode func-
tions (see Fig. 2) which are only nonzero for the mp = +£1
components, we infer that the instability acts on the two an-
tidarks. The actual effect of the unstable eigendirection can
be deduced by comparing the density profiles of the ADDAD
state with the profiles obtained by adding an exaggerated per-
turbation of the unstable eigenmode to the state (see Fig. 3).
We find the unstable eigendirection to cause a symmetry
breaking between the mrp = =1 components as the perturba-
tion increases the antidark’s mass in the mr = 1 component
while it decreases the mass in the mg = —1 component. We
will discuss the resulting dynamical evolution of the unstable
ADDAD state and the corresponding manifestation of this
symmetry-breaking effect further below.

The main results of our systematic investigation of the
stability of the ADDAD state are summarized in Figs. 4-6.
Figure 4(a) shows the maximal instability growth rate ymax
as a function of the total atom number N for three typical
values of the quadratic Zeeman energy within the easy-plane
phase. It can be observed that the larger ¢, the wider the
interval of stability of the ADDAD state with respect to N.
In fact, for g = 1.5n;|cy], the state is dynamically stable for
all atom numbers considered. As ¢q is lowered, the stability
threshold of the state N. decreases. For g = 0.5np|cy|, stable
structures only exist for N < 2500. Figure 4(b) contains the
standard continuation diagram of the chemical potential w as
a function of N for the different gs representing stability by
orange circles and exponential instability by blue diamonds.
A complementary perspective, fixing the atom number to N =
10000 and varying g, is presented in Fig. 5. It can be seen that,
up to g = 0.9np|c;], the structure is unstable for this atom
number but, as g acquires larger values, the ADDAD state is
dynamically stabilized. The possible parameter continuation
over both the atom number as well as the quadratic Zeeman
energy further allows us to determine the stable and unsta-
ble regions of the ADDAD state within the respective (g, N)
plane (see Fig. 6). The extracted phase boundary between
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FIG. 3. Comparison of the density profiles |v,,|*, m = 1,0
(solid black lines), of the ADDAD state for N = 10000 and g =
0.5 ny|cy| with the profiles |y, + A, |? (red dotted lines) resulting
from adding an exaggerated perturbation of the unstable eigenmode.
The perturbation is chosen as A, = C(u,, + v;;,) with C = 20 and
mode functions u,,, v,, as depicted in Fig. 2. The unstable eigenmode
causes a symmetry breaking between the mr = 1 components.

(a) q = 0.5npc1] q = npleci] q = 1.5np|c1]
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FIG. 4. Stability properties of the ADDAD state for a monopara-
metric continuation over the atom number N for three values of the
quadratic Zeeman energy g = 0.5np|c;| (left column), g = n,lci|
(middle column), and g = 1.5np|c;| (right column). (a) Maximal
instability growth rates ymax in units of n,|c;|. The ADDAD structure
becomes more stable for larger g. For g = 1.5n;|c,], the state is
dynamically stable for all N considered. (b) Bifurcation diagram
showing the chemical potential u as a function of the number of
atoms N. Stability of the ADDAD state is represented by orange
circles, while exponential instability is shown by blue diamonds.
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FIG. 5. An addition to Fig. 4, now showing the stability quanti-
fied by the maximal instability growth rate ym,.. as a function of ¢
for a fixed value of N = 10000 atoms. Again, it can be seen that
larger gs lead to a reduced instability growth rate and eventually to a
complete stabilization of the ADDAD structure for g 2 0.9 n,|c| for
this value of N. The growth rates and the quadratic Zeeman energies
are measured in units of 7, |cy|.

both regions clearly shows that the ADDAD becomes more
dynamically stable for larger quadratic Zeeman energies and
for smaller atom numbers. Notice that the enhanced stability
of the state for larger g can be qualitatively understood by the
fact that, as g increases, the mg = %1 antidark components are
suppressed, ultimately leading to a single dark soliton, which
is a stable state in the polar phase of the spinor system.

We now turn to the examination of the dynamical in-
stability of the ADDAD state. We illustrate a typical time
evolution for N = 10000 and g = 0.5 np|c| in Fig. 7. Here,
we perturb the unstable eigendirection according to the BdG
formulation in Eqgs. (10) and (11) such that the amplitude of
the perturbation is 0.1% of the amplitude of the mg = £1
components of the ADDAD state obtained from the Newton
scheme. It can be seen that the ADDAD suffers a symmetry
breaking leading to an asymmetric partition of the antidark
components, as expected from the perturbed density profiles
depicted in Fig. 3. This means, that one of the two mg = £1
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20000 A 4
o
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co—s—2° -

0 - T T T
0.0 0.5 1.0 1.5 2.0
a/(npleil)

FIG. 6. Stability of the ADDAD state within the (g, N)-plane.
The black dots mark the boundary between the unstable and stable
region of the ADDAD for selected atom numbers. The gray line is
a cubic interpolation of the data points. The ADDAD becomes more
dynamically stable when increasing g. The quadratic Zeeman energy
g is measured in units of n,[c|.
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FIG. 7. Time evolution of an unstable ADDAD state for N =
10000 and g = 0.5n,|c;|. (a) Densities of the three components
||, m = %1, 0. The symmetry-breaking nature of the destabiliz-
ing dynamics can be observed between the mg = =1 components.
(b) Amplitudes of the different spin components |F,|, v = z, L. The
persistence of a dark solitonic state in the mg = O component is con-
firmed through the dynamics of F, (top panel), while the asymmetry
becomes visible through the nontrivial oscillations of F, (bottom
panel).

states acquires more atoms than the other and subsequently,
given the Hamiltonian nature of the model, an oscillatory dy-
namics ensues between the unstable symmetric state and the
presumably more dynamically robust asymmetric state [see
Fig. 7(a)]. During this observed oscillation, the dark solitonic
structure persists in the transversal spin F, [see top panel of
Fig. 7(b)], while at the same time the asymmetry bestows
a nontrivial oscillatory dynamics in F; [see bottom panel of
Fig. 7(b)]. We expect the symmetry breaking to occur when
the amplitude of the unstable mode becomes similar to the
amplitude of the mp = 1 components of the initial ADDAD
state. Hence, an estimate for the corresponding break-
up time f, >~ —(InA)/Ymax =4 s can directly be inferred
from the respective instability growth rate Yipax = 0.25 np|cy]|
and the relative amplitude of the perturbation A = 0.001. Note
that the estimate for #, agrees remarkably well with the break-
up time observed in the numerical simulation [cf. Fig. 7(a)].
Small deviations may arise from additional nonlinear effects.

B. DADD solitons

Similar features as discussed for the ADDAD structure can
be obtained for the DADD soliton. A typical example of the
DADD structure for a total atom number of N = 10000 and
a quadratic Zeeman energy of g = 0.5n,|c;| is presented in
Fig. 8. It can be seen that the two dark solitons in the mp = +1
components [dotted blue and dashed red lines in Fig. 8(a)]
create an effective potential attracting atoms from the mp = 0
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FIG. 8. A typical example of a dark-antidark-dark (DADD) state
for N = 10000 and g = 0.5 n,|c;]. (a) Densities of the three compo-
nents |y, |%, m = %1, 0, and the total density Y [, |* (solid gray
line). The total density shows a tiny suppression at the position of
the DADD state. The mp = £1 components carry the dark solitons
(dotted blue and dashed red lines). (b) Main frame shows amplitudes
of the different components of the magnetization |F, |, withv = z, L.
The DADD state has no F, magnetization (dashed green line) but
features a dark soliton in the transversal spin F, = |F|exp{i 0}
characterized by an amplitude suppression (see solid black line in
the main frame) and a corresponding phase jump (see solid black
line in the inset).

component [dash-dotted orange line in Fig. 8(a)] and forming
the antidark spike in the latter. Given the symmetry between
the mp = +1 states, there is also no F, magnetization in this
case [green dashed line in Fig. 8(b)], yet the imprint of the
dark soliton leads the transverse component of the magnetiza-
tion F| to possess also a dark solitonic structure characterized
by an amplitude suppression and an associated phase jump
[black solid lines in Fig. 8(b)].

Performing the BAG analysis, we find that an instability of
the DADD is characterized by two unstable eigendirections
associated with the fact that the state features two dark soli-
tons. The corresponding eigenfrequencies (generically) are
purely imaginary, resulting in an exponential growth of the un-
stable modes. However, one of the eigendirections exhibits a
significantly larger growth rate y than the other, hence we ex-
pect this unstable eigenmode to dominate the instability. From
the respective mode functions of the most unstable eigendi-
rection (see left column in Fig. 9) which are only nonzero for
the mp = £1 components, we infer that the instability acts on
the two dark solitons. As we did previously for the ADDAD
state, we compare the density profiles of the DADD state with
the profiles obtained by adding an exaggerated perturbation
of each of the unstable eigenmodes to the state to deduce
the actual effect of the unstable eigendirections (see Fig. 10).

First unstable mode Second unstable mode
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FIG. 9. Real and imaginary parts of the normalized mode func-
tions u,,, v, with m = £1,0 of the two unstable eigendirections
of the DADD state for N = 10000 and g = 0.5n,|c;| as obtained
from the numerical evaluation of the respective BAdG equations. The
corresponding mode frequencies are purely imaginary, leading to an
exponential growth of the depicted unstable eigenmodes. The insta-
bility growth rate of the first eigenmode (left panel) is significantly
larger than for the second eigenmode (right panel). Hence, the insta-
bility predominantly stems from the most unstable eigendirection.

The symmetry-breaking nature of the most unstable eigendi-
rection causes the mp = &1 components to move in opposite
directions (see left column in Fig. 10). This induces a splitting
of the DADD state in the dynamical evolution which will be
discussed further below. The second unstable eigenmode is a
translational mode as it shifts all three mgr components equally
in the same direction (see right column in Fig. 10).

The main conclusions of our systematic numerical com-
putations as regards the dynamical stability of the DADD
structures are captured in Figs. 11 and 12 and can be sum-
marized as follows: Generally speaking, DADD structures are
considerably /ess stable than the ADDADs. We suspect that
this has to do with the more highly excited nature of the
DADD state involving more dark solitons than the ADDAD
state. In fact, this has been illustrated in lower component
analyses where it was found that the higher the number of
dark solitons, the more potentially unstable modes exist in
the system [3]. What can be clearly discerned in the different
panels of Fig. 11 is that no stabilization of the structures is
found in our monoparametric continuation over the number of
atoms N, for different values of the quadratic Zeeman energy
g. While for larger values of N, the instability appears to
slightly weaken, which can be inferred from the lower maxi-
mal instability growth rate yy.x, it does not seem to asymptote
towards ymax — 0 and remains always substantially larger
than in the previously discussed case of the ADDADs (cf.
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FIG. 10. Comparison of the density profiles |,,|%, m = £1,0
(solid black lines), of the DADD state for N = 10000 and g =
0.5 n,|cy| with the profiles |v,, + AYr,,|? (red dotted lines) resulting
from adding exaggerated perturbations of the first (left column) and
second (right column) unstable eigenmode. The perturbations are
chosen as Ay, = C(u,, + v},) with C = 15 and mode functions u,,,
v, as depicted in Fig. 9. The first (most) unstable eigenmode, that
will be observed below to be dominant in the dynamics, breaks
the symmetry between the mp = +1 components resulting in an
opposite-directed motion of these components. This eventually leads
to a splitting of the DADD state. The second unstable eigenmode is
a translational mode as it shifts all three components equally (in the
case shown here to the left).

Fig. 4). A complementary perspective, fixing the atom number
to N = 10000 and varying g systematically, is presented in
Fig. 12. It can be clearly seen that the DADD state is generi-
cally unstable within the entire easy-plane phase. In particular,
itis found to be most unstable for g >~ 0.9n;|c;|. Approaching
the phase boundaries at ¢ = 2n,|c(| and ¢ = 0, the instability
growth rate decreases, leading to the observed nonmonotonic
dependence on g. In the former case, the configuration passes
over to a single-component (stable) ground state (of the polar
phase), while in the latter one it tends to a two-component
dark soliton which is more robust than its spinor counterpart.
The overwhelmingly more unstable nature of the DADD
structures naturally raises the question of the dynamical im-
plications of this instability. This is clarified in the dynamical
evolution of the DADD state for a prototypical case with
N =10000 and g = 0.5 n,|c;| depicted in Fig. 13. Here, we
perturb the two unstable eigendirections according to the BdG
formulation in Egs. (10) and (11) such that the amplitude of
the perturbation is 0.1% of the amplitude of the mp = %1
components of the DADD state obtained from the Newton
scheme. In as far as we have been able to observe in our
numerical simulations, the time evolution shown is represen-
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o
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FIG. 11. Stability properties of the DADD state for a monopara-
metric continuation over the atom number N for three values of the
quadratic Zeeman energy g = 0.5n,|c;| (left column), g = n,lc;|
(middle column), and g = 1.5np|c| (right column). (a) Maximal
instability growth rates Y,y in units of n,|c;|. The DADD structure
is considerably less stable than the ADDAD state (cf. Fig. 4). In par-
ticular, it is generically unstable for the parameters considered with
a nontrivial instability growth rate. (b) Bifurcation diagram showing
the chemical potential v as a function of the number of atoms N.
The exponential instability of the DADD state is represented by blue
diamonds. Note that for ¢ = 1.5n;|c;| a minimal atom number of
N =~ 7000 is needed to have a sufficient amount of atoms in the
mg = £1 components.

tative for the relevant dynamics. From the perturbed density
profiles in Fig. 10 we already observed that the instability
eigenvector corresponding to the most unstable eigendirection
breaks the symmetry between the two dark solitons in the
mg = =1 components, inducing an opposite-directed motion.
This leads to a splitting of the DADD [see Figs. 13(a) and
14 for a slice of the density and spin profiles at t >~ 1.7 s,
i.e., shortly after the splitting], whereby, for example, the dark
soliton in the mg = —1 component captures part of the mass
from the antidark in the mr = 0 component such that it be-
comes gray and moves to the left. Within this process, another
fraction of the mp = O-state’s antidark mass is captured by the
mr = 1 component where an antidark soliton emerges. As a
consequence, the corresponding mg = 0 component is found
to feature an amplitude suppression in the form of a gray
solitary wave after the splitting. The entire structure appears
to be again of DADD type with the antidark being shifted to
the mgp = 1 component while a gray solitary wave is present
in the mg = 0 component. Analogously, the right-moving
structure is also of DADD type with the antidark being shifted
to the mp = —1 component and another gray soliton arising in
the mg = 0 component. Again, we expect the splitting to occur
when the amplitude of the most unstable mode becomes simi-
lar to the amplitude of the mp = +1 components of the initial
DADD state. Accordingly, an estimate for the break-up time
ty >~ —(In A)/Ymax = 1.33 s can directly be inferred from the
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FIG. 12. An addition to Fig. 11, now showing the stability quan-
tified by the maximal instability growth rate ym,, as a function of
q for a fixed value of N = 10000 atoms. The DADD structure is
unstable within the entire parameter regime. The growth rate is
largest at g >~ 0.9 n,|c;| and drops by a factor of ~2 as ¢ — 0. For
q > 1.65np|c;| the amount of atoms in the mp = £1 components
becomes too small to observe a true DADD structure. The growth
rates and the quadratic Zeeman energies are measured in units of
nplcll-

respective instability growth rate ym.x = 0.75n,|c1| and the
relative amplitude of the perturbation A = 0.001. Note that,
once again, the estimate for #, agrees remarkably well with
the break-up time observed in the numerical simulation [cf.
Fig. 13(a)]. We remark that the structures emerging after the
splitting of the DADD are not dynamically robust and quickly
generate additional excitations in the system, leading to an
eventual dispersion over long timescales. We have observed
this type of splitting and the creation of moving solitary waves
in the entire range of g values depicted in Fig. 12. We find
the emerging states to become more robust as ¢ — 0. We
attribute this property to the increasing fraction of atoms in the
mp = £1 components with respect to the mp = 0 component
in the initial DADD structure.

V. CONCLUSION AND OUTLOOK

In this work, we numerically showed the existence of
DADD and ADDAD solitonic states within the easy-plane
phase of a ferromagnetic trapped one-dimensional spin-1
Bose gas. Furthermore, we investigated their stability proper-
ties by solving the respective BdG equations. In particular, we
elaborated on the stability of the states for a continuation over
the total atom number and the quadratic Zeeman energy. The
identified potential dynamical instabilities of the states were
complemented with direct numerical simulations elucidating
the corresponding dynamics.

Our key observation is that the ADDAD structure is more
robust than the DADD state, which is found to be unstable
in all parameter regimes considered. We suspect that these
findings stem from the more highly excited nature of the
DADD state bearing two dark solitons rather than one. Study-
ing the time evolution of an unstable DADD state revealed
that it breaks up into a left- and right-moving pair of dark-
antidark states accompanied by a redistribution of the solitary
waves between the components and the eventual dispersion
of the resulting structures. However, the evolution of an un-
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FIG. 13. Time evolution of an unstable DADD state for N =
10000 and g = 0.5n,|c;|. (a) Densities of the three components
[¥|?, m = %1, 0. The three panels reveal the definitive splitting of
the DADD into a left- and a right-moving structure, with the antidark
being shifted to the mp = 1 and mp = —1 components, respectively,
while the mp = 0 component breaks into a pair of gray solitary
waves. Note that the emerging moving structures are not dynamically
robust resulting in their eventual dispersion over long timescales.
(b) Amplitudes of the different spin components |F,|, v =z, L. In
correspondence with panel (a), we observe a splitting of the F,
profile (top panel) concurrently with the generation of two oppositely
moving waves in the F, magnetization (bottom panel). After one
oscillation in the trap the waves seem to disperse.

stable ADDAD state generated an asymmetric distribution
of the antidarks involving an oscillatory dynamics of the F,
magnetization. Nevertheless, the ADDAD structure could be
stabilized in suitable regimes in parameter space and hence be
accessible to the recent experimental observations in spinor
systems [21,22].

An interesting future direction would be to generate mul-
tiple such solitary waves and examine in their interactions, as
was done recently for BDB solitons in Ref. [22]. Going one
step further, it may be possible to engineer soliton lattices or
random soliton gases [32-35] of these three-component struc-
tures and study their collisional properties in the spin degree
of freedom. Lastly, it appears especially relevant to consider
generalizations of such states to higher-dimensional configu-
rations, involving topologically charged coherent structures.
In addition to a scenario of two vortices trapping an anti-
dark wave and a single vortex trapping two antidarks, further
possibilities emerge given that the multiple vortices can bear
the same or opposite topological charge. Additionally, both
two-dimensional and three-dimensional extensions of linear,
planar, or spherical [3,6] dark solitons trapping corresponding
antidark states may be accessible and quite interesting for
future work, especially given their potential transverse insta-
bilities and associated dynamics.
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FIG. 14. Unstable DADD state shortly after the splitting (evolu-
tion time ¢ ~ 1.7 s) for N = 10000 and g = 0.5 np|cy|. (a) Densities
of the three components |,,|>, m = £1,0, and the total density
>, ¥l (solid gray line). The left- and right-moving gray solitons
in the mp = 1 components are accompanied by respective antidarks
in the mg = =1 components and shallow gray solitons the mg = 0
component. (b) Amplitudes of the different components of the mag-
netization |F,|, with v =z, L. Due to the asymmetry between the
myg = £1 components in the left- and right-moving structures, we
observe a nonzero local F, magnetization (dashed green line).
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APPENDIX

In the Appendix, we briefly elaborate on the numerical
methods used to show the existence and to study the stability
properties of the ADDAD and DADD states. The following

discussion is partly taken and adapted from [30], where the
interested reader can also find additional details on the nu-
merical schemes.

APPENDIX A: TIME-INDEPENDENT EQUATIONS
OF MOTION

In this work, we are interested in ADDAD and DADD
solitons that are stationary states of the equations of mo-
tion (1) and (2). Hence, we aim to identify solutions to the
time-independent version of these equations. By choosing the
ansatz ¥, (x, t) = ¥,,(x)e" " with m = %1, 0 and u,, being
the chemical potential of each spinor component, a stationary
state resulting from Eqgs. (1) and (2) has to fulfill the phase
matching condition 2ug — pu; — p—; = 0. As a population
imbalance between the mp = 1 components is not favored,
independent of the choice of the couplings in the equations
of motion, we assume that p; = p_; here, which implies
that ;to = 1 = u—; = w. The time-independent equations of
motion (in dimensionless form according to the definitions in
the main text) then read

Fil(wla ‘ﬁo, 1;0—13 ¢ika Iﬂ(Tv Il/il)

= — w1 + HoWt1 + g
+ (1wt * + [Yol* — W1 1) + Cl‘/’(%‘ﬂ:T:] =0,

(A1)
Fol, o, Y1, i, ¥5. v )
= — o + Howo + c1 (111> + ¥
+ 211 = 0. (A2)

Here, we introduced functions JFy 1; as abbreviations for
the time-independent equations of motion which will be of
practical use for discussing the Newton scheme (see Ap-
pendix B) as well as the Bogoliubov-de Gennes equations (see
Appendix C).

APPENDIX B: ITERATIVE NEWTON SCHEME

Various first- and second-order methods can be applied
to find solutions to Egs. (Al) and (A2). Here, we make use
of a Newton iteration scheme. It is a second-order method
which involves the explicit calculation of the Jacobian. The
Newton scheme is not restricted to finding ground states (i.e.,
the global energy minimum) of a physical system such that in
case of an adequate initial “guess” for the wave functions, it
offers the possibility to converge to the desired ADDAD and
DADD states.

The Newton scheme for the spin-1 system can be cast into
the form of a six-dimensional matrix equation:

JAY = F, (BI)

where At gives the correction to the wave function of
the previous iteration of the Newton scheme with ¢ =
(1, Yo, Vo1, ¥, Yg, v* )T being a vector of all spinor
fields. The vector F = (Fy, Fo, F-1, F;, Fg, F= )T con-
tains the time-independent equations of motion [see Eqgs. (A1)
and (A2)] as well as their complex conjugated versions. The
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Jacobian J is given by the matrix

0F,
Jij = —, (B2)
where i, j € {0, ..., 5} and the partial derivative is evaluated

at the wave function i of the current iteration step.

To converge to a state with fixed atom number N, we
further introduce a Lagrange multiplier A for the chemical
potential . This adds the following constraint to our Newton
scheme:

Fi = /(wz +o* + [y Hdx =N =0.  (B3)

Consequently, the resulting modified scheme can be written
as

JAYy = F, (B4)

with = (Y1, Yo, Y1, Vi ¥g, ¥, AT and F=
(Fi, Fo, For, Ffy Fg, F*, F)T. In each iteration step
we calculate F and evaluate the corresponding Jacobian J of
the system. The second derivative occurring in the equations
of motion is obtained by means of a second-order center
difference scheme. By solving the eigenvalue equation (B4),
we obtain the correction to the wave function Av. The
Newton scheme terminates if the norm of the correction is
smaller than the preset tolerance of 1017,

APPENDIX C: BOGOLIUBOV-DE GENNES EQUATIONS

The stability properties of the ADDAD and DADD state
are deduced from numerically solving the corresponding
Bogoliubov-de Gennes (BdG) equations.

To derive the BAG equations, we consider a small perturba-
tion about the stationary state of interest. Therefore, we take
the ansatz

Yn(x, 1) = [ (x) + €89 (x, 1)]e ™™, (CI)

with m = %1, 0 labeling the three hyperfine components and
®,,(x) being the wave function of each component at the
stationary state; p is the corresponding chemical potential; €

is a small parameter with € < 1 and 81, is the perturbation
about the stationary state.

Plugging the ansatz (C1) into the equations of motion (1)
and (2) (in dimensionless form according to the definitions
in the main text) and subsequently linearizing the resulting
equations (i.e., taking contributions to order €) yields

d0F, d0F, d0F,
0.8y, =—=1) & +(—’") b +< ’”) Sy
8, (3¢1>|q> Y1 TP Yo 30, @1/[1

0F 0F 0F .
Sy — ) sy —_— S,
+<8<I>*;)|¢ 1/’”L<8<I>3)| 1”‘)Jr<fm>*1>¢ Yo

]
(C2)

Here, the F,, are the functions introduced in Eqgs. (Al) and
(A2). The partial derivatives of F,, are taken with respect to
the stationary fields and are then evaluated at @, with & =
(P, g, ©_y, 7, P§, P*,) being a vector that contains
the wave functions at the stationary state.

To solve the BAG equations, we make use of the ansatz

SYm(x, 1) = tyy (X)e ™™ + v (x)e (C3)

with mode frequency w and mode functions u,,, v,,. Inserting
the ansatz into Eq. (C2) and matching the phase factors to
obtain a time-independent description, we can write the BdG
equations as an eigenvalue problem of the form

JIM = —oM. (C4

Here, M = (uy, ug, u_;, v, v, v_1)’ is a vector that con-
tains all eigenmodes of the system. The matrix J turns out to
be the Jacobian introduced in Eq. (B2) whose lower half of
entries is multiplied by a factor of —1. Formally, we can write
it as

Jij =1 =203 = 3)Uij) e (C5)

where 7, j € {0, ..., 5} and the Heaviside theta function © is
defined as ©(z) = 1 forz > 0.

The mode frequencies w correspond to the eigenvalues of J
and the mode functions u,,, v, are given by the eigenvectors.
We numerically solve the eigenvalue problem in Eq. (C4)
using the standard _geev LAPACK routines in PYTHON.
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