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Abstract
We study asymptotic reductions and solitary waves of a weakly nonlocal defo-
cusing nonlinear Schrödinger (NLS) model. The hydrodynamic form of the
latter is analyzed by means of multiscale expansion methods. To the leading-
order of approximation (where only the first of the moments of the response
function is present), we show that solitary waves, in the form of dark solitons,
are governed by an effective Boussinesq/Benney–Luke (BBL) equation, which
describes bidirectional waves in shallow water. Then, for long times, we reduce
the BBL equation to a pair of Korteweg–deVries (KdV) equations for right- and
left-going waves, and show that the BBL solitary wave transforms into a KdV
soliton. In addition, to the next order of approximation (where both the first and
second moment of the response function are present), we find that dark soli-
tons are governed by a higher-order perturbed KdV (pKdV) equation, which
has been used to describe ion-acoustic solitons in plasmas and water waves in
the presence of higher-order effects. The pKdV equation is approximated by a
higher-order integrable system and, as a result, only insubstantial changes in the
soliton shape and velocity are found, while no radiation tails (in this effective
KdV picture) are produced.
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1. Introduction

In many physical contexts, there appear systems featuring a spatially nonlocal nonlinearity.
For instance, in nonlinear optics, the nonlinear correction to the refractive index at a particular
point in space, depends on the light intensity in a certain spatial domain around this point.
Such nonlocal nonlinear systems include thermal nonlinearmedia, e.g., vapors [1, 2] and liquid
solutions [3, 4] (see also the reviews [5, 6]), plasmas [7–9], nematic liquid crystals [10, 11],
dipolar Bose–Einstein condensates (BECs) [12], and so on. Nonlocality has been shown to be
of paramount importance on the stability and dynamics of nonlinear waves and solitons. For
instance, if the nonlocal nonlinearity is of the focusing type, collapse can be arrested in higher
dimensions [13] (see also reference [5]) and, as a result, stable solitons exist in such settings
[1, 2, 6, 14]. In the case of defocusing nonlocal nonlinearities, dark solitons do exist [15–18]
and may feature an attractive interaction [15, 19] rather than a repulsive one, as in the case of
a local nonlinearity (see the reviews [20, 21] and references therein). Furthermore, nonlocality
can suppress the transverse (‘snaking’) instability of dark solitons and the associated dispersive
shock waves [22].

An important class of nonlocal models, relevant to the physical settings mentioned above,
is of the NLS type; a one-dimensional (1D) such model, expressed in dimensionless form, is
of the form:

iut +
1
2
uxx + σ

[∫ ∞

−∞
R(x′ − x)|u(x′, t)|2 dx′

]
u = 0, (1)

where u(x, t) is a complex field, R(x) is a positive definite function describing the nonlocal
response of the medium, and σ = ±1 corresponds to a focusing or a defocusing nonlinearity
(for σ = +1 and σ = −1, respectively). Obviously, if the response function is singular, i.e.,
R(x) = δ(x) (where δ(x) is the Dirac δ function), then equation (1) reduces to the usual NLS
equation, which is completely integrable in the (1+ 1)-dimensional setting. Here, we are inter-
ested in the case where the spatial width of the response kernel R(x) is small compared to the
width of the density |u|2. In such a case, nonlocality is weak and, following the analysis of
reference [23], it is possible to reduce equation (1) to an effective local NLS model. There,
nonlocality is effectively described by means of a local perturbation, in the form of a nonlinear
potential term (see details below).

There exists a rich variety of soliton structures that have been predicted to occur in nonlocal
NLS models, depending on the form of nonlocality. Particularly, weakly nonlocal media sup-
port bright and dark solitons [23], while in fully nonlocalmodels, apart frombright solitons [10,
11] and dark solitons [16, 17], antidark solitons are also possible [18]. In higher-dimensional
settings, there also exist more complex structures, such as vortex solitons [9, 14], stable rotat-
ing dipole solitons [24], spiraling solitons and multipole localized modes [25], ring dark and
antidark solitons [26, 27], as well as dark lump solitons and X-, Y-, or H-shaped waves, and
other more complicated structures, composed by antidark soliton stripes [28, 29]. In addition,
more recently, other new solutions (such asNth rational solutions) of nonlocal defocusingNLS
equations have been constructed [30], while the Cauchy problem with step initial data and the
long-time behavior of the pertinent solutions were studied [31].

In this work, our scope is to study analytically the abovementionedweakly nonlocal setting,
stemming from equation (1), with a defocusing nonlinearity (σ = −1). Our scope is twofold.
First, by means of our analytical approach, which relies on a multiscale analysis of the hydro-
dynamic form of the pertinent NLS model, we reduce the weakly nonlocal NLS to a number of
important equations appearing in a variety of physical contexts. Importantly, all these effective
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nonlinear evolution equations occur at various stages of the asymptotic analysis, revealing the
asymptotic behavior of the model at different scales. Second, having derived these equations,
we present their solitary wave solutions, which are then used for the construction of approxi-
mate dark soliton solutions of the weakly nonlocal NLS. We are thus able to find a wealth of
asymptotic reductions of the originalNLSmodel, determine corresponding dark solitary waves
that may occur at various different scales, and also establish interesting connections with other
physical contexts.

To be more specific, at an intermediate stage (in terms of proper slow temporal and spatial
scales), first we derive an equation of the form of the Boussinesq [32] or the Benney–Luke [33]
equation (hereafter, this model will be referred to as the BBL equation). The Boussinesq and
BL models have been used to describe the propagation of bidirectional waves in shallow water
[32–34], while similar Boussinesq-type equations appear in studies of waves in plasmas [35,
36], electrical and mechanical lattices [37], and so on. We then use a traveling wave ansatz,
and derive exact solitary wave solutions of the BBL equation, which correspond to a weak
dark soliton solution of the original NLS equation. Next, we study the long-time behavior of
the BBL equation and, similarly to the water wave problem [32, 34], we reduce the BBLmodel
to a pair of KdV equations that govern right- and left-propagating waves. We also show that if
the formal perturbation parameter is sufficiently small, then the BBL solitary wave reduces to
a KdV soliton.

Finally, we use the reductive perturbation method [38] to analyze higher-order effects aris-
ing from the consideration of moderate widths of the response kernel. In this case, we show
that dark solitons are governed by a 5th-order pKdV equation, which stems naturally from the
underlyingHamiltonian systems [39, 40], and is related to the first higher-order equation in the
KdV hierarchy [41]. This pKdV model, which is known to describe ion-acoustic solitons [42,
43] and shallow water waves [44] under the influence of higher-order effects, has been studied
in the context of asymptotic integrability of weakly dispersive nonlinear wave equations [45,
46]. An approximate soliton solution of the derived pKdV is presented, and it is shown that it is
only slightly deformed as compared to the original KdV soliton obtained to the leading-order
of approximation. In addition, the perturbation theory for solitons [47–49] is employed in order
to determine the effect of the perturbation on the soliton characteristics under the action of the
higher-order effects. We find that the soliton amplitude remains unchanged, while no radiation
tails are produced during the evolution in the higher-order KdV approximation.

The manuscript is organized as follows. In section 2 we present the model equations, while
section 3 is devoted to the asymptotic analysis and the presentation of the soliton solutions.
Finally, in section 4 we present our conclusions and discuss possibilities for future work.

2. Model equations

We consider a physical system, which is governed by the following dimensionless 1D nonlocal
defocusing NLS equation for the unknown complex field u(x, t):

iut +
1
2
uxx − n(I)u = 0, (2)

where subscripts denote partial derivatives, and the real function n(I), with I = |u(x, t)|2, is
given by the following convolution integral:

n(I) =
∫ ∞

−∞
R(x′ − x)I(x′, t) dx′, (3)

3



J. Phys. A: Math. Theor. 54 (2021) 085702 G N Koutsokostas et al

with the kernel R(x) describing the response function of the nonlocal medium. This nonlocal
model describes, in the context of optics, beam propagation in thermal media [1–4]; in this
case, u(x, t) is the electric field envelope, n is the nonlinear change of the refractive index
(that depends on the light intensity I), while t represents the propagation direction. A similar
situation occurs in plasmas, but with n denoting the relative electron temperature perturbation
[7–9], as well as in nematic liquid crystals, with n being the perturbation of the optical director
angle from its static value due to the presence of the light field [10, 11].

In all the above cases, the kernel R(x) may be considered to be a real, positive definite,
localized and symmetric function [50], obeying the normalization condition

∫ +∞
−∞ R(x)dx = 1.

A physically relevant form of the kernel, that finds applications in all the above mentioned
contexts, is:

R(x) =
1
2d

exp

(
−|x|
d

)
, (4)

where d > 0 is a spatial scale that measures the degree of nonlocality (d = 0 corresponds to
the limit of local nonlinearity). Then, introducing the Fourier transform pair for a function f(x)
as:

f̂ (k) = F{ f (x)} =

∫ ∞

−∞
f (x)eikx dx,

f (x) = F−1{ f̂ (k)} =
1
2π

∫ ∞

−∞
f̂ (k)e−ikx dk,

it can be seen that, using the convolution property, equation (3) can be expressed in the
wavenumber domain as:

n̂ = R̂(k)̂I(k, t). (5)

Taking now into regard that, for the kernel of equation (4), one has: R̂(k) = (1+ d2k2)−1, it can
readily be found that equation (5) can be rewritten as: (1+ d2k2)n̂ = Î(k, t). Then, applying the
inverse Fourier transform to the latter equation, it is found that n− d2nxx = I. In other words,
equations (2) and (3) are equivalent to the following system of coupled partial differential
equations (PDEs):

iut +
1
2
uxx − nu = 0, (6)

d2nxx − n = −|u|2. (7)

In this work, we focus on the case where the response function is narrow as compared to
the width of the beam’s intensity (the so-called weakly nonlocal limit) [23]. Then, n(x, t) in
equation (3) may be approximated appropriately, so that (2) may be written in local form, so
that such a weakly nonlocal medium may be described by a local PDE. To do this, we express
n(x, t) in Fourier space and, recalling that equation (3) is a convolution integral, we have:

n̂(k, t) = R̂(k)̂I(k, t).

Next, we expand R̂(k) in a Taylor series:

R̂(k) =
∞∑
n=0

R̂(n)(0)
n!

kn,
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where R̂(n)(k) ≡ dnR̂(k)/dkn, and using Fourier transform properties we can find:

n(x, t) = F−1
{
R̂(k)̂I(k, t)

}
= F−1

{ ∞∑
n=0

R̂(n)(0)
n!

knÎ(k, t)

}

=

∞∑
n=0

R̂(n)(0)
n!

F−1
{
knÎ(k, t)

}
=

∞∑
n=0

R̂(n)(0)
n!

in
∂n

∂xn
I(x, t). (8)

To this end, using the expansion (8) and the properties of the Fourier transform for R̂(n)(0), we
obtain from equation (2) the following local PDE:

iut +
1
2
uxx −

[ ∞∑
n=0

an
∂n

∂xn
(
|u|2

)]
u = 0, (9)

where

an =
(−1)n

n!

[∫ ∞

−∞
xnR(x)dx

]
. (10)

Note that if n = 0 (corresponding to the singular δ-function kernel) then R̂(0) =
R̂(0)=

∫∞
−∞ R(x) dx = 1, i.e., a0 = 1, and equation (9) reduces to the cubic NLS equation,

while for n �= 0, given the symmetric nature of R, we have:

a2n > 0, and a2n+1 = 0, ∀n ∈ N.

For instance, in the case of the kernel R(x) given by equation (4), it is straightforward to find
that: ∫ +∞

−∞
xnR(x)dx =

1
2d

∫ +∞

−∞
xn e−|x|/d dx =

{
dnn!, n even
0, n odd

and hence a2n = d2n.
According to the above discussion, in the case of a response kernel of sufficiently small

width compared to the width of the intensity I(x, t) ≡ |u(x, t)|2, we may use, to a first approxi-
mation, n(I) ≈ I + a2∂2

x I, and find that equation (9) is reduced to the following modified NLS
equation:

iut +
1
2
uxx −

(
|u|2 + a2∂

2
x |u|2

)
u = 0, (11)

with the parameter a2 characterizing the nonlocality. The above equation has been studied in
nonlinear optics [23], as well as (in the case of a focusing nonlinearity) in plasma physics,
where the parameter a2 may take both positive and negative values [51], and the continuum
limit of discrete molecular structures [52]. It has also been shown that equation (11) possesses
stable soliton solutions, bright or dark for a focusing or a defocusing nonlinearity (i.e., a plus
or a minus sign in front of the parenthesis in equation (11)) respectively [23].

Here, we are interested in studying the role of higher-order effects on dark soliton dynamics,
which may be accounted for by the inclusion of higher-order terms in the Taylor expansion
of n(x, t). Thus, below, we will use multiscale expansion methods to study dark solitons of
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equation (9) up to the following level of approximation:n(I) ≈ I + a2∂2
x I + a4∂4

x I. In this case,
equation (9) is obviously reduced to the following higher-order modified NLS equation:

iut +
1
2
uxx −

(
|u|2 + a2∂

2
x |u|2 + a4∂

4
x |u|2

)
u = 0. (12)

In the next section, we will use multiscale expansion methods and derive universal models the
soliton solutions of which will then be used to obtain approximate dark soliton solutions of
equation (12).

3. Asymptotic analysis

3.1. The cw solution and its stability

To start our analysis, first we introduce the Madelung transformation

u(x, t) = u0ρ
1/2(x, t) exp[iφ(x, t)],

(where u0 is an arbitrary real constant), and derive from equation (9) the following system of
two coupled PDEs for the amplitude ρ and phase φ,

φt + u20

∞∑
n=0

a2n
∂2n

∂x2n
ρ+

1
2
φ2
x −

1
2
ρ−1/2

(
ρ1/2

)
xx

= 0, (13)

ρt + (ρφx)x = 0. (14)

Obviously, the system (13) and (14) possesses a simple homogeneous solution, namely:

ρ = 1, φ = −u20t, (15)

which corresponds to the continuous-wave (cw) solution u = u0 exp(−iu20t) of equation (9).
Since below we will seek dark soliton solutions of equation (9) on top of this cw background,
it is necessary to investigate the stability of the cw solution. To do so, we assume that ρ = 1+
Δρ, φ = −u20z+Δφ, where the perturbations Δρ, Δφ (with |Δρ| 
 1, |Δφ| 
 1) behave
like exp[i(kx − ωt)]; this way, equations (13) and (14) lead to the following dispersion relation
for the perturbations’ frequency ω and wavenumber k:

ω2 = k2
[
c2

∞∑
n=0

a2n(ik)2n +
1
4
k2
]
, (16)

where

c2 = u20, (17)

is the speed of the small-amplitude (linear) waves propagatingon top of the cw background, the
so-called ‘speed of sound’. Equation (16) shows that the cw is modulationally stable, i.e., ω ∈
R ∀k ∈ R, provided that

∑∞
n=0 a2n(ik)

2n > 0. Obviously this occurs for n = 0 (corresponding
to the local NLS with the defocusing nonlinearity). On the other hand, for n = 1 the cw is
modulationally stable as long as the parameter α, defined as:

α = 1− 4u20a2, (18)

6
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is positive. This condition is fulfilled if, for a fixed nonlocality parameter a2, the cw background
intensity u20 does not exceed a critical value I(cr)0 , i.e., u20 � I(cr)0 ≡ (4a2)−1, in accordance to
the analysis of reference [53]; the same holds if, for a fixed cw intensity u20, the nonlocality
parameter a2 does not exceed the critical value a

(cr)
2 , i.e., a2 � a(cr)2 ≡ (4u20)

−1. In addition, for
n = 2, the dispersion relation (16) becomes:

ω2 = c2k2
(
1+

α

4c2
k2 + a4k

4
)
. (19)

Notice that in the case of the kernel (4), the series in equation (16) converges to (1+ d2k2)−1

and, as a result, equation (16) takes the form:

ω2 =
c2k2

1+ d2k2
+

1
4
k4, (20)

which is the dispersion relation of the nonlocal model (6) and (7). Obviously, in this fully
nonlocal case, the cw background is always stable.

Before proceeding with the asymptotic analysis of the weakly nonlocal NLS model, it is
worth mentioning the following. For right-going waves, the dispersion relation (19) becomes

ω = ck
[
1+ (α/4c2)k2 + a4k4

]1/2
, and in the long-wavelength limit (k 
 1), it can be reduced

to the form:

ω ≈ ck +
α

8c
k3 +

(
1
2
ca4 −

α2

128c3

)
k5.

Then, usingω �→ i∂t and k �→ −i∂x to revert to the corresponding (linear) PDE, and introducing
a reference frame moving with velocity c, i.e., x �→ x − ct, it can be found that the linear PDE
for a field Q(x, t) associated to the above dispersion relation is:

Qt −
α

8c
Qxxx +

(
1
2
ca4 −

α2

128c3

)
Qxxxxx = 0. (21)

The above PDE has the form of a linearized 5th-orderKdV equation. The full nonlinear version
will be derived below in section 3.4.

3.2. The Boussinesq/Benney–Luke equation and the solitary wave solution

We first consider an intermediate stage of the asymptotic analysis, and seek solutions of
equations (13) and (14) in the form of the following asymptotic expansions:

φ = −u20t + ε1/2Φ(X, T), ρ = 1+
∞∑
j=1

ε jρ j(X, T), (22)

where 0 < ε 
 1 is a formal small parameter that sets the soliton’s amplitude [i.e., below, we
will find soliton solutions valid up to order O(ε)]. Here, it is assumed that the phase Φ and
amplitudes ρ j are unknown real functions of the slow variables:

X = ε1/2x, T = ε1/2t. (23)

Substituting the expansions (22) into equations (13) and (14), and equating terms of the same
order in ε, we obtain the following results. First, equation (13) reads:

ΦT + u20ρ1 + ε

(
u20ρ2 +

1
2
Φ2
X −

1
4
αρ1XX

)
= O(ε2), (24)

7
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while equation (14) yields, at O(ε3/2) andO(ε5/2), the following equations respectively:

ρ1T +ΦXX = 0, (25)

ρ2T + (ρ1ΦX)X = 0. (26)

Differentiating equation (24) once with respect to T , and using ρ1T = −(1/u20)ΦTT (from the
leading-order part of equation (24)) as well as equations (25) and (26), we eliminate the
functions ρ1 and ρ2 from the resulting equation, and arrive at the following equation for Φ:

ΦTT − c2ΦXX + ε

[
1
4
αΦXXXX +

1
2

(
Φ2
X

)
T
+ (ΦTΦX)X

]
= O(ε2). (27)

At the leading-order, equation (27) is a 2nd-order linear wave equation, with the wave velocity
c given by equation (17), as found above. On the other hand, at order O(ε), equation (27)
features a fourth-order dispersion and quadratic nonlinear terms, thus resembling the (1+
1)−dimensional variants of the Boussinesq [32] or Benney–Luke [33] equations.

It is now possible to derive an exact solitary wave solution to the above BBL model,
equation (27). This can be done upon seeking traveling wave solutions of the form:

Φ = Φ(s), s = X − vT, (28)

where v is the velocity of the traveling wave. Assuming vanishing boundary conditions for
Φ′ ≡ dΦ/ds, i.e., Φ′ → 0 as s→±∞, we substitute in equation (27) and obtain the following
3d-order ordinary differential equation (ODE):

1
4
εαΦ′′′ + (v2 − c2)Φ′ − 3

2
εvΦ′2 = 0, (29)

where primes denote derivatives with respect to s. Next, we assume that the unknown field ρ1
also depends on s, i.e., ρ1 = ρ1(s), with ρ1(s)→ 0 as s→±∞. Then, we may useΦT = −u20ρ1
from the leading-order part of equation (24) and obtain the auxiliary equation Φ′ = (c2/v)ρ1.
Substituting the latter equation into equation (29), we derive the following 2nd-order ODE
for ρ1:

ρ′′1 +
4
εα

(v2 − c2)ρ1 −
6c2

α
ρ21 = 0, (30)

Equation (30) can be seen as the equation of motion of a unit mass particle in the presence
of the effective potential V(ρ1) = (2/εα)(v2 − c2)ρ21 − (2c2/α)ρ31. We assume that v2 − c2 <
0, i.e., we focus on traveling waves moving with a velocity smaller than the speed of sound
(subsonic waves). Then, a simple analysis shows that, in this case, there exists a hyperbolic
fixed point, at ρ1 = 0 [corresponding to the global maximum of V(ρ1)], and an elliptic fixed
point, at ρ1 = (2/3εc2)(v2 − c2) [corresponding to the global minimum of V(ρ1)]. In the phase
plane of the system, associated to the hyperbolic fixed point that corresponds to zero energy E,
i.e., for (1/2)ρ′21 + V(ρ1) = E = 0, there exists a homoclinic orbit (separatrix). The latter is a
trajectory of infinite period, which corresponds to a solution decaying at infinity, i.e., a solitary
wave with vanishing asymptotics (note that if v2 − c2 > 0 the hyperbolic fixed point would
become an elliptic one, and vice versa, and as a result the corresponding solitary wave would
not asymptote to zero, as per our assumption above). It is then straightforward to find that this
solitary wave solution can be expressed in the following explicit form:

ρ1 = −1
ε

(
1− v2

c2

)
sech2

[
c√
εα

(
1− v2

c2

)1/2

(X − vT − X0)

]
, (31)

8
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where X0 is an arbitrary constant that sets the initial soliton location. It can now readily be
seen that the amplitude of the soliton is O(ε−1), while, generally, the condition |max(ρ j)| =
O(1) ∀ j ∈ N should hold, as implied by the asymptotic expansion of ρ in equation (22). Hence,
in order for the solution to be meaningful, i.e., the soliton amplitude is O(1), we assume that
the (arbitrary so far) velocity v is sufficiently close to c, namely the following condition holds:

v2/c2 = 1− εμ2, (32)

where μ is a O(1) parameter (recall that v2 − c2 < 0). Notice that, under this assumption,
we detune from the sonic limit and explicitly consider solely solitary waves (which are gray
solitons in the originalmodel—see below) within this region. Then, the solution (31) becomes:

ρ1 = −μ2sech2
[
cμ√
α
(X − c

√
1− εμ2T − X0)

]
, (33)

and thus, an approximate solution [valid up to O(ε)] of equation (9) is of the form:

u(x, t) ≈ u0
[
1− εμ2sech2(ε1/2θ)

]1/2
exp

[
−iu20t +

iε1/2c√
1− εμ2

tanh(ε1/2θ)

]
,

(34)

θ =
cμ√
α

(
x − c

√
1− εμ2t − x0

)
, (35)

where we have used the equation Φ′ = (c2/v)ρ1 to derive the phase of the solution. It is clear
that equation (34) represents a density dip on top of the cw background, with a phase jump
across the density minimum, and hence it is a dark soliton.

Notice that, in our analysis above, the velocity v may be either positive or negative and,
therefore, propagation of either right- or left-going waves is allowed, as should be expected
from the bidirectional BBL equation. Below we will show that, indeed, and similarly to the
water wave problem [32], the far-field of equation (27) is a pair of twoKdV equations, for right-
and left-goingwaves, and that the solitary wave (33) is accordingly reduced to right-goingKdV
soliton.

3.3. The KdV equation and the soliton solution

We now proceed to obtain the far-field equations stemming from the BBLmodel (27) bymeans
of a multiscale asymptotic expansion method. We seek solutions of equation (27) in the form
of the asymptotic expansion:

Φ =

∞∑
j=0

ε jΦ j, (36)

where the unknown functions Φ j ( j = 0, 1, 2, . . .) depend on the new variables:

ξ = X − cT, η = X + cT, τ = εT. (37)

Substituting equation (36) into equation (27), we obtain the following results. First, at the
leading-order,O(1):

4c2Φ0ξη = 0, (38)

9
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which implies that Φ0 is a superposition of a right-going wave, Φ(R)
0 , depending on ξ, and a

left-going one, Φ(L)
0 , depending on η, namely:

Φ0 = Φ(R)
0 (ξ)+Φ(L)

0 (η). (39)

Second, at orderO(ε):

4c2Φ1ξη = −c
(
Φ(R)

0ξξΦ
(L)
0η − Φ(R)

0ξ Φ
(L)
0ηη

)
+

(
−2cΦ(R)

0τ +
α

4
Φ(R)

0ξξξ −
3c
2
Φ(R)2

0ξ

)
ξ

+

(
2cΦ(L)

0τ +
α

4
Φ(L)

0ηηη +
3c
2
Φ(L)2

0η

)
η

. (40)

It is clear that upon integrating equation (40) in ξ or η, the terms in parentheses in the right-
hand side of this equation are secular, because they are functions of ξ or η alone, and not both.
Removal of these terms leads to two uncoupled nonlinear evolution equations forΦ(R)

0 andΦ(L)
0 .

Furthermore, employingΦTT = −u20ρ1T = −c2ρ1T from the leading-orderpart of equation (24)
it can readily be seen that the amplitude ρ1 can also be decomposed to a left- and a right-going
wave, i.e., ρ1 = ρ(R)1 + ρ(L)1 , with

Φ(R)
0ξ = cρ(R)1 , Φ(L)

0η = −cρ(L)1 . (41)

Then, using the above expressions, the equations forΦ(R)
0 andΦ(L)

0 stemming from equation (40)
yield the following two uncoupled KdV equations for ρ(R)1 and ρ(L)1 :

ρ(R)1τ − α

8c
ρ(R)1ξξξ +

3c
2
ρ(R)1 ρ(R)1ξ = 0, (42)

ρ(L)1τ +
α

8c
ρ(L)1ηηη −

3c
2
ρ(L)1 ρ(L)1η = 0. (43)

We have thus shown that, indeed, the far field of equation (27) is a pair of KdV equations for a
left- and a right-goingwave. We will also show that the KdV soliton is directly connected with
the solitary wave solution (33) of the BBL equation. To do this, let us consider the right-going
wave, and write down the soliton solution of the KdV equation (42):

ρ1(ξ, τ ) = −κ2α

c2
sech2Z, Z = κ

(
ξ +

κ2α

2c
τ − ξ0

)
, (44)

where κ is an arbitraryO(1) parameter. When expressed in terms of the original variables, the
above KdV soliton reads:

ρ1(x, t) = −κ2α

c2
sech2

{
ε1/2κ

[
x − c

(
1− ε

κ2α

2c2

)
t − x0

]}
, (45)

showing that the velocity of the KdV soliton is vs = c[1− ε(κ2α)/(2c2)]. On the other hand,
returning to the solitary wave (33), it is observed that if the free parameter μ is taken to be such
that:

μ2 = κ2α/c2, (46)

10
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the solitary wave (33) can be expressed in terms of the original variables as:

ρ1 = −κ2α

c2
sech2

[
ε1/2κ

(
x − c

√
1− ε

κ2α

c2
t − x0

)]
, (47)

and, hence, the solitary wave velocity is Vs = c
√
1− ε(κ2α)/c2. It is now clear that for suf-

ficiently small ε we may use the approximation Vs ≈ vs = c[1− ε(κ2α)/(2c2)], showing that
the solitary wave (33) transforms into the KdV soliton (45). The latter, gives rise to an approx-
imate dark soliton solution of equation (9), similar to that in equation (34), but with μ2 given
by equation (46) and with the substitution

√
1− εμ2 �→ 1− εμ2/2.

At this point, we shouldmention that, in the case of the weakly nonlocal systemwe consider
here, the presented approximate solutions are always dark solitons, due to the condition α > 0
following from the requirement of the stability of the cw background state. Nevertheless, in
the fully nonlocal system characterized by the kernel (4) (see equations (6) and (7)), the cw is
always modulationally stable as mentioned above. As a result, the parameter α may also take
negative values and, thus, the nonlocal system, also possesses approximate antidark soliton
solutions (i.e., density humps rather than dips on top of the cw background), as predicted in
references [26, 28, 29]. Obviously, these are supersonic structures (here, Vs > c) which can
only be found in the strongly nonlocal regime, and cannot be supported in the weakly nonlocal
case under consideration.

3.4. Reductive perturbation method and higher-order effects

The formal derivation of the KdV equation (42) from the BBL model (27) for long times,
and particularly at the scales of equation (37), suggest that the KdV equation (e.g., for the
right-going wave) can also be obtained directly from the hydrodynamic equations (13) and
(14). This can be done upon employing the reductive perturbation method (RPM) [38]. In the
framework of the RPM, as we will see, it is straightforward to take into regard higher-order
effects (namely, the term a4ρxxxx in equation (13)) and thus derive an effective higher-order
KdV equation describing dark solitons in weakly nonlocal media.

We start by seeking solutions of equations (13) and (14) in the form of the asymptotic
expansions

φ = −u20t +
∞∑
j=0

ε j+1/2φ j(ξ, τ ), ρ = 1+
∞∑
j=1

ε jρ j(ξ, τ ), (48)

where the unknown functions ρ j and φ j ( j ∈ N) depend on the stretched coordinates:

ξ = ε1/2 (x − ct) , τ = ε3/2t, (49)

where c is speed of sound (see equation (17)). Substituting the expansions (48) into
equations (13) and (14), and using the variables (49), we obtain a hierarchy of coupled
equations, which are to be solved order by order in ε [note that, as before, both parameters
a2 and a4 are assumed to be of order O(1)]. Particularly, to the leading order, i.e., to orders
O(ε) and O(ε3/2), equations (13) and (14) respectively lead to the following linear equations,

cφ1ξ − u20ρ1 = 0, (50)

cρ1ξ − φ1ξξ = 0. (51)

11
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The compatibility condition of equation (51) is the algebraic equation (17). To the next order,
namely to orderO(ε2) and O(ε5/2), equations (13) and (14) respectively read

cφ2ξ − u20ρ2 = φ1τ −
α

4
ρ1ξξ +

1
2
φ2
1ξ , (52)

cρ2ξ − φ2ξξ = ρ1τ +
(
ρ1φ1ξ

)
ξ
, (53)

with α given in equation (18). Using equation (50), the unknown function φ1 is expressed by
means of ρ1, i.e.,

φ1ξ = cρ1. (54)

Then, the compatibility conditions of equations (52) and (53) are determined, once
equation (52) is differentiated with respect to ξ, equation (53) is multiplied by c, and the result-
ing equations are added. This way, it is found that the compatibility condition at this order is
the KdV equation (42) for the unknown amplitude function ρ1, in accordance with the analysis
of the previous section.

Notice that in the present order of approximation, there is no contribution from the
term a4u∂4

x |u|2 in equation (9), since the corresponding 4th-order derivative term a4ρxxxx in
equation (13) is of higher-order. However, this term contributes in the next order of approxi-
mation. Indeed, proceeding to the next order, namely toO(ε3) andO(ε7/2), equations (13)–(14)
respectively lead to the following equations,

cφ3ξ − u20ρ3 = φ2τ −
α

4
ρ2ξξ + c2a4ρ1ξξξξ + φ1ξφ2ξ +

1
8
ρ21ξ +

1
4
ρ1ρ1ξξ, (55)

cρ3ξ − φ3ξξ = ρ2τ +
(
ρ1φ2ξ

)
ξ
+
(
ρ2φ1ξ

)
ξ
. (56)

The compatibility conditions of equations (55) and (56), can also be obtained upon following
the procedure described above. In particular, first, equation (55) is differentiated with respect
to ξ, equation (56) is multiplied by c, and the resulting equations are added. Second, we use
equation (54) to express φ1ξ in terms of ρ1, as well as equation (53) to express φ2ξ in terms of
ρ2 and ρ1, i.e.,

φ2ξ = cρ2 − cρ21 −
∫

ρ1τdξ, (57)

where integration constants are equal to zero due to the boundary conditions. This way, we
obtain from equations (55) and (56) the following equation, which involves solely the fields ρ1
and ρ2:

ρ2τ −
α

8c
ρ2ξξξ +

3c
2
(ρ1ρ2)ξ +

1
2c

∫
ρ1ττdξ + ρ1ξ

∫
ρ1τdξ +

3
4
(ρ21)τ +

c
2
(ρ31)ξ

+
a2c
2

(ρ21ξ)ξ −
α

8c2
ρ1ξξτ −

1− 8a2c2

8c
ρ1ρξξξ +

a4c
2

ρ1ξξξξξ = 0. (58)

To this end, we multiply equation (58) by ε, and add it to the KdV of equation (42). Then,
introducing the combined amplitude function

q = ρ1 + ερ2, (59)

12
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we obtain the following nonlinear evolution equation for the field q(ξ, τ ):

qτ −
α

8c
qξξξ +

3c
2
qqξ + εP(q) = O(ε2), (60)

P(q) ≡ c1q
2qξ + c2qξqξξ + c3qqξξξ + c4qξξξξξ. (61)

Notice that the terms involving ρ1τ in equation (58) have been evaluated by substituting ρ1τ
from the KdV, equation (42). The coefficients c j ( j = 1, 2, 3, 4) in equation (61) are given by:

c1 = −3
8
c, c2 =

1
4c

(
1+

5
8
α

)
, c3 =

1
8c

(
1− 1

2
α

)
, c4 =

1
2
ca4 −

α2

128c3
.

(62)

It is readily seen that equation (60) has the form of a 5th-order pKdV equation. It is worth
observing that equation (60) is reduced to the unperturbed KdV equation (42) in the limit of
ε = 0, while its linearized version is identical to equation (21).

The 5th-order pKdV equation (60) has attracted attention, as a model describing the evolu-
tion of steeper waves, with shorter wavelengths than in the KdV model. As such, this equation
has been used to describe solitons in plasmas [42, 43] and shallow water waves [44] in the
presence of higher-order effects, and as a generic model that can be used to explain soliton
emergence in experiments from arbitrary initial data, even when the Hamiltonian perturbations
are quite large [39, 40].

Additionally, an extended KdV equation, similar in form to equation (60), is related to the
first higher-order equation in the KdV hierarchy [41]. In particular, using the transformations
τ �→ −8c/ατ and q �→ −(α/2c2)q, equation (60) reduces [up to O(ε)] to the form:

qτ + qξξξ + 6qqξ + ε
(
c̃1q

2qξ + c̃2qξqξξ + c̃3qqξξξ + c̃4qξξξξξ
)
= 0,

where

c̃1 = −(2α/c3)c1, c̃2,3 = (4/c)c2,3, c̃4 = −(8c/α)c4,

where c j are given by equation (62). In this case, the first higher-order equation in the KdV
hierarchy is characterized by the following values of the coefficients:

c̃1 = 1, c̃2 =
2
3
, c̃3 =

1
3
, c̃4 =

1
30

.

Obviously, in our case, equation (60) never falls in that integrable limit. In the more gen-
eral nonintegrable case, the pKdV equation with arbitrary c j has been studied in the context
of asymptotic integrability of weakly dispersive and nonlinear wave equations [45, 46]. In
this context, it was shown that there exist asymptotic transformations [45, 46, 54, 55] that
reduce the pKdV to the KdV equation. Thus, an approximate [valid up to O(ε)] soliton solu-
tion of equation (60) can be found, which has the form of the traditional KdV soliton with a
velocity-shift and a bounded shape correction. In particular, this approximate soliton solution
of equation (60) reads (see, e.g., reference [55]):

q(ξ, τ ) = − α

2c2
(
Asech2θ + εA2λ1sech2θ + εA2λ2sech4θ

)
+ O(ε2), (63)

θ = κ
(
ξ +

α

8c
Vτ − ξ0

)
, V = 2A− 32c

α
εc4A

2, (64)
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where A = 2κ2, with κ ∈ R being the freeO(1) parameter of the KdV soliton in equation (44),
while the constants λ1 and λ2 are given by:

λ1 =
120c4c4 + 2c2αc2 + 8c2αc3 + α2

3c3α
,

λ2 =
−360c4c4 − 6c2αc2 − 12c2αc3 − α2

6c3α
.

Obviously, in the limit ε→ 0 the soliton of equation (63) reduces to the KdV soliton of
equation (44).

Furthermore, employing the perturbation theory for solitons [47–49], we may obtain the
following results. First, due to the presence of the perturbation P(q) (see equation (61)), the
parameter κ becomes time-dependent, namely κ �→ κ(τ ), featuring an evolution determined
by:

dκ
dτ

∝ 1
4κ

∫ +∞

−∞
P(qs)sech2Z dZ, (65)

where qs is the soliton of the unperturbedKdV equation (see equation (44)). Second, the ampli-
tude of the radiation tails qR produced by the perturbation P(q) is proportional to the factor R
given by:

qR ∝ R =
1
4κ5

∫ +∞

−∞
P(qs)tanh2 Z dZ. (66)

Evidently, P(qs) is an odd function of Z: indeed, since qs is an even function of Z, its odd-
order derivatives are odd functions, while its even-order ones are even functions. It is thus
straightforward to conclude that the overall function P(qs) is odd. On the other hand, sech2Z
and tanh2Z are even functions of Z and thus both integrals in equations (65) and (66) vanish.
Thus, the parameter κ which characterizes the soliton amplitude remains time-independent
and, at the same time, no radiation tails are produced in this higher-order KdV approximation.

4. Conclusions

In conclusion, we have used multiscale expansion methods to study the dynamics of dark soli-
tons in weakly nonlocal media, governed by a nonlinear Schrödinger model. In particular, we
have analyzed the hydrodynamic form of the model and considered at first the leading-order
of approximation, where only the first moment of the medium’s response function is present.
At an intermediate stage of the asymptotic analysis, we derived a BBL equation. Using a trav-
eling wave ansatz, we derived exact solitary wave solutions of this equation, in the limiting
case where the velocity of the solitary wave is sufficiently close to (and below) the speed of
sound. Then, we considered the long-time behavior of the BBL equation and, upon introduc-
ing relevant scales and asymptotic expansions, we reduced the BBL model to a pair of KdV
equations that govern right- and left-propagatingwaves. We have also shown that if the formal
perturbation parameter becomes sufficiently small then the BBL solitary wave transforms into
the KdV soliton.

We also used the reductive perturbation method to analyze higher-order effects. We thus
considered the model at the next order of approximation, where the second moment of the
response function comes into play. In this case, we found that dark solitons are governed by
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a pKdV equation which, as it has been shown in the past, can be approximated by a higher-
order integrable system. We have presented the exact soliton solution of the pKdV equation,
and employed the perturbation theory for solitons to show that the soliton amplitude remains
unchanged, while no radiation tails are produced during the evolution. Thus, it can be con-
cluded that, in the presence of the higher-order effects, the dark soliton’s shape and velocity
are only insubstantially changed.

Our analysis and results suggest interesting directions for future investigations. First, it
would be relevant to study analytically the dynamics of the derived soliton solutions in a higher-
dimensional setting, and investigate the role of weak nonlocality on the transversemodulational
instability of dark solitons (see, e.g., reference [22] for a relevant study). It would also be rele-
vant to study dispersive shockwaves, and particularly the role of higher-ordereffects, in weakly
nonlocal media. Naturally, exploring numerically the quantitative aspects of the predictions
herein both on the original dynamical system of the weak nonlocality, as well as in the full
original setting of the model featuring the nonlocal kernel, would be of particular relevance
and interest. Various predictions including the existence of the antidark, supersonic solitons
or the range over which the gray subsonic solitons may exist are of particular interest within
such an investigation. Finally, the derivation of higher-order nonlinear evolution equations that
describe effectively soliton dynamics in higher-dimensional, fully nonlocal media is another
quite interesting theme. Pertinent studies are in progress and relevant results will be reported
elsewhere.
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