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Neurodegenerative diseases are closely associated with the amplification and invasion of toxic proteins. In 
particular Alzheimer’s disease is characterized by the systematic progression of amyloid-β and τ -proteins 
in the brain. These two protein families are coupled and it is believed that their joint presence greatly 
enhances the resulting damage. Here, we examine a class of coupled chemical kinetics models of healthy 
and toxic proteins in two spatial dimensions. The anisotropic diffusion expected to take place within 
the brain along axonal pathways is factored in the models and produces a filamentary, predominantly 
one-dimensional transmission. Nevertheless, the potential of the anisotropic models towards generating 
interactions taking advantage of the two-dimensional landscape is showcased. Finally, a reduction of the 
models into a simpler family of generalized Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) type systems 
is examined. It is seen that the latter captures well the qualitative propagation features, although it may 
somewhat underestimate the concentrations of the toxic proteins.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Neurodegenerative disorders are both particularly complex from 
a scientific and clinical point of view and especially costly from 
a human and economic perspective. Despite considerable research 
investment, much of the basic mechanisms of the disease remain 
unknown; this is a topic of paramount importance for understand-
ing pathology development. A watershed development is the re-
cent prion-like hypothesis of protein aggregation; that misfolded, 
“toxic” proteins spread the misfolding, and the resulting proclivity 
to aggregate, similar to prion diseases [2]. An initial toxic popula-
tion can be thought of as seeding the relevant “infection”; spurring 
an autocatalytic chain reaction of misfolded and aggregated toxic 
proteins that, in turn, grow and spread throughout the brain and 
inhibit proper cell function. The toxic disruption, unless halted or 
removed, progressively deteriorates the nervous system; ultimately 
leading to brain atrophy, dementia, and death [3].

An interesting aspect of the prion-like hypothesis is that these 
proteins are different in different diseases and seeded at differ-
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ent locations, yet there are some universal features of the process 
and the resulting biomarkers follow similar trends. For example, in 
Alzheimer’s disease, the relevant proteins have been recognized to 
be amyloid-β (Aβ) and τ -protein (τP). Intriguingly, the two dif-
fer significantly in the way they aggregate, their location in the 
brain and where they originate: the former forms extracellular 
aggregates and plaques, while the latter operates intra-cellularly, 
cross-linking microtubules and inducing the formation of large dis-
organized neurofibrillary tangles [4,5]. A similar prion-like growth 
has been argued to be of relevance to the cases of Parkinson’s dis-
ease with α-synuclein playing a similar role and in amyotrophic 
lateral sclerosis where the principal biomarker is the TAR DNA 
binding protein, TDP-43 [6–9].

This investigation focuses on Alzheimer’s disease (AD) and the 
associated dynamics of Aβ and τP. The leading hypothesis, for 
nearly 25 years, was that Aβ plaques “cause” Alzheimer’s dis-
ease [10,11]. As a result significant effort has focused on Aβ [1,12]
but success has been limited. The tides are changing; new waves 
of inquiry into the role of τ P in AD suggests τ P may drive degen-
eration [21–23] and, interestingly, that Aβ and τ P may interact 
to enhance pathology (cf. [24,25] and the sources in [15]). Var-
ious graph-based models of Aβ and τ P progression [13–15,26], 
contrasted with biomarker scans [16], have been aimed at further 
understanding Aβ and τ P progression and some work on τ P stag-
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ing behaviour [26] is now available based on a stochastic epidemic 
spreading model [27]. However, little attention has been paid to 
analysing propagating waves of toxic proteins in such models and 
the importance of their interaction.

Our aim in the present work is to present simplified mod-
els of the coupled dynamics of Aβ and τP, in the spirit of [13–
15], but focus predominantly on two spatial dimensions. A two-
dimensional view has been shown to capture most of the qualita-
tive dynamics for the progression of a single toxic protein [14]. Our 
spatial-temporal model is originally based on aggregation kinetics 
in line with the recent studies [14,15]; we consider an extension 
of the ubiquituous Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) 
model [18] as in [13]. Our model incorporates four populations: 
healthy and toxic Aβ; and healthy and toxic τ P . A source term 
gives rise to the naturally-occurring healthy species; a conversion 
rate, reflecting the onset of kinetic aggregation pathology, governs 
the transformation from healthy to toxic species; terms reflecting 
physiological clearance of each species are incorporated; and the 
effects of Aβ on τ P , cf. [25,28], are also accounted for.

We observe that such a model produces two distinct, physiolog-
ically relevant behaviours; these are referred to as primary tauopa-
thy and secondary tauopathy. The former category is characterised 
by τ P that can propagate independently of toxic Aβ pathology; 
conversely, τ P propagation requires the presence of toxic Aβ in 
the latter category. This bimodal model is unique as it encom-
passes several potential neurodegenerative diseases. For instance, 
tauopathies [29] such as frontotemporal dementia are not accom-
panied by Aβ pathology; conversely, τ P pathology development in 
AD has been hypothesised [28], based on interaction experiments, 
to progress through both a local amyloid-dependent initiation phase 
followed by an amyloid-independent phase. The proposed model is 
thus applicable to a wide category of tauopathies while also espe-
cially suited to the study of AD pathology.

In this manuscript we examine the modalities of primary and 
secondary tauopathy, separately, in several ways. First, we consider 
a quasi-1d setting where the role of the second dimension is in 
providing a weak lateral spreading of the waves. We also examine 
a genuinely 2d scenario, where the transverse interaction of the 
toxic waves is critical for the spreading of the disorder; thus il-
lustrating the effect of dimensionality. Finally, we illustrate how to 
approximate the model by an effective (generalized) FKPP variant 
and compare the latter with the full results; we find significant 
qualitative agreement despite the partial quantitative disparities 
between the two. The remainder of the presentation is structured 
as follows. In section 2, we discuss the models at the different 
levels of description (4-component vs. FKPP) and their salient fea-
tures. In section 3 we present the different simulations for primary 
and secondary tauopathies, with and without significant transverse 
degrees of freedom. A comparison to FKPP will then give a sense of 
relevance to the study of the less computationally expensive FKPP 
model. Section 4 summarises our findings and offers concluding 
remarks.

2. Model formulation

Our principal model, presented in [15], features four species: 
healthy Aβ and τP and toxic Aβ and τP. Here are the processes 
involved in each species:

• Healthy Aβ diffuses anisotropically over the flat domain. It is 
produced with a constant rate a0 and is cleared with a clear-
ance rate a1. Moreover, the interaction of healthy and toxic Aβ

results in the toxification of healthy Aβ proteins. The healthy 
Aβ concentration is denoted as u(x, y, t), with the indepen-
dent variables being (x, y) in space and t for time.
2

• In a similar vein, toxic Aβ proteins diffuse with similar dif-
fusivities anisotropically over our two-dimensional slice. They 
are cleared with a rate ã1 and get produced by the toxification 
of the corresponding healthy concentration. With tildes being 
used for the toxic species, the relevant population is denoted 
by ũ(x, y, t).

• Similarly, the healthy τP concentration is denoted by v(x, y, t)
and involves diffusion, production at a constant rate b0 and 
clearance with a clearance rate b1. Here, toxic τP are produced 
either by direct interaction of healthy and toxic τP with rate 
b2 or catalyzed by the (surrounding) presence of toxic Aβ with 
rate b3.

• Finally, similar anisotropic diffusion properties are posited also 
for toxic τP, with a clearance rate b̃1 and production by the 
two above mechanisms of toxification of the healthy τP popu-
lation.

Mathematically translating the above 4 populations and the re-
spective assumptions, we obtain the following nonlinear partial 
differential equations:

ut = Dx
(
uxx + εuyy

) + a0 − a1u − a2uũ, (1)

ũt = Dx
(
ũxx + εũ yy

) − ã1ũ + a2uũ, (2)

vt = Dx
(
vxx + εv yy

) + b0 − b1v − b2v ṽ − b3vũ ṽ, (3)

ṽt = Dx
(
ṽxx + ε ṽ yy

) − b̃1 ṽ + b2v ṽ + b3vũṽ. (4)

Here, for simplicity we have assumed that all the diffusivities are 
equal and are assigned to be Dx along the x-axis, while they are 
Dy = εDx along the y-axis. All parameters and variables are as-
sumed to be positive. Finally, the subscripts denote partial deriva-
tives with respect to the corresponding independent variables.

Following also the considerations of [15], one defines a “dam-
age” variable q(x, y, t) based on the following (trivial in space) 
PDE:

qt = (
k1ũ + k2 ṽ + k3ũ ṽ

)
(1− q). (5)

This naturally tends to a stable fixed point of q(x, y, t) = 1 (maxi-
mal damage), starting from an initial condition of no-damage, i.e., 
q(x, y, 0) = 0.

A relevant consideration is that of identifying the fixed points 
in this model. There are, generally speaking, 4 equilibrium fixed 
points in this case.

1. (
a0
a1

, 0, b0b1 , 0) is the always unstable (in the realm of this 
model) healthy state. The assumption here is that we are mod-
eling an early stage of the emergence of the neurodegenerative 
disorder.

2. ( ã1a2
, a0ã1 − a1

a2
, b0b1 , 0) is a state devoid of toxic τP, but bear-

ing toxic Aβ . For this state to be biologically meaningful (i.e., 
reflecting positive concentrations), the assumption is a0a2 >

a1ã1.

3. Similarly, ( a0a1 , 0, b̃1b2 , b0
b̃1

− b1
b2

) is a state with only healthy Aβ , 
but bearing both healthy and toxic τP. Here, biological rele-
vance dictates that b0b2 > b1b̃1.

4. Lastly, there exists a homogeneous state with all four pop-
ulations, healthy and toxic ones alike, being non-vanishing, 
whereby u = ã1

a2
, ũ = a0

ã1
− a1

a2
, v = ã1a2b̃1

P and ṽ = b0
b̃1

− ã1a2b1
P , 

where P = ã1a2b2 − a1ã1b3 + a0a2b3. For all 4 equilibria to 
be present, it is necessary that both inequality constraints are 
satisfied enabling the previous two equilibria to exist. Inter-
estingly, in this setting, the concentration of the toxic Aβ (at 
equilibrium) remains the same as for the equilibrium devoid 
of toxic τP, yet the concentration of toxic τP is higher than 
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that in which the only toxic species are τP. This property is 
a consequence of the one-way coupling (Aβ influences the 
production of τP but τP does not influence Aβ , as observed 
experimentally).

The above observation leads to a classification of the so-called 
tauopathies. By this, we will mean scenarios involving toxic contri-
butions from both Aβ and τP. In the case of a primary tauopathy, 
both of the above inequalities are satisfied, then all 4 equilibria 
will exist. For a secondary tauopathy, we have a0a2 > a1ã1, while 
b0b2 < b1b̃1, it is still possible to have an equilibrium where both 
toxic components are concurrently present, yet τP cannot be toxic 
by itself (i.e., in the absence of toxic Aβ). Naturally for this sce-
nario of secondary tauopathy to occur, the relevant coefficient b3
should be sufficiently large. We will examine both of these scenar-
ios in what follows.

Lastly, we consider the reduction of the model into a pair of 
FKPP-type PDEs for the toxic components alone. To do so, an ef-
fective assumption of sufficiently larger (than the toxic) healthy 
concentrations of the two proteins is relevant to incorporate. In 
particular, assuming an effectively space- and time-independent 
concentration of healthy Aβ yields u = a0/(a1 + a2ũ). This, in 
turn, under these assumptions of ũ � u can be approximated by 
u ≈ a0

a1
(1 − a2

a1
ũ). In a similar vein, we can extract, via leading order 

Taylor expansion, v = b0
b1

(1 − b2
b1

ṽ − b3
b1
ũ ṽ). Then, the resulting gen-

eralized FKPP equations stemming from the substitution of these 
approximations into Eqs. (2) and (4) are:

ũt = Dx
(
ũxx + εũ yy

) +
(
a2a0
a1

− ã1

)
ũ − a22a0

a21
ũ2, (6)

ṽt = Dx
(
ṽxx + ε ṽ yy

) +
(
b2b0
b1

− b̃1 + b3b0
b1

ũ

)
ṽ

−
(
b22b0

b21
+ 2b2b3b0

b21
ũ + b3b0

b21

)
ṽ2. (7)

We will also explore the results of the system of Eqs. (6)-(7) and 
compare it with the observations stemming from Eqs. (1)-(4), as 
concerns the evolution of both primary and secondary tauopathies 
in what follows. Linearized theory predicts the speeds of propa-
gation of the corresponding resulting fronts, namely for the front 
interpolating between states 1 and 2, we have:

c12 = 2

√
Dx

(
a2a0
a1

− ã1

)
. (8)

We consider here the speed of propagation along the dominant di-
rection of diffusion, namely the x-axis, since we will assume ε � 1
in what follows. On the other hand, for the front interpolating be-
tween the homogeneous states 1 and 3, we will have, respectively:

c13 = 2

√
Dx

(
b2b0
b1

− b̃1

)
. (9)

Once the right propagating wave of the left blob and the left one 
of the right blob reach each other and interact, they will achieve 
a state of co-existence and the resulting propagation speed that is 
obtained via linearization around the co-existence state is:

c24 = 2

√
ρ̃2

a2b1ã1

√
ã1

(
a2

(
b0b2 − b1b̃1

)
− a1b0b3

)
+ a0a2b0b3.

(10)

Having set up the relevant models, we now turn to the correspond-
ing numerical results.
3

3. Numerical results

3.1. Primary tauopathy

We start our exposition of the numerical results by examining 
a setting of primary tauopathy (i.e., where all 4 relevant uniform 
equilibrium states exist). In this setting the 2nd state (involving 
no toxic τP) and the 3rd state (involving no toxic Aβ) are only at-
tracting in the absence of one of the toxic species. When both toxic 
species are present, the situation favors the co-existing state where 
both toxic species are present (i.e., the 4th one). Hence, we design 
the following numerical experiment: on the one side, we seed a 
narrow blob of toxic Aβ , while on the other side, we seed a simi-
lar blob but of toxic τP, so as to see how the respective toxicities 
will interact upon their propagation. In this primary tauopathy, we 
select a0 = b0 = a1 = a2 = b1 = b2 = 1, while ã1 = b̃1 = 3/4 and 
b3 = 1/2. The initial conditions associated with this numerical ex-
periment shown in Fig. 1 involve uniform profiles u(x, y, 0) = 1, 
v(x, y, 0) = 1 for healthy Aβ and τP, while for the toxic proteins 
we assume a small blob of initial concentrations in the form:

ũ(x, y,0) = 1

3
sech2

(
(x+ 20)2 + 10y2

)
, (11)

ṽ(x, y,0) = 1

3
sech2

(
(x− 20)2 + 10y2

)
. (12)

Notice that the relevant results have been found to be generic 
within their corresponding regimes of parametric inequalities, 
hence the particular value of the parameters, as well as the ampli-
tude and precise shape of the initial condition blobs do not play a 
crucial role as regards the phenomenology reported below.

It can be observed that the scenario described theoretically is 
realized here: the symmetry of the coefficients leads to an equally 
rapid propagation of the two (left and right) blobs in both direc-
tions with a speed of 

√
1/2. Indeed, we can observe the dam-

age function evolving accordingly and symmetrically expanding the 
disorder across the domain in Fig. 2. More concretely, Fig. 3 cap-
tures one of these fronts as they start on the left side of the 
domain and propagate rightward along the x-direction (left panel), 
while they also expand along the y-direction (middle panel). In-
deed, here, the simulation involves a factor of ε = 0.01, leading 
to a tenfold reduction of the corresponding speed along the y-
direction. It can be seen that our numerical evaluation of the as-
sociated speed, after a transient (which can also be observed in 
the left and middle panels), settles in the vicinity of its anticipated 
asymptotic value (right panel of Fig. 3). Importantly, also, however, 
we observe in Fig. 1 the formation of the co-existing (4th) state of 
the two toxic proteins Aβ and τP as the prevalent state where the 
two populations overlap. This can be especially discerned in the 
bottom panels of the figure where the higher concentration of the 
toxic τP clearly illustrates the relevant state (recall that the Aβ

does not modify its equilibrium concentration in the presence of 
τP). Notice also that the damage function, as defined herein, also 
does not appear to feature an immediately discernible signature of 
the co-existence state, as per Fig. 2.

To explore the effects of geometry and two-dimensionality of 
the system, we now turn to the consideration of a scenario where 
the initial toxicity of the Aβ and τP are not “aligned”. In this 
case, while we retain the initially uniform profile in the healthy 
populations of the relevant biomarkers, we offset vertically the cor-
responding toxic initial populations as follows:

ũ(x, y,0) = 1

3
sech2

(
(x+ 20)2 + 5(y − 2.5)2

)
(13)

ṽ(x, y,0) = 1
sech2

(
(x− 20)2 + 5(y + 2.5)2

)
(14)
3
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Fig. 1. Numerical evolution snapshots of a primary tauopathy via 4 sets of 4 panels each. The top row of panels is at t = 0.5, the second at t = 30, the third at t = 50 and 
the last at t = 70. What is shown is a contour plot of the spatial distribution of all four of the relevant field concentrations: the healthy Aβ , the healthy τP, the toxic Aβ and 
the toxic τP, labeled in the respective columns. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
Fig. 2. Evolution of the damage function q(x, y, t) at the same times as for the above 
simulation. I.e., t = 0.5 at the top left, t = 30 at the top right, t = 50 at the bottom 
left and t = 70 at the bottom right. It can be clearly seen how the evolving initial 
spots expand into a “corridor” of damage over the dynamical evolution.

In this case too, during the early stages, the propagation of the 
neurodegenerative waves (the one connecting the 1st and the 2nd 
homogeneous state on the left and the one connecting the 1st 
and the 3rd such on the right) occurs principally along quasi-
one-dimensional “corridors” within the system. As can be seen in 
Fig. 4, however, at later times, as these waves spread in the lateral 
direction, they interact and form an “oblique” front. Here, the co-
existent state of toxicity of the two species dominates, leading to 
an expansion of the relevant front in both directions. This oblique 
interaction pattern also affects the spread of the corresponding 
damage function as can be observed in the bottom panels of the 
4

figure. Once again, the latter bears no discernible features of the 
toxic co-existence associated with the 4th equilibrium state (in 
comparison to the 2nd or 3rd one). Still, the expanding front of 
co-existent toxicity is especially evident in the right column of the 
snapshots shown (and even more so in the movies of [19]).

3.2. Secondary tauopathy

We now turn to a scenario of secondary tauopathy for which 
the presence of toxic Aβ is required for toxic τP. As discussed 
in the theory, we select a sufficiently large value of b3 = 3, and 
keep all other coefficients the same except for b̃1 = 4/3, so that 
the third equilibrium (of solely toxic τP) is absent. In this case, in 
terms of initial conditions, the first three components are similar 
to our original numerical experiment involving uniform popula-
tions for the healthy biomarkers and a toxic Aβ population given 
by Eq. (11). However, here the toxic component of the τP is given 
by:

ṽ(x, y,0) = 10−8sech2
(
(x− 20)2 + 10y2

)
. (15)

In this case, a fundamentally different dynamical evolution of the 
disorder can be observed. Indeed, the initial stages of the simu-
lation illustrate a decrease of the toxic levels of τP (cf. the early 
times in Fig. 5 and also the bottom right panel of Fig. 6, reporting 
the maximal concentration thereof). However, over time, the ex-
pansion of the front involving the toxic Aβ eventually leads to an 
overlap with the toxic τP that, in turn, ignites the nucleation and 
expansion of the 4th homogeneous state, the one of co-existent 
toxicity of the two proteins. The relevant “droplet” (of τP) can be 
seen to rapidly expand and eventually catch up to the front of ex-
panding toxic Aβ; see the left and right panels of Fig. 5. While 
this evolution is not immediately evident in the damage spatio-
temporal evolution panels of Fig. 6, it is clear in the growth and 
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Fig. 3. The left panel shows the x-position of the center of the front (xF ) that starts on the left (and moves towards the right) within the numerical experiment of a primary 
tauopathy. The middle panel shows the corresponding y-position yF . The speed cx along the x-axis can be clearly seen in the right panel to approach the asymptotic value 
of cx = 2−1/2. Correspondingly the y-speed (not shown here) can be seen to approach the limiting value cy = (2ε)−1/2.

Fig. 4. Similar to the results of the primary tauopathy case, but now in a case where the geometry/two-dimensionality of the initial configuration contributes to an oblique 
interaction, most notable in columns 2 and 4, where it is clear that this primary tauopathy leads to a population of the 4th equilibrium state involving all 4 co-existing 
species. Initially the waves of toxicity of Aβ and τP are offset as per Eqs. (13) and (14). The four fields are shown for t = 60 (top row of panels) and t = 80 (second row of 
panels) along with their corresponding damage variable spatio-temporal spread (bottom row of panels).
eventual saturation of the toxic τP maximal concentration (bottom 
right panel of Fig. 6), as well as in the movies of [19]. Notice that 
we also considered scenarios of non-collinear propagation in this 
secondary tauopathy as well (not shown here). The main difference 
there was that the non-collinear propagation delayed the occur-
rence of overlap between the very weak toxic τP pulse and the 
propagating toxic Aβ front, thus considerably delaying the emer-
gence and expansion of the 4th homogeneous state of co-existing 
toxicity.

3.3. Reduction to FKPP

Finally, we considered the examples of primary tauopathy in 
the context of the FKPP-type models of Eqs. (6)-(7), in the realm 
of the collinear propagation of the two invasion fronts (the toxic 
Aβ and the toxic τP) in Fig. 7. Similar results have been found in 
the case of the oblique interaction (data not shown). It is impor-
tant to observe that in both cases the qualitative dynamics are in 
close analogy to the full evolution of both the healthy and toxic 
populations in Figs. 1 and 4, respectively. Notice that in the FKPP 
case, we only show the two toxic species spatial concentration 
contour plots at different snapshots in time, along with the cor-
responding damage contour profiles. It can be clearly seen that 
the qualitative correspondence persists over the time scales shown. 
5

Nevertheless at the quantitative level, we see that the assumption 
of a much higher healthy concentration is progressively less ad-
equate. This eventually leads to an underestimation of the toxic 
concentration of the associated proteins. This is illustrated in Fig. 8, 
presenting the difference between the toxic component concentra-
tion of Aβ (left) and τP (right) between the original model and 
the FKPP approximation. The difference is quite small especially 
for Aβ and, in any event, the effective simplification at the level 
of the FKPP equations is well suited towards understanding the as-
sociated qualitative phenomenology in all the cases that we have 
examined.

4. Conclusions

In the present work, we have explored the evolution of toxic 
fronts of proteins such as amyloid-β and the τ -protein within a 
two-dimensional terrain, i.e., the propagation of neurodegenera-
tive waves within a two-dimensional slice. Our formulation was 
based on chemical kinetics, following earlier works such as [14,15]
and considering both healthy and toxic populations of the relevant 
proteins and the spatio-temporal evolution of their concentrations. 
It was assumed that the healthy proteins are produced and de-
graded at a given rate, and there is a conversion of the healthy 
proteins into toxic ones upon interaction with a toxic “seed”. In the 
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Fig. 5. Similar to the results of the primary tauopathy case, but now in the scenario of a secondary tauopathy and for t = 25, 50, 75 and 100. Notice how the toxic τP is 
absent early on, yet it emerges as a result of its overlap with toxic Aβ and subsequently grows in a rapidly expanding front.

Fig. 6. The left set of panels involves the damage function at the same times as above. The top right panel shows the expansion of the right-moving toxic front of Aβ in the 
x (solid) and y (dashed) axis via its center position (xF , yF ). The secondary nature of the tauopathy is evident in the bottom right showing how the toxic τP decays until it 
overlaps with the rightward propagating toxic Aβ leading to its rapid growth and eventual saturation in the co-existing toxic state.
case of τP, this is further catalyzed by the presence of toxic Aβ . 
In this setting, four equilibrium fixed points were identified and 
the heteroclinic orbits connecting them dominated the relevant 
dynamics. The conditions were identified under which (paramet-
rically) the different fixed points exist and when all were present, 
their interaction was considered primarily in two scenarios. The 
first, characterized as a primary tauopathy involved the presence 
of all four fixed points (toxic fronts of Aβ and τP could exist in-
dependently, but also interact to form a toxic co-existence front). 
The second one, referred to as secondary tauopathy featured no 
toxic τP alone, but only in conjunction with toxic Aβ . It was also 
observed how the two-dimensional geometry and the anisotropic 
6

diffusion can conspire to enable these fronts to propagate along 
quasi-1d corridors, but concurrently can allow the interaction of 
the propagating fronts to produce an oblique wave of toxic co-
existence between the different proteins. Finally, a reduced model 
solely featuring the toxic components was developed and it was 
shown that it quite adequately represents the examples considered 
qualitatively, although, naturally, some of the quantitative aspects 
are suitably modified.

It is particularly relevant to consider this class of models fur-
ther, both from the perspective of biological “adequacy” (and 
the potential inclusion of suitable further biologically relevant 
traits) and faithfulness and, if relevant, from the perspective of 
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Fig. 7. Similar to the results of the primary tauopathy case (Figs. 1 and 2), but now in the scenario of collinear propagation within a two-species FKPP-type model only for 
the toxic components of Aβ and τP. For each time (with the same snapshots selected as before), the two toxic components, as well as the damage variable q are shown.

Fig. 8. The difference between the concentrations of the toxic components of Aβ (left 2 × 2 panels) and τP (right 2 × 2 panels) between the original model and the FKPP 
approximation are shown. It is clear that the FKPP model underpredicts the levels of toxic concentration of the two proteins (less so for Aβ) although the qualitative 
behaviour of the models is very similar.
mathematical control and optimization. More concretely, here 
these models have been illustrated from the point of view of 
two-dimensional partial differential equations. However, suitable 
connectivity networks exist within the brain and have been 
mapped [13,14]. Incorporating the associated connectivity (i.e., the 
adjacency matrices thereof) allows to track relevant dynamics on 
a more realistic network. This is of particular interest presently in 
the context of neurodegenerative diseases; see for a recent exam-
ple of experimental observations and associated linear modeling 
for Parkinson’s disease the work of [20]. On the other hand, it is 
clear that the model used here is an initial effort to represent the 
spreading of disorder when the organism is “on the verge” of dis-
ease. However, it is relevant to develop a variant of this model that 
may feature physiological function but may be able (upon a suit-
able “bifurcation event”) to turn to the preferentiality for disease 
dynamics. A related question is that of attempting to connect pa-
rameters postulated herein with realistic numbers stemming from 
biological experiments. Estimating production and clearance levels 
of these proteins may be within reach based on recent experimen-
tal biomarker tracking capabilities [16]. Other coefficients, such as 
those of toxic conversion of the proteins may be more difficult to 
assess but the present model (and its distinction between differ-
ent types of tauopathies) suggests the relevance of consideration 
of such experiments.
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Lastly, should such a model be possible to establish on a more 
firm biological basis (rather than a more phenomenological one 
as is done here), the benefits would be significant at various lev-
els. One could consider how to inhibit the propagation of the 
fronts examined herein and what this would require from a bio-
logical intervention (drug administration) perspective. A controlled 
propagation, a slowing down and ideally a halting of such toxic 
fronts would be an intriguing target for control theory objectives 
applied to such high-dimensional models. Enabling such a math-
ematical testing framework would be of particular relevance and 
interest, even though recent advances (such as those of [17]) sug-
gest that this may need to be done at a more sophisticated level, 
like for example that of considering distributions of the relevant 
proteins. This stems from the emerging necessity to reduce the 
flux of oligomeric (but not monomeric) forms of, e.g., Aβ in or-
der to achieve cognitive improvement in some of the most recent 
experimental studies [17].
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