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Neurodegenerative diseases are closely associated with the amplification and invasion of toxic proteins. In
particular Alzheimer’s disease is characterized by the systematic progression of amyloid-8 and 7-proteins
in the brain. These two protein families are coupled and it is believed that their joint presence greatly
enhances the resulting damage. Here, we examine a class of coupled chemical kinetics models of healthy
and toxic proteins in two spatial dimensions. The anisotropic diffusion expected to take place within
the brain along axonal pathways is factored in the models and produces a filamentary, predominantly
one-dimensional transmission. Nevertheless, the potential of the anisotropic models towards generating
Keywords: interactions taking advantage of the two-dimensional landscape is showcased. Finally, a reduction of the
Alzheimer disease models into a simpler family of generalized Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) type systems
Brain is examined. It is seen that the latter captures well the qualitative propagation features, although it may
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somewhat underestimate the concentrations of the toxic proteins.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Neurodegenerative disorders are both particularly complex from
a scientific and clinical point of view and especially costly from
a human and economic perspective. Despite considerable research
investment, much of the basic mechanisms of the disease remain
unknown; this is a topic of paramount importance for understand-
ing pathology development. A watershed development is the re-
cent prion-like hypothesis of protein aggregation; that misfolded,
“toxic” proteins spread the misfolding, and the resulting proclivity
to aggregate, similar to prion diseases [2]. An initial toxic popula-
tion can be thought of as seeding the relevant “infection”; spurring
an autocatalytic chain reaction of misfolded and aggregated toxic
proteins that, in turn, grow and spread throughout the brain and
inhibit proper cell function. The toxic disruption, unless halted or
removed, progressively deteriorates the nervous system; ultimately
leading to brain atrophy, dementia, and death [3].

An interesting aspect of the prion-like hypothesis is that these
proteins are different in different diseases and seeded at differ-
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ent locations, yet there are some universal features of the process
and the resulting biomarkers follow similar trends. For example, in
Alzheimer’s disease, the relevant proteins have been recognized to
be amyloid-8 (AB) and t-protein (TP). Intriguingly, the two dif-
fer significantly in the way they aggregate, their location in the
brain and where they originate: the former forms extracellular
aggregates and plaques, while the latter operates intra-cellularly,
cross-linking microtubules and inducing the formation of large dis-
organized neurofibrillary tangles [4,5]. A similar prion-like growth
has been argued to be of relevance to the cases of Parkinson’s dis-
ease with a-synuclein playing a similar role and in amyotrophic
lateral sclerosis where the principal biomarker is the TAR DNA
binding protein, TDP-43 [6-9].

This investigation focuses on Alzheimer’s disease (AD) and the
associated dynamics of AB and tP. The leading hypothesis, for
nearly 25 years, was that AB plaques “cause” Alzheimer’s dis-
ease [10,11]. As a result significant effort has focused on Ag [1,12]
but success has been limited. The tides are changing; new waves
of inquiry into the role of TP in AD suggests T P may drive degen-
eration [21-23] and, interestingly, that A and TP may interact
to enhance pathology (cf. [24,25] and the sources in [15]). Var-
ious graph-based models of A8 and tP progression [13-15,26],
contrasted with biomarker scans [16], have been aimed at further
understanding AB and t P progression and some work on t P stag-
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ing behaviour [26] is now available based on a stochastic epidemic
spreading model [27]. However, little attention has been paid to
analysing propagating waves of toxic proteins in such models and
the importance of their interaction.

Our aim in the present work is to present simplified mod-
els of the coupled dynamics of A8 and tP, in the spirit of [13-
15], but focus predominantly on two spatial dimensions. A two-
dimensional view has been shown to capture most of the qualita-
tive dynamics for the progression of a single toxic protein [14]. Our
spatial-temporal model is originally based on aggregation kinetics
in line with the recent studies [14,15]; we consider an extension
of the ubiquituous Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)
model [18] as in [13]. Our model incorporates four populations:
healthy and toxic AS; and healthy and toxic TP. A source term
gives rise to the naturally-occurring healthy species; a conversion
rate, reflecting the onset of kinetic aggregation pathology, governs
the transformation from healthy to toxic species; terms reflecting
physiological clearance of each species are incorporated; and the
effects of AB on tP, cf. [25,28], are also accounted for.

We observe that such a model produces two distinct, physiolog-
ically relevant behaviours; these are referred to as primary tauopa-
thy and secondary tauopathy. The former category is characterised
by TP that can propagate independently of toxic AS pathology;
conversely, TP propagation requires the presence of toxic AS in
the latter category. This bimodal model is unique as it encom-
passes several potential neurodegenerative diseases. For instance,
tauopathies [29] such as frontotemporal dementia are not accom-
panied by AS pathology; conversely, TP pathology development in
AD has been hypothesised [28], based on interaction experiments,
to progress through both a local amyloid-dependent initiation phase
followed by an amyloid-independent phase. The proposed model is
thus applicable to a wide category of tauopathies while also espe-
cially suited to the study of AD pathology.

In this manuscript we examine the modalities of primary and
secondary tauopathy, separately, in several ways. First, we consider
a quasi-1d setting where the role of the second dimension is in
providing a weak lateral spreading of the waves. We also examine
a genuinely 2d scenario, where the transverse interaction of the
toxic waves is critical for the spreading of the disorder; thus il-
lustrating the effect of dimensionality. Finally, we illustrate how to
approximate the model by an effective (generalized) FKPP variant
and compare the latter with the full results; we find significant
qualitative agreement despite the partial quantitative disparities
between the two. The remainder of the presentation is structured
as follows. In section 2, we discuss the models at the different
levels of description (4-component vs. FKPP) and their salient fea-
tures. In section 3 we present the different simulations for primary
and secondary tauopathies, with and without significant transverse
degrees of freedom. A comparison to FKPP will then give a sense of
relevance to the study of the less computationally expensive FKPP
model. Section 4 summarises our findings and offers concluding
remarks.

2. Model formulation

Our principal model, presented in [15], features four species:
healthy A8 and 7P and toxic AS and tP. Here are the processes
involved in each species:

e Healthy AB diffuses anisotropically over the flat domain. It is
produced with a constant rate ag and is cleared with a clear-
ance rate a;. Moreover, the interaction of healthy and toxic AB
results in the toxification of healthy AB proteins. The healthy
ApB concentration is denoted as u(x, y,t), with the indepen-
dent variables being (x, y) in space and t for time.
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e In a similar vein, toxic A proteins diffuse with similar dif-
fusivities anisotropically over our two-dimensional slice. They
are cleared with a rate a; and get produced by the toxification
of the corresponding healthy concentration. With tildes being
used for the toxic species, the relevant population is denoted
by ii(x, y,t).

e Similarly, the healthy TP concentration is denoted by v(x, y, t)
and involves diffusion, production at a constant rate by and
clearance with a clearance rate bq. Here, toxic TP are produced
either by direct interaction of healthy and toxic TP with rate
b, or catalyzed by the (surrounding) presence of toxic A with
rate bs.

e Finally, similar anisotropic diffusion properties are posited also
for toxic TP, with a clearance rate b; and production by the
two above mechanisms of toxification of the healthy TP popu-
lation.

Mathematically translating the above 4 populations and the re-
spective assumptions, we obtain the following nonlinear partial
differential equations:

ur = Dy (uxx + €Uyy) + ao — au — ayuil, (1)
iy = Dy (fixx + €llyy) — d111 + auil, (2)

= Dy (Vxx + €Vyy) 4+ bo — b1v — bav¥ — b3vil¥, (3)
vt_Dx( xx—i—evyy)—b]v—i-bzvv—i-bgvuv. (4)

Here, for simplicity we have assumed that all the diffusivities are
equal and are assigned to be Dy along the x-axis, while they are
Dy = €Dy along the y-axis. All parameters and variables are as-
sumed to be positive. Finally, the subscripts denote partial deriva-
tives with respect to the corresponding independent variables.

Following also the considerations of [15], one defines a “dam-
age” variable q(x, y,t) based on the following (trivial in space)
PDE:

= (kqll 4+ kaV + k3ii¥) (1 — q). (5)

This naturally tends to a stable fixed point of q(x, y,t) =1 (maxi-
mal damage), starting from an initial condition of no-damage, i.e.,
qx,y,0)=

A relevant consideration is that of identifying the fixed points
in this model. There are, generally speaking, 4 equilibrium fixed
points in this case.

1. (“0 0, n 0.0) is the always unstable (in the realm of this
model) healthy state. The assumption here is that we are mod-
eling an early stage of the emergence of the neurodegenerative

disorder.
2. (Z—;, z—‘l’ — z; bo ) is a state devoid of toxic TP, but bear-

ing toxic AB. For this state to be biologically meaningful (i.e.,
reflecting positive concentrations), the assumption is apa >
ady.

3. Similarly, (”0 0, g; 20 - ’;—;) is a state with only healthy AB,
1

but bearing both healthy and toxic tP. Here, biological rele-
vance dictates that boby > b1by.

4, Lastly, there exists a homogeneous state with all four pop-
ulations, healthy and toxic ones alike, being non-vanishing,
Wherebyu—— i=%_4a v=‘“‘12b1 and 7 =2 —

111 a’ b1
where P = djazby — aja1bs + apazbs. For all 4 equilibria to
be present, it is necessary that both inequality constraints are
satisfied enabling the previous two equilibria to exist. Inter-
estingly, in this setting, the concentration of the toxic A (at
equilibrium) remains the same as for the equilibrium devoid
of toxic TP, yet the concentration of toxic TP is higher than

a ﬁﬂlzbl
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that in which the only toxic species are TP. This property is
a consequence of the one-way coupling (AB influences the
production of tP but TP does not influence AB, as observed
experimentally).

The above observation leads to a classification of the so-called
tauopathies. By this, we will mean scenarios involving toxic contri-
butions from both AB and tP. In the case of a primary tauopathy,
both of the above inequalities are satisfied, then all 4 equilibria
will exist. For a secondary tauopathy, we have apaz > aja;, while
boby < b1by, it is still possible to have an equilibrium where both
toxic components are concurrently present, yet TP cannot be toxic
by itself (i.e., in the absence of toxic AB). Naturally for this sce-
nario of secondary tauopathy to occur, the relevant coefficient bs
should be sufficiently large. We will examine both of these scenar-
ios in what follows.

Lastly, we consider the reduction of the model into a pair of
FKPP-type PDEs for the toxic components alone. To do so, an ef-
fective assumption of sufficiently larger (than the toxic) healthy
concentrations of the two proteins is relevant to incorporate. In
particular, assuming an effectively space- and time-independent
concentration of healthy AB yields u = ap/(a; + axii). This, in
turn, under these assumptions of il « u can be approximated by
TS Z_?(] — Z—fﬁ). In a similar vein, we can extract, via leading order

Taylor expansion, v = ',;—?(1 — z—ff/ — g—fﬁf/). Then, the resulting gen-

eralized FKPP equations stemming from the substitution of these
approximations into Eqs. (2) and (4) are:

2

~ ~ ~ axap . \. 0G300.,

quDX@m+fu”)+(77——m>u——;ru, (6)
1 1

- - - byb ~ bsbp .\ .
Vt:DX(va+€Vyy)+(%—b]“r%u)v
b%bo
-5+
(b%

2b2b3b0 - b3b0 ~2
b2 b—2 V .
1 1
We will also explore the results of the system of Eqs. (6)-(7) and
compare it with the observations stemming from Egs. (1)-(4), as
concerns the evolution of both primary and secondary tauopathies
in what follows. Linearized theory predicts the speeds of propa-
gation of the corresponding resulting fronts, namely for the front
interpolating between states 1 and 2, we have:

Dx<@ —al>. 8)
a

We consider here the speed of propagation along the dominant di-
rection of diffusion, namely the x-axis, since we will assume € « 1
in what follows. On the other hand, for the front interpolating be-
tween the homogeneous states 1 and 3, we will have, respectively:

babo -

Once the right propagating wave of the left blob and the left one
of the right blob reach each other and interact, they will achieve
a state of co-existence and the resulting propagation speed that is
obtained via linearization around the co-existence state is:

u_o | P2 A
ct=2 a2b1€11\/a1 (az(bobz b]b]) a1b0b3)+a0a2b0b3.

(10)

Having set up the relevant models, we now turn to the correspond-
ing numerical results.

(7)

Physics Letters A 384 (2020) 126935

3. Numerical results
3.1. Primary tauopathy

We start our exposition of the numerical results by examining
a setting of primary tauopathy (i.e., where all 4 relevant uniform
equilibrium states exist). In this setting the 2nd state (involving
no toxic TP) and the 3rd state (involving no toxic Ag) are only at-
tracting in the absence of one of the toxic species. When both toxic
species are present, the situation favors the co-existing state where
both toxic species are present (i.e., the 4th one). Hence, we design
the following numerical experiment: on the one side, we seed a
narrow blob of toxic AS, while on the other side, we seed a simi-
lar blob but of toxic TP, so as to see how the respective toxicities
will interact upon their propagation. In this primary tauopathy, we
select ag = bg =a; =ay; = b1 =by =1, while a; = 151 =3/4 and
b3 =1/2. The initial conditions associated with this numerical ex-
periment shown in Fig. 1 involve uniform profiles u(x, y,0) =1,
v(x,y,0) =1 for healthy A8 and 7P, while for the toxic proteins
we assume a small blob of initial concentrations in the form:

~ 1
u(x,y,O):§sech2 ((x+20)2+10y2), (11)

i 1
v(x,y,O):§sech2 ((x—20)2+10y2). (12)

Notice that the relevant results have been found to be generic
within their corresponding regimes of parametric inequalities,
hence the particular value of the parameters, as well as the ampli-
tude and precise shape of the initial condition blobs do not play a
crucial role as regards the phenomenology reported below.

It can be observed that the scenario described theoretically is
realized here: the symmetry of the coefficients leads to an equally
rapid propagation of the two (left and right) blobs in both direc-
tions with a speed of /1/2. Indeed, we can observe the dam-
age function evolving accordingly and symmetrically expanding the
disorder across the domain in Fig. 2. More concretely, Fig. 3 cap-
tures one of these fronts as they start on the left side of the
domain and propagate rightward along the x-direction (left panel),
while they also expand along the y-direction (middle panel). In-
deed, here, the simulation involves a factor of € = 0.01, leading
to a tenfold reduction of the corresponding speed along the y-
direction. It can be seen that our numerical evaluation of the as-
sociated speed, after a transient (which can also be observed in
the left and middle panels), settles in the vicinity of its anticipated
asymptotic value (right panel of Fig. 3). Importantly, also, however,
we observe in Fig. 1 the formation of the co-existing (4th) state of
the two toxic proteins A8 and TP as the prevalent state where the
two populations overlap. This can be especially discerned in the
bottom panels of the figure where the higher concentration of the
toxic TP clearly illustrates the relevant state (recall that the ApB
does not modify its equilibrium concentration in the presence of
TP). Notice also that the damage function, as defined herein, also
does not appear to feature an immediately discernible signature of
the co-existence state, as per Fig. 2.

To explore the effects of geometry and two-dimensionality of
the system, we now turn to the consideration of a scenario where
the initial toxicity of the A and tP are not “aligned”. In this
case, while we retain the initially uniform profile in the healthy
populations of the relevant biomarkers, we offset vertically the cor-
responding toxic initial populations as follows:

i(x,y,0) = %sechz ((x+20)2+5(y —2.5)2) (13)

T(x, y,0) = %sechz ((x—zo)2 +5(y+2.5)2) (14)
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Fig. 1. Numerical evolution snapshots of a primary tauopathy via 4 sets of 4 panels each. The top row of panels is at t = 0.5, the second at t =30, the third at t =50 and
the last at t = 70. What is shown is a contour plot of the spatial distribution of all four of the relevant field concentrations: the healthy AB, the healthy TP, the toxic A and
the toxic 7P, labeled in the respective columns. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Evolution of the damage function q(x, y, t) at the same times as for the above
simulation. Le., t = 0.5 at the top left, t = 30 at the top right, t =50 at the bottom
left and t =70 at the bottom right. It can be clearly seen how the evolving initial
spots expand into a “corridor” of damage over the dynamical evolution.
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In this case too, during the early stages, the propagation of the
neurodegenerative waves (the one connecting the 1st and the 2nd
homogeneous state on the left and the one connecting the 1st
and the 3rd such on the right) occurs principally along quasi-
one-dimensional “corridors” within the system. As can be seen in
Fig. 4, however, at later times, as these waves spread in the lateral
direction, they interact and form an “oblique” front. Here, the co-
existent state of toxicity of the two species dominates, leading to
an expansion of the relevant front in both directions. This oblique
interaction pattern also affects the spread of the corresponding
damage function as can be observed in the bottom panels of the

figure. Once again, the latter bears no discernible features of the
toxic co-existence associated with the 4th equilibrium state (in
comparison to the 2nd or 3rd one). Still, the expanding front of
co-existent toxicity is especially evident in the right column of the
snapshots shown (and even more so in the movies of [19]).

3.2. Secondary tauopathy

We now turn to a scenario of secondary tauopathy for which
the presence of toxic AB is required for toxic TP. As discussed
in the theory, we select a sufficiently large value of bs =3, and
keep all other coefficients the same except for by = 4/3, so that
the third equilibrium (of solely toxic TP) is absent. In this case, in
terms of initial conditions, the first three components are similar
to our original numerical experiment involving uniform popula-
tions for the healthy biomarkers and a toxic A8 population given
by Eq. (11). However, here the toxic component of the TP is given
by:

7(x, y,0) = 10"8sech? ((x —20)% + 10y2) . (15)

In this case, a fundamentally different dynamical evolution of the
disorder can be observed. Indeed, the initial stages of the simu-
lation illustrate a decrease of the toxic levels of TP (cf. the early
times in Fig. 5 and also the bottom right panel of Fig. 6, reporting
the maximal concentration thereof). However, over time, the ex-
pansion of the front involving the toxic A8 eventually leads to an
overlap with the toxic TP that, in turn, ignites the nucleation and
expansion of the 4th homogeneous state, the one of co-existent
toxicity of the two proteins. The relevant “droplet” (of TP) can be
seen to rapidly expand and eventually catch up to the front of ex-
panding toxic AB; see the left and right panels of Fig. 5. While
this evolution is not immediately evident in the damage spatio-
temporal evolution panels of Fig. 6, it is clear in the growth and
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Fig. 3. The left panel shows the x-position of the center of the front (xf) that starts on the left (and moves towards the right) within the numerical experiment of a primary
tauopathy. The middle panel shows the corresponding y-position yr. The speed cyx along the x-axis can be clearly seen in the right panel to approach the asymptotic value
of ¢y =271/2. Correspondingly the y-speed (not shown here) can be seen to approach the limiting value ¢y, = (2¢)71/2.

healthy AB healthy TP
20— 1 -20
t =60
0.9 3
> 0 0
0.8 ’
20" 20 "
-50 0 50 -50 0 50
1 -20 :
0.9 0 :
0.8 :
20 20
-50 0 50 -50 0 50
X X

0
X

50

toxic AB toxic TP
-20 03 -20
0.3
0 02 0 0.2
0.1 0.1
20 20
-50 -50 0 50
-20
03 0.4
0.2 0.3
0 0.2
0.1 0
20
-50 0 50
X X

0.8
0.6
0.4
0.2
-50 0 50
X

Fig. 4. Similar to the results of the primary tauopathy case, but now in a case where the geometry/two-dimensionality of the initial configuration contributes to an oblique
interaction, most notable in columns 2 and 4, where it is clear that this primary tauopathy leads to a population of the 4th equilibrium state involving all 4 co-existing
species. Initially the waves of toxicity of AB and TP are offset as per Eqs. (13) and (14). The four fields are shown for t =60 (top row of panels) and t = 80 (second row of
panels) along with their corresponding damage variable spatio-temporal spread (bottom row of panels).

eventual saturation of the toxic TP maximal concentration (bottom
right panel of Fig. 6), as well as in the movies of [19]. Notice that
we also considered scenarios of non-collinear propagation in this
secondary tauopathy as well (not shown here). The main difference
there was that the non-collinear propagation delayed the occur-
rence of overlap between the very weak toxic TP pulse and the
propagating toxic AB front, thus considerably delaying the emer-
gence and expansion of the 4th homogeneous state of co-existing
toxicity.

3.3. Reduction to FKPP

Finally, we considered the examples of primary tauopathy in
the context of the FKPP-type models of Egs. (6)-(7), in the realm
of the collinear propagation of the two invasion fronts (the toxic
ApB and the toxic TP) in Fig. 7. Similar results have been found in
the case of the oblique interaction (data not shown). It is impor-
tant to observe that in both cases the qualitative dynamics are in
close analogy to the full evolution of both the healthy and toxic
populations in Figs. 1 and 4, respectively. Notice that in the FKPP
case, we only show the two toxic species spatial concentration
contour plots at different snapshots in time, along with the cor-
responding damage contour profiles. It can be clearly seen that
the qualitative correspondence persists over the time scales shown.

Nevertheless at the quantitative level, we see that the assumption
of a much higher healthy concentration is progressively less ad-
equate. This eventually leads to an underestimation of the toxic
concentration of the associated proteins. This is illustrated in Fig. 8,
presenting the difference between the toxic component concentra-
tion of AB (left) and tP (right) between the original model and
the FKPP approximation. The difference is quite small especially
for AB and, in any event, the effective simplification at the level
of the FKPP equations is well suited towards understanding the as-
sociated qualitative phenomenology in all the cases that we have
examined.

4. Conclusions

In the present work, we have explored the evolution of toxic
fronts of proteins such as amyloid-8 and the t-protein within a
two-dimensional terrain, i.e., the propagation of neurodegenera-
tive waves within a two-dimensional slice. Our formulation was
based on chemical kinetics, following earlier works such as [14,15]
and considering both healthy and toxic populations of the relevant
proteins and the spatio-temporal evolution of their concentrations.
It was assumed that the healthy proteins are produced and de-
graded at a given rate, and there is a conversion of the healthy
proteins into toxic ones upon interaction with a toxic “seed”. In the
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Fig. 5. Similar to the results of the primary tauopathy case, but now in the scenario of a secondary tauopathy and for t =25, 50, 75 and 100. Notice how the toxic TP is
absent early on, yet it emerges as a result of its overlap with toxic AB and subsequently grows in a rapidly expanding front.
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Fig. 6. The left set of panels involves the damage function at the same times as above. The top right panel shows the expansion of the right-moving toxic front of A in the
x (solid) and y (dashed) axis via its center position (xg, yr). The secondary nature of the tauopathy is evident in the bottom right showing how the toxic TP decays until it

overlaps with the rightward propagating toxic AB leading to its rapid growth and eventual saturation in the co-existing toxic state.

case of TP, this is further catalyzed by the presence of toxic AgB.
In this setting, four equilibrium fixed points were identified and
the heteroclinic orbits connecting them dominated the relevant
dynamics. The conditions were identified under which (paramet-
rically) the different fixed points exist and when all were present,
their interaction was considered primarily in two scenarios. The
first, characterized as a primary tauopathy involved the presence
of all four fixed points (toxic fronts of A and TP could exist in-
dependently, but also interact to form a toxic co-existence front).
The second one, referred to as secondary tauopathy featured no
toxic TP alone, but only in conjunction with toxic AB. It was also
observed how the two-dimensional geometry and the anisotropic

diffusion can conspire to enable these fronts to propagate along
quasi-1d corridors, but concurrently can allow the interaction of
the propagating fronts to produce an oblique wave of toxic co-
existence between the different proteins. Finally, a reduced model
solely featuring the toxic components was developed and it was
shown that it quite adequately represents the examples considered
qualitatively, although, naturally, some of the quantitative aspects
are suitably modified.

It is particularly relevant to consider this class of models fur-
ther, both from the perspective of biological “adequacy” (and
the potential inclusion of suitable further biologically relevant
traits) and faithfulness and, if relevant, from the perspective of
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Fig. 7. Similar to the results of the primary tauopathy case (Figs. 1 and 2), but now in the scenario of collinear propagation within a two-species FKPP-type model only for
the toxic components of AS and tP. For each time (with the same snapshots selected as before), the two toxic components, as well as the damage variable q are shown.

-50 0 x 50 0 x 50

2
-50 0 x 50

Fig. 8. The difference between the concentrations of the toxic components of AS (left 2 x 2 panels) and tP (right 2 x 2 panels) between the original model and the FKPP
approximation are shown. It is clear that the FKPP model underpredicts the levels of toxic concentration of the two proteins (less so for AB) although the qualitative

behaviour of the models is very similar.

mathematical control and optimization. More concretely, here
these models have been illustrated from the point of view of
two-dimensional partial differential equations. However, suitable
connectivity networks exist within the brain and have been
mapped [13,14]. Incorporating the associated connectivity (i.e., the
adjacency matrices thereof) allows to track relevant dynamics on
a more realistic network. This is of particular interest presently in
the context of neurodegenerative diseases; see for a recent exam-
ple of experimental observations and associated linear modeling
for Parkinson’s disease the work of [20]. On the other hand, it is
clear that the model used here is an initial effort to represent the
spreading of disorder when the organism is “on the verge” of dis-
ease. However, it is relevant to develop a variant of this model that
may feature physiological function but may be able (upon a suit-
able “bifurcation event”) to turn to the preferentiality for disease
dynamics. A related question is that of attempting to connect pa-
rameters postulated herein with realistic numbers stemming from
biological experiments. Estimating production and clearance levels
of these proteins may be within reach based on recent experimen-
tal biomarker tracking capabilities [16]. Other coefficients, such as
those of toxic conversion of the proteins may be more difficult to
assess but the present model (and its distinction between differ-
ent types of tauopathies) suggests the relevance of consideration
of such experiments.

Lastly, should such a model be possible to establish on a more
firm biological basis (rather than a more phenomenological one
as is done here), the benefits would be significant at various lev-
els. One could consider how to inhibit the propagation of the
fronts examined herein and what this would require from a bio-
logical intervention (drug administration) perspective. A controlled
propagation, a slowing down and ideally a halting of such toxic
fronts would be an intriguing target for control theory objectives
applied to such high-dimensional models. Enabling such a math-
ematical testing framework would be of particular relevance and
interest, even though recent advances (such as those of [17]) sug-
gest that this may need to be done at a more sophisticated level,
like for example that of considering distributions of the relevant
proteins. This stems from the emerging necessity to reduce the
flux of oligomeric (but not monomeric) forms of, e.g., AB in or-
der to achieve cognitive improvement in some of the most recent
experimental studies [17].

CRediT authorship contribution statement

P.G. Kevrekidis: Conceptualization, Investigation, Methodology,
Software, Validation, Visualization, Writing - original draft. Travis
B. Thompson: Conceptualization, Formal analysis, Methodology.
Alain Goriely: Conceptualization, Formal analysis, Methodology,
Supervision, Writing - review & editing.



P.G. Kevrekidis, T.B. Thompson and A. Goriely

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The support for A.G. by the Engineering and Physical Sci-
ences Research Council of Great Britain under research grant
EP/R020205/1 is gratefully acknowledged. Support for T.T. was pro-
vided partially by the Engineering and Physical Sciences Research
Council of Great Britain under research grant EP/R020205/1 to A.G.
and partially by the John Fell Oxford University Press Research
Fund grant 000872. This material is based upon work supported
by the US National Science Foundation under Grant DMS-1809074
(PG.K.). P.GK. also acknowledges support from the Leverhulme
Trust via a Visiting Fellowship and thanks the Mathematical In-
stitute of the University of Oxford for its hospitality during this
work.

References

[1] J. Cummings, G. Lee, A. Ritter, M. Sabbagh, K. Zhong, Alzheimer’s Dement.
Transl. Res. Clin. Interv. 5 (2019) 272.

[2] M. Jucker, L.C. Walker, Nature (London) 501 (2013) 45.

[3] J. Brettschneider, K. Del Tredici, V.M.-Y. Lee, J.Q. Trojanowski, Nat. Rev. Neurosci.
16 (2015) 109.

[4] L.C. Walker, M. Jucker, Annu. Rev. Neurosci. 38 (2015) 87.

Physics Letters A 384 (2020) 126935

[5] M. Goedert, M. Masuda-Suzukake, B. Falcon, Brain 140 (2017) 266.

[6] LR.A. Mackenzie, R. Rademakers, Curr. Opin. Neurol. 21 (2008) 693.

[7] L. Stefanis, Cold Spring Harb. Perspect. Med. 2 (2012) a009399.

[8] M. Cruz-Haces, ]. Tang, G. Acosta, J. Fernandez, R. Shi, Transl. Neurodegener. 6
(2017) 20.

[9] J.C. Watts, C. Condello, ]J. Stohr, A. Oehler, J. Lee, S.K. DeArmond, L. Lannfelt, M.
Ingelsson, K. Giles, S.B. Prusiner, Proc. Natl. Acad. Sci. USA 111 (2014) 10323.

[10] J. Hardy, D. Allsop, Trends Pharmacol. Sci. 12 (1991) 383.

[11] J.A. Hardy, G.A. Higgins, Science 256 (1992) 184.

[12] D. Selkoe, J.A. Hardy, EMBO Mol. Med. 8 (2016) 595.

[13] J. Weickenmeier, E. Kuhl, A. Goriely, Phys. Rev. Lett. 121 (2018) 158101.

[14] J. Weickenmeier, M. Jucker, A. Goriely, E. Kuhl, J. Mech. Phys. Solids 124 (2019)
264.

[15] T. Thompson, P. Chaggar, E. Kuhl, A. Goriely, PLoS Comput. Biol. (2020), bioRxiv
preprint, https://doi.org/10.1101/2020.02.10.942219.

[16] RJ. Bateman, et al., N. Engl. ]. Med. 367 (2012) 795.

[17] S. Linse, T.PJ. Knowles, et al., bioRxiv preprint, https://doi.org/10.1101/815308,
2020.

[18] J.D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.

[19] Movies for the evolution of the different species and the damage function of
each of the scenarios shown here are illustrated in: https://www.dropbox.com/
sh/w07164jndgchi3a/AACTb-BX60VwFBu2Pn7E25t0a?dl=0.

[20] M.X. Henderson, et al., Nat. Neurosci. 22 (2019) 1248.

[21] H. Cho, et al., Ann. Neurol. 80 (2) (2016) 247-258.

[22] C. Jack, et al., Alzheimer's Dement. 14 (4) (2018) 535-562.

[23] M. Busche, et al., Nat. Neurosci. 22 (2019) 57-64.

[24] L. Ittner, J. Gotz, Nat. Rev. Neurosci. 12 (2) (2011) 67.

[25] Z. He, et al., Nat. Med. 24 (1) (2018) 29.

[26] J. Vogel, Y. Iturria-Medina, et al., Nat. Commun. 11 (2020) 2612.

[27] Y. Iturria-Medina, et al., PLoS, Comput. Biol. 10 (2014) 1-16.

[28] S. DeVos, et al., Brain 141 (7) (2018) 2194-2212.

[29] J. Gotz, G. Halliday, R. Nisbet, Annu. Rev. Pathol. 14 (2019) 239-261.


http://refhub.elsevier.com/S0375-9601(20)30802-1/bibE341DE977FBDF2E398F1D0C4B491B2B7s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibE341DE977FBDF2E398F1D0C4B491B2B7s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib6BC25D6625FC2C155DC5C43F12A8543Bs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibC0F9930D9281FACB475B2FA91CCDA657s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibC0F9930D9281FACB475B2FA91CCDA657s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib96A3A20C1FDA83D7F2F9188FFAB4F12Bs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib276F60D8B0C0C1956AC72EA8C6A19045s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibAD59EFCD17B79F680B093BCF8CAAA363s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib7AF4E12F75AD4A67AE24210E2CE39BCEs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib7AF4E12F75AD4A67AE24210E2CE39BCEs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibCCC49ECD17289913CD009BF9331AFFAEs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibCCC49ECD17289913CD009BF9331AFFAEs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibFFD2586FE57EEFEB23D1CC4D775E5343s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib3AC9EE772F9AA7EEE58A92626FF3DB18s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib4CAF49B6FABFA1E63888A39C4C312143s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib0120A4F9196A5F9EB9F523F31F914DA7s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibE1C80488853D86AB9D6DECFE30D8930Fs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibE1C80488853D86AB9D6DECFE30D8930Fs1
https://doi.org/10.1101/2020.02.10.942219
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibA54AE7A41EE2A38442E62B37F2A0EA58s1
https://doi.org/10.1101/815308
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib39E7F45C25DFE9F7F7348BFE8232DFA8s1
https://www.dropbox.com/sh/w07164jndgchi3a/AACTb-BX6oVwFBu2Pn7E25t0a?dl=0
https://www.dropbox.com/sh/w07164jndgchi3a/AACTb-BX6oVwFBu2Pn7E25t0a?dl=0
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib853550E6A1E8981A333CB496C4A6084Bs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibBD733E9ED674411181E6FAC80C373E67s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib92EA439D50864132B1F8F01464E94333s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib27A34BD061889EC6DB7374DB0AB3F513s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibF28B581F7FD2D6BF780D6191A62D5AE0s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib4D5EA53572040F86F4CF69CAC2183E29s1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibACA2EC91284DBA02BD4C93E3F5E84F5Ds1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bib4E7E7280D35D6FA69C8EF1A509C2FC2Es1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibF700CEDE7289B1F444E670F6FACD00ABs1
http://refhub.elsevier.com/S0375-9601(20)30802-1/bibC9D454FEE2BF0A2CFD895FA8DC7E1974s1

	Anisotropic diffusion and traveling waves of toxic proteins in neurodegenerative diseases
	1 Introduction
	2 Model formulation
	3 Numerical results
	3.1 Primary tauopathy
	3.2 Secondary tauopathy
	3.3 Reduction to FKPP

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


