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a b s t r a c t 

Following the highly restrictive measures adopted by many countries for combating the current pan- 

demic, the number of individuals infected by SARS-CoV-2 and the associated number of deaths steadily 

decreased. This fact, together with the impossibility of maintaining the lockdown indefinitely, raises the 

crucial question of whether it is possible to design an exit strategy based on quantitative analysis. Guided 

by rigorous mathematical results, we show that this is indeed possible: we present a robust numerical 

algorithm which can compute the cumulative number of deaths that will occur as a result of increasing 

the number of contacts by a given multiple, using as input only the most reliable of all data available 

during the lockdown, namely the cumulative number of deaths. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

On December 31, 2019, the Chinese government reported a clus-

er of pneumonia cases of unknown cause that was later identified

s a result of the severe acute respiratory syndrome coronavirus

 (SARS-CoV-2). This is one of the most serious manifestations of

n infection and associated disease (termed COVID-19) caused by a

oronavirus. Like earlier outbreaks caused by two other pathogenic

uman respiratory coronaviruses, namely, the severe respiratory

yndrome coronavirus (SARS-CoV) and the Middle East respiratory

yndrome coronavirus (MERS-CoV), SARS-CoV-2 causes a respira-

ory disease that it is often severe. In addition, SARS-CoV-2 can

ttack many vital organs of the body, and can also lead to severe

eurological disorders, including the Guillain-Barré syndrome [1,2] .

ortunately, SARS-CoV-2 is associated with lower mortality than its

bove predecessors; however, it is more contagious [3] . As a result

f this fact and the lack of early measures for curtailing its spread,

t has caused a pandemic, which is considered as the most serious

hreat to public health since the pandemic caused by the 1918 in-

uenza (the 1918 pandemic, which is the deadliest event in human
∗ Corresponding author at: Departamento de Fisica Aplicada I. Escuela Politecnica 
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istory, caused more than 50 million deaths which corresponds to

00 million deaths in todays population). 

The scientific community is playing a crucial role in combating

he above threat: from elucidating fundamental features of SARS-

oV-2 and mechanisms of its transmissibility [4] , to addressing

he vital question of a pharmacological treatment and the devel-

pment of an effective vaccine [5] . For example, the viral genome

f SARS-CoV-2 has been sequenced [6] . Also, mechanisms underly-

ng the increased transmissivity of SARS-CoV-2 have been traced to

ts dual receptor attachment in the host cells. In particular, it has

een shown that the attachment of the virus to the surface of res-

iratory cells is mediated by certain viral proteins which bind not

nly to the angiotensin converting enzyme-2 (ACE-2) receptor [7] ,

ut also to sialic acid containing glycoproteins and gangliosides

hat reside on cell surfaces [8] 1 Regarding pharmacological in-

erventions, a randomized, controlled study involving hospitalized

dult patients with confirmed SARS-CoV-2 infection, showed that

here was no benefit from the antiviral regime of lopinavir-ritovir

which is an effective treatment in patients infected with human

mmunodeficient virus) [9] . Similarly, the combination of the anti-

alarial medication chloroquine, and its derivative hydroxychloro-
1 This is to be contrasted with the case of SARS-CoV, which binds only to ACE-2 

eceptors [7,8] . 

https://doi.org/10.1016/j.chaos.2020.110244
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110244&domain=pdf
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quine, with or without the antibiotic azithromycin, may not only

be ineffective, but also potentially harmful [10–12] (see also the

meta-analysis [13] ). 

In addition, the scientific community has had a vital impact in

decisions made by policy makers of possible non-pharmacological

approaches to limit the catastrophic impact of the pandemic. For

example, two possible strategies, called mitigation and suppres-

sion, are thoroughly discussed in [14,15] ; in the early stages of

the pandemic, UK was following mitigation, but after the publica-

tion of this report, it adopted suppression. This policy, which was

already implemented in several other countries (of course there

were also notable exceptions such as Sweden and Brazil with seri-

ous associated consequences), has led to the curtailing of the pan-

demic. Indeed, the number of individuals reported to be infected

with SARS-CoV-2, as well as the number of related deaths, steadily

decreased in the countries that adopted severely restrictive mea-

sures, known as lockdown; see e.g. the data in [16] . This welcome

development, together with the impossibility of maintaining indef-

initely the lockdown conditions (both for obvious economical rea-

sons and for the induced serious psychological effects) raises the

following question: is it possible to design an exit strategy based

on the quantitative analysis of the effect of easing the lockdown

measures? The purpose of this work is to provide an affirmative

answer to this question, concentrating on the number of associated

deaths, and the unique identification for a canonical epidemiologi-

cal model of parametric combinations that determine it. 

We note in passing that the use of mathematical methods in

a plethora of biological problems at the level of (both discrete

and continuum) model analysis and at that of finding a wide va-

riety of special solutions is a theme of intense interest in re-

cent years. As some relevant examples, we mention the works

of [17,18] (while similar methods have been used in nonlinear en-

gineering and mathematical physics problems [19–22] ). In the re-

cently very highly active front of COVID-19 modeling, some of

the efforts have been directed at modeling the early stages of

the pandemic [23] ; others have focused on designing a pandemic

response index (to quantify/rank the response of different coun-

tries) [24] or towards quantifying the response of different regions

within a country, e.g., the states within the USA [25] . Similarly,

models have focused on cruise ships [26] , on cities [27] , as well

as states/provinces [27–30] , but also various countries [15,31–35] ,

aside from the prototypical examples of Wuhan, China [36] , and

some among the hard-hit Italian provinces [37] . 

Before providing details of our proposed methodology for the

computation of the number of deaths following a specific in-

crease of contacts between asymptomatic individuals infected with

COVID-19, it should be emphasized that the answer to the above

question is literally a matter of life and death: (i) No therapeutic

intervention has been proven so far effective for the treatment of

the severe illnesses and side-effects caused by SARS-CoV-2. (ii) Re-

ported mortality rates differ drastically between different countries

and are crucially affected by age. For example, in the largest study

from China involving 1099 hospitalized patients with laboratory

confirmed SARS-CoV-2 infection of median age 47 years, only 5%

needed admission to the intensive care unit, 2.3% underwent inva-

sive mechanical ventilation, and 1.4% died [38] . On the other hand,

following the identification on February 28, 2020 of a confirmed

case of COVID-19 in a nursing facility in Washington, USA, as of

March 18, 101 residents of this facility and 50 health care person-

nel were confirmed with COVID-19, and in addition 16 infected vis-

itors were epidemiologically linked with this facility. Hospitaliza-

tion rates for residents, staff, and visitors, were 54.5%, 6%, and 50%

respectively; the corresponding mortality rates were 33.7%, 0%, and

6.2% [39] . (iii) Despite the fact that the unprecedented efforts for

the development of a vaccine take place within a framework of ex-

plosive progress in basic scientific understanding that has occurred
n the areas of genomics and structural biology, it is not expected

hat a vaccine will be available for at least several months [40] .

rom the above remarks it becomes clear that the lockdown mea-

ures must be eased without the benefit of any substantial phar-

acological cover, which is desperately needed especially for older

ersons (and individuals with a variety of diseases such as Dia-

etes type 2, hypertension, and respiratory disorders), and without

he anticipation of the imminent availability of a vaccine. 

There is no doubt that the solution to the vitally important

roblem of how to defeat the current pandemic, will finally be pro-

ided by medicine and biology via the development of appropri-

te pharmacological treatments and an effective vaccine. However,

t appears that at the moment, there exists a unique opportunity

or mathematical modeling and associated analysis to contribute

efinitively to the partial addressing of this problem. In particular,

IR (susceptible, infected, recovered) type models are widely ac-

epted in mathematical epidemiology [41] ; and this type of mod-

ls can be modified to capture some key features of the present

andemic (such as the crucial role of asymptomatically infected in-

ividuals [26,42,43] ). Thus, it follows that the rigorous analysis of

uch a class of models provides a possible approach towards study-

ng quantitatively the effect of easing the lockdown measures. If

uch analysis can be leveraged to give rise to accurate and repro-

ucible computational results based on reliable data, then it would

e possible to explore systematically the design of a safe lockdown

xit. 

The presentation of our effort s in the above direction is struc-

ured as follows. In Section 2 , we provide an overview of the com-

utational algorithm that we propose, as well as its epidemiologi-

al implications towards identifying the model parameters and also

volving the model in the future towards release of lockdown con-

itions. Then, in section 3 , we delve into the details of our mathe-

atical methods and corresponding computational results. Finally,

n Section 4 , we summarize our findings and discuss a number of

uture recommendations and interesting research directions. 

. A computational algorithm based on a rigorous 

athematical result 

The model adopted in this work, which is discussed in detail

n the Methods and Results section, involves 6 (first order) ordi-

ary differential equations (ODEs) uniquely specified by 9 constant

arameters (and, of course, well-posed under the introduction of

 associated initial conditions). One of the relevant parameters,

amely the constant c 1 , denotes the effect of the interaction of

he asymptomatic, infected individuals with those susceptible to

e infected. This parameter is particularly important for our analy-

is: the easing of the lockdown conditions would result in increas-

ng the number of contacts (to which c 1 is proportional) among

symptomatic and susceptible individuals, and this effect can be

traightforwardly incorporated in the model by replacing c 1 with

c 1 , where ζ is a fixed number, such as 2 or 3; this will be re-

erred to, respectively, as the doubling or tripling of the number of

ontacts. 

How can our model yield a computational approach to design-

ng a safe lockdown exit? Suppose that, somehow, given appropri-

te data obtained during the lockdown period, the values of the

 parameters specifying the model could be determined (and the

ssociated initial conditions prescribed). Then, using these values,

eplacing c 1 by ζ c 1 , and solving the resulting 6 ODEs, the num-

er of infected, hospitalized, recovered, and deceased individuals

n the post-lockdown period could be computed. It turns out that

he above scenario, which would yield information about all the

asic features of the post-lockdown state, is impossible. An im-

licit assumption in this class of epidemiological models is that

he model parameters can be uniquely determined from an appro-
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Fig. 1. Flowchart of the populations considered in the model and the rates of trans- 

formation between them. The corresponding dynamical equations are Eqs. (1) –(6) . 
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riate set of data. However, this is far from a trivial assumption

nd the whole branch of identifiability of the models is associ-

ted with this issue [44] . In this connection it should be noted that

he problem of determining the model-parameters from the given

ata can be formulated as an inverse problem, and such problems

re notoriously difficult, especially regarding the important ques-

ion of uniqueness; namely, proving that the given data give rise

o a unique set of parameters 2 . Actually, we have shown that it is

mpossible to determine uniquely all 9 model parameters from a

eliable set of given data. This is indeed an example of dimension

eduction: this represents the crucial aspect of whether a given

odel outcome depends not on individual parameters alone (ex-

ept for one of the model parameters) but rather on expressions

ormed by suitable (irreducible) combinations of parameters; for a

ecent, data-driven example, see [46] . In addition to the existence

f the above prohibitive result, many of the needed data are un-

vailable. For example, although the model involves the total num-

er of infected individuals, the available data are for the reported

nfected individuals. 

By concentrating on the number of deaths, we have been able

o overcome both of the above difficulties. Indeed, we have shown

hat it is possible to determine the single model parameter and

he 6 specific combinations of the 9 model parameters that char-

cterize a certain 4th order ODE specifying the time-evolution of

he number of deaths. Furthermore, we have established that this

an be achieved uniquely by using the most reliable of all available

ata, namely, the data for the cumulative number of deaths. 

The above mathematical results give rise to the following algo-

ithm (which we have showcased in a number of select examples):

tarting with the death data during the lockdown period, we com-

ute uniquely the single model parameter as well as the 6 com-

inations of the original 9 model parameters that specify the 4th

rder ODE determining the evolution of the number of deaths. The

arameter c 1 enters one of these combinations, and fortunately, it

nters in a homogeneous manner; thus, replacing c 1 by ζ c 1 results
n replacing the relevant combination by ζ times its original value.

hen, using this combination, the single model parameter, and the

emaining 5 combinations determined from the death data, we can

roceed to forward time-step the resulting 4th order ODE. This

niquely yields the number of deaths in the post-lockdown period

the concrete procedure used to test the robustness of our algo-

ithm, is described in Section 3 ). 

We applied the above approach to the epidemics of the coun-

ries of Portugal and Greece, as well as the autonomous commu-

ity of Andalusia in Spain. These have been selected due to their

otable similarities (geographic location, as well as similar popula-

ions in the vicinity of 8–10 million residents), but also due to their

ignificant differences in connection to the response to the pan-

emic. Greece has had an extremely low tally of deceased individ-

als as a result of the pandemic, being one of the notable success

xamples of early application of lockdown measures [47] . Portugal

s also a case with relatively low cumulative numbers, although, at

round the same population as Greece, it currently has more than

 times the number of deaths. Andalusia, on the other hand, has a

maller population (by about 2 million) than the other 2, but has

lready 1391 reported deaths (i.e., 49 more than Portugal and more

han 8 times more than Greece) 3 . Hence, these are interestingly

istinct examples. In the case of Greece, and through the findings

eflecting the low transmissivity of the virus, we find that a dou-
2 For example, it is rigorously established in [45] that different neuronal elec- 

ric currents give rise to the same data obtained via electroencephalographic (EEG) 

ecordings. Thus, it is impossible to obtain uniquely the current via the solution of 

he inverse problem associated with EEG. 
3 The numbers reported herein were relevant to the time of online posting of this 

ork at the end of May 2020. 

 

ling of the contacts in the entire population, i.e., ζ = 2 , would

nly slightly increase the number of deaths from 158 to 167. On

he other hand, the effect of such a widespread easing of the lock-

own measures would be quite different in the case of Portugal

from 1433 to 40727) and of Andalusia (from 1451 to 26846). Fur-

hermore, far more dramatic is the impact in the case of changing

to 3. In that case, the number of deaths is drastically increased

ven in Greece (18474); the situations in Portugal (84014) and An-

alusia (106855) may become catastrophic. The derivation of the

bove results is the consequence of a stable numerical algorithm

apturing the key finding presented here, namely, that it is pos-

ible to: (i) identify the irreducible sets of parameters associated

ith the system; and (ii) to subsequently utilize (only) those com-

inations towards the forward prediction of the death tally upon

ifferent scenarios of easing the lockdown measures. 

. Methods and results 

Let I ( t ) denote the infected (but not infectious) population. An

ndividual in this population, after a median 5-day period (required

or incubation [49] ) will either become sick or will be asymp-

omatic, as shown in the flowchart of Fig. 1 4 , which represents

ll the relevant populations and the transitions between them. The

ick and asymptomatic populations will be denoted, respectively,

y S ( t ) and A ( t ). The rate at which an infected person becomes

symptomatic is denoted by a ; this means that each day aI ( t ) per-

ons leave the infected population and enter the asymptomatic

opulation. Similarly, each day sI ( t ) leave the infected population

nd enter the sick population. The asymptomatic individuals re-

over with a rate r 1 , (i.e., similarly each day r 1 A ( t ) leave the asymp-

omatic population and enter the recovered population), which is

enoted by R ( t ). The sick individuals either recover with a rate r 2 
r they become hospitalized H ( t ) with a rate h . In turn, the hos-

italized patients also have two possible outcomes of the medical

ntervention efforts; either they recover with a rate r 3 , or they be-

ome deceased, D ( t ), with a rate d . 

It is straightforward to write the above statements in a mathe-

atical form; this gives rise to the equations below: 

dA 

dt 
= aI − r 1 A, (1) 

dS 

dt 
= sI − (h + r 2 ) S, (2)

dH 

dt 
= hS − (r 3 + d) H, (3)

dR 

dt 
= r 1 A + r 2 S + r 3 H, (4)

dD 

dt 
= dH. (5) 
4 An interval of 3–10 days captures 98% of the cases. 
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In order to complete these equations, it is necessary to describe

the mechanism via which a person can become infected. For this

purpose, we follow the standard assumptions made in the SIR-

type [41] epidemiological models: let T denote the total popula-

tion and let c be the transmission rate proportional to the number

of contacts per day made by an individual with the capacity to in-

fect. Such a person belongs to S , or A , or H . However, for simplic-

ity we assume that the hospitalized population cannot infect; this

assumption is based on two considerations: first, the strict protec-

tive measures taken in the hospital, and second, the fact that hos-

pitalized patients are infectious only for part of their stay in the

hospital. The asymptomatic individuals are (more) free to inter-

act with others, whereas the (self-isolating) sick persons are not;

yet, the viral loads of the two have been argued to be similar [42] .

Thus, we use c 1 and c 2 to denote the corresponding transmission

rates (per person in the respective pools) of the asymptomatic and

sick respectively. The number of persons available to be infected is

T − (I + S + A + H + R + D ) . Indeed, the susceptible individuals con-

sist of the total population minus all the individuals that after go-

ing through the course of some phase of infection, either bear the

infection at present ( I + A + S + H) or have died from COVID-19 ( D )

or are assumed to have developed (even if temporary, but suffi-

cient for our time scales of interest) immunity to COVID-19 due

to recovery ( R ). The rate by which each day individuals enter I is

given by the product of the above expression with c 1 A + c 2 S. At the

same time, as discussed earlier, every day (a + s ) I persons leave

the infected population. Thus, the rate of change of I ( t ) reads: 

dI 

dt 
= [ T − (I + S + A + H + R + D ) ] ( c 1 A + c 2 S ) − (a + s ) I. (6)

The above model depends on the given (total population) constant

T and on the 9 parameters d, h, s, a, c 1 , c 2 , r 1 , r 2 , r 3 . 

The fundamental inverse problem that we consider herein is

the following: which specific parameters and combinations of the

model parameters can be uniquely determined from the knowl-

edge of the death data? We utilize here the data on the deceased

individuals because it is the most reliable time series among the

ones available. Indeed, there exists a significant uncertainty re-

garding the number of true infections (vs. the ones officially re-

ported). This uncertainty is even more significant with respect to

the current situation regarding the asymptomatics which, while

concretely studied in some cases [26] , presents tremendous vari-

ability [43] between studies. As indicated above, the issue at hand

is crucial from the point of view of modeling, both regarding is-

sues of dimension reduction [46] , as well as those of identifiability

of the models [44] . 

It turns out that the cumulative number of deceased, D , satisfies

a 4th order nonlinear ODE, which is uniquely determined by the

constants α = hsd(T − μ) and β , where μ and β are integration

constants, the model parameter r 1 , as well as the following 5 com-

binations of the model-parameters: C 1 = ac 1 / (hsd) , C 2 = c 2 / (hd) ,

F = a + s, R 2 = r 2 + h, R 3 = r 3 + d. It is relevant to note here, in

passing, that for the initial condition dependent quantity μ, it is

true that μ � T practically, and hence it is possible through α, in

principle, to provide a good approximation of the product hsd . This

basic ODE assumes the form 

q 4 + q 3 ( q 2 + r 1 ln (| q 3 | ) ) = 0 , (7)

where 

q 2 = ( C 1 + C 2 ) D 

( 2 ) + [ C 1 ( R 3 + R 2 ) + C 2 ( R 3 + r 1 ) ] D 

( 1 ) 

+ R 3 ( C 1 R 2 + r 1 C 2 ) D + β, 

q 3 = D 

( 3 ) + k 3 D 

( 2 ) + k 2 D 

( 1 ) + k 1 D − α, 

q 4 = D 

( 4 ) + k 3 D 

( 3 ) + k 2 D 

( 2 ) + k 1 D 

( 1 ) , (8)
ith superscripts denoting the number of derivatives with respect

o t , and the constants appearing in Eq. (8) defined as follows: 

 1 = 

ac 1 
hsd 

, C 2 = 

c 2 
hd 

, R 2 = r 2 + h, R 3 = r 3 + d, k 1 = F R 2 R 3 , 

 2 = F ( R 2 + R 3 ) + R 2 R 3 , k 3 = F + R 2 + R 3 , F = a + s. (9)

We next explain how the central Eq. (7) has been obtained

nd what the practical implications of the above results are before

urning to the examination of our numerical findings. The main

dea is to work backwards and utilize Eq. (5) as a way to express

he H ( t ) in terms of D 

(1) , then Eq. (3) to express S ( t ) in terms of

 

(1) and D 

(2) , then Eq. (2) to express I ( t ) in terms of D 

(1) , D 

(2) and

 

(3) ; do the same for A (t) + R (t) etc. Reaching back at the level of

q. (6) , one possible direction is to solve this equation as an alge-

raic one for A and then substitute back to Eq. (1) . This leads to an

nteresting in its own right nonlinear 5th order ODE. However, one

an obtain an even more substantial and quite remarkable sim-

lification, as a result of the structure of the system. It turns out

hat the quantity [ T − (I + S + A + H + R + D )] can be expressed in

erms of the D ( t ) time series according to the form provided by q 3 
bove; it is a direct calculation to see that d I/d t + (a + s ) I is es-

entially the derivative of this expression that enters into q 4 . As

 result, the ratio of these expressions q 4 / q 3 becomes a logarith-

ic derivative, enabling us, when utilized together with Eq. (1) , to

dentify a first integral of the relevant equation that ultimately re-

ults into Eq. (7) at the mere expense of introducing an additional

ntegration constant ( β). In fact, in addition to the remarkable sim-

lification of obtaining this as a 4th order ODE system, the pres-

nce of β offers a useful benchmark for the numerical method as

e will see below. 

There is an additional, important mathematical observation

hat concerns the stability calculation of the healthy state of the

ystem which in our model is represented by (I, S, A, H, R, D ) =
(0 , 0 , 0 , 0 , 0 , 0) i.e., the null state. The spectral stability analysis

f this state determines whether an epidemic will grow or de-

ay on the basis of the dominant stability eigenvalue λ of the rel-

vant state. The destabilization threshold λ = 0 corresponds to a

asic reproduction number R 0 = 1 [41] . Positive λ leads to R 0 > 1

nd spreading of the epidemic, whereas λ < 0 leads to the epi-

emic subsiding over time ( R 0 < 1). Starting from a healthy state

n which case μ = 0 and α = hsdT in the expressions above, we

nd that the relevant eigenvalue can be obtained by the largest

igenvalue of the polynomial: 

3 + λ2 (F + r 1 + R 2 ) + λ[ F (r 1 + R 2 ) + r 1 R 2 − α(C 1 + C 2 ) ] 

+ F r 1 R 2 − α(C 1 R 2 + C 2 r 1 ) = 0 . (10)

emarkably, the relevant dominant eigenvalue depends solely on

he reduced quantities (including, of course, the role of the total

opulation introduced through α) of the original system. In fact,

he direct application of the Routh-Hurwitz conditions [51] leads

o the criterion 

(C 1 R 2 + C 2 r 1 ) < F r 1 R 2 , (11)

or the subsiding of the epidemic (while the opposite sign of the

nequality will lead to its spreading, and equality will lead to a

anishing eigenvalue or R 0 = 1 ). The above result shows that r 1 
nd the reduced set of parametric combinations identified earlier,

ot only determine the most important tally of the impact of the

pidemic, namely the number of deaths, but also the potential ca-

acity of the epidemic to spread. 

It is important to mention that a similar analysis regarding the

volution of D ( t ) can be performed in the case of two subpopula-

ions, young and older [48] . Then, Eq. (7) is replaced by the two

quations 

 

l 
4 + P q l 3 = 0 , (12)
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Table 1 

Lumped parameter combinations (first column) of the local, but also 

global within our considerations, minima for the synthetic time series 

example and their numerical values for the exact up to numerical ac- 

curacy case (second column), the finite difference derivative approxi- 

mation (third column) and the sigmoid approximation (fourth column) 

approaches. 

Parameter Exact Finite differences Sigmoid 

C 1 2 . 3664 × 10 −5 2 . 3663 × 10 −5 2 . 3667 × 10 −5 

C 2 5 . 0891 × 10 −6 5 . 0890 × 10 −6 5 . 0761 × 10 −6 

R 2 0.2451 0.2451 0.2451 

R 3 0.1309 0.1309 0.1309 

F 0.3815 0.3815 0.3815 

α 1387.7 1387.7 1392.1 

r 1 0.1482 0.1482 0.1482 

β −1 . 0719 −1 . 0719 −1 . 0723 

Table 2 

For the exact (up to numerical accuracy) case, 

the value of the global optimum and of the 

“next best things” (first two columns) and its 

corresponding fitness (third column) are given. 

The first two columns are given in terms 

of multiples of the ( C 1 , C 2 ) pair provided in 

Table 1 . 

C 1 C 2 || f || 

1 1 5 . 47 × 10 −9 

1/1.1 1.4 3 . 13 × 10 −5 

1.1 1/1.9 3 . 04 × 10 −5 

1/1.2 1.2 4 . 16 × 10 −4 

1.2 1/1.6 4 . 79 × 10 −4 

l  
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here q l 
3 

and q l 
4 
, are defined via the equations obtained from

8) by simply inserting superscripts y or o , whereas P is defined

y: 

 = 

∑ 

l= y,o 
C l 1 A 

l + C l 2 S 
l . (13) 

ere, A l and S l correspond to the asymptomatic and sick pop-

lations of each pool (young or older) that can be algebraically

xpressed in terms of D ( t ) of the two sub-populations and their

erivatives. 

Our theoretical analysis has provided the lumped (reduced) sets

f coefficients in the spirit of dimension reduction that can be

niquely identified on the basis of the time series of D ( t ), namely

 1 , C 1 = ac 1 / (hsd) , C 2 = c 2 / (hd) , F = a + s, R 2 = r 2 + h, R 3 = r 3 + d.

dditionally, one can identify the two integration constants α and

. In the practical implementation of our algorithm we will uti-

ize the knowledge of the existence of such an “optimal” set of

lumped) parameters to leverage the ODE of Eq. (7) to identify

hese parameters. The idea is that given a prescribed time-series

or D ( t ) and its derivatives, the left- hand side of Eq. (7) can be

valuated. For a perfect time-series and an exact integration proce-

ure, the unique global optimum parameter set would render the

ime series of this left-hand side (that we will refer to as f here-

fter) vanishing. As a measure of its vanishing, since practically the

ime series amounts to a vector at given times, we will use the

| f || ≡ || f || l 2 ; other norms can be used as well. 

Despite the existence of the above well-defined mathematical

rocedure, there arise multiple practical complications. In partic-

lar, even if one has a perfect time series there is still the ap-

roximate nature of numerical integration. In what follows, we will

enerate such a perfect series, that we will refer to as “synthetic”

ereafter, via the integration of Eqs. (1)- - (6) for given (prescribed)

arameters. In practice, computations have a finite numerical ac-

uracy that will be reflected in the approximate as opposed to the

xact vanishing of || f ||. Naturally, the situation with practical data-

ased time series is far more difficult. In that case, we will only

now D and we need to infer its (noisy) first four time-derivatives,

efore substituting all the relevant time series ( D, D 

(1) , D 

(2) , D 

(3) 

nd D 

(4) ) into f , in order to perform the minimization. 

We explored two possibilities in order to examine whether our

pproach could be brought to bear in practical situations. In the

rst one, we considered finite difference-based approximations of

he prescribed time series for D ( t ); D ( t ) constitutes the only pro-

ided reliable data to be used in the inverse-problem formula-

ion for the identification of the relevant parameters. In the sec-

nd approach we focused on a logistic formula approximation ear-

ier explored systematically, e.g., in [52,53] . In the latter case, we

an consider the variable x = D/D F (where D F is the (asymptoti-

ally) final number of deceased individuals); then, the differential

q. (7) becomes 

 

( 1 ) = kx ( 1 − x ) ⇒ 

 

( 2 ) = k 2 
(
x − 3 x 2 + 2 x 3 

)
⇒ 

 

( 3 ) = k 3 
(
x − 7 x 2 + 12 x 3 − 6 x 4 

)
⇒ 

 

( 4 ) = k 4 
(
x − 15 x 2 + 50 x 3 − 60 x 4 + 24 x 5 

)
⇒ 

 

( 5 ) = k 5 
(
x − 31 x 2 + 180 x 3 − 390 x 4 + 360 x 5 − 120 x 6 

)

(14) 

he advantage of the second methodology is its simplicity when

mployed in practical data-driven settings, as well as the smooth-

ess of the quantities involved. Namely, the given time series for

 ( t ) is fitted into a sigmoid form: D (t) = D F / (1 + be −kt ) , where b

for given D F ) is essentially related to the initial condition D (0) =
 F / (1 + b) and k is the truly essential (and most robust [52,53] )

iece of information of the sigmoid fit that enters the differential

quations of (14) . Substitution of these ODEs into Eq. (7) ultimately
eads to a time series f , or upon expansion (using the dominance of

he term involving T within the logarithmic term) to a polynomial.

he minimization of this time series (in what is shown below) or

f the associated polynomial was used for identifying the param-

ters by employing a procedure to be explained below. Naturally,

s is the case with any such approximate method, there are also

imitations to be discussed in our numerical examples that follow. 

Our first and benchmark example concerns a synthetic time se-

ies, inspired by parameter values that are at the proper ballpark

or describing the real-life data of Portugal’s deaths [54] : That is

o say, we prescribed a parameter set of all 9 parameters, result-

ng in the lumped (per our analysis above) coefficients of Table 1 .

pon assigning realistic initial conditions, we ran the differential

qs. (1) –(6) forward, and produced the time series of the top left

anel of Fig. 2 . Notice that in this case all data ( I ( t ), A ( t ), S ( t ), H ( t ),

 ( t ), D ( t )) are available (in this procedure, the only error involved

tems from the approximate nature of our numerical integration);

rom these quantities we constructed D 

(1) , D 

(2) , D 

(3) and D 

(4) , again

ithin the above (small for our high order numerical scheme) er-

or. The first check to which we subjected our method is that of

dentifying β: if the above time series of D ( t ) and its derivatives

re accurate, using Eq. (7) to obtain β( t ), the corresponding time

eries should be found to be constant. We observed this was the

ase up to the 5th significant digit, as shown in the top middle

anel of Fig. 2 , in line with the high accuracy of our numerical in-

egrator. 

Then, we turned to the inverse problem. Suppose we are only

iven at first the time series of D ( t ) and its derivatives. Can we

se the time series of f ( t ) and in particular (practically) the mini-

ization of || f || to uniquely identify the reduced, uniquely identi-

able parameters within the set from which we started? To pro-

ide the answer for this synthetic example, we initially substituted

ll of these time series to the left-hand side of Eq. (7) and exam-

ned whether the minimization of the time-series stemming from

he ODE provided the expected local minimum (which was a pri-
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Fig. 2. The top left panel shows the synthetic time series of D ( t ). The top middle panel shows the numerical computation of β illustrating that indeed as expected this first 

integral of the motion remains invariant over time, up to numerical accuracy. In the bottom panel the time series of the left-hand side of Eq. (7) is evaluated and its l 2 norm 

is calculated. This is done for the grid of finely sampled values of ( C 1 , C 2 ). The red dot indicates the local optimum associated with the known parameter values from which 

the time series was initially constructed. In the left panel the rest of the dots correspond to the ones reported in Table 2 (the next best fits). The bottom panels correspond to 

the fitness indicator || f || for the exact time series (including its derivatives) on the left, for the time series and then its derivatives from finite differences (middle), and from 

a logistic approximation (right). Notice how the identified local minimum of the red dot turns out to also be the global minimum within the sampling interval considered. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The top three panels present the data for D ( t ) for the countries of Portugal (left column), Greece (middle column), and the autonomous community of Andalusia 

in Spain (right column). Also shown is a logistic fit of the central portion of the associated data aimed at capturing the logistic coefficients k and D F . Then in the bottom 

panels, similarly to the bottom panels of Fig. 2 , but now only for the logistic approximation of the top panels, the optimum within a refined grid of values of the C 1 and C 2 
parameters is traced; the corresponding seed at the center of our consideration is represented by the parametric set found by constrained minimization and shown by a red 

dot in each case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ori known as a result of the knowledge of all model parameters

for this time series). Indeed, we found this to be the case, as per

the data presented in Table 1 , under “exact” (indicating that this

was generated from the exact time series –up to the approxima-

tions of numerical integration– for D ( t ) and also D 

(1) , D 

(2) , D 

(3) and

D 

(4) ). We then explored a grid of values around this central min-

imum to decide whether it is a local or global minimum. In this

grid, we included, for each of the 8 parameters entering the min-

imization, values which corresponded to the minimum (the mini-

mum will be denoted as “1” i.e., 1 × the minimum), 1/2 denot-

ing 1/2 of the minimum, 1/3, 2 and 3 times the minimum; in this

way, we created a tractable “grid” of values within a fairly large

range of variation from the ballpark values of interest, and posed
he following question: was the expected from our analysis global

inimum the one associated with the coefficients that we started

ith (the set of 1 ′ s in the language of the multiples considered) or

ot? The answer within this table of 5 8 = 390625 entries for the

resent example was found to be in the affirmative. 

In order to obtain a more refined sense of whether we really

btained the global minimum, we then went on to explore a finer

rid of parameter values. To that effect, we decided to explore (and

llustrate) the method on the basis of a considerably more refined

able but of fewer parameters. Through our various explorations of

he method, we identified as the parameters that were most ro-

ust under fitting the ones associated with direct rates, namely R 2 ,

 3 , r 1 and F = a + s . Also, α barely varied due to its being domi-
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Table 3 

Similar to Tab. 2 but now for each of the remaining 5 examples (corresponding to 

the 5 rows). Here the fitness of the global optimum is shown in the 5th and last 

column, while the next best thing (in multiples of the optimal ( C 1 , C 2 )) and its 

associated fitness are shown in columns (2, 3) and 4, respectively. 

Series C 1 C 2 || f || || f || (global) 
Synthetic (Finite differences) 1.1 1/1.8 3 . 65 × 10 −5 1 . 30 × 10 −7 

Synthetic (Sigmoid) 1.1 1/1.9 1 . 89 × 10 −7 5 . 91 × 10 −9 

Real series (Portugal) 1/1.1 1.4 1 . 30 × 10 −6 1 . 03 × 10 −6 

Real series (Greece) 1.1 1/1.6 6 . 74 × 10 −11 1 . 21 × 10 −11 

Real series (Andalusia) 1/1.1 1.5 3 . 28 × 10 −7 7 . 91 × 10 −8 
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ated by the contribution of T within its definition; similarly with

. In that light, we decided to hereafter focus on the role of C 1 and

 2 that are also, in a sense, some of the most crucial parameters

f the model in controlling additional infections, the spreading of

he epidemic (also per Eq. (11) ) and, hence, ultimately the deaths

hat result from the model. They are also the ones that would be

rucially affected under the easing of lockdown conditions; hence,

n our view these parameters are the most significant ones to ex-

mine in terms of the robustness of the result across such varia-

ions. Among the two ( C 1 and C 2 ), the crucial role of asymptomat-

cs (due to their mobility within the population) renders C 1 as the

ypically dominant and significantly larger value. In that light, we

estricted our considerations to the interval C 1 /10 ≤ C 2 ≤ C 1 /3 (un-

ess indicated otherwise) in what follows below. This was done to

void combinations of ( C 1 , C 2 ) that may lead to competing minima,

here C 2 is comparable or larger than C 1 ; this would mean that

symptomatics would have a similar or smaller number of con-

acts as the (expected to be self-isolating) sick, a feature not in line

ith the epidemiological premise of the model. Given the above

onsiderations, we decided to consider a refined variation of C 1 
ver a grid of (1 / 5 , 1 / 4 . 9 , 1 / 4 . 8 , . . . , 1 / 1 . 1 , 1 , 1 . 1 , . . . , 4 . 8 , 4 . 9 , 5) ×
he original value, and similarly of C 2 (within the limits of the

bove inequality condition) of the above reported minimum of

able 1 . The results of this fine sampling variation are shown in

he bottom left panel of Fig. 2 , as well as in Table 2 . These results

onfirmed that the original identified minimum is the global one

ith the optimal fitness within this parametric grid. Table 2 also

ompares this fitness by means of measuring || f || (which is what is

lso represented in Fig. 2 ) not only for this global minimum (our

1,1) state given by the red spot in this figure and also in the pan-

ls that will follow), but also for the next best things, which are

iven by black spots in the figure. The edge of the original min-

mum as being the global one by some 4 orders of magnitude is

learly evident within this refined grid. This confirmed the bench-

ark of our expectations for this essentially exact time series. In-

eed, in this case even an extensive search over arbitrary C 2 ’s (not

onforming to the above inequality) would still not improve the

lobal minimum result. 

The next line of attack was to seek a similar optimization ap-

roach in this well-curated and smooth time-series example (again

he one of the top left of Fig. 2 ), but now assuming that we are not

iven both D ( t ) and all of its derivatives, but rather only D ( t ). Our

rst approximation of D 

(1) , D 

(2) , D 

(3) and D 

(4) in this smooth case

as based on the numerical method of finite differences. We used

his well-known tool to approximate all derivatives. Then, again,

e first posed the following question: equipped with these time

eries, could we find a local minimum of Eq. (7) through minimiz-

ng || f || in the vicinity of the exact result? The answer was again

n the affirmative and is accounted for in the corresponding “Fi-

ite Differences” column of Table 1 . It can be seen that despite

he approximate nature of the method, we still effectively captured

ll relevant (lumped, reduced) coefficients. Subsequently, we again

ollowed the sampling procedure developed earlier with the fine

rid over the most sensitive and, arguably, most important (to-

ards the easing of the lockdown measures) parameters, namely

 1 and C 2 . Once again, we found, as seen in the middle bottom

anel of Fig. 2 , that the original seed, namely the minimum that

as expected, is the one that beats the competition in terms of

ts fitness by being the lowest one. However, the caveats of the

pproximate nature of the method (when only D is prescribed) are

tarting to come into light. In particular, it can be seen that next to

he red spot, corresponding to the (1,1) parametric set, the one that

as expected, there are others that are less clearly discernible than

he previous example in terms of their fitness. In other words, the

dge of our expected optimum was significantly decreased by the

pproximate nature of the time series: from an edge of 4 orders of
agnitude, we went to one of only 2, as is shown in first row of

able 3 . As a way to read the relevant tables (also for the sake of

uture examples), we note that the fitness of the global minimum

n terms of its || f || is 1 . 3 × 10 −7 , while the next best thing concerns

 C 1 that is 1.1 times larger and a C 2 that is 1.8 smaller and yields

 || f || = 3 . 65 × 10 −5 . 

This issue comes into sharper focus when we proceeded to

he further approximation of the logistic formula (sigmoid). In the

ase of a realistic time series, the data becomes quite noisy and

ence the notion of finite differences introduces a considerable

mount of this noise into the minimization of || f ||. Hence, the lo-

istic approach is deemed to be a worthwhile alternative, to con-

ider because of the smoothness of the curve and its derivatives,

nd the effective transformation of the left-hand side of f into a

ell-defined function of x (possibly even a polynomial upon a suit-

ble expansion of the logarithmic term). However, these advan-

ages come with some caveats too. As we can see in the synthetic

ime series at hand, we can again perform a minimization with the

ogistic approximation in the vicinity of the original exact paramet-

ic set of this example. We indeed found, in that case too, a local

inimum reflected under the sigmoid column of Table 1 , which

s in good agreement with the previous methods; notice, however,

he slight deviations in the integration constants due to the ap-

roximate nature of the logistic model. In this progressively more

ealistic case (since, typically, neither a smooth time series for D ( t )

nd all its derivatives, nor even a smooth one for D alone will be

ractically available), we see that the fitness of our global mini-

um only edges that of the next closest minimum by a smaller

mount than in the finite difference case. However, it is crucial to

mphasize that in this example, as well as in the examples that

ollow, the closest second minimum, C 1 that plays the dominant

ole in determining the fate of dynamics of D ( t ), is very close to

only 1.1 times) that of the Table 1 . Hence, even in a foreseeable

ase where such a secondary minimum may eclipse our expected

lobal one, the dynamics of the two cases will be very close to

ach other. 

As may be anticipated, similar issues arose when we attempted

o utilize the logistic approach to real data for the 3 examples out-

ined in the main text: the countries of Portugal (left panels of

ig. 3 ), Greece (middle panels of Fig. 3 ) and the autonomous com-

unity of Andalusia in Spain (right panels of Fig. 3 ). In each case,

e attempted to fit a portion of the data, the one past the inflec-

ion point, in order to capture as best as possible the asymptotic

umber of deaths D F which is a crucial aspect of the sigmoid (to-

ether with the growth coefficient k ). In our experience, k is usu-

lly the most robust feature of the associated sigmoids; D F is the

rickiest one to obtain, especially with time series such as the ones

f Fig. 3 which have not clearly asymptoted to a concrete value.

ypically, we have found the sigmoid to under-predict D F . We have

dentified this as one of the significant deficiencies of the sigmoid

hich, in turn, calls for improvement of the method, e.g., along the

ines of [52,53] . The associated fits to sigmoids for the 3 examples

re shown in the top panels of Fig. 3 , while the associated sigmoid
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Table 4 

Similarly to Table 1 (for Fig. 2 ), but now for the 3 sigmoid-based 

country/autonomous province examples of Fig. 3 , the lumped pa- 

rameter combinations of the model are given, together with the co- 

efficients of optimal sigmoid fit performed within the relevant fig- 

ure. 

Parameter Portugal Greece Andalusia 

D f 1264.0 162.93 1404.4 

k 0.0931 0.0863 0.0881 

P 1.4874 0.6516 0.7855 

C 1 2 . 3687 × 10 −5 1 . 5486 × 10 −5 9 . 4940 × 10 −6 

C 2 5 . 0879 × 10 −6 6 . 4947 × 10 −6 1 . 8864 × 10 −6 

R 2 0.2451 0.2467 0.2964 

R 3 0.1309 0.1175 0.1636 

F 0.3815 0.6100 0.6798 

α 1390.8 1474.7 5436.7 

r 1 0.1482 0.1464 0.1426 

β −1 . 0723 −1 . 0679 −1 . 2260 
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parameters are shown in Table 3 . Although in these examples the

use of the sigmoid was sufficient, developing the relevant exten-

sion along the lines of e.g. the rational approximation [52,53] may

be a natural vein for future studies and may indeed enhance the

robustness of the method proposed herein (especially in the pres-

ence of noisier or more sparse time series). 

The bottom panels of the figure illustrate further what may

happen in the case of the sigmoid. Notice that in the case of

these real data for Portugal (left), Greece (middle) and Andalusia

(right), we have no a priori knowledge of what the optimum fit pa-

rameters are. However, as a comparison measure, we utilized the

parameter values found by a constrained minimization along the

lines discussed in [48] (see also [55] ). Admittedly, this minimiza-

tion using Matlab’s routine fmincon (for minimizing the distance

between true and observed time series stemming from integrat-

ing the differential equations) does not offer any guarantee of a

global minimum and indeed may yield a local minimum. Never-

theless, it provides a useful benchmark for the performance of the

minimization of || f || within Eq. (7) by using the logistic approxi-

mation. Subsequently, based upon the logistic fit (most notably its

k and D F ), we attempted to identify a local minimum through the

logistic method in the vicinity of the one obtained by constrained

minimization. Indeed, such a minimum was found in each of the 3

cases; and its parametric values are illustrated in Table 4 . Then, we

attempted again a refined grid of ( C 1 , C 2 ) conforming to the same

constraint as before, except for the case of Greece: there, given the

result of the constrained minimization for C 2 ≈ C 1 /3, we extended

our search to a wider parametric interval of 0.1 C 1 ≤ C 2 ≤ C 1 for

completeness. Indeed, we checked that our results for this case did

not change even for a wider parametric search. 

In all the explored cases, we found the local minimum (the one

obtained both by constrained minimization and independently by

the logistic approach and presented in Table 4 ) to be the global

minimum within the interval of our search. Nevertheless, once

again, it is clear that other combinations of C 1 and C 2 may yield

fitnesses close to that minimum, since the differences under the

logistic approximation were always less than one order of magni-

tude. Naturally, this raises concerns regarding the identification of

the global minimum. However, we note the following: (i) In this

case, we have checked (something that is possible more generally)

the result in the interval of interest under two separate methods.

(ii) More importantly, as noted earlier, the secondary minima iden-

tified involve similar results as regards C 1 and hence are expected

to have similar dynamical implications. (iii) More refined variants

of the method (e.g., using the rational or birational models [52,53] )

should be able to address the needs of more complex/less infor-

mative cases than the ones discussed here. In that vein, we believe

that we have exposed both the advantages and the caveats of the
roof-of-principle logistic approach and how it can be improved,

s needed. 

. Conclusions and future recommendations 

We conclude with several remarks, summarizing our work and

ffering a number of future recommendations and interesting re-

earch directions: 

1. We have introduced a rigorous and computationally tractable

methodology for computing the impact on the number of

deaths of increasing the parameter c 1 in our SIR-type model.

This parameter is proportional to the number of contacts be-

tween asymptomatic individuals infected with SARS-CoV-2 and

those susceptible. Remarkably, the only data needed for our

algorithm to be implemented is the cumulative number of

deaths during the lockdown period. Our considerations have

been based on an extended version of an SIR model (incor-

porating asymptomatically infected, hospitalized individuals, as

well as deaths). Using an inverse problem perspective, we have

formulated a single ODE for the fatalities, which we consider

as the “ground truth” within the available data. Via an opti-

mization scheme, we have utilized this D ( t ) (and its deriva-

tives, obtained, e.g., via a logistic fitting to the data) to obtain

the uniquely identifiable parametric combinations within the

model. 

2. In addition to providing synthetic examples to illustrate the

method, we have also utilized real data in order to showcase

the practical implementation of the proposed approach. The ap-

plication of our algorithm towards the study of the pandemic

spread to Greece, Portugal and Andalusia shows that upon eas-

ing of the lockdown measures by increasing the value of c 1 (and

hence effectively the number of contacts) by a multiple larger

than 2, the impact on the number of deaths will be devastat-

ing. However, an increase by ζ = 2 has a more modest effect,

especially in the case of Greece which is found to have a low

transmission rate. 

3. Importantly, a similar analysis can be applied to sub-

populations. Let us consider two such subpopulations: one con-

sisting of individuals below the age of 40, that will be referred

to as young, and one consisting of individuals above 40, that

will be denoted as older. If there exist reliable deaths data for

these two subpopulations, then it is possible to compute sepa-

rately the effect of changing the interactions among the young,

as well as among the older with the older and the older with

the young. We did, for example, look at these two subpopula-

tions in the case of Greece [48] . In this case, we supplemented

the data of deaths with data on the cumulative number of re-

ported infected, because the data on deaths, especially for the

young, were sparse. These results provided hope (and a poten-

tial future recommendation, namely) that it may be possible to

accelerate the easing of the lockdown for the young: the in-

crease of interactions among the young (as opposed to the in-

teractions involving the older) led to only a modest increase in

the number of deaths. However, it should be noted that, as dis-

cussed above, our conclusions for single populations are based

on rigorous mathematical results and reliable data; since this

is less transparently so the case for the data (e.g., for the re-

ported infected) regarding the two sub-populations of Greece,

the latter results can only be considered as suggestive. From

a mathematical perspective, completing and practically apply-

ing the rigorous analysis in the same spirit as above for two or

more populations is certainly a challenging problem for future

studies. 

4. Our algorithm can be used in any country with reliable death

data during the lockdown period; if death data also exist for
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sub-populations, the multicomponent version of our algorithm

should also be applicable. It would constitute an interesting fu-

ture recommendation to apply our model widely to a number

of other case examples, in order to identify the parametric dif-

ferences between countries with high and ones with lower fa-

tality case numbers. 

5. A central mathematical finding of our analysis concerns the rig-

orous illustration of the fact that the solution of the inverse

problem (based on death data) does not yield in a unique way

all the model parameters, thus it is not directly possible to

compute the effect of the easing of lockdown on the number

of hospitalizations and on the total number of infected individ-

uals. However, we can compute the arguably most important

feature of the epidemic, upon release of lockdown, namely the

number of anticipated future deaths on the basis of the model. 

6. At the moment, we cannot provide a specific relation between

concrete protective measures (such as hygiene conditions, par-

tial social distancing, and perhaps especially wearing a mask)

and the value of ζ . Such a relation exists, as c 1 does not solely
reflect the number of contacts but also the probability of infec-

tion given a contact which is proportional to the viral load (i.e.,

the viral concentration in the respiratory-tract fluid) of expelled

respiratory droplets [50] . Clearly, the above protective measures

reduce the viral load and therefore c 1 . Hopefully, such a rela-

tion can be established by designing specific experiments in the

near future. This is a future recommendation that would be es-

pecially valuable towards assessing the impact of models within

the broad class considered herein. 

7. Our analysis makes the crucial assumption that the basic char-

acteristics of the virus in the post-lockdown stage are identi-

cal with those during the lockdown. If, for example, a mutation

takes place which makes the virus weaker, then the effect of

easing the lockdown measures will not be as dramatic as pre-

dicted in our work. 
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