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Parametrically excited star-shaped patterns at the interface of binary Bose-Einstein condensates
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A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis in immiscible
binary Bose-Einstein condensates. The condensates form a so-called ball-shell structure in a two-dimensional
harmonic trap. To trigger the dynamics, the scattering length of the core condensate is periodically modulated in
time. We reveal that in the dynamics the interface becomes unstable towards the formation of oscillating patterns.
The interface oscillates subharmonically, exhibiting an m-fold rotational symmetry that can be controlled by
maneuvering the amplitude and the frequency of the modulation. Using Floquet analysis we are able to predict
the generated interfacial tension of the mixture and derive a dispersion relation for the natural frequencies of
the emergent patterns. A heteronuclear system composed of 87Rb - 85Rb atoms can be used for the experimental
realization of the phenomenon, yet our results are independent of the specifics of the employed atomic species
and of the parameters such as scattering lengths and trap strengths at which the driving is applied.
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I. INTRODUCTION

Liquid drops or puddles [1,2] that are weakly affixed to a
vertically oscillating surface or a periodically driven spherical
liquid drop levitated from the surface, either acoustically [3]
or magnetically [4], can display star-shaped patterns. These
patterns constitute a paradigm of a spatial as well as temporal
symmetry-breaking phenomenon. Their appearance in the
form of the so-called Faraday pattern dates back to 1831
for a fluid in a vertically shaken vessel [5]. Very similarly
to the original Faraday experiment, the symmetry-breaking
instabilities have been intensively studied in classical fluids
considering a variety of surfaces of the liquid such as spheri-
cal [6,7], cylindrical [8,9], and flat [10,11]. Remarkably, the
dominant wavelength of the instability and the symmetries
of the emergent patterns are determined by a few intrinsic
properties such as the density and the surface tension of the
liquid [12,13].

Over the last two decades, Bose-Einstein condensates
(BECs), due to their remarkable experimental tunabil-
ity [14–16], have facilitated the investigation of various classi-
cal hydrodynamical instabilities in the context of quantum flu-
ids. Indeed, several theoretical works unveiled the emergence
of parametric resonances [17] and Faraday waves [18–20],
either via confinement modulations [21,22] or by means of
a time-dependent scattering length [18], inspiring also the
experimental realization of parametric resonances [23] and
Faraday waves in BECs [24,25].

*koushikphysics21@gmail.com

Importantly, even though such modulation dynam-
ics has been extensively unraveled for single-component
BECs [17,18,22,26–32], the corresponding two-dimensional
(2D) multispecies BEC scenario is far less explored [33–37].
In this context, multispecies BECs exhibiting a well-defined
interface [38–41] can emulate some of the well-known
interfacial-tension-dominated fluid instabilities. These in-
clude the Rayleigh-Taylor [42–44], the capillary [45,46],
the Kelvin-Helmholtz [47–49], the Richtmyer-Meshkov [50],
the countersuperflow [51–54], and the Rosensweig in-
stability [55] as well as the Bénard-von-Kármán vortex
street [56,57] and quantum swapping of the involved immis-
cible condensates [58,59]. The interface dynamics of weakly
immiscible BECs has also been studied by means of a vari-
ational approach [43], deriving a dispersion relation for the
emergent instabilities for different types of driving forces,
including stochastic ones. In fact the parametric resonance of
capillary waves leading to the generation of vortex-antivortex
pairs at the interface of two immiscible ribbonlike conden-
sates, under the action of a high-amplitude oscillating force
that pushes the condensates towards each other, has been
explored in Ref. [60]. A particular feature of that work
consists of the ribbonlike geometry enabling a transverse
interface separating the two elongated condensates, and the
parametric instability consists of the amplification of the asso-
ciated transverse Fourier modes. Recall that for multispecies
BECs the interfacial tension stems from the combined effect
of pressure and interspecies interactions [46,61,62]. Interest-
ingly, harmonically trapped quasi-2D binary condensates can
form a circular interface between them, rendering these sys-
tems ideal candidates to probe azimuthal symmetry-breaking
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FIG. 1. (a) Schematic representation of the 2D harmonically
trapped binary BEC and the modulation protocol. Density profiles of
(b) species A and (c) species B in the initial state where the intra- and
the interspecies scattering lengths are aAA = 99aB, aBB = 75aB, and
aAB = 213aB. Snapshots of the density profiles of (a1–a3) species A
and (b1–b3) species B at consecutive periods nT4 of the modulation
(see legend). The 87Rb - 85Rb binary BEC consisting of NA = 104

and NB = 5 × 103 atoms is prepared as in Figs. 1(b) and 1(c). The
dynamics is initiated following a periodic modulation of aBB at
frequency ωD/(2π ) = 1/T4 = 69 Hz and amplitude A = 15aB. The
star-shaped pattern D4 exhibits four lobes; see also Supplemental
Material Ref. [65] for videos of the dynamics.

instabilities. The analogs of the latter in classical fluids are
extremely useful in experiments [1,2,13] for determining the
surface tension of the liquid. Therefore, it would be extremely
desirable to explore whether interfacial pattern formation
in 2D binary BECs can provide information regarding the
interfacial tension of the mixture.

In this work, we propose a parametrically driven mecha-
nism that enables on-demand azimuthal-mode pattern forma-
tion at the interface between two immiscible BECs. This, on
the one hand, lends further support to the striking similarity of
a number of features shared by the classical fluid and the BEC
systems and, on the other hand, paves the way to determining
the interfacial tension in ultracold-atom experiments based
on the resulting patterns occurring at the interface among the
components. More specifically, we consider a binary BEC of
two different atomic species confined in a 2D axisymmetric
harmonic trap [see Fig. 1(a)] and interacting via short-range
repulsive interactions. The mixture is initialized in a radially
symmetric, phase-separated configuration [63,64], where the
species with weaker interactions is surrounded by the one
with stronger interactions, thus forming a so-called ball-shell
structure with a circularly symmetric interface [Figs. 1(b)
and 1(c)].

Upon applying a time-periodic modulation of the in-
traspecies core-component interaction we demonstrate that
both the spatial and the temporal symmetries of the inter-
face are broken. Importantly, depending on the modulation
strength and frequency, star-shaped density patterns Dm, with
underlyingm-fold rotational symmetry, appear at the interface
which oscillates subharmonically, i.e., at half the modulation
frequency. To elucidate the emergence of the resulting pat-
terns, the underlying mean-field equations are reduced to a
Mathieu equation at the level of the amplitude of the mth
mode, where Floquet theory is subsequently applied. A dis-
persion relation relating the azimuthal wave number m of the
pattern to its frequency ωm is derived. The stability boundaries
of the resulting star-shaped patterns are identified at the level
of the full mean-field model, being in good agreement with
the predictions of the effective theoretical analysis in terms of
the Floquet theory. Remarkably, it is demonstrated that this
dispersion relation can be employed to predict the interfa-
cial tension of the phase-separated BEC. To generalize our
findings, we showcase that the generation of the star-shaped
patterns can also be achieved for strongly mass-imbalanced
mixtures or by considering other driving protocols such as a
periodic modulation of the core-component harmonic trap.

Our presentation is structured as follows. Section II intro-
duces the relevant theoretical framework, the employed driv-
ing protocol, and the experimentally relevant parameters of
our setup. In Sec. III we discuss the emergence of star-shaped
patterns following a periodic driving of the core-component
scattering length and derive a dispersion relation for the ob-
served patterns. The generation of star-shaped patterns upon
considering a periodic modulation of the core-component har-
monic trap is demonstrated in Sec. IV. Section V presents the
occurrence of pattern formation for strongly mass-imbalanced
binary BECs. In Sec. VI we summarize and provide an
outlook of future perspectives. Appendix A further elaborates
on the details of the utilized mean-field framework and the
ingredients of the presented simulations. In Appendix B we
showcase the robustness of the pattern formation for periodic
modulations of the shell condensate scattering length and in
Appendix C we provide a detailed derivation of the corre-
sponding Mathieu equation characterizing the deformation of
the intercomponent interface.

II. MODEL AND DRIVING PROTOCOL

Our theoretical approach to describe the dynamics of the
binary BEC relies on the coupled system of time-dependent
Gross-Pitaevskii (GP) equations [66,67]
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(1)

Here, r ≡ (r, θ, z) denotes the cylindrical coordinates, j, j′ ∈
(A,B), and the wave function � j of species j satisfies
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∫ |� j |2dr = Nj . Also, Nj , mj , and ω j denote the atom num-
ber, the mass, and the transverse harmonic trap frequency
of species j, respectively. The parameter λ j is the ratio
of the axial and the transverse trap frequencies of species
j satisfying here λ j = ωz j/ω j � 1, which ensures that the
dynamics in the z direction is “frozen out,” The intra- and
interspecies interaction strengths gAA, gBB, and gAB sat-
isfy the so-called phase-separation condition defined as K =
gABgBA/(gAAgBB) ∝ a2AB/(aAAaBB) � 1 [68,69], where aj j

and aj j′ are the corresponding s-wave scattering lengths. In
particular, the mixture is characterized as weakly immiscible
if K is slightly larger than unity but K → 1, while it is
perfectly immiscible if 1/K → 0 [61]. Equation (1) is solved
using a split-time Crank-Nicolson method [70,71] in imagi-
nary time to obtain the initial ground state, and in real-time
to monitor the dynamics, in two dimensions, characterized
by the wave functions ψ j (r, θ ) [72]. For details on the dy-
namical reduction from three to two dimensions in Eq. (1)
(see Appendix A). With the initial state at hand, we trigger
the interfacial dynamics of the binary BEC by periodically
modulating the scattering length aBB according to

ãBB(t ) = aBB + A cos(ωDt ), (2)

where A and ωD are the amplitude and frequency of the
modulation.

The experimentally relevant parameters of a 87Rb - 85Rb
binary BEC, in the hyperfine states |F = 1,mF = −1〉
and |F = 2,mF = −2〉, respectively, labeled species A and
species B, are utilized. Namely, ωA/2π = ωB/2π ≡ ω/2π =
15 Hz, NA = 104, NB = 5 × 103, aAA = 99aB, and aAB =
213aB, with aB being the Bohr radius [64]. Accordingly,
the initial state corresponds to a shell-structured geometry
in which 85Rb atoms occupy the central region of the trap
[Fig. 1(c)] and hence are referred to as the core condensate,
while 87Rb atoms form a lower-density shell [Fig. 1(b)] sur-
rounding the core condensate. Note that for this choice of in-
teractions K ≈ 2.47, and hence the mixture can be considered
to reside deeply in the immiscible phase. Since the scattering
length aBB can be experimentally tuned via a Feshbach reso-
nance in the range of 50aB–900aB [64], we periodically vary
aBB in time around aBB = 75aB, which ensures that the phase-
separated condition is fulfilled throughout the dynamics.

We note that the interspecies Feshbach resonances of
the heteronuclear 87Rb - 85Rb gas are located far away
from the corresponding Feshbach resonance of the 85Rb
|F = 2,mF = −2〉 state [73,74]. Also, to the best of our
knowledge, no Feshbach resonance has been reported yet for
the state |F = 1,mF = −1〉 of 87Rb [75]. Thus, the modula-
tion of the scattering length aBB can be carried out without
altering (at least up to a good degree) the scattering lengths
aAB and aAA. Moreover, a modulating magnetic field near a
Feshbach resonance can be used to realize the periodic driving
of the scattering length aBB as in the experiment in Ref. [76],
where the design of specific waveforms is showcased with the
aid of a waveform generator. In particular, as a case example
we use a modulation amplitude A = 15aB; for variations of
this parameter see also the discussion below. This driving
process leads, in the long-time dynamics, to the formation of
patterns at the interface which steadily oscillates at half the

modulation frequency. Importantly, the observed pattern for-
mation occurs also for atomic species different from the ones
considered herein or hyperfine states of the same isotope, e.g.,
for the |F = 1,mF = −1〉 and |F = 2,mF = +1〉 hyperfine
states of 87Rb [77]). Moreover, it takes place irrespectively
of the periodic driving of the involved intra- or interspecies
scattering lengths. Therefore, it represents a generic phe-
nomenology of the immiscible two-component system; see
also the discussion in Sec. V and in Appendix B.

III. PERIODIC DRIVING OF THE CORE-COMPONENT
SCATTERING LENGTH

Below, we expose the generation of star-shaped pat-
terns upon applying time-periodic modulation of the core-
component scattering length as introduced in Eq. (2). In
particular, we first quantify the emergence of the star-shaped
patterns within the mean-field framework (Sec. III A). Subse-
quently, a dispersion relation predicting the natural frequen-
cies of the observed patterns is derived using Floquet theory
(Sec. III B).

A. Pattern formation in the mean-field dynamics

Representative density profiles of each species, nj = |ψ j |2,
unveiling the dynamical generation of a star-shaped pattern
D4 with m = 4 lobes at instants in time representing inte-
ger multiples of the modulation period T4 are illustrated in
Fig. 1 following a periodic oscillation of aBB with ωD/2π =
69 Hz. It becomes apparent that the four-lobed star pattern
[Figs. 1(a1) and 1(b1)] dynamically appears at the interface
at t = 357.5 ms for the first time. Indeed, the instability in the
system grows until it is clearly visible in the density profiles
after about 357.5 ms. The exact same structure reappears at
time t + 2T4 [Figs. 1(a3) and (b3)], thus revealing its sub-
harmonic nature. Note that the lobes of the D4 pattern at
t = T4 are oriented in a way rotated by an angle π/4 with
respect to the one at t = 357.5 ms or t + 2T4 [Figs. 1(a2)
and 1(b2)]. Importantly, patterns with higher m-fold rotational
symmetries can also be dynamically generated. To achieve
this we fix the modulation amplitude atA = 15aB and change
the modulation frequency ωD. As we explain later, a certain
symmetric pattern Dm is realized within a specific interval
of ωD for a given amplitude A, while outside this inter-
val the pattern disappears. Prototypical examples of relevant
density profiles for symmetric patterns D3, D5, D6, and D7

with three, five, six, and seven lobes realized at modulation
frequencies ωD ≈ 48 Hz, ωD ≈ 95.1 Hz, ωD ≈ 132 Hz, and
ωD ≈ 157.5 Hz, respectively, are depicted in Fig. 2. Indeed,
the same density pattern Dm is repeated, but with a different
orientation (at an angle π/m) compared to the earlier one,
after every single period of the modulation.

To expose the nature of the interfacial dynamics, we next
perform a linear stability analysis based on the Floquet tech-
nique [11,18,78–80], by assuming that both species possess a
uniform density with a sharp boundary between them. Indeed,
within the GP calculations we observe that the BEC back-
ground density undergoes only a small amplitude breathing
motion. This allows us to neglect the effect of local density
fluctuations within the stability analysis. We further presume
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FIG. 2. Density profiles of (a1–a8) species A and (b1–b8) species B for various symmetric patterns, D3 [(a1), (a2), (b1), (b2)], D5 [(a3), (a4),
(b3), (b4)], D6 [(a5), (a6), (b5), (b6)], and D7 [(a7), (a8), (b7), (b8)], at specific instants in time (see legends) in the long-time dynamics. Tm
is the driving period corresponding to the m-fold symmetric pattern Dm, which is generated by periodically modulating the scattering length
aBB in time with amplitude A = 15aB and frequency ωD = 2π/Tm; see also Supplemental Material Ref. [65] for videos of the dynamics. The
87Rb - 85Rb binary BEC consists of NA = 104 and NB = 5 × 103 atoms initially prepared as in Fig. 1.

that the same interface dynamics can be retrieved following
the periodic modulation of any other prototypical system pa-
rameter (i.e., the different scattering lengths or trap strengths),
since the natural angular frequencies of the interfacial patterns
should be independent of the parameter at which the periodic
protocol is applied. In fact, we have confirmed that it is possi-
ble to generate all the differentm-fold symmetric patterns also
for a weakly immiscible (K → 1) 87Rb - 85Rb mixture. Most
importantly, in the latter scenario, the individual star-shaped
patterns possess lower natural angular frequencies compared
to the deeply immiscible case. We also remark that for larger
values of the modulation amplitude, e.g., A = 38aB, we do
not typically observe the generation of (long-lived) vortical
patterns in the spirit of Ref. [60]. Instead, the above-described
symmetric patterns can still be formed at the initial stages of
the periodically driven dynamics and subsequently disappear
for longer evolution times. This phenomenon is attributed to
the fact that the high driving amplitude induces a large amount
of incoherent excitations into the system. Moreover, in this
setting, it is reasonable to expect that the system dynamics lies
beyond the applicability of the mean-field approximation. For
these reasons, we do not pursue the high-amplitude excitation
regime further in the present study.

B. Dispersion relation and stability boundaries of the patterns
within Floquet theory

To this end, for the convenience of the theoretical analysis
a time-dependent harmonic potential of the core condensate
is considered instead of the periodic driving of its scattering
length. The adjustable nature of both the trapping potential
and the scattering length by means of a tunable magnetic field
in typical BEC experiments [14,81,82] supports this assump-
tion further, at least for predicting the natural frequencies of
the interface patterns.

For simplicity we again start our analysis in three
dimensions and subsequently reduce the problem to two
dimensions. It is appropriate to express the condensate wave
function according to the Madelung transformation [83], i.e.,

� j (r, θ, z) = √
n j (r, θ, z)eiφ j , where nj and φ j are the density

and the phase of species j. Correspondingly, the superfluid
velocity v j = (v jr, v jθ , v jz ) is defined as v j = h̄

m j
∇φ j , where

φ j is also known as the velocity potential [84]. Furthermore,
it is reasonable to approximate nA = 0 for r < R and nB = 0
for r > R, with R being the radius of the interface. Therefore,
the coupled GP system of Eq. (1) can be expressed in the
form [84]

−mj
∂v j

∂t
= ∇Pj

n j
, ∇2φ j = 0. (3)

The effective pressure term of the individual species is

PA= 1
2 (mAnAv2

A)+ h̄2
√
nA

2mA
∇2√nA + gAAn2A + 1

2mAnAω2(r2 +
λ2
Az

2) and PB = 1
2 (mBnBv2

B) + h̄2
√
nB

2mB
∇2√nB + gBBn2B +

1
2mBnBω2(r2 + λ2

Bz
2) + 1

2mBnBω2r2b cos(ωDt )), respec-
tively. Note that the problem has been effectively
reduced to two single-component problems interacting
through their sharp interface. The influence of gAB is
still implicitly incorporated in the values of R, nB, and
nA taken from the full GP model. Importantly, here,
the amplitude b is related to A (at the GP level) by
b = 8π h̄2A|�B(r = R, θ, z)|2/(m2

Bω2R2). This relation
is derived in order to have the same dynamical impact
on the interface by both protocols; i.e., it is obtained
by equating the corresponding modulation terms at the
interface r = R, namely, 4π h̄2A cos(ωDt )|�B|2�B/mB =
(1/2)mBω2R2b cos(ωDt )�B. After the onset of the instability,
the interface is deformed by a small amount ζ . The stress
balance condition (also known as Laplace’s formula in fluid
mechanics) at the interface can be written as [45,85]

[PB − PA]r=R+ζ = σ

[
1

R1
+ 1

R2

]
, (4)

where R1 and R2 are the principal radii of the interface
curvature and σ denotes the interfacial tension. Linearizing
Eq. (4) in terms of the interface deformation amplitude ζ and
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using Eq. (3) we get [85](
h̄nA

∂φA

∂t
− h̄nB

∂φB

∂t

)
|r=R

= −RmBω2nBb cos(ωDt )ζ

− σ

(
1

R2
+ 1

R2

∂2

∂θ2
+ ∂2

∂z2

)
ζ .

(5)

Here, nonlinear terms like v2
j and quantum pressure

(∼√
n j∇2√n j) are neglected, and we assumemA ≈ mB owing

to the presence of a very small mass imbalance in our system.
The kinematic boundary condition is [85]

∂ζ

∂t
= vAr(r = R) = vBr(r = R). (6)

Utilizing Eqs. (3) and (6), the interface deformation and the
velocity potentials can be expressed as

ζ (θ, z, t ) =
∞∑
m=1

ζm(t )e
i(mθ+kz),

φA(r, θ, z, t ) =
∞∑
m=1

dζm(t )

dt

mAKm(kr)

h̄kK ′
m(kR)

ei(mθ+kz),

φB(r, θ, z, t ) =
∞∑
m=1

dζm(t )

dt

mBIm(kr)

h̄kI ′m(kR)
ei(mθ+kz).

Here, Im(kr) andKm(kr) denote themth-order modified Bessel
functions [86] of the first and second kind, respectively,
while the integers m and k represent the azimuthal and axial
wave numbers, respectively. Substituting the expansions of
ζ (r, θ, z), φA(r, θ, t ), and φB(r, θ, z) into Eq. (5) and consid-
ering k → 0 (no wave excitation along the z direction) we
arrive at a Mathieu-type equation (see also Appendix C) for
ζm, namely,

ζ̈m + ω2
m[1 − (b/b0m) cos (ωDt )]ζm = 0, (7)

with ω2
m = σ

R3
m(m2−1)

(mBnB−mAnA)
and b0m = σ (m2−1)

mBω2nBR3 . Remarkably,
the expression of the natural frequency ωm (dispersion rela-
tion) has the same form as that of a classical inviscid incom-
pressible fluid [12,87]. Indeed, the above dispersion relation
is able to qualitatively capture the basic features of the pattern
formation. For instance, it evinces that higher-fold symmet-
ric patterns can be realized for higher driving frequencies.
According to Floquet theory, there exists a solution ζm(t ) =
e(s+iαωD )t

∑∞
p=−∞ ζ

(p)
m eipωDt , where s is the growth rate and α

is the Floquet exponent. Inserting this into Eq. (7), the Floquet
expansion of ζm leads to a linear difference equation,

A(p)
m ζ (p)

m = b
(
ζ (p−1)
m + ζ (p+1)

m

)
, (8)

with A(p)
m = [−2(p+ α)2ω2

D
(mBnB−mAnA)

mmBω2nB
+ 2σ (m2−1)

R3nBmBω2 ]. Note
that the parameter b, which is the modulation amplitude of
the harmonic trap, carries the same meaning in both Eq. (3)
and Eq. (8).

The eigenvalues b(ωD,m) in Eq. (8), depending on the
parameter s, describe the stability of the system in the pa-
rameter space of the driving amplitude A and frequency
ωD. Namely, the system is unstable when s > 0 and pattern
formation is expected to occur at the interface. In particular,

FIG. 3. The marginal stability boundaries, predicted within Flo-
quet theory, for the first subharmonic excitations of different az-
imuthal wave numbers m. The system is unstable inside the tongues
(shaded regions) towards the formation of m-fold star-shaped sym-
metric patterns Dm. Two starlike (circular) [triangular] data points
connected by a dashed (dotted) [dashed-dotted] line within each
tongue indicate the frequency interval for the fixed amplitude A =
0.20aBB (0.27aBB) [0.13aBB], where GP calculations have been
performed.

we let s = 0, which provides the marginal stability boundaries
for different values of the azimuthal wave number m (see
Fig. 3). Recall that for subharmonically excited waves the
relation ωm = ωD/2 holds, which allows us to set α = 1/2.
In principle, the stability curve is composed of an infinite
series of resonant tongues. However, in Fig. 3 we showcase
the first subharmonic marginal stability boundaries form = 3,
4, 5, 6, and 7 since those are the ones that we have shown
previously in the form of star-shaped patterns in the GP
framework. Indeed, the system will be unstable, exhibiting
pattern formation, if A and ωD lie inside the boundaries of
a specific tongue (see, e.g., the stars in Fig. 3) but it is stable
when they reside outside these tongues.

To expose the reliability of the predictions of Floquet
theory we also present in Fig. 3, with data points, the borders
at which pattern formation in terms of ωD and A occurs
within the GP theory. For instance, we find that for 0.13 <

A < 0.27 all different patterns can be realized within the
mean-field framework, meaning that only some of the m-fold
structures cannot be captured for other amplitudes. Another
key observation here is that for a fixed A the widths of the
stability boundaries in the effective theory appear to decrease
for larger ωD but they show a nonmonotonic behavior in the
mean-field calculations (Fig. 3). This deviation (as well as
similar nonmonotonicities for fixed ωD and varyingA) can be
attributed to the linear nature of the theoretical model ignoring
possible nonlinear effects captured in the GP framework. For
instance, in the high-driving-amplitude regime, such as the
one with A/aBB > 0.3 (Fig. 3), the resonant tongues overlap
with each other, indicating that the linear stability analysis is
no longer valid. Indeed, the predictions of the effective theory
are accurate only for weak modulation amplitudes, herein
A/aBB < 0.3. Note that the symmetries of the patterns depend
crucially on ωD, i.e., for a larger ωD higher-fold symmetries
appear in the system. Furthermore, recall that the patterns are
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repeated after t + nTm, n = 1, 2, . . . , being rotated by nπ/m
with respect to the one at t . This behavior is associated with
the spatial and temporal symmetry of the system, which can
be explained by the Floquet analysis. For instance, ζ (θ, t ) =∑∞

m=1 ζm(t )eimθ is invariant under the transformations θ →
θ + (nπ/m) and t → t + nT , which exactly correspond to
the spatial and temporal reprisals of the patterns according
to the predictions of the GP calculations. Finally, in order
to calculate the interfacial tension [46,61,62], we compare
our GP results (A, ωD) for a particular symmetric pattern to
the instability tongues emerging from the Floquet analysis
[Eq. (7)]. This gives a value of the interfacial tension σ =
1.1 × 10−18 ± 5% N/m [88].

IV. DYNAMICS AFTER A MODULATION
OF THE EXTERNAL CONFINEMENT

In the previous section, for the convenience of the Floquet
analysis we assumed that the modulation of the scattering
length of the core component has the same impact on the in-
terface dynamics of the binary BEC as the one when applying
an independent modulation of the external confinement of the
core component and keeping the scattering lengths fixed. This
is due to the fact that the natural angular frequencies ωm [see
the discussion following Eq. (7)] of the patterns do not depend
on whether one of the systems’ scattering lengths (see also
the discussion in Appendix B) or the external trap frequency
(see the description below) is being modulated as long as
the corresponding modulation amplitude is low compared to
the original value of the perturbed parameter. Furthermore, as
can also be verified within the full GP calculations presented
in Sec. III A the modulation dominantly affects the interface
of the binary BEC where the species densities are vanishing
since we operate in the deep immiscible interaction regime.
Thus, in principle, it is possible to adjust the modulation
amplitudes of the different time-dependent protocols such that
the latter produce the same impact on the BEC interface.
Along these lines, it is possible to equate the correspond-
ing modulation terms at the interface, which allows us to
establish the relation b = 4NB

√
2πλA|ψB|2/(aoscR2), where

ψB (r = R) is taken from the initial state obtained within the
2D GP framework. Indeed, the latter formula connects the
modulation amplitudes of the two dynamical protocols.

To substantiate our above-mentioned argument regarding
the same impact of the protocols on the interface, we sub-
sequently solve the 2D GP equations of motion following a
modulation of the confinement of the core component while
keeping aBB fixed (see Appendix A for the reduction of the
GP equations from three to two dimensions). In this case, the
corresponding coupled system of GP equations reads

i
∂ψA(x, y, t )

∂t

=
⎡
⎣−1

2
∇2

⊥+ 1

2
(x2+ y2)+

∑
j

GA j |ψ j (x, y)|2
⎤
⎦ψA(x, y, t )

(9)

and

i
∂ψB(x, y, t )

∂t

=
[
−mr

2
∇2

⊥ + 1

2mr
(x2 + y2)(1 + b cos(ωDt ))

+
∑
j

GB j |ψ j (x, y)|2
⎤
⎦ψB(x, y, t ). (10)

In these equations, ∇2
⊥ = ∂2

x + ∂2
y connects to the ki-

netic energy term and mr = mA/mB. Furthermore, GAA =
2NA

√
2πλaAA/aosc and GBB = 2mrNB

√
2πλaBB/aosc are

the intraspecies interaction strengths, while G j j′ = Nj′ (1 +
mr )

√
2πλaj j′/aosc is the interspecies interaction strength.

To demonstrate the connection with the previously dis-
cussed results we consider a 87Rb - 85Rb binary BEC with
87Rb (85Rb) being referred to as species A (B) in the fol-
lowing. Moreover, both species in the system are confined
in a 2D harmonic trap with frequencies ωA/2π = ωB/2π ≡
ω/2π = 15 Hz. The intra- and interspecies scattering lengths
are chosen to be aBB = 75aB, aAA = 99aB, and aAB = 213aB,
while each species contains a particle number NA = 104 and
NB = 5 × 103, respectively. Consequently, the binary BEC is
initially prepared in its ground state, which corresponds to
the phase-separated state described by the densities shown
in Figs. 1(b) and 1(c). To induce the dynamics we impose a
periodic driving on the trapping potential of the core compo-
nent as described in Eq. (10) with amplitude b and frequency
ωD. Note that the value b = 0.24 is considered herein, which
exactly corresponds to the modulation amplitude A = 15aB
of the scattering length of the core component examined in
Sec. III A.

Figure 4 depicts some representative density profiles of
each species at specific instants in time of the long-time dy-
namics following the above-mentioned driving protocol on the
confinement of the core component. As can be readily seen,
different symmetric patterns Dm characterized by a respective
m-fold symmetry build upon the densities of the individual
species after every period of the modulation. For instance,
we observe that fivefold [Figs. 4(a1)–4(a3) and 4(b1)–4(b3)]
and sevenfold [Figs. 4(a4)–4(a6) and 4(b4)–4(b6)] star-shaped
patterns are generated for driving frequencies ωD = 96 Hz
and ωD = 165 Hz, respectively. Remarkably enough, these
frequencies lie inside the corresponding resonant tongues
obtained within Floquet theory and illustrated in Fig. 3.
Importantly, these m-fold star-shaped patterns repeat them-
selves after a time t ′ = t + 2Tm and undergo a π/m rotation
every t = Tm. This behavior essentially manifests the sub-
harmonic feature of the formed patterns, a phenomenon that
has also been observed upon applying a modulation of the
core-component scattering length discussed in Sec. III A. We
remark that also every other m-fold pattern can be created
using different driving frequencies of the external confinement
of the core component.

Summarizing, we can deduce that the overall phenomenol-
ogy observed in the interfacial dynamics of the binary BEC
is the same when following a periodic modulation of either
the scattering or the confinement of the core component. As a
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FIG. 4. Density snapshots of (a1–a6) species A and (b1–b6) species B for various symmetric patterns, D5 [(a1), (a2), (a3) (b1), (b2), (b3)] and
D7 [(a4), (a5), (a6), (b4), (b5), (b6)], at selected instants in time (see legends) in the long-time dynamics. Tm is the driving period corresponding
to the m-fold symmetric pattern Dm. To induce the dynamics, the trapping potential of species B is modulated with amplitude b = 0.24 and
frequency ωD = 2π/Tm. The 87Rb - 85Rb binary BEC composed of NA = 104 and NB = 5 × 103 atoms is initialized in its ground state with
aAA = 99aB, aBB = 75aB, aAB = 213aB, and trap frequency ωA = ωB = 2π × 15Hz.

result, the assumptions made within the Floquet analysis are
reasonably justified, at least for the calculation of the natural
frequencies of the generated patterns.

V. PATTERN FORMATION IN A STRONGLY
MASS-IMBALANCED MIXTURE

To expose the general character of our findings regarding
the emergent star-shaped patterns building upon the interface
of immiscible binary BECs, we next demonstrate as a case
example the dynamics of the experimentally relevant strongly
mass-imbalanced 41K - 87Rb mixture [89]. Before proceeding,
it is also worth mentioning that the same pattern formation
can also be generated in completely mass-balanced bosonic
mixtures, e.g., by considering two hyperfine states of 87Rb
(not shown for brevity). Moreover, we have also performed
the modulation dynamics using the particle number ratios
NB/NA = 0.7, 0.85, and 1 and the trapping frequencies 10
and 25 Hz and found that these systems also show an overall
phenomenology similar to those discussed in the previous
sections.

For simplicity, in the following we label 41K as species
A and 87Rb as species B with mr = mA/mB = 0.47 and
particle number in each component NA = 5 × 103 and NB =
5 × 103. Moreover, we employ the experimentally realizable
(for this mixture) values of the intra- and interspecies scat-
tering lengths [90–92]. These correspond to aAA = 65aB and
aBB = 99aB for the 41K and 87Rb atoms, respectively, while
the interspecies one is fixed to the value aAB = 163aB. Also,
we use a 2D harmonic oscillator potential of frequency ωA =
ωB = 2π × 15 Hz. As before, the system is initially prepared
in its immiscible ground state, where now the 87Rb atoms
(heavier species) configure the core condensate and the 41K
atoms (lighter species) form a shell around it. To trigger the
dynamics, we subsequently modulate the scattering length
aBB time-periodically with amplitude A and frequency ωD

according to the protocol ãBB = aBB + A cos(ωDt ). We also
consider A = 20aB such that the ratio A/aBB ≈ 0.2 is the
same as in Sec. III A. Let us also note in passing that a similar
phenomenology regarding the generation of star-shaped pat-

terns can be realized when modulating the scattering length of
the shell condensate or the trapping potential of either species
(not shown).

Characteristic density profiles of each species showcasing
fivefold [Figs. 5(a1)–5(a3) and Figs. 5(b1)–5(b3)] and seven-
fold [Figs. 5(a4)–5(a6) and Figs. 5(b4)–5(b6)] symmetric pat-
terns are presented in Fig. 5 after applying the periodic driving
of the 87Rb scattering length. More specifically, the above-
mentioned patterns are realized for driving frequencies ωD =
73 Hz (D5) and ωD = 98 Hz (D7), respectively. Of course, it is
possible to dynamically create all the differentm-fold patterns
by using the appropriate driving frequencies. Remarkably, the
patterns appearing in Fig. 5 feature a dynamics similar to that
previously discussed, namely, a particular m-fold symmetric
pattern Dm is repeated exactly at the same location at t + 2Tm
(where Tm is the time period of the driving), thus reveal-
ing its subharmonic nature. However, due to the significant
mass imbalance the same patterns are realized at a different
driving frequency compared to the sightly mass-imbalanced
87Rb - 85Rb scenario. This behavior is also supported by the
ωm(m) dispersion relation derived within the Floquet theory
[see also the discussion following Eq. (7)]. Summarizing,
according to our mean-field calculations we can deduce that
the significant mass imbalance between the species affects the
natural angular frequencies of the emergent patterns and the
time scale of the appearance of the relevant phenomenology.

VI. CONCLUSIONS AND FUTURE CHALLENGES

The interface dynamics of a phase-separated binary BEC
subjected to a periodic modulation of the core-component
scattering length has been investigated using mean-field the-
ory and a Floquet analysis. We have found that, depending
on the driving frequency, the interface becomes unstable to
azimuthal undulations. As a result of the instability, it is
possible to controllably induce patterns of m � 3-fold rota-
tional symmetry in the immiscible two-component system
and to predict their symmetries, as well as their subsequent
time evolution and recurrence. Utilizing Floquet analysis we
derived a dispersion relation which allows us to predict the

033320-7



D. K. MAITY et al. PHYSICAL REVIEW A 102, 033320 (2020)

-12

0

12

y
(µ

m
) nA (a1)

t= 713ms

-12 0 12

x(µm)

-12

0

12

y
(µ

m
) nB (b1)

(a2)

t + T5

-12 0 12

x(µm)

(b2)

(a3)

t + 2T5

-12 0 12

x(µm)

(b3)

(a4)
t= 1223ms

-12 0 12

x(µm)

(b4)

(a5)

t = T7

-12 0 12

x(µm)

(b5)

(a6)

t + 2T7

-12 0 12

x(µm)

(b6)

100

50

0
400

200

0

FIG. 5. Density profiles of (a1–a6) species A (41K) and (b1–b6) species B (87Rb) showing different symmetric patterns, namely, D5 [(a1),
(a2), (a3) (b1), (b2), (b3)] and D7 [(a4), (a5), (a6), (b4), (b5), (b6)], at selected instants in time (see legends) of the long-time dynamics. Tm
refers to the driving period corresponding to the m-fold symmetric pattern Dm. The dynamics is induced by a periodic modulation of the 87Rb
scattering length with amplitudeA = 20aB and frequency ωD = 2π/Tm. The 41K - 87Rb binary BEC contains NA = 5 × 103 and NB = 5 × 103

atoms and it is prepared in its ground state with aAA = 65aB, aBB = 99aB, aAB = 163aB, and trapping frequency ωA = ωB = 2π × 15 Hz.

natural frequencies of the emergent patterns. A close com-
parison between the predictions of the reduced description of
the parametric resonance on the basis of the Mathieu equation
and the mean-field GP framework reveals an adequate agree-
ment between the two approaches as regards quantifying the
relevant intervals of existence of specific patterns in terms of
the driving frequencies and amplitudes. Most importantly, in
cold-atom experiments, these patterns and the corresponding
driving frequencies can be employed to determine the inter-
facial tension. We explicitly calculate the latter by combining
our mean-field and Floquet theory predictions. Moreover, we
have showcased that the interfacial pattern formation can
also be triggered in strongly mass-imbalanced setups and by
modulating the external trapping potential.

In the realm of two spatial dimensions, it would be in-
triguing to examine the corresponding instabilities and con-
sequent pattern formation in the presence of dipolar as well
as spin-orbit interactions or in the context of 2D quantum
droplets [93]. The extension of our results to the high-
amplitude driving regime in order to characterize the cor-
responding pattern formation constitutes another interesting
direction. Certainly, deriving an effective quasi-1D equa-
tion [94] characterizing the interface dynamical evolution,
beyond the linearized stage considered herein, would be an in-
teresting perspective. Moreover, to connect with experiments
such as the one in [63], it would be relevant to extend consid-
erations to a fully 3D setting. Finally, possible alterations of
the emergent patterns caused by the inclusion of interparticle
correlations [95–98] in the current setting would be relevant
to consider.

ACKNOWLEDGMENTS

K.M. acknowledges a research fellowship (Funding ID
No. 57381333) from the Deutscher Akademischer Austausch-
dienst (DAAD). S.I.M. gratefully acknowledges financial
support in the framework of the Lenz-Ising Award of the
University of Hamburg. K.M. thanks A. K. Mukhopadhyay
for a careful reading of the manuscript and insightful dis-
cussions. This material is based on work supported by the

US National Science Foundation under Grants No. PHY-
1602994 and No. DMS-1809074 (P.G.K.). P.G.K. also ac-
knowledges support from the Leverhulme Trust via a Visiting
Fellowship and thanks the Mathematical Institute of the Uni-
versity of Oxford for its hospitality during part of this work.

APPENDIX A: DIMENSIONAL REDUCTION
AND COMPUTATIONAL DETAILS

Let us elaborate on how the full 3D GP equations of motion
boil down to their 2D form used for the calculations presented
in the text. The coupled set of full 3D GP equations, discussed
in the text, can be cast into a dimensionless form by scaling
the spatial coordinates as x′ = x/aosc, y′ = y/aosc, z′ = z/aosc,
the time t ′ = t/ωA, and the wave function � ′

j (x
′, y′, z′) =√

a3osc/Nj� j (x, y, z, t ). Here, the index j = A,B refers to each
of the species of the binary BEC, while aosc = √

h̄/mωA is the
harmonic oscillator length. For convenience, in the following,
we drop the prime sign and assume that the trapping frequency
in the transverse x-y plane satisfies ωA = ωB = ω. The quasi-
2D harmonic trap is achieved by applying a much stronger
trapping in the axial z direction compared to that along
the x-y plane, i.e., ωz � ω. Therefore, under the condition
λ = (ωz/ω) � 1, the wave function of each species can be
factorized as

� j (x, y, z, t ) = ψ j (x, y, t )φ j (z), (A1)

where φ j (z) is the normalized ground-state wave function in
the z direction. Subsequently, the dimensionless form of the
coupled GP equations after integrating over φ j (z) results in
the 2D form:

i
∂ψA(x, y, t )

∂t

=
⎡
⎣−1

2
∇2

⊥+ 1

2
(x2+ y2)+

∑
j

GA j |ψ j (x, y)|2
⎤
⎦ψA(x, y, t )

(A2)
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and

i
∂ψB(x, y, t )

∂t
=

⎡
⎣ − mr

2
∇2

⊥ + 1

2mr
(x2 + y2)

+
∑
j

GB j |ψ j (x, y)|2
⎤
⎦ψB(x, y, t ). (A3)

In these expressions, ∇2
⊥ = ∂2

x + ∂2
y connects to the ki-

netic energy term and mr = mA/mB. Furthermore, GAA =
2NA

√
2πλaAA/aosc and GBB = 2mrNB

√
2πλaBB/aosc refer to

the intraspecies interaction strengths, while G j j′ = Nj′ (1 +
mr )

√
2πλaj j′/aosc is the interspecies interaction strength.

Regarding our mean-field calculations presented in the
text, we numerically solve the above-described GP equa-
tions [Eqs. (A2) and (A3)] using a split-time Crank-Nicolson
method adapted for binary condensates [70–72]. The initial
ground state of the binary system is obtained by propagating
the relevant equations in imaginary time, until the solution
converges to the desired state. Furthermore, the normalization
of the j-species wave function is ensured by utilizing the
transformation ψ j → ψ j

‖ψ j‖ at every instant of the imaginary-
time propagation until the energy of the desired configuration
is reached with a precision of 10−8. Having these solutions at
hand as initial conditions, at t = 0, we study their evolution
in real time. The corresponding simulations are performed
within a square grid containing 400 × 400 grid points with
a grid spacing 
x = 
y = 0.05. The time step of the integra-
tion 
t is chosen to be 10−4.

APPENDIX B: DYNAMICAL EMERGENCE OF PATTERNS
UPON MODULATING THE SCATTERING LENGTH OF

THE SHELL CONDENSATE

In the text, the pattern formation on the immiscible BEC
interface has been demonstrated by applying a periodic mod-
ulation of the scattering length aBB of the core component
consisting of 85Rb atoms. This particular parameter choice
is especially motivated by the already demonstrated exper-
imental feasibility of tuning the scattering length of 85Rb
atoms by means of Feshbach resonances [64]. In the fol-
lowing, we argue that the above-described parametric insta-
bility phenomenon, being an azimuthal symmetry-breaking
phenomenon, is quite generic for an immiscible condensate in
the sense that it is manifested through the periodic driving of
any of the involved intra- and interspecies scattering lengths.

To support our arguments we demonstrate that it is pos-
sible to dynamically generate the above-mentioned patterns
following a time-periodic modulation of the shell condensate
scattering length aAA. More specifically, we consider a binary
bosonic mixture of 87Rb - 85Rb atoms, labeling 87Rb (85Rb) as
species A (B). Both species are confined in a 2D isotropic har-
monic trap with frequencies ωA = ωB ≡ ω = 2π × 15 Hz.
The intra- and interspecies scattering lengths are chosen to be
aBB = 75aB, aAA = 99aB, and aAB = 213aB, while the two
species contain, respectively, particle numbers NA = 104 and
NB = 5 × 103. Evidently, the initial state is the same as the
one considered in the text, namely, the 87Rb and the 85Rb form
the core and shell condensates, respectively. To trigger the

dynamics, we apply the modulation ãAA = aAA + A cos(ωDt )
of the scattering length of the shell condensate. In particular,
we consider A = 20aB such that A/aAA ≈ 0.2.

Characteristic density profiles of each species in the course
of the time evolution are presented in Fig. 6, where the
pattern formation occurring at the interface of the binary
BEC is illustrated. In particular, as a case example, we show-
case the dynamical formation of fourfold [Figs. 6(a1)–6(a3)
and Figs. 6(b1)–6(b3)] and sevenfold [Figs. 6(a4)–6(a6) and
Figs. 6(b4)–6(b6)] symmetric patterns following the periodic
driving of the 87Rb scattering length. These patterns are gen-
erated subharmonically, which is evident from their repetition
at t ′ = t + 2Tm. The above-mentioned patterns are realized
for driving frequencies ωD = 69 Hz (D4) and ωD = 168 Hz
(D7), respectively. We remark that also other patterns pos-
sessing a different m-fold symmetry can be formed within
this protocol in the considered setting (results not shown
for brevity). Finally, we mention in passing that the same
overall phenomenology can be identified by considering the
same setup (as in the text) but modulating the interspecies
scattering length aAB, namely, ãAB = aAB + A cos(ωDt ), e.g.,
with A = 40aB. Remarkably, also in this case a variety of
m-fold symmetric patterns can again be realized for distinct
driving frequencies ωD (not shown).

APPENDIX C: DERIVATION OF THE MATHIEU
EQUATION

Here we discuss in detail the derivation of the Mathieu
equation within the Floquet analysis [18,78–80] presented in
the text. In particular, we start from a pair of 3D equations
which are subsequently reduced to a form including only a
single degree of freedom that is able to describe the emergent
pattern formation in two dimensions. Following the Madelung
transformation [83] of the condensate wave function, namely,
� j (r, θ, z) = √

n j (r, θ, z)eiφ , with n j and φ j being the density
and the phase of the j species and using the superfluid velocity
v j = h̄

m j
∇φ j [84], the hydrodynamic form of the GP equations

regarding v j is written

−mA
∂vA

∂t
= ∇PA

nA
, −mB

∂vB

∂t
= ∇PB

nB
. (C1)

Integrating these equations we can easily show that the effec-
tive pressure terms of the species Pj satisfy

PB − PA = h̄nA
∂φA

∂t
− h̄nB

∂φB

∂t
+C, (C2)

where C is an integration constant. Subsequently, we
decompose the fluid pressure Pj into a so-called static
part, Ps

j , and a dynamical one, Pd
j . In particular, before the

onset of the patterns only the static pressure is present in
the system, while both of them exist afterwards. Note that
Ps
j can be obtained considering that the phase φ j remains

constant before the undulation of the interface starts, i.e.,
∂φ j

∂t ≈ 0. Therefore considering that PA = 1
2 (mAnAv2

A) +
h̄2

√
nA

2mA
∇2√nA + gAAn2A + 1

2mAnAω2(r2 + λ2
Az

2) and

PB = 1
2 (mBnBv2

B) + h̄2
√
nB

2mB
∇2√nB + gBBn2B + 1

2mBnBω2(r2 +

033320-9



D. K. MAITY et al. PHYSICAL REVIEW A 102, 033320 (2020)

-12

0

12

y
(µ

m
) nA (a1)

t=522ms

-12 0 12

x(µm)

-12

0

12

y
(µ

m
) nB (b1)

(a2)

t + T4

-12 0 12

x(µm)

(b2)

(a3)

t + 2T4

-12 0 12

x(µm)

(b3)

(a4)
t= 216ms

-12 0 12

x(µm)

(b4)

(a5)

t = T7

-12 0 12

x(µm)

(b5)

(a6)

t + 2T7

-12 0 12

x(µm)

(b6)

200

100

0
400

200

0

FIG. 6. Density profiles of (a1–a6) species A (87Rb) and (b1–b6) species B (85Rb) exhibiting different symmetric patterns, i.e.,D4 [(a1), (a2),
(a3) (b1), (b2), (b3)] and D7 [(a4), (a5), (a6), (b4), (b5), (b6)], at selected instants in time (see legends) of the long-time dynamics. Tm refers to the
driving period in which the m-fold symmetric pattern Dm dynamically appears. The dynamics is triggered by a periodic modulation of the 87Rb
scattering length with amplitude A = 20aB and frequency ωD = 2π/Tm. The 87Rb - 85Rb binary BEC possesses NA = 104 and NB = 5 × 103

atoms and it is initialized in its ground state with aAA = 99aB, aBB = 75aB, aAB = 213aB, and trapping frequency ωA = ωB = 2π × 15Hz.

λ2
Bz

2)1 + 1
2mBnBω2r2b cos(ωDt ), it holds that

Ps
B − Ps

A = 1
2mBω2nBr

2b cos(ωDt ) + gBBn
2
B − gAAn

2
A. (C3)

To arrive at Eq. (C3) we have assumed that the background
density is uniform and as a result the modulation of the
harmonic potential impacts only the BEC interface. The con-
stant C′ = gBBn2B − gAAn2A can be found from the standard
pressure jump condition at the interface [see also Eq. (4)].
For a cylindrical surface, which we have considered herein,
R2 → ∞ and R1 → R. As a consequence,

[
Ps
B − Ps

A

]
r=R = 1

2
mBω2nBbR

2 cos(ωDt ) +C′ = σ

R
, (C4)

which readily implies that

C′ = −1

2
mω2

BnBbR
2 cos(ωDt ) + σ

R
. (C5)

In this way, the difference in the static pressure term
between the species is given by

Ps
B − Ps

A = 1

2
mBω2nBb(r

2 − R2) cos(ωDt ) + σ

R
, (C6)

and accordingly the dynamical one acquires the form

Pd
B − Pd

A = h̄nA
∂φA

∂t
− h̄nB

∂φB

∂t
. (C7)

Furthermore, after the onset of the instability, the curved
surface of the cylinder is deformed. Accordingly, for a de-
formed cylindrical surface with deformation ζ , the right-hand
side of Eq. (4) can be linearized [85] as follows:

σ

[
1

R1
+ 1

R2

]
= σ

R
− σ

[
1

R2
+ 1

R2

∂2

∂θ2
+ ∂2

∂z2

]
ζ . (C8)

Moreover, the left-hand-side of Eq. (4) can be linearized
around r = R (using the Taylor series expansion) as

[PB − PA]r=R+ζ = σ

R
+ nBmBω2bR cos(ωDt )ζ

+ h̄nA
∂φA

∂t
− h̄nB

∂φB

∂t
. (C9)

Equating Eq. (C8) and Eq. (C9) at r = R we then get

h̄nA
∂φA

∂t
− h̄nB

∂φB

∂t
= −mBω2nBbR cos(ωDt )ζ

− σ

[
1

R2
+ 1

R2

∂2

∂θ2
+ ∂2

∂z2

]
ζ .

(C10)

Let us then write the deformation ζ (r, θ, z, t ) in the form

ζ (θ, z, t ) =
∞∑
m=1

ζm(t )e
i(mθ+kz). (C11)

Furthermore, the phase terms φA and φB following the solu-
tion of the Laplace equation [99] ∇2φ j = 0 can be expressed
as

φA(r, θ, z, t ) =
∞∑
m=1

PKm(kr)e
i(mθ+kz) (C12)

and

φB(r, θ, z, t ) =
∞∑
m=1

QIm(kr)e
i(mθ+kz), (C13)

where Im(kr) and Km(kr) denote the mth-order modified
Bessel functions of the first and second kind, respec-
tively [86]. Also, P and Q are constants while the integers m
and k are the azimuthal and axial wave numbers, respectively.

The kinematic boundary condition is defined as [85]
∂ζ

∂t
= vAr(r = R) = vBr(r = R). (C14)

Employing Eq. (C14)we arrive at

dζm(t )

dt
= h̄k

mA
PK ′

m(kR) = h̄k

mB
QI ′m(kR). (C15)

Consequently,P andQ can be obtained from Eq. (C15). Then,
by utilizing Eqs. (C12) and (C13), we can write the phase of
species A as

φA(r, θ, z, t ) =
∞∑
m=1

dζm(t )

dt

mAKm(kr)

h̄kK ′
m(kR)

ei(mθ+kz) (C16)
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and that of species B as

φB(r, θ, z, t ) =
∞∑
m=1

dζm(t )

dt

mBIm(kr)

h̄kI ′m(kR)
ei(mθ+kz). (C17)

Substituting Eqs. (C16) and (C17) into Eq. (C10), we get

∞∑
m=1

[
nAmA

Km(kR)

kK ′
m(kR)

d2ζm

dt2
− nBmB

Im(kR)

kI ′m(kR)
d2ζm

dt2

]
ei(mθ+kz)

=
∞∑
m=1

[
− mBω2RnBb cos(ωDt )

+ σ

(
m2 − 1

R2
+ k2

)]
ζme

i(mθ+kz). (C18)

Next we let k → 0 and use lim
k→0

Km (kR)
kK ′

m (kR)
= lim

k→0

Im (kR)
kI ′m (kR)

= R
m to

arrive at

d2ζm

dt2
+ σm(m2 − 1)

R3(mBnB − mAnA)

×
[
1 − mBω2nBR3b

σ (m2 − 1)
cos(ωDt )

]
ζm = 0. (C19)

Equation (C19) has the form of the so-calledMathieu equation
used in the text. Note that Eq. (C19) possesses only one
degree of freedom, i.e., ζm, which is the amplitude (associated
with the radial direction) of the mth mode (related to the
azimuthal direction), thus highlighting the 2D nature of the
patterns. Moreover, the choice of k → 0 indicates the absence
of wave excitations along the z direction. The latter ensures
that the dynamics of the system is “frozen” in the z direc-
tion. Recall that we have also utilized this approximation in
order to reduce the full 3D GP equations of motion into 2D
ones. Another important observation is that the parameters
R, nB, and nA determine the natural angular frequencies of
the emergent patterns, while the values of these parameters
used within the Floquet analysis are taken from the initial
state obtained via the full GP calculations. Hence even though
the interspecies interaction gAB does not explicitly appear in
the relevant equations of the Floquet analysis, its effect is
implicitly included in the values of R, nB, and nA. In other
words, any modification of gAB in the initial state of the binary
BEC would definitely shift the natural angular frequencies
of the patterns, since it alters the magnitude of R, nB, and
nA. For instance, if gAB is increased, then R decreases and
consequently nB increases, leading in turn to a modification
of the respective natural angular frequency ωm [see also the
discussion below Eq. (7) in the text].
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