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Abstract
In this work, a systematic study, examining the propagation of periodic and soli-
tary waves along themagnetic field in a cold collision-free plasma, is presented.
Employing the quasi-neutral approximation and the conservation ofmomentum
flux and energy flux in the frame co-traveling with the wave, the exact analyt-
ical solution of the stationary solitary pulse is found analytically in terms of
particle densities, parallel and transverse velocities, as well as transverse mag-
netic fields. Subsequently, this solution is generalized in the form of periodic
waveforms represented by cnoidal-type waves. These considerations are fully
analytical in the case where the total angular momentum flux L, due to the ion
and electron motion together with the contribution due to the Maxwell stresses,
vanishes. A graphical representation of all associated fields is also provided.
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1. Introduction

The study of solitary waves, their dynamics and interactions, as well as the associated notions
of integrability and soliton theory have been long thought to originate with the famous Fermi-
Pasta-Ulam-Tsingou problem [1]. Arguably, though, the explosion of interest in the field came
a decade later and is chiefly credited to the numerical study of the FPU problem, and asso-
ciated remarkable properties of the Korteweg–de Vries (KdV) equation, reported by Kruskal
and Zabusky [2]. What is perhaps far less well-known is that a major part of the associated
motivation (even cited as such in the work of [2]) stemmed from work at around the same time
in the study of traveling waves in plasmas. More well-known in this regard is the seminal work
of Washimi and Taniuti [3] connecting the dynamics of ion-acoustic waves in plasmas to the
KdV equation. Yet, a ‘well-kept secret’ since its inception already many years earlier (i.e., in
1958–1960) has been the work of Adlam andAllen [4, 5]. These authors developed a model for
the propagation of a solitary wave in a collisionless plasma along the x− and y−directions cou-
pled with dynamics in the x− and y−directions for the electric field and a transverse magnetic
field Bz.

Recently, the propagation of finite amplitude waves across a magnetic field in cold plasmas
has been revisited for the demonstration of the j× B force in a collisionless plasma [6]. On the
other hand, some time ago, Montgomery [7] and Saffman [8] (see also Tidman and Krall [9])
discussed the large amplitude waves propagating along the magnetic field. Such parallel prop-
agating solitary waves have been further examined with the core filled by oscillatory structures
in more recent works. For example, Sauer et al [10] and Dubinin et al [11] discussed stationary
nonlinear solutions, including localized waveforms with oscillating phase, looking like enve-
lope solitons in the wave frame. Keeping in view this framework, Cattaert and Verheest [12]
analyzed large amplitude weakly nonlinear (KdV type) oscillatory solitary structures in the
plasma frame. Such a treatment has further been employed in solitary waves in dusty plasmas
[13, 14]. In all the above cases, the core purpose is to obtain a one-dimensional solution which
describes the motion of a pulse or solitary wave in the direction perpendicular or parallel to the
magnetic field. Over the past year, both of these directions have been further considered. More
specifically, in reference [15], analytical expressions in the co-traveling frame, for the form of
the longitudinally propagating solitary wave, were obtained. Concurrently, in the transverse
field case, the work of [16] examined various generalizations; these include the interaction of
two solitary waves (identifying their repulsion), as well as periodic (cnoidal) solutions, that
were identified numerically, which generalize the solitary waveform (and possess the latter as
a special limit).

The presentwork studies analytically—and complements the analyticswith numerical iden-
tification when needed—the system of equations for fully nonlinear electromagnetic waves
propagating along a uniform magnetic field in a cold collisionless plasma. The oscillatory
solutions of transverse particle velocities and transverse magnetic fields are derived without
linearization.We shall solve the present problemusing the concept of quasineutrality. In partic-
ular, it is assumed that an electrostatic field is produced by an infinitesimal difference between
the electron and ion densities; the Gauss’ law for the electric field is not employed. The con-
cept is valid in the case where the electron plasma frequency is much greater than the electron
gyrofrequency. However, in a strongly nonlinear case, the possible deviation from quasineu-
trality condition in the longitudinal direction can be significant. In reference [19], the properties
of ion- and electron-acoustic (longitudinal) solitons in a plasma without a magnetic field are
considered with the understanding that solitons carry out one-way transfer of charged particles
at a distance of several Debye radii. In particular, the electric currents with a DC component
were induced. Subsequently [20], it was shown that these currents can be significant in the case
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of large amplitudes. These considerations were further analyzed in the experimental study of
dust-acoustic soliton currents [21]. This is, as can be observed from the above works, a partic-
ularly active direction of research, yet here we will restrict considerations to the regime where
quasineutrality is a valid approximation.

The problem of interest herein is exposed in its full generality by involving nine space-time
dependent fields, namely five velocity fields, two (transverse) magnetic fields, an electric field
and a charge density field. Expressions for all of them are provided. The starting point is a
reduction of the problem to an effective two- and eventually (through a polar decomposition)
one degree-of-freedom problem for the transverse magnetic field components. In these vari-
ables, the solitary wave case of [15] is initially retrieved and is subsequently generalized to
periodic solutions in the form of cnoidal waves. The derivation of the solitary wave is found
to be analytically possible in the case of a vanishing angular momentum flux L (which is due
to the ion and electron motion and the contribution due to the Maxwell stresses) in the plane
of the transverse magnetic field. In the appendix A, we discuss the case of non-zero L which is
of mathematical interest as it yields solely a possibility for periodic waves which we numeri-
cally reconstruct. In the astrophysical context, the present study may have applications in the
Earth foreshock region and Jupiter’s bow shock region where oscillatory solitary structures are
expected naturally under many different conditions [22]. Nevertheless, we are not presently
aware of an experiment that has observed the relevant structures.

Our presentation is structured as follows. In section 2, we revisit the analytical formulation
of the problem in dimensionless units and reduce it to the two degree-of-freedom system for
the transverse magnetic fields. In section 3, we discuss the analytical solutions and connect
the problem to a Duffing oscillator, obtaining also the cnoidal wave solutions for the case of
vanishing L. In section 4, we summarize our findings and present a number of conclusions, as
well as directions for future research. The appendix A contains the case of non-vanishing L
and a mathematical discussion of the reconstruction of the (solely) periodic orbits of the latter.

2. Basic equations of motion

The framework of physical interest, similarly to the case of [15], is as follows. We wish
to describe ions and electrons propagating under a common velocity field and electric field
along the x-direction. In the quasi-neutral setting of interest (where the charge carriers satisfy
ne ≈ ni = n), the opposite charges bear unequal velocities along the y- and z−directions. In
these directions, there exists a nontrivial (non-constant) magnetic field By and Bz. For a cold
collisionless plasma, first we write the equations in SI units governing the motion of a cold gas
consisting of electrons and one type of positive ion, as follows:(

∂

∂t
+ vs · ∇

)
vs =

qs
ms

[E+ vs × B] , (1)

and
∂ns
∂t

+∇ · (nsvs) = 0. (2)

The index s can either stand for e, i.e., electrons or for i, i.e., ions. In response, the
electromagnetic fields generated by particle motion are:

∇× E = −∂B
∂t

,

∇× B = μ0

∑
s

qsnsvs + ε0μ0
∂E
∂t

,
(3)
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wherems = me,i are the respective masses, ε0 and μ0 denote vacuum’s electric permittivity and
magnetic permeability, respectively, qs = ±e is the charge, and ns is the density of the charges.
We add equation (1) for ions and electrons and obtain:

nD (mivi + meve) =
1
μ0

[
(B · ∇)B− 1

2
∇
(
B2

)]
. (4)

Here, we have used the total derivative notation D = ∂
∂t + vx ∂

∂x for compactness. The electric
stresses are negligible, since quasi-neutrality has been assumed. The above vector equation
only refers to change in momentum flux. From equation (1), the energy equation can also be
written down immediately as follows:

mtn
2
Dv2x +

min
2
Dv2i⊥ +

men
2
Dv2e⊥ = 0. (5)

2.1. Normalized equations

In what follows, and although it is possible to work with equations (1)–(5) as expressed in
dimensional units, it is convenient—for notational simplicity and more straightforward con-
nection with the numerical results—to use dimensionless equations. Before that, recall that
the full set of fields involves, in addition to the density, the magnetic and electric fields, B =
(B1,By(x),Bz(x)) andE = (E(x), 0, 0) respectively, as well as the velocity field (vx , vey,iy, vez,yz).
Notice the common velocity along the x-axis vx of the electrons and the ions. More specifi-
cally, we start by rewriting the equations in normalized form. The unit for the distance is d =√
memi/e2μ0n1(me + mi). The corresponding characteristic speed vA = B1/

√
μ0N1 (me + mi)

is the Alfvén velocity, Ωe = eB1/me is the electron angular frequency and α = me/mi is the
mass ratio. The unit for the velocity employed in this paper was obtained by multiplying the
distance d by Ωe (i.e., v∗ = vA√

α
). We then define the normalized variables: t �→ Ωet,Ex �→

Ex/v∗B1, x �→ x/d, v �→ v/v∗, B �→ B/B1. In these units, the equations become dimensionless
in the form that we now discuss.

(a). Dimensionless equations for electrons and ions: by implementing the above mentioned
rescaling, we acquire the dimensionless form of the Newtonian equations of motion of the
particles (electrons and ions with respective subscripts), involving the force from the electric
and the magnetic field (v× B).

(
∂

∂t
+ vx

∂

∂x

)⎛
⎝vx
vey
vez

⎞
⎠ = −

⎡
⎣
⎛
⎝Ex0

0

⎞
⎠+

⎛
⎝veyBz − vezBy

−vxBz + vez
vxBy − vey

⎞
⎠
⎤
⎦ , (6)

(
∂

∂t
+ vx

∂

∂x

)⎛
⎝vx
viy
viz

⎞
⎠ = α

⎡
⎣
⎛
⎝Ex0

0

⎞
⎠+

⎛
⎝viyBz − vizBy

−vxBz + viz
vxBy − viy

⎞
⎠
⎤
⎦ . (7)

Notice once again that in the above equations the electric field lies along the x-direction,
while the magnetic field B1 is constant along the same direction and has now been normalized
to unity. In equations (6) and (7), the derivatives are the total derivatives involving traveling
along the x−direction, hence a potential traveling configuration will simply mean that we set
the partial derivatives with respect to the (dimensionless) time to zero, allowing the waves to
move along the x direction without changing shape.
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(b). Additional field equations. In addition to equations (6) and (7), we have the continuity
equation for the density (of both ions and electrons in our quasi-neutral setting):(

∂

∂t
+ vx

∂

∂x

)
n+ n

∂vx
∂x

= 0, (8)

while the full set of 9 equations for the 9 fields is completed by the two componentsofAmpére’s
Law along the y− and z−direction:

∂By
∂x

=
n

α+ 1
(viz − vez) , (9)

∂Bz
∂x

= − n
α+ 1

(
viy − vey

)
. (10)

It is worthwhile to note that algebraic manipulations of the 6 Newtonian equations can lead
to a reformulation of 3 of them as momentum flux equations [15] in the following form:

Dvx +
α

n
∂B2

⊥
∂x

= 0,

D

(
1
α
viy + vey

)
− α+ 1

n
∂By
∂x

= 0,

D

(
1
α
viz + vez

)
− α+ 1

n
∂Bz
∂x

= 0,

(11)

where again we use D = ∂
∂t + vx ∂

∂x , and B
2
⊥ = B2

x + B2
y . Here, it is interesting to note that

the electric stresses are negligible compared to the magnetic stresses when the concept of
quasineutrality is employed.

2.2. Equations in co-travelling frame

Remarkably, and despite their complexity for a multitude of fields, it is possible to tackle the
above 9 equations when looking for a traveling wave. We thus now turn to the setting of
solutions that do not depend on time explicitly. There are two potential approaches towards
reducing the problem. One is to attempt to solve the equations involving the transverse mag-
netic components as a function of the speeds, and formulate ordinary differential equations
(ODEs) for the latter. The second is to express the velocity fields in terms of By and Bz; here, we
follow this latter approach.As explained before, in the co-traveling frame, the partial derivative
with respect to time vanishes. This way, the relevant Newtonian ODEs read:

(a). For electrons:

vx
∂

∂x

⎛
⎝vx
vey
vez

⎞
⎠ = −

⎡
⎣
⎛
⎝Ex0

0

⎞
⎠+

⎛
⎝veyBz − vezBy

−vxBz + vez
vxBy − vey

⎞
⎠
⎤
⎦ , (12)

(b). For ions:

vx
∂

∂x

⎛
⎝vx
viy
viz

⎞
⎠ = α

⎡
⎣
⎛
⎝Ex0

0

⎞
⎠+

⎛
⎝viyBz − vizBy

−vxBz + viz
vxBy − viy

⎞
⎠
⎤
⎦ . (13)

5
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The continuity equation is now reduced to a simple algebraic equation:

n vx = C (14)

The momentum flux equation (11) can now be integrated to yield:

Cvx
α

+
1
2
B2
⊥ = E1,

C
α+ 1

(
1
α
viy + vey

)
− By = E2,

C
α+ 1

(
1
α
viz + vez

)
− Bz = E3,

(15)

whereE1,2,3 are the corresponding integration constants. Equation (15) describe themomentum
flow in the three directions x, y and z. The first term on the left-hand side (in all three equations)
is clearly the rate of flow of momentum of the particles in the directions x, y and z. The second
term is the rate of flow of momentum associated with the magnetic field.

(c). Equations for the two-dimensional potential well. One can now combine themomentum
flux equations for the y− and z− components of the velocity field with the Ampére’s law
components, and express viy,ey and viz,ez in terms of the transverse magnetic field components
By and Bz. The resulting equations read:

viy,e =
αBy
C

+
(−α, 1)

n
∂Bz
∂x

+
α

C
E2, (16)

viz,ez =
αBz
C

+
(α,−1)

n
∂By
∂x

+
α

C
E3. (17)

We now differentiate the components of Ampère’s law with respect to x, multiply by vx, and
substitute the resulting velocity derivatives from Newton’s equations, as well as the velocity
components in terms of the magnetic fields By,Bz [see equations (16) and (17)]. This way,
we can obtain the following pair of equations involving solely the transverse magnetic field
components:

vx
∂

∂x

(
vx
∂By
∂x

)
= − ∂Φ

∂By
− (1− α)

n
C
∂Bz
∂x

, (18)

vx
∂

∂x

(
vx
∂Bz
∂x

)
= − ∂Φ

∂Bz
+

(1− α)
n

C
∂By(x)
∂x

, (19)

where the effective potential Φ can be defined as:

Φ ≡ Φ
(
By,Bz

)
=

1
8
αB4

⊥ − 1
2
α (E1 − 1)B2

⊥ + α
(
E2By + E3Bz

)
. (20)
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2.2.1. Conservation laws for the two-dimensional system. By multiplying the first of
equation (18) by ∂By

∂x and similarly equation (19) by ∂Bz
∂x , and adding the two we get

1
2

[(
vx
∂By
∂x

)2

+

(
vx
∂Bz
∂x

)2
]
+Φ

(
By,Bz

)
= W = const. (21)

The above equation implies thatW is a conserved quantity for the system. Here,W stands for
the difference between the flux of total kinetic energy and the kinetic energy carried by the
plasma particles along x−direction.

One can similarly manipulate the two equations (18) and (19) (multiplying the first by Bz
and the second by By and subtracting) to obtain another conserved quantity, namely:

Bz

(
vx
∂By
∂x

)
− By

(
vx
∂Bz
∂x

)
+

(1− α)
2

B2
⊥ − α

∫ (
E2Bz − E3By

)
dx = L = const, (22)

where L represents the total angular momentum flux. The explicit presence of an integral
in equation (22) suggests that it is far more amenable to analytical (or semi-analytical)
manipulations in the case of E2 = E3 = 0. We will return to this point in what follows.

(a) Polar coordinate analysis of the ODEs. Using a polar decomposition in the form:

By = B⊥ cos θ, Bz = B⊥ sin θ,

we obtain (
∂By
∂x

)2

+

(
∂Bz
∂x

)2

=

(
∂B⊥
∂x

)2

+

(
B⊥

∂θ

∂x

)2

. (23)

Upon substituting these in equation (21), we obtain:

1
2

[(
vx
∂B⊥
∂x

)2

+ B2
⊥

(
vx
∂θ

∂x

)2
]
+Φ (B⊥) = W. (24)

Furthermore, the left-hand side of equation (24) is reshaped as:

Bz

(
∂By
∂x

)
− By

(
∂Bz
∂x

)
= −B2

⊥
∂θ

∂x
. (25)

Then, reformulation of the corresponding conservation law of equation (22) leads to:[
(1− α)

2
− vx

∂θ

∂x

]
B2
⊥ + α

∫
B⊥ (E2 sin θ − E3 cos θ) dx = L. (26)

Next, using equation (26), we find

vx
∂θ

∂x
=

(1− α)
2

− L
B2
⊥
+

α

B2
⊥

∫
B⊥ (E2 sin θ − E3 cos θ) dx, (27)

which is substituted into equation (24) to give:

1
2

(
vx
∂B⊥
∂x

)2

+
B2
⊥
2

(
(1− α)

2
− L
B2
⊥
+

α

B2
⊥

∫
B⊥ (E2 sin θ − E3 cos θ) dx

)2

+
αB4

⊥
8

− α (E1 − 1)
B2
⊥
2

+ αB⊥ (E2 cos θ + E3 sin θ)−W = 0 (28)

7
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It is now evident that the integral involving E2,3 precludes us from further continuing the
analysis. Hence, we will hereafter assume that E2 = E3 = 0.We now distinguish the following
two possibilities. Either the constant L can be selected to vanish (in line with what was also
done in reference [15]), or it can be selected to be L 
= 0. The former scenario is of direct phys-
ical relevance given the vanishing of the angular momentum. The latter (L 
= 0) case is a topic
of mathematical interest even though it does not appear to us to have a direct physical inter-
pretation in the setting at hand. For this reason, here we focus our analytical considerations to
the case of L = 0, while we relegate the topic of L 
= 0 to an appendix A given the mathemat-
ical interest in the latter case in its own right. Then, the energy conservation of equation (28)
reads:

1
2

(
vx
∂B⊥
∂x

)2

+
B2
⊥
8
(1− α)2 +

αB4
⊥

8
− α (E1 − 1)

B2
⊥
2

−W = 0, (29)

where the first of the momentum flux equations allows us to express:

vx =
α

C

(
E1 −

1
2
B2
⊥

)
.

In line with the discussion of [15], we can express the dimensionless constants of
equation (29) as E1 = M∗2/α and C = M∗, where M∗ = v1/vAe is the electron Alfvén Mach
number 0.5 < M∗ < 0.707. Substituting into equation (29), and introducing the dimensionless
parameter λ2 = M∗2 − (1+α)2

4 , we obtain:

1
2

(
vx
∂B⊥
∂x

)2

+
B2
⊥
8

[
αB2

⊥ − 4λ2
]
−W =

1
2

(
vx
∂B⊥
∂x

)2

+ Veff −W = 0. (30)

The effective potential now naturally assumes the form of the quartic one arising in a Duff-
ing oscillator. Hence it is amenable to analytical considerations as discussed in the following
section.

3. Analytical and numerical solutions

We now tackle the solutions of equation (28), focusing as discussed above on the scenario
where E2 = E3 = 0. We separate the analytically tractable and physically relevant case of
L = 0 which we present here from the numerically examined one of L 
= 0 that is rele-
gated to appendix A. We notice that in all the relevant quantities that we have examined
so far, we do not simply find derivatives such as ∂

∂x , but rather these derivatives always
appear multiplied by vx . This renders it rather natural to consider a transformation of coor-
dinates from x to a new spatial variable x′ that ‘absorbs’ this factor of vx. This is done
by considering the x �→ x′ transformation defined through ∂

∂x′ = vx ∂
∂x . Then equation (29)

becomes:

1
2

(
∂B⊥
∂x′

)2

+ Veff = W, (31)

with the effective potential Veff given by:

Veff = −pB2
⊥ + qB4

⊥, (32)

8
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where p= λ2/2 and q = α/8. Since Veff is of the form of a well-known double-well potential
or Duffing oscillator, we can seek solutions in the form of Jacobi elliptic functions [17]. A key
advantage of this approach is that then the special solitonic solutions of the earlier work of [15]
merely become special cases of the more general elliptic function waveforms. In particular, we
choose:

B⊥(x′) = A dn(bx′, k), (33)

where dn is a Jacobi elliptic function and k is the elliptic modulus. Bearing in mind that

∂B⊥
∂x′

= −bk2Acn2(bx′, k)sn2(bx′, k),

and by also using the identities involving the Jacobi elliptic functions:

k2cn2(bx′, k) = k2 − 1+ dn2(bx′, k),

k2sn2(bx′, k) = 1− dn2(bx′, k),

we get:

1
2

(
∂B⊥
∂x′

)2

=
A2b2(k2 − 1)

2
+

(2− k2)b2

2
B2
⊥ − b2

2A2
B4
⊥. (34)

We substitute (34) to (31) and, by comparing with (32), we infer the solvability
conditions:

W =
A2b2(k2 − 1)

2
, A =

√
p

q(2− k2)
=

2λ√
α(2− k2)

and b =

√
2p

2− k2
=

λ√
2− k2

.

(35)

Thus, there exists a solution of equation (31) of the form of equation (33) with A and b
given by (35). The inverse transformation x′ �→ x is defined through the direct ∂

∂x′ = vx ∂
∂x

transformation which implies dx
dx′ = vx. Thus, using equation (15), it holds that:

x =
∫
vx(x′)dx′ =

α

C

∫ (
E1 −

1
2
B2
⊥

)
dx′. (36)

For the specific form of B⊥, the above becomes

x =
αE1

C
x′ − αA2

2bC
E(am(b x′, k), k) = Cx′ − 2λ

C
√
2− k2

E(am(b x′, k), k), (37)

where E stands for the Jacobi integral of the second kind, and am for the Jacobi ampli-
tude function. It is worth noting that the only free parameter in these solutions is the
elliptic modulus k. As k varies between 0 � k � 1, we switch from a constant (equilib-
rium) solution at the minimum of Veff (for k = 0) to a soliton solution of vanishing energy
(per equation (35)) for k = 1. Any intermediate value gives rise to a periodic solution

9
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Figure 1. Effective Potential (left panel) and soliton solution) for B⊥ (right panel), in
the case L = 0 and k = 1 as given analytically by equations (32) and (33).

with periodicity T = 2K(k) where K(k) stands for the complete elliptic integral of the first
kind.

3.1. The soliton solution for k = 1

In this case, W = 0 as can be seen also in figure 1. For all the calculations in this work, the
values of the parameters C = M∗ = 0.5164⇒ λ = 0.128, have been used. Since W = 0 cor-
responds to the local maximum of the effective potential Veff , the corresponding solution is a
homoclinic one. The form of the B⊥ solution will be a solitonic one as the one depicted in the
right panel of figure 1. In particular, for k = 1, solution (33) becomes

B⊥(x′) = A sech(bx′) =
2λ√
α

sech(λx′), (38)

while the x′ �→ x transformation becomes in this case

x =
∫ x′

0
vx(t)dt =

1
C

∫ [
αE1 − 2λ2 sech2(λx′)

]
dx′

=
1
C

[
αE1x

′ − 2λ tanh(λx′)
]
= Cx′ − 2λ

C
tanh(λx′). (39)

The combined result of (38) and (39) provides the exact form of B⊥ = B⊥(x) shown in the
right panel of figure 1.

As mentioned above, the equation for vx is calculated by the first one among equation (15),
rewritten here

vx =
α

C

(
E1 −

1
2
B2
⊥

)
.

On the other hand, θ can be calculated through (27), which reads for E2 = E3 = L = 0

∂θ

∂x′
=

(1− α)
2

⇒ θ =
(1− α)

2
x′, (40)

by considering (without loss of generality) that the constant of integration θ0 = 0. Using (40)
and (38), we can calculate By and Bz through By = B⊥cosθ,Bz = B⊥ sinθ, while n can be cal-
culated through n = C

vx
. The fields viy,ey and viz,ez are calculated by equations (16) and (17),

namely (for our case of E2 = E3 = 0):

10
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Figure 2. The nine fields (5 velocity components, including a common one, for ions
and electrons, 2 transverse magnetic field components, a longitudinal electric field and
a charge density) which describe the system for L = 0 and k = 1.

Figure 3. Effective potential (left panel) and periodic solution of B⊥ (right panel) for
L = 0 and k = 0.95, as given analytically by equations (32) and (33).

viy,ey =
αBy
C

+
(−α, 1)
C

∂Bz
∂x′

, (41)

viz,ez =
αBz
C

+
(α,−1)
C

∂By
∂x′

, (42)

and finally Ex is given by the first of (12), which in the present case reads

Ex =
1
α

∂vx
∂x′

− (viyBz − vizBy). (43)

Thus, by recalling also (38) and (39), we can calculate all the fields that are needed for the
full description of our system. The calculation for the present case is shown in figure 2. These

11



J. Phys. A: Math. Theor. 53 (2020) 425701 G Abbas et al

Figure 4. Reconstruction of the nine fields describing the system, as was done previ-
ously in figure 2, but now the solutions with L = 0 and k = 0.95.

results are in line with the recent analysis of reference [15] and illustrate the ability of our
formulation to not only retrieve these earlier findings (in an arguably more intuitive fashion
from a dynamical systems point of view), but also the potential to extend them as will be done
below. It is worthwhile to also note that the B⊥ field, as well as ones that depend directly
on that such as vx and n, have a ‘regular’ solitonic form. However, quantities involving the
components of the magnetic field and the ones of the velocities (for both ions and electrons) in
the transverse directions feature oscillations whose origin is nowmore transparent. These stem
from the polar decomposition of the transversemagnetic field, endowing one of its components
with a cosinusoidal and another with a sinusoidal variation, so that the relevant fields bear
substantial resemblance to the notions of envelope solitons [18].

3.2. Periodic solutions for k = 0.95 and k = 0.4 (L = 0)

We now turn to the generalization involving the genuinely periodic state solutions.When k 
= 1,
the total energy is W < 0. In particular, for k = 0.95 we get W = −0.08, as can be seen in
the left panel of figure 3. The corresponding solution of B⊥ is now indeed periodic and not
solitonic; see the right panel of figure 3.

Importantly, the same reconstruction path of equations (39)–(43) can be utilized to obtain
all 9 of the associated fields. In figure 4, the corresponding quantities and their spatial profiles
(with respect to x) are depicted. In the panels of B⊥ and vx a clear elliptic function behavior can
be recognized. The same periodic behavior is obvious for n and Ex; notice the analogy of all of
these features with the limiting case of k→ 1, where essentially the additional periods of the
central wave are pushed to∞. On the other hand, the behavior of the rest of the examined fields
is quasi-periodic, due to the simultaneous action of two periodic quantities bearing different
periodicities, namely B⊥ and θ. Nevertheless, this quasi-periodic pattern can be analytically
constructed through the decompositions and building blocks presented herein.
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Figure 5. Effective potential (left panel) and periodic solution (right panel) of B⊥ for
L = 0 and k = 0.4 as given analytically by equations (32) and (33).

Figure 6. Similar to figure 4, but now for L = 0 and k = 0.4.

In the case k = 0.4, the value of the total energy isW = −0.24 (see left panel of figure 5).
Since the motion now occurs close to the local minimum of Veff , the corresponding behavior is
close to the harmonic one as it can be seen both in the right panel of figure 5 and in figure 6. This
will be progressively more so as we approach the minimum of the potential, which is Veffmin �
−0.2467 and occurs for B⊥ � 0.759. Nevertheless, the transverse velocity and magnetic fields
retain their quasi-periodic functional form in this case too, as k→ 0 and we tend to the near-
linear, small amplitude (trigonometric) limit of the theory.

4. Conclusions and future work

In the present work we have provided a full formulation, in the form of partial differential
equations for nine fields, of the problem of longitudinal wave propagation in a cold, quasi-
neutral, collision-free plasma. The guiding principles involved the Newtonian dynamics at the
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level of the ions and the electrons, the equation of continuity and the Ampére law’s compo-
nents. This enabled the development of a system of nine equations for the five components
of the velocity vx, viy,ey, viz,ez, the two components of the transverse magnetic field (By,Bz), the
density n and the electric field Ex. While considering the full set of nine PDEs at the numer-
ical level remains a particularly challenging task, we have been able to achieve a substantial
simplification by considering the co-traveling frame. We have considered the reduction of the
resulting nine ODEs into, arguably, the simplest formulation of a 2× 2 system for the trans-
verse magnetic field components. This was eventually converted to a single degree of freedom
setting via L considerations (with L being the total angular momentum flux). This allowed us
to remarkably not only retrieve the solitary wave solutions of reference [15] for all the relevant
fields, but also to provide a platform for generalizing these considerations to a mono-parametric
family of periodic function solutions. We explained how/why some of the fields (like B⊥, vx ,
n or Ex) feature solitonic or periodic character, while others (the transverse components of the
velocity or the ones of the magnetic field) have, respectively, an envelope-soliton- or periodic-
nature. In appendix A, we also consider the case of mathematical interest with non-vanishing
L. There, the additional centrifugal contribution to the effective potential energy landscape
precludes analytical solutions (and especially so solitary waves), yet still we can numerically
identify periodic orbits in the system.

Naturally, there are numerous directions that are worthwhile to consider for future study
in this vein. From a numerical point of view, it would be particularly interesting to explore
the full set of partial differential equations describing this system, namely equations (6)–(11).
In that framework, our solutions are traveling ones, or equivalently stationary ones in the co-
traveling frame and hence it would also be natural to explore their dynamical stability. From
the point of view of dynamical reductions, it would be particularly interesting (although quite
challenging in its own right) to reduce the solutions via a reductive perturbation method to
solutions of the Korteweg–de Vries or similar equations as was recently done for the transverse
case in reference [16]. In a similar spirit as the latter work, exploring numerically at first the
interactions between different solitary waves would be a topic of interest in its own right,
especially given the fundamentally more complex form (reminiscent of an envelope soliton
in the transverse components) of the solitary waves herein. Lastly, generalizing corresponding
considerations to more complex scenarios, where the traveling wave may not be genuinely one
dimensional, or where a dust granule may interact with the wave, are also of interest. This is
essential because the dusty solitary currents [21] can influence the phenomena considered in
the present analysis. Work along some of these directions is currently in progress and will be
reported in future publications.
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Appendix A. The L 
= 0 case

In the case where L 
= 0, we still select E2 = E3 = 0, so as to have a tractable, effectively one
degree-of-freedom scenario as concerns B⊥. Then, the equation of energy, (28), becomes:
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Figure 7. Effective potential (left panel) and periodic solution of B⊥ (right panel) for
L = 1 and W̃ = −0.15. Ṽeff is given analytically by (A2) while B⊥ is calculated
numerically.

1
2

(
∂B⊥
∂x′

)2

+ Ṽeff = W̃, (A1)

where

Ṽeff = Veff +
L2

2B2
⊥

and W̃ = W +
(1− a)L

2
. (A2)

Since the effective potential Ṽeff does not possess a local maximum at B⊥ = 0 as in the L = 0
case, but it tends to infinity as B⊥ → 0 (e.g. left panel of figure 7), we cannot achieve solitonic
solutions with respect to B⊥. That is to say, solutions with nontrivial L of the transverse mag-
netic field can only be periodic and not solitary wave states; see e.g. right panel of figure 7.
On the other hand, since the potential is convex, there exists an infinite number of periodic
solutions. We cannot acquire these solutions in closed form as before, due to the presence of
the centrifugal potential term in equation (A2), but can study them numerically.

The inverse transformation x′ �→ x is calculated as in the L = 0 case. In addition, since it is
now true (per equation (27)) that

∂θ

∂x′
=

1− α

2
− L
B2
⊥
,

the angle θ is calculated as

θ =
1− α

2
x′ −

∫
L

B2
⊥(x

′)
dx′. (A3)

The various fields which describe our system are calculated as in the L = 0 case.
Let us consider a situation where the total energy of the system is negative W̃ = −0.15

and L is non-zero, i.e., L = 1. This is the case actually depicted in figure 7, where the form of
the effective potential, as well as the corresponding periodic orbit are shown. We can clearly
observe how the divergence of the centrifugal potential as B⊥ tends to smaller values leads to
the sole existence of periodic orbits for the allowable range ofB⊥, such that Veff(B⊥) < W̃. The
various fields are shown in figure 8. The central core of the solution retains a form reminiscent
from before, yet the periodic character of the solution is also evident. We have also explored a
variety of other cases, including ones with the same L but higher W̃ , as well as ones with larger
L and the same W̃ . While the specifics of the solution (e.g., its period or the specifics of the
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Figure 8. Reconstruction of the nine fields describing the system, in this case for L = 1
and effective energy W̃ = −0.15.

quasi-periodicity of the transverse velocity or magnetic components) may change, the over-
arching character of the waveforms does not. Hence, we do not show further such examples
here.
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