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Abstract -
With the expanding size of additive manufacturing prod-

ucts, research pioneers start to explore 3D printing in the
construction field. For 3D construction printing, quality
means safety, cost, and efficiency. However, it is challenging
to ensure quality via defect detection and deviation correc-
tion during the construction printing process. Convention-
ally, defect and deviation still rely on the quality check after
printing is completed or on-site manual monitoring, which
could cause either a waste of material and time to abort
printing or lagging adjustment for printing settings after ob-
vious defect appeared. To overcome these challenges, we
propose a point-cloud-based approach for real-time 3D con-
struction printing defect detection using a 3D camera and
cloud-to-plane distance to evaluate printing layer integrity
and compare printing results with CAD models. We also
define different types of defects and deviations that can cause
printing failure. Additionally, we feedback detection output
into a closed-loop controller for updating the printhead mo-
tion. Our experiments show this joint printing and detection
process handling various defects and deviations.
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1 Introduction
During the last several decades, additive manufacturing

(AM), also widely known as 3D printing, demonstrated an
incredible ability to assist designers and engineers proto-
type and produce rapidly. Recently, the study of 3D con-
struction printing has rapidly risen as a new active area in
the AM communities. A key challenge in 3D construction
printing is monitoring the output quality and in real-time
automatically adjusting the printhead control to reduce de-
viation and avoid structure collapse. To achieve this, 3D
perception should to be tightly coupled into the printing
process, since we need to evaluate not only each layer’s
integrity but also the evolving structure’s shape deviation
from the CAD model.
To acquire 3D shape data, traditional sensors, likemulti-

beam Lidar [1, 2], firmly occupy the high-end manufac-

Figure 1. Illustration of our setup. 1. Concrete print-
ing model. 2. Print head. 3. 3D perception sensor.
4. Color-coded printing error. 5. Control system. 6.
Robot arm. During the printing process, the 3D per-
ception sensor updates error feedback to the control
system for defect and deviation correction.

turing and research of 3D perception. Although it could
provide highly accurate point cloud data, a notable draw-
back of this type sensor is the excessive cost. Another
limitation of this sensor in 3D printing is the difficulty of
point cloud segmentation in post-processing due to their
spare coverage on the printing output. To overcome these
drawbacks, a different approach is to combine Time-Of-
Flight (TOF) sensor with RGB camera. Microsoft Azure
Kinect (Kinect) benefit from its high resolution TOF sen-
sor, which has a balanced cost and performance. Kinect
could provide precise and densely distributed point cloud
data with RGB information that help us extract useful
points while easily excluding the insignificant background.
Moreover, we can observe the printer’s extruder from
Kinect’s RGB camera in real time, which monitors ma-
terial without interrupting the printing process.
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Figure 2. Our workflow. I. Simultaneous surface defect detection and 3D printing. II. Defect detection after
printing the current layer. III. Error feedback. IV. Error adjustment from the current to the next layer.

With dense RGB point cloud data, we will measure
surface defect and shape deviation compared with the cor-
responding point cloud which is generated from the CAD
model. Cloud-to-plane (C2P) [3] distance is the error
metric we adopt for measuring the difference between two
point clouds. By projecting error vectors along the unit
normal vector of the local plane, this metric could evalu-
ate shape deviation and trigger with preset tolerances the
online printing correction through feedback control.

In this paper, we propose an online approach for in-
creasing the quality of 3D construction printing using a
3D camera and feedback control. To this end, we designed
two experiments testing several different types of defects
and deviation. Due to COVID-19 pandemic and facility
closure, one of our experiment, closed-loop 3D printing,
was only conducted in the simulation environment. The
following are our main contributions in this paper:

• We define three types of printing error in 3D con-
struction printing, includes layer defect and deviation,
surface defect, and model deviation.

• We propose a novel approach for closed-loop 3D con-
struction printing that could help us correct defects
during the printing process.

• We implement a cloud-to-plane shape deviation error
assessment between the point cloud captured by the
3D camera and that generated from the CAD model.

• We design two experiments to demonstrate our ap-
proach under different printing error scenarios.

2 Related Works
Our approach is mainly involved in three major research

domains: 3D construction printing, defect detection and

closed-loop control printing. As our previously men-
tioned, point cloud matching algorithm employed to find
corresponding points between two point clouds and help
us to calculate the error rate between them. Therefore, we
will expand to discuss related research and approaches in
these three areas.

3D Construction Printing. Different from other 3D
printing types, construction 3D printing needs more con-
sideration in product transportation, material property,
printing quality and even aesthetic requirement. Crump et
al. [4], as inventor of fused deposition modeling (FDM)
technology, opened the gate of 3D printing. His method
slices 3D objects to 2D layers and prints by CNC based
machine. Although his approach initially used polymer
filament, this method is also applicable to use other mate-
rials in different regions, such as AM with concrete ma-
terial. Contour crafting [5, 6], present by Khoshnevis,
is one of approach which employed for 3D construction
printing. This approach sets a side trowel on the side
of the extruder to smooth the apparent finish texture pro-
duced by the printing process. Buswell et al. [7] proposed
the concept of Freeform Construction, which brings 3D
printing into mega-scale rapid manufacturing. He aims to
divide the building into a mega-scale section that could
rapidly produce in the factory and assemble at the con-
struction site. Recently, Keating et al. [8] demonstrated a
mobile printing platform called Digital Construction Plat-
form (DCP). DCP used a KUKA robot arm to research the
printing position instead of the gantry-base fixed platform.
Also, the author ofDCPuses two-component polyurethane
closed-cell foam to ensure printing material curing in a
short period of time. 3D construction printing is not only
a popular topic in the research area but also favored by the
construction industry. WinSun [9], a Chinese 3D print-
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Figure 3.MicrosoftAzureKinect.We useRGBcam-
era, Depth camera and Gyroscope in the following
experiments.

ing industry leader company, developed multiply property
material and successfully applied 3D printing to the con-
struction field. Therefore, we need to explore a reliable
method to real-time monitor the quality of 3D printing.
Defect Detection. Currently, defect detection meth-

ods of 3D Printing fall in two different domains, scanning
based and vision based. Scanning based methods usually
use a TOF sensor or with additional auxiliary equipment.
Benefit form scanning whole model, these type methods
could inspect detailing defects, such as tiny surface crack
and local deformation. One of the obvious drawbacks is
time-consuming, that these methods required a screening
window to scan each layer during the printing process.
Moreover, the calibration and preciseness of auxiliary
equipment will directly affect the final accuracy. Lin et
al. [10] used a sliding window to detect filling situations
by a laser scanner, which attaching with printer extruder.
Liu et al. [11] used a camera to measure the target surface
assisting with a line laser and linear translation stage. Im-
age based methods only rely on different types of cameras.
Holzmond et al. [12] demonstrated real time defect mon-
itor system that compares layer point cloud with a model
cross section by using a dual camera under different light
sources. Shen et al. [13] proposed a feature based surface
defect detection approach by contour comparison. There
are also some vision based methods combined with neu-
ral network [14, 15]. The downside is that these methods
require a large amount of data, especially labeled data
for supervised learning. Moreover, most of the methods
above are implemented in polymer FDM 3D printing. Ei-
ther point cloud of one single layer is too sparse or model
defects is difficult to be accurately captured online. There-
fore, all of the above methods only detect defects after
printing and can not correct error during printing process.
Closed-loop Control Printing. Nowadays, researchers

have not only focused on developing new 3D printing tech-
nology, but also hoped to improve the quality and automa-

Figure 4.Defect andDeviationDiagram: (a)Ground
Truth; (b) Layer Defect and Deviation; (c) Surface
Defect; (d) Model Deviation.

tion level of 3D printing, which reducing the degree and
impact of human factors. Different types of 3D printing
have disparate limitations and drawbacks which need to
overcome. For the ink-jet printer, Lu et al. [16] proposed
a feedback controller for finding the best droplet location
to minimize the edge shrinkage effect. Guo et al. [17] in-
corporated feedback measurements to a predictive control
algorithm for avoiding edge shrinking, unreliable dimen-
sions and uneven surfaces. Altın et al. [18] developed a
spatial iterative learning control framework that involves
discrete Fourier transforms and iterative learning control
to improve part’s build quality from a single layer toward
the relationship between two layers. For laser metal depo-
sition (LMD) printing, Sammons and his colleagues [19]
present a stabilizing layer-to-layer controller to track and
compensate for the deposition process. When we ask why
closed-loop control is so important in 3D printing, espe-
cially used in manufacturing, we need to understand that
the nature of 3D printing is repetitive motion. The quality
of the current layer is highly dependent on the previous
layer, such as integrity, flatness and support structure.

3 Method
As shown in Figure 2, the entire 3D printing processing

workflow is divided into four phases. Phase 1 is mainly
composed with the regular 3D printing process and sur-
face defect detection, which also includes layer deviation
detection. Phase 2 includes our original steps, which are
layer defect detection after each layer printing. Phase 3
aims to integrate the error output of phase 1 and 2, then
following to repair the model. The goal of phase 4 is to
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compensate for model shape deviation by adjusting offset.
The detail of the explanation and discussion will present
in section 3.2.

3.1 Hardware Platform

Perception Sensor. Microsoft Azure Kinect, Figure 3,
is a fusion sensor that provides an RGB camera, infrared
sensor, depth sensor, gyroscope with accelerometer and
microphone array. The reason why we chose Kinect as
perception sensor in our approach is that it preset syn-
chronization and calibration-free transformation between
each sensor. The depth sensor model in our research is
set as WFOV 2x2 binned. The nominal range accuracy of
Kinect is less than 11mm in the distance range of 0.25-
2.88m [20]. It provides 512x512 resolution with 0.5m to
5m operating range and 120 degrees field of interest in the
dual-axis, accurate and dense enough for our purpose.
3D Printing Platform. Universal Robot 10e (UR10e)

[21] is a 6-DOF collaborative robot arm that could han-
dle up to 10 kg payload in a 1.3 meters radius and 360
degrees workspace. We designed a concrete print head
with a center mixer and attachment for Kinect. The center
mixer could rotate clockwise to feed material and the op-
posite direction to blockmaterial. We prepared fast setting
mortar mix as our printing material.
Control and Simulation Environment. In order to

better observe printing process, ensure safety environ-
ment and prevent hardware damage, we use ROS [22]
with Moveit [23] in the Gazebo environment to simulate
the printing path. Moreover, we use Gazebo simulation
world and physics engine for simulating and demonstrating
the closed-loop control experiment in section 4.3.

3.2 Defect and Deviation Detection.

When the failure of the 3D printingmodel occurs, defect
and deviation will appear in some places of our model.
Therefore, we need to clarify what is defect and what is
deviation. In this paper, we define a defect as missing
the integrity of the printing layer or material overfill and
underfill on the printing model surface. Similarly, the
deviation is defined as the contour or shape error.

We divide the defect and deviation generated in 3D
construction printing into the following three categories:

LayerDefect andDeviation. Since the printingmodel
is stacked up by multiply concrete layers, it is necessary to
check the defect and contour deviation of each layer. The
cause of layer defect is either the interruption of feeding
material or the impurities contained in the material, such
as air bubbles. Layer deviation is caused by path planning
error or robot arm control accuracy and noise.
We use RANSAC to fit a plane, P̂L , based on the points

in the point cloud, SL , captured from the Kinect sensor.

SL = {(x, y, z)}

P̂L = {(x, y, z)| Âx + B̂y + Ĉz + D̂ = 0}
(1)

By calculating the point to plane distance, di , of each
points in the point cloud, we uses an error index array,
e(di), to record those outliers which compare with the
preset tolerance, λ.

di =
| Âxi + B̂yi + Ĉzi + D̂|√
(A2 + B2 + C2)

(2)

eL(di) =

{
1 |di | ≥ λ
0 |di | < λ

(3)

Surface Defect. The surface of the 3D printing model
is formed by stacking the sides of the layer. Hence, the
obvious layer texture can be observed on themodel surface.
During the printing process, due to changes in the print
head’s motion speed or angle rotation, it will cause the
material to accumulate at some particular positions, thus
forming a class of overfill defect. Unlike overfill, underfill
is happened at the gap between roaster path and contour
path. Additionally, the local collapse by lacking support
will also cause surface underfill.
In order to slice the CAD model for outputting each

layer’s outer surface, we export the CAD design file to
STL format. During printing operation, we subscribe ROS
message which present Kinect’s position in global coor-
dinate system by calculating robot’s forward kinematics.
After that, we use this position to map points cloud into
Kinect coordinate system. By applying Iterative Closest
Point (ICP) algorithm, we identify corresponding point,
pi , for each point, p̂i , between CAD point cloud and scan-
ning point cloud respectively. We minus pi and p̂i to get
error vector. Then we project the error vector along the
unit norm vector Np on point pi in reference point cloud P.
Therefore, the C2P error distance, di , is finally computed
as,

di = min∀pi ∈Ps

(| p̂i − pi | · Np) (4)

Once we have the C2P error distance, we apply (3) to
compute point cloud error array.
Model Deviation. Even our printing model avoiding

previous errors, we may still fall short of our printing
results. The shape deviation we discuss here refers to the
misalignment between layers. To provide misalignment
bias to feedback control system, here we choose absolute
error distance instead of error index array in (3).

eM (di) =

{
di |di | ≥ λ
0 |di | < λ

(5)
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Figure 5. Task 1 results: (a) Layer Defect; (b) Surface without Defect and Deviation; (c) & (d) Surface Defect;
(e) & (f) Model Deviation. Top: RGB point cloud captured by Kinect. Bottom: visualization of C2P error
between scanned point cloud and CAD. Signed error is color coded from red (positive) to blue (negative).

3.3 Closed Loop Control

As we mentioned in the beginning of this section, we
explain and discuss in detail for the each phase setup and
process below:
Phase 1. First of all, we directly export the design

model from CAD drawing software and save it in STL
format. Then we send this STL file to ROS Additive
Manufacturing (RAM) for 3D slicing and path generation.
We import each layer path from RAM output into ROS
MoveIt! to perform path planning. This step helps us
to ensure UR10e avoiding self-collision. Once MoveIt!
does not detect any collision, it will send the trajectory to
UR10e and execute.
At the same time, our point cloud comparison algorithm

is also working as a ROS node during the printing process.
By subscribing pose message, ROS transfer the position
of UR10e’s end effector to point cloud generation. In our
algorithm, we compute the Kinect observation frame and
generate the reference point cloud under the current frame.
On the other side, the Kinect sensor continuously captures
depth images of the layer surface and transmits it back
to our algorithm in real-time. When UR10e completes
printing each layer, our approach will go through the ICP
algorithm to register the scanning point cloud to reference
point cloud and calculate the C2P distance to output the
error-index array.
Phase 2. During exporting error-index array in phase 1,

UR10e move forward to the next phase, which set Kinect
to capture the top view of each layer. By converting RGB
to HSV color space, we able to easily segment layer’s
points from the scanning point cloud. Subsequently, we
apply the RANSAC algorithm to fit a plane from those
layer’s points and output as the planar equation format.
The manipulation of the planar equation can help us check
multiple layer defects. We check the layer’s level corre-
sponding to the horizontal datum. We also find the outlier
compare with our preset distance to find the defect position

Figure 6. Task 1 results. Left: RGB point cloud
captured by Kinect. Right: visualization of Layer
Deviation between scanning point cloud and CAD
file. Signed error is color coded from red (positive)
to blue (negative).

on the layer plane. The same as phase 1’s last step, the al-
gorithm outputs the error-index array to provide feedback
information.

Phase 3. In the previous two phases, we got error-
index arrays. In the feedback loop, we first convert them
into binary error-index arrays to indicate the makeup po-
sition for MoveIt! path planning. During MoveIt! execute
the trajectory path, we able to correct layer deviation be-
fore concrete curing by setting the different angles of side
trowel. Moreover, for those defect positions, the print head
will re-feed concrete with adjusted side trowel.

Phase 4. Benefit from error array provided in phase 1,
the final phase is able to estimate the offset between the
current layer and previous layers on each axis direction.
In this step, we regard the previous layer as an integral
base and only discuss the relationship between the current
layer and the base. Applying compensation could help us
avoid systematic bias, even compensates control noise for
certain special position.
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Figure 7. Task 2 experiment process: (a) Normal Printing without Defects; (b) Printing Complete; (c) Mark
Defect Area; (d) Complete Defect Correction.

4 Experiments
Our experiment is designed as two tasks, static detection

test, and simulation of 3D construction printing. The first
task, static detection, aims to demonstrate our approach
worked as normal defect detection in a static environment.
We will show the three different defects and deviations,
which defined in section 3.2. For the second task, we will
present our complete approach including defect detection
with feedback control during real-time printing. Due to
research facility closure and limited available equipment,
this experiment will be present in the simulation world by
Gazebo.

4.1 Experiments Setup

In Task 1, we are looking for a model that would demon-
strate errors as mentioned in section 3.2. For better sim-
ulate the product of 3D construction printing, including
material property and texture, we made serval half inches
concrete planes by concrete-water mixture in a ratio of 9:1.
We superimposed these concrete planes to build a cubic
shape model. Here, each concrete plane represents corre-
sponding layer in the real printing process. Therefore, we
finally got a cube that is 6.5 inches high and 8.5 inches
in both depth and width. Each concrete plane has two
sides of fixed length and 90 degrees angle, the same as our
CAD design. The other two sides are designed to contain
different deviation and defect, such as material overfill or
layer deviation. We can simulate the errors under various
situations by adjusting the placement and order of concrete
planes, just like we designed in advance.

In Task2, we setup a UR10e robot with a combination
of a simple print head an kinect in Gazebo’s simulation
environment. To prevent the robot arm hitting the ground,
we set the UR10e on a 0.7m high box. Similarly, the print-
ing platform also raised 0.4m accordingly. In this task, our
goal is to use the Kinect to capture the layer defect caused
by interrupt feeding material during the printing process.
Since there is no fluid setting in Gazebo, we made a plugin

Figure 8. Eleven-layer concrete cubic. Top (Blue):
Layer without defect and deviation. Front (Green):
Surface without defects.

that will follow the print head position to place thin yellow
boxes from the waiting area to the target location in real
time. We randomly deleted one segment of materials in
the waiting area. Therefore, UR10e will interrupt printing
even robot arm is still moving. By using the depth camera
plugin, we convert the depth image to a point cloud and use
it as the feedback input of our approach. After the printing
complete, our plugin will mark the defect position in red
first and turn blue after defect correction.

4.2 Defect and Deviation Detection

Figure 5 and Figure 6 present the experiment results in
task 1. For Figure 5, RGB point cloud images in the top
row demonstrate the concrete cubic that we see in the real
world. The images in the bottom row show the difference
between printing model and CAD design by presenting in
heat map. As scale bar shows, the red regions represent the
shrinkage of the model, which means that these regions
do not meet the designed size. Similarly, the dark blue
areas tell us that the printing exceeds CAD design. As
mentioned in section 3.2, tolerance is always a necessary
consideration in the engineering world. We set 0.5cm as
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the tolerance, λ, in (3) and (5).
The images in column (a) are captured by Kinect from

top to bottom after completing each layer. We can see that
there are only slight traces in the top image, even it will not
be noticed, if the observer does not look closely. However,
after generating RGB point cloud, we can easily segment
our target, concrete cubic, from the background by color
space change. The heatmap belowmakes usmore intuitive
to see the defects that are difficult to detect with naked eye
or image based detection approaches. There is a shrink-
age area at the top of the model. In the actual printing
process, the reason of causing this type failure could be
the interruption of feeding material. Furthermore, we can
also determine the layer deviation at the same time. In
Figure 6, the red area presents layer deviation exceeding
the boundary of the CAD design model.
Column (b) in Figure 5 shows an ideal 3D printing

model that we can see that the entire point cloud is the
blue color. Columns (c) and (d) simulate two types of
surface defects, overfill and underfill, respectively. In the
top image of column (c), we can see a prominent material
overflow part in the middle of our printing model. When
we applied our method, the dark blue zone is the detection
of the overfill area. The note that the underfill depth in
column (d) is only 0.7 cm, but our approach still can ac-
curately detect it. For model deviation detection, we sim-
ulate two types of control error, columns (e) and (f), that
cause to misalignment between neighbor layers. Column
(e) simulates the printing drift, which usually occurs in
the control systems with accumulated errors. We choose
random noise for offset error and make the detection in
column (f).

4.3 Closed-loop Control Printing

As Figure 8 shown, our goal is to print a 1 meter cubic.
The initial experiment randomly deletes material for an
arbitrary length. After confirming that our experiment
plan is feasible in the simulation environment, we change
the range of the interruptedmaterial to check the limitation
of our approach. Starting from 20cm, we found, when the
length is less than 2.4cm, ourmethod cannot detect surface
defects. Note that we follow the specs entirely from the
Microsoft Kinect website to set the parameters in Gazebo
depth camera plugin.

5 Conclusion
In this paper, we proposed a front-end closed-loop con-

trol approach for 3D construction printing. We also ex-
plored the feasibility of using point cloud based defect
defection for the construction size printing model. Com-
paring to other methods, our approach demonstrates a high
performance defect detection method with a cost-effective

sensor. As the experiments we showed, we believe that
our proposed approach has great potential in the field of
3D construction printing.
Limitations and Discussions. An obvious limitation

of our approach is that the detection accuracy will signifi-
cantly decrease as a shrink of the printingmodel size. Gen-
erally, a smaller model will require higher performance
and resolution of the 3D perception sensor to detect detail
defects. Since the model size of 3D construction printing
is large enough, and even a single layer could be easily
captured by Kinect. Therefore, this is the main reason
why we propose our method for defect detection in 3D
construction printing.
Future Work. Our future work is aiming to bring

out the real 3D printing product by using our approach.
Furthermore, we believe that our work can ultimately help
constructionworkers improve their safety and construction
quality, help customers achieve their ideal designs, and
reduce material waste to protect our environment.

Acknowledgment
The research is supported by NSF CPS program under

CMMI-1932187.

References
[1] Velodyne lidar. https://velodynelidar.com/.

[2] Ouster lidar. https://ouster.com/.

[3] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert
Cohen, and Anthony Vetro. Geometric distortion
metrics for point cloud compression. In 2017
IEEE International Conference on Image Process-
ing (ICIP), pages 3460–3464. IEEE, 2017.

[4] S Scott Crump. Apparatus and method for creating
three-dimensional objects, June 9 1992. US Patent
5,121,329.

[5] Behrokh Khoshnevis. Automated construction by
contour crafting—related robotics and information
technologies. Automation in construction, 13(1):5–
19, 2004.

[6] Behrokh Khoshnevis, Dooil Hwang, Ke-Thia Yao,
and Zhenghao Yeh. Mega-scale fabrication by con-
tour crafting. International Journal of Industrial and
Systems Engineering, 1(3):301–320, 2006.

[7] Richard ABuswell, Rupert C Soar, Alistair GFGibb,
and A Thorpe. Freeform construction: mega-scale
rapid manufacturing for construction. Automation in
construction, 16(2):224–231, 2007.

1582



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[8] Steven J Keating, Julian C Leland, Levi Cai, and
Neri Oxman. Toward site-specific and self-sufficient
robotic fabrication on architectural scales. Science
Robotics, 2(5):eaam8986, 2017.

[9] Winsun. http://www.winsun3d.com/En/Product/.

[10] Weiyi Lin, Hongyao Shen, Jianzhong Fu, and
Senyang Wu. Online quality monitoring in material
extrusion additive manufacturing processes based on
laser scanning technology. Precision Engineering,
60:76–84, 2019.

[11] Zhen Liu, Suining Wu, Qun Wu, Chenggen Quan,
and Yiming Ren. A novel stereo vision measure-
ment system using both line scan camera and frame
camera. IEEE Transactions on Instrumentation and
Measurement, 68(10):3563–3575, 2018.

[12] Oliver Holzmond and Xiaodong Li. In situ real time
defect detection of 3d printed parts. Additive Manu-
facturing, 17:135–142, 2017.

[13] Hongyao Shen, Weijun Sun, and Jianzhong Fu.
Multi-view online vision detection based on robot
fused deposit modeling 3d printing technology.
Rapid Prototyping Journal, 2019.

[14] Tianjiao Wang, Tsz-Ho Kwok, Chi Zhou, and Scott
Vader. In-situ droplet inspection and closed-loop
control system using machine learning for liquid
metal jet printing. Journal of manufacturing sys-
tems, 47:83–92, 2018.

[15] Wentai Zhang, Akash Mehta, Prathamesh S Desai,
and C Higgs. Machine learning enabled powder
spreading process map for metal additive manufac-
turing (am). In Int. Solid Free Form Fabr. Symp.
Austin, TX, pages 1235–1249, 2017.

[16] Lu Lu, Jian Zheng, and Sandipan Mishra. A layer-
to-layer model and feedback control of ink-jet 3-d
printing. IEEE/ASME Transactions on Mechatron-
ics, 20(3):1056–1068, 2014.

[17] Yijie Guo and SandipanMishra. A predictive control
algorithm for layer-to-layer ink-jet 3d printing. In
2016 American Control Conference (ACC), pages
833–838. IEEE, 2016.

[18] Berk Altın, Zhi Wang, David J Hoelzle, and Kira
Barton. Robust monotonically convergent spatial it-
erative learning control: Interval systems analysis
via discrete fourier transform. IEEE Transactions
on Control Systems Technology, 27(6):2470–2483,
2018.

[19] Patrick M Sammons, Michelle L Gegel, Douglas A
Bristow, and Robert G Landers. Repetitive process
control of additive manufacturing with application to
laser metal deposition. IEEE Transactions on Con-
trol Systems Technology, 27(2):566–575, 2018.

[20] Azure kinect dk hardware specifications.
https://docs.microsoft.com/en-us/azure/kinect-
dk/hardware-specification.

[21] Ur10e collaborative industrial robot arm.
https://www.universal-robots.com/products/ur10-
robot/.

[22] Ros: The robot operation system.
https://www.ros.org/.

[23] Moveit! https://moveit.ros.org/.

1583




