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ABSTRACT

In this work, we use molecular dynamics (MD) simulations coupled with continuum-based theoretical analysis to study the coalescence
dynamics of two equal-sized nanobubbles (NBs). We first derive a governing equation for the evolution of the capillary bridge radius between
two coalescing NBs from the axisymmetric Navier-Stokes equation. To verify the prediction from the governing equation, we carry out MD
simulations of the coalescence of two NBs in a Lennard-Jones fluid system and directly measure the bridge radius, r}, as a function of time, t.
By varying the bubble diameter, we change the NB Ohnesorge number from 0.46 to 0.33. In all cases, we find the theoretical prediction
overestimates the expansion speed of the capillary bridge at early time of NB coalescence. However, once we take into account the curvature-
dependent surface tension and restrict the minimum principal radius at the capillary bridge to the size of the atom in the model liquid, the
theoretical prediction agrees with the MD data very well in both early time and later time of the coalescence process. From the theoretical
model, we find neither liquid viscous force nor liquid inertial force dominates at later time of coalescence of the model NBs. In this case, the
MD simulation results show r,(f) o< %76 % %% with the scaling exponent considerably higher than that in the scaling law 7,(¢) o< %5 for the
viscous and inertial dominated regimes. The diameter ratio of fully merged NB to that of the original NB is about /2, which is different from

/2 for the coalescence of millibubbles and microbubbles.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030406

. INTRODUCTION

Nanobubbles (NBs) are gas-filled cavities in liquids with diam-
eters ranging from tens to hundreds of nanometers. The key differ-
ence between NBs and ordinary macrobubbles is that macrobubbles
rise rapidly to the surface of a liquid due to buoyancy and then burst,
while the buoyancy effect on NBs is insignificant compared to Brow-
nian motion. As a result, NBs can remain suspended in liquids for
hours or even days.' The highly stable NBs have a higher possibil-
ity than macrobubbles to attach to or nucleate on the hydropho-
bic surfaces of fine/ultrafine particles.”’ As fine/ultrafine particles
approach, the NBs on the adjoining surfaces can coalesce and form
a gas bridge, which results in an attractive capillary force between
two particle surfaces. The attractive force brings the two surfaces
into contact and leads to aggregation of fine/ultrafine particles. The
aggregated fine particles are easier to be captured by macrobubbles,
which will provide sufficient buoyancy forces to elevate particles to
the surface of liquid. A number of recent experimental studies have

reported a significant increase of the flotation rate of fine/ultrafine
particles in the presence of NBs." ° Based on this mechanism, NBs
have great potential in a broad range of applications, such as flota-
tion of fine/ultrafine mineral particles*’f"\’ and removal of fats, oil,
grease, and suspended solids from wastewater, clothes, and recycled
paper.>>%10

Since the coalescence between two NBs is the key process of
many NB applications, a fundamental understanding of coalescence
dynamics of NBs is essential for more efficient use of NBs in vari-
ous industrial applications. While the coalescence dynamics of mil-
libubbles and microbubbles has been widely studied through exper-
iments,'' " the experimental study of the coalescence of NBs is
very challenging due to the lack of detection tools that can image
the ns-timescale dynamics of NBs in real time with nanoscale spa-
tial resolution. Since the experimental investigation of NB coales-
cence is currently challenging, it is not clear if the existing theo-
ries on coalescence dynamics of bubbles, which have been shown
to be accurate in the description of coalescence dynamics of
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millibubbles and microbubbles,'’ " are still applicable to the coa-
lescence of NBs.

To address the aforementioned challenges, we resort to molecu-
lar dynamics (MD) simulations coupled with continuum-based the-
oretical analysis to study the coalescence dynamics of NBs. In MD
simulations, one can track trajectories, velocities, and forces of all
atoms and molecules in the model system by numerical integration
of Newton’s equation of motion. From the local fluid density or local
intermolecular potential energy obtained from MD simulations, one
can readily distinguish liquid and gas phases and determine the real-
time geometry of the capillary bridge between two coalescing NBs.
Therefore, MD simulations can be considered as numerical experi-
ments, which allow us to study the microscopic details of NB coales-
cence dynamics that are inaccessible by current experimental means.
MD simulations have been used to study the nucleation, growth,
and movement of NBs on solid surfaces."”"” We will use MD sim-
ulations to study the coalescence dynamics of NBs. To avoid the
merging of two NBs through the Ostwald ripening,”’ we focus on
the coalescence dynamics of two equal-sized NBs in this work.

From experimental and numerical studies on the coalescence of
millibubbles and microbubbles, different dynamic regimes for bub-
ble coalescence have been identified.'" The main objective of this
work is to determine the expansion speed of the capillary bridge
between coalescing NBs and identify the dynamic regimes of NB
coalescence. To achieve this goal, we will monitor the capillary
bridge radius 7, as a function of time f from MD simulations and
compare the MD simulation results to the theoretical predictions
derived from the Navier-Stokes (NS) equation. Furthermore, the
magnitude of inertial and viscous stresses in the liquid surrounding
the coalescing NBs can be directly calculated from the theoretical
model. If the NB coalescence is in a dynamic regime that is domi-
nated by either viscous or inertial stresses in liquid, the continuum-
based theoretical model has predicted the scaling laws for capillary
bridge expansion.'*”' From the comparison between MD simulation
results and theoretical predictions, we will determine if the coa-
lescence dynamics of NBs can be still accurately described by the
existing theories.

The rest of the paper is organized as follows: in Sec. II, we
first derive the governing equation for the evolution of the capillary
bridge between two coalescing NBs. From the governing equation,
we further derive the scaling laws for r,(¢) if the bubble coalescence is
dominated by viscous or inertial stresses. In Sec. 111, we describe the
MD model used for the study of the coalescence of two equal-sized
NBs and the properties of the model fluid obtained from MD sim-
ulations. In Sec. I'V, we present MD simulation results. By compar-
ing the simulation results to theoretical predictions, we will identify
the dynamic regime of NB coalescence and discuss the accuracy of
continuum-based theoretical predictions in NB coalescence. Finally,
we close with conclusions.

Il. THEORY

A. The governing equation for coalescence dynamics
of NBs

When two equal-sized NBs touch each other, a capillary
bridge forms between two NBs and expands in the radial direction.
Figure 1 shows a schematic of two equal-sized NBs of radius R with

scitation.org/journal/phf

FIG. 1. Schematic of two equal-sized NBs coalescing in a liquid, where R is the
radius of the NB, ry, is the radius at the capillary bridge minimum, Ax is the gap
between two NBs measured in the equivalent configuration before coalescence, r;
is the principal radius at the bridge minimum on the liquid side, P is the pressure
of gas within the NB, P is the pressure in the liquid far from the NB, and P(r,,) is
the liquid pressure near the bridge minimum.

a formed capillary bridge of radius r,. The coalescence of NBs is
characterized by the expansion speed of the capillary bridge. Using
the method similar to the derivation of the Rayleigh-Plesset equa-
tion,”” we derive the governing equation for the time evolution of
the capillary bridge radius r;, from the axisymmetric NS equation.
The symmetric axis passes through the center of the two coalescing
NBs, as represented in Fig. 1.

1. Mass conservation

From the geometry shown in Fig. 1, the gap Ax(r,) between two
NBs measured in the equivalent configuration before coalescence is

given by
Ax(r,) = ZR[I _\/i- (rb/R)2:|, 1)

where R is the radius of the two equal-sized NBs. When (r,/R)? is
small, we have
Ax(ry) ~ /R (2)

Denoting the average radial velocity at radius r as u,(r), continu-
ity for the incompressible liquid surrounding the capillary bridge
gives'’

2nrpAx(ry)ur (1) = 2mrAx(r)u.(r). (3)

Substituting the expressions of Ax [i.e., Eq. (2)] into Eq. (3), we
obtain R
dr 1, dn
===t 4
tr(r) dt 3 dt “)
2. Momentum conservation

The density and viscosity of gas in NBs are usually negligible
compared to those of the surrounding liquid. In this case, the lig-
uid near the capillary bridge can escape radially without significant
axial velocity gradients, and the dominant velocity gradients are in
the radial direction."” Accordingly, we substitute Eq. (4) into the
axisymmetric NS equation,”

Bur+u8ur__l@+v[lg(r8u,)_&] (5)
ot T or  por “ror\ or 2]
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where P, p, and v, are the liquid pressure, density, and kinematic
viscosity, respectively. Integrating Eq. (5) from a quiescent point
far away where P = P up to the capillary bridge radius r, where
P = P(r}), we obtain

(@)Z@@ _2vdn | P(1y) P

dt 2 dr? rp dt p ©)

To determine the boundary condition P(r;) in Eq. (6), we
denote the normal stress in the liquid near the capillary bridge and
pointing radially outward from the symmetric axis as o,». For an
incompressible liquid with constant density and viscosity,”

Ouy
or’

where 71 is the dynamic viscosity of liquid. Accordingly, the net
stress acting at the capillary bridge surface is

o =—P(r) + 211 (7)

Onet = Pg+ AP + 011 (1), (8)

where Pp is the pressure of gas within the coalescing NBs and AP is
the Laplace pressure in the bridge region. The Laplace pressure is the
driving force for the capillary bridge expansion, which is given by

Ap:y(l—l), ©)

rL Ty

where y is the liquid-vapor surface tension, and r; and r, are the
principal radii of curvature at the bridge minimum, as depicted in
Fig. 1. If there is no mass transfer across the NB surface, the net stress
given by Eq. (8) should be zero; therefore,

u,

y Y
Al 1
Or lr=r, +(rL rb) (10)

Far from the bridge region, the NB surface can be considered static.
Hence, the Laplace pressure across the bubble surface far from the
bridge region is Pp — P = 2y/R. Substituting this relation and
Eq. (4) into Eq. (10), we obtain the boundary condition

P(rh) = PB + 271L

611 dry (2)’ y 7 )
P(ry) = Poo = ————"+ =L+ = - L. 11
(rb) ) dt R 1L ) ( )
Substituting Eq. (11) into Eq. (6), the result from momentum con-
servation becomes

dry \? ry d21, dnpdry, 2y 0y
=t L L Sy A 12
(dt)+P2dt2+r;, dt R r;,+rL (12)

3. The principal radius r, at the bridge minimum

To solve the governing equation for r,(t), one needs to know
the principal radius r; at the bridge minimum as a function of
rp. In the study of the coalescence of millibubbles, Thoroddsen
et al. suggested rr(r,) » Ax(ry).” Using this estimation, we set
rr(ry) = cAx(ry,), where ¢ is a dimensionless constant of the order
unity. With this expression for r7, the governing equation for r,(t)
becomes

(@ﬂ@@hﬁﬁ_zrg 0.5/c
dt 2de ", dt VR, R(l_ /1—(rb/R)2) ‘

(13)
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Rearranging Eq. (13), we obtain

LS (d(rb/R))erﬁ n @(n/R)  mR 1 d(r/R)
y dt y 2R dp y rn,/R dt
1 0.5/c

Ry

Denoting the characteristic inertial time Tiuerr = /pR3/y, the char-
acteristic viscous time 7,i = #LR/y, and the dimensionless bridge
radius 7, = r,/R, the governing equation for 7,(t) becomes

(14)

i \*  , R dh 1 dry, 1 0.5/¢
Tinert—— | + Tinert — ——- + 4Tyisc — —— =2 — — + —————.
( ert dt) Mty de T, dt B \/ﬁ

b
(15)

B. The scaling laws for r(t)

If the coalescence dynamics of NBs is dominated by the inertial
stress [i.e., the first term on the left hand side of Eq. (15)] or the
viscous stress [i.e., the third term on the left hand side of Eq. (15)],
we obtain particular cases of the general equation (15). In this case,
one can estimate the expansion speed of the capillary bridge from
the scaling laws for r;,(¢) in different dynamic regimes.

The bubble coalescence begins in the inertially limited viscous
(ILV) regime where the dynamics is dominated by the viscous stress
of gas within the bubble and the scaling law for r,(¢) is given by'*

Tb/R: Co()//i’]gR)t, (16)

where Cp is a constant of order unity and #g is the viscosity of
gas in the bubble. Equation (16) indicates r, o< t and the bridge
expands very fast (since #g is usually very small) in the ILV regime.
Equation (15) is not applicable in the ILV regime.

After starting in the ILV regime, the dynamics can transition
into a second regime in which Eq. (15) is applicable. If the coales-
cence in the second regime is dominated by the viscous stress in the
surrounding liquid, Eq. (15) can be simplified to
1di, 1
ATyisc — N

fy dt  cip

(17)

Equation (17) is valid for small 7, such that the right hand side
of Eq. (15) is dominated by the last term in Eq. (15). Integrating
Eq. (17) gives the scaling law for r,(t) in the liquid viscous regime,

/R = (1/2¢)"°\/tTvise. (18)

Similarly, if the coalescence is dominated by the inertial stress
in the surrounding liquid, Eq. (15) can be simplified to

Z 2
(Tinert@) & }2- (19)

dt cf;

Equation (19) is also only valid for small #;,. Accordingly, the scaling
law for r,(t) in the liquid inertial regime is

t’b/R = (4/C)0'25 \V t/Tinert- (20)

Equations (18) and (20) indicate that in both the liquid viscous
regime and liquid inertial regime, the bubble coalescence scales as
rp, o< V't with only a difference in their characteristic timescales,
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and the proportionality constant is of order unity. These scaling
laws derived from Eq. (15) are consistent with the existing theories
for drop coalescence and bubble coalescence.'*"> Furthermore, the
recent experimental study on the coalescence of millibubbles shows
the crossover from the viscous regime to inertial regime occurs when
the Ohnesorge number (Oh = #1/\/pyR) is close to 0.3."" In Secs. 111
and 'V, we will use MD simulations to investigate if the scaling laws
and the crossover Oh number found from the continuum-based the-
oretical model and experiments on millibubbles are still applicable to
NBs.

I1l. MD SIMULATION OF COALESCENCE OF NBs
A. The MD model

As depicted in Fig. 2, the typical MD model system contains
two 60-nm Ne NBs coalescing in saturated liquid Ar at a temper-
ature of 85 K. A vapor Ar phase is included in the simulation box
allowing for the liquid volume expansion during the coalescence
process. The periodic boundary conditions (PBCs) are applied in
all three directions. The thickness of the liquid domain between
the liquid-vapor interface and the NB surface is chosen so that the
coalescence dynamics is almost unaffected by the finite size of the
liquid domain. All interatomic interactions in the MD model are
described by the truncated and shifted Lennard-Jones (L]) poten-
tial with parameters given in Table I. The cutoff distance for all L]
interactions is 10.9 A. The potential parameters for Ar-Ne inter-
actions are chosen to reduce the solubility of the model gas Ne in
liquid Ar so that the amount of gas molecules that diffuse across
the NB surface is negligible in the course of the NB coalescence
process. In all MD simulations, we use a velocity Verlet algo-
rithm™ with a time step size of 5 fs to integrate the equations of
motions. The long-range corrections to the pressure and potential
energy are not considered in our MD model. All MD simulations
are performed using the LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) simulation package.”’

The MD simulation of the coalescence of two 60-nm Ne NBs in
the model liquid Ar includes the following four steps:

Step 1: We first place a liquid slab of 11950542 Ar atoms in
the middle of a simulation box, which has a length of 124 nm in
the x-direction and a cross section area of 96 nm (y-direction) by
66 nm (z-direction). The PBCs are applied in three directions. We
then carry out an NVT simulation for 2 ns to equilibrate the pure Ar

ARTICLE scitation.org/journal/phf

TABLE I. The LJ parameters used in the MD simulations.

Ar-Ar’! Ne-Ne'! Ar-Ne
& (meV) 10.3 4.05 4.05
o (A) 3.41 2.72 3.41

system at a temperature of 85 K using a Nose-Hoover thermostat.”
After the system reaches thermal equilibrium, the saturated liquid
Ar coexistent with the saturated vapor Ar is present in the simulation
box.

Step 2: Subsequently, a spherical region with a diameter of
60 nm is defined in the middle of the box. All Ar atoms in this
region are removed, and 80000 Ne atoms are inserted randomly
into the region. The number of Ne atoms is determined using the
Laplace pressure and the ideal gas equation. After the system with
the inserted Ne atoms is equilibrated for 4 ns, a stable Ne bubble with
a diameter of ~60 nm is generated at the middle of the simulation
box. The equilibrated system is then duplicated in the z-direction to
generate two identical 60-nm Ne bubbles in saturated liquid Ar. The
separation between two Ne NBs is ~6 nm. The total number of atoms
in the model fluid system is 19 428 660.

Step 3: To make the two Ne NBs approach each other and
coalesce, we add instantaneous z-direction velocities of + 50 m/s
to Ne atoms in the bottom/top NB every 250 ps for a total of 1
ns. Afterward, we equilibrate the system for an additional 3 ns to
stabilize the NBs and the two liquid-vapor interfaces in the model
system. Subsequently, five more instantaneous velocities of + 25 m/s
were added to the bottom/top NB every 30 ps for a total of 120 ps.
The magnitude of the velocity added to the NBs is small enough
to avoid evident deformation of the two NBs when they approach
each other. The Nose-Hoover thermostat is always applied in this
step to equilibrate the fluid system to a temperature of 85 K. At the
end of the approaching process, the separation between two NBs is
below 2 nm.

Step 4: When the two NBs are less than 2 nm apart from each
other, we stop adding instantaneous velocities to NBs and turn off
the thermostat. Subsequently, we carry out an NVE simulation in
the fluid system for 3 ns. The two NBs are now in Brownian motion.
When the Brownian movement of the two NBs brings them closer
and they touch, coalescence begins. To clearly show the geometry

:l Liquid

Ar

FIG. 2. Snapshots of 60-nm diameter Ne
NBs coalescing in liquid Ar obtained in
the MD model at 0 ps, 200 ps, and 400 ps
after coalescence begins. The liquid Ar
is hidden to clearly show the geome-
try of coalescing NBs. The red and blue
dots in the snapshots represent the Ar
and Ne atoms, respectively. A 16-nm-
wide Ar vapor region is included in each
side of the simulation box allowing for
the liquid volume expansion during the
coalescence process.
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of NBs and the capillary bridge between them, we hide all liquid
atoms in the snapshots shown in Fig. 2. In our MD model, an atom
is defined as liquid if its potential energy is lower than half of that in
saturated liquid Ar at a temperature of 85 K. This half-value cutoff
for phase determination is arbitrary but faithfully reflects the phase
transition occurring in the interfacial region. We have successfully
used this method in our previous work to study the coalescence of
nanodroplets.”””” To monitor the expansion of the capillary bridge
during NB coalescence, we generate the snapshots of the model sys-
tem every 10 ps. The bridge radius r;, as a function of ¢ is obtained
by measuring the width at the bridge minimum in each front-view
projected snapshot and dividing the measured width by two.

By comparing the r,(t) obtained from MD simulations to the
predictions from the governing equation for r,(t), i.e., Eq. (15), we
will determine if the coalescence dynamics of NBs can be accurately
described by the continuum-based theoretical model described in
Sec. II. The two important parameters in Eq. (15) are Tinerr and
Tyisc. TO evaluate these two parameters, we need to know the den-
sity p, surface tension p, and viscosity 7 of the model liquid Ar.
All these properties are determined by the equilibrium MD (EMD)
simulations described in Sec. I1I B.

B. Determination of fluid properties

We note that the properties of L] fluids, in particular, the sur-
face tension and liquid viscosity, are dependent on the cutoff dis-
tance. A cutoff distance of 10.9 A used in our MD model will
lead to lower surface tension and viscosity compared to those with
longer cutoff distances. Our goal, however, is not to study Ar/Ne
fluids specifically, but the coalescence dynamics of NBs in general.
For this purpose, the cutoff distance of 10.9 A is simply a part
of the model fluid definition. Therefore, the following calculation
results are specifically for the model L] fluids with a cutoff distance
of 10.9 A.

1. Determination of density and surface tension

To determine the density p and surface tension y of the model
liquid Ar, we place a liquid slab of 26 714 Ar atoms at the center of
a simulation box and randomly insert 2670 Ne atoms on two sides
of the liquid slab, as shown in Fig. 3(a). The length of the simula-
tion box in the x, y, and z directions is 50 nm, 10 nm, and 10 nm,
respectively. The box size is fixed during the EMD simulation, and
PBCs are applied in all three directions. The number of Ne atoms is
determined using the density of Ne gas in the 60-nm NB described
in Sec. IIT A. We equilibrate the system at a temperature of 85 K for
4 ns using the Nose-Hoover thermostat. After the system reaches
equilibrium, liquid Ar sandwiched by a gas mixture of Ne and sat-
urated vapor Ar is present in the simulation box. The thermostat is
then turned off, and an NVE simulation is carried out for 2 ns to
determine the distribution of Ar density (par), Ne density (pne), and
normal (Py) and tangential (Pr) pressure tensor along the x direc-
tion, as shown in Fig. 3. From the Ar density at the center of the
liquid slab, we find p = 1360 + 3 kg/m”’. The liquid—gas surface ten-
sion y is determined using the mechanical definition according to
Irving and Kirkwood,”*%’

y= %fOL [Pn(x) = Pr(x)]dx, (30
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FIG. 3. (a) Snapshot of liquid Ar coexisting with the gas mixture of Ar and Ne. The
red and blue dots in the snapshots represent the Ar and Ne atoms, respectively.
The density of Ne is equal to the Ne gas density in a 60-nm diameter NB. (b)
Density profiles for Ar (pa) and Ne (pne). () Normal (Py) and tangential (Pr)
pressure profiles.

where Ly is the length of simulation box in the x direction. Using
Py and Pr obtained from the MD simulation, we find y = 0.011
+0.001 N/m.

To study the NB size effects on the coalescence dynamics, we
will gradually vary the NB diameter from 60 nm to 30 nm in MD
simulations. As the NB size decreases, the Laplace pressure increases,
which leads to a higher Ne gas density in NBs. To investigate how
the Ne gas density would affect the density p and surface tension y
of the model liquid Ar, we vary the Ne gas density from 0 kg/m’ to
46 kg/m” and carry out similar EMD simulations as described above.
The MD simulation results show there is no discernible change in
the density and surface tension of the model liquid Ar in the range
of Ne density simulated. This result can be attributed to the small
interaction strength chosen for Ar-Ne, which leads to low solubility
of the Ne gas in liquid Ar,”" as shown in Fig. 3(b).

2. Determination of viscosity

To evaluate the viscosity 7 of the model liquid Arat T = 85K
and p = 1360 kg/m3, we carry out a separate EMD simulation in a
cubic simulation box containing 2563 model Ar molecules. The box
side length is fixed at 5 nm such that the density of Ar equals to
1360 kg/m>. The PBCs are applied in all three directions. A Nose-
Hoover thermostat is applied for 2 ns to equilibrate the model liquid
Ar to a temperature of 85 K. After the system reaches the thermal
equilibrium, we turn off the thermostat and carry out the simulation
in a microcanonical ensemble for 80 ns to calculate the autocorrela-
tion function of the pressure tensor in the model liquid Ar, as shown
in Fig. 4. The viscosity is then determined from the Green-Kubo
relation,”’

V (o)
”:IqTTfo dt(Pag(t) - Pas(0)), (22)
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FIG. 4. The pressure-tensor autocorrelation function (PACF) and the running inte-
gral of the PACF of the model liquid Ar at a temperature of 85 K and a density of
1360 kg/m?.

where

Paﬁ = i Z mviaviﬁ + Z Z V:jlfijﬁ . (23)
VG i i
In Egs. (22) and (23), kg is the Boltzmann constant, V and T are
the volume and temperature of the system, respectively, P is the
pressure tensor, m is the mass of fluid atom, v; is the translational
velocity of ith molecule, r and f are the interatomic separation and
force, respectively, the subscripts & and 3 denote the vector compo-
nent, ¢ is the time, and (---) denotes the ensemble average. From the
plateau of the running integral of (P(t)P(0)) shown in Fig. 4, we find
L =220 + 5 yPass for the model liquid Ar. Using the similar method,
we find the viscosity 7, of the gas mixture within the 60-nm NB is
19.9 uPas.
The calculated properties of the model fluid will be used in
Sec. I'V to analyze the coalescence dynamics of NBs obtained from
MD simulations.

IV. MODELING RESULTS
A. Representative modeling results

In this section, we show the representative continuum and
molecular modeling results of coalescence of two 60-nm diameter
Ne NBs in the model liquid Ar at a temperature of 85 K. Using
R =30 nm and the fluid properties obtained in Sec. I1I B, we find the
characteristic time Tinert = 1.83 ns and Tyisc = 0.63 ns for the 60-nm
NBs in the model fluid system. Substituting these two time constants
into Eq. (15), we obtain the theoretical prediction of 7,(¢).

1. Comparison of ry(t)

In Fig. 5(a), we compare the r,(t) measured directly from
the MD simulation to that obtained from the continuum-based
theoretical model.
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FIG. 5. (a) ry(f) obtained from the MD simulation (scatters), Eq. (15) with ¢ = 1.0
(dashed line), and Eq. (25) with ¢ = 1.0 (solid line) for the coalescence of two 60-nm
Ne NBs in liquid Ar (Oh = 0.33). The inset shows the same axis parameters on the
logarithmic scale to extract the early and later time slopes. (b) Inertial, acceleration,
and viscous terms from the governing equation over t. The inset is the ratio of the
viscous and inertial terms over time {.

Recent studies on the coalescence of millibubbles'* show the
bubble coalescence starts in the ILV regime in which 7, o< t. The log-
arithmic plot of the MD data [see the inset of Fig. 5(a)] shows that at
early time (10 ps < t < 40 ps) of the coalescence, r, o< 17 To inves-
tigate if the early time dynamics of the NB coalescence is in the ILV
regime, we fit the MD data at the first 40 ps with a linear function and
obtain the bridge expansion speed of ~35.5 m/s. This value is con-
siderably lower than the theoretical expansion speed dr,/dt ~ y/#g
~ 550 m/s in the ILV regime predicted by Eq. (16). Hence, we believe
the simulated NB coalescence is already out of the ILV regime a few
tens of ps after coalescence begins.

After the NB coalescence passes the ILV regime, the
continuum-based theoretical model described in Sec. II can be
applied for the analysis of the MD data. To solve the governing
equation, i.e., Eq. (15), for r;,(t), we use the finite difference method
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with the initial conditions r,(f = 30 ps) = 1.3 nm and dr,/dt
(t =30 ps) = 35.5 m/s directly taken from the MD simulation results.
We choose t = 30 ps as our initial time to ensure the coalescence
dynamics is already out of the ILV regime. We find that a good
match between the prediction from Eq. (15) and the MD results is
obtained when the dimensionless constant ¢ in Eq. (15) is 1.0. In this
case, the theoretical prediction [dashed line in Fig. 5(a)] has gener-
ally a reasonable agreement with the MD data. However, Fig. 5(a)
also shows the theoretical prediction significantly overestimates the
expansion speed at the early stage (30 ps < t < 100 ps) of the NB
coalescence.

To investigate the aforementioned discrepancy at early time of
coalescence, we recall the principal radii r, and r; at the bridge min-
imum shown in Fig. 1. In our theoretical model, r(r,) ~ Ax(rp) is
used to estimate r;. From the relation Ax(ry) ~ rp2/R [see Eq. (2)],
one can readily find that Ax(ry,) is less than the size of the model Ar
atom (0 = 0.341 nm) if r, is smaller than 3.2 nm. The MD simulation
results show ry, is below 3.2 nm until ¢ ~ 90 ps. Hence, within 90 ps
after coalescence begins, the principal radius r; estimated from the
continuum-based analysis is below the size of the model Ar atom,
which is unphysical. The unrealistically small r; leads to an unrealis-
tically high curvature and Laplace pressure in the theoretical model,
which results in an over-prediction of the expansion speed at the
early stage (30 ps < t < 100 ps) of the NB coalescence. Hence, we
propose a corrected theoretical model in which the minimum 7y ()
and Ax(r,) values are restricted to the size of the model Ar atom
(0 =0.341 nm).

Furthermore, if the principal radius of the liquid surface is com-
parable to the size of the fluid atom, the surface tension at these
highly curved surfaces could significantly deviate from that at a
flat surface.”””> To account for the curvature effects on the surface
tension, we use the Helfrich expansion}j‘

7:1—5]+ﬁ]2+&1<, (24)
Yo 2y Yo

where y is the surface tension of a curved surface, y, is the surface
tension of a flat surface, ] = 1/r; + 1/r, is the total curvature, and
K = (r112) 7! is the Gaussian curvature, where r; and r, are the prin-
cipal radii of curvature. At the capillary bridge minimum, r; = -,
and r, = rr. In Eq. (24), the three constants §, ki, and k; are the
Tolman length,”* the bending rigidity, and the rigidity constant asso-
ciated with the Gaussian curvature, respectively. We carry out the
MD simulation in a LJ fluid system with a cutoff distance of 10.9 A
at a temperature of 85 K. Using the L] parameters of Ar, the cut-
off distance and the temperature in the reduced L] units are 3.2 and
0.71, respectively. For a L] fluid with a reduced cutoff distance of 3.2,
the values of 8, k;, and k; in the reduced L] units at a reduced tem-
perature of 0.71 are —0.088, —0.592, and 0.375, respectively.’;“) Using
these constants in Eq. (24), we show in Fig. 6 the dependence of sur-
face tension on r,. When ry, is less than 6 nm, it is seen the surface
tension at the bridge minimum is evidently lower than that at the
flat surface. If we treat the surface tension as a constant and use the
value at the flat surface in the theoretical model, therefore, we will
overestimate the driving force for bridge expansion and over-predict
the expansion speed when r;, is small. Because we use the restriction
ri(rp) > 0.341 nm in the corrected theoretical model, it is shown
in Fig. 6 that the surface tension will not further decrease when
rp < 3.2 nm.
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FIG. 6. Normalized surface tension at the bridge of two coalescing 60-nm NBs as
a function of ry,.

By incorporating Eq. (24) into Eq. (15), we obtain the corrected
governing equation for r,(t),

) " 2 - . -
(Tinert%) + Tiznert%% + 471/1'56%% =2- % + %
V b

(25)
In the corrected theoretical model, we (1) take into account the
curvature-dependent liquid-vapor surface tension and (2) restrict
rr(r,) to no smaller than the size of the Ar atom. As shown in
Fig. 5(a), within 500 ps after coalescence begins, r, increases to
~16 nm and the prediction from the corrected theoretical model
(solid line) agrees with the MD data very well. Moreover, after taking
into account the curvature effects on the surface tension in Eq. (16),
the theoretical prediction for the expansion speed in the ILV regime
is reduced to about 400 m/s, which is still significantly higher than
the bridge expansion speed (35.5 m/s) obtained from the first 40 ps
of our MD data. This result confirms that the coalescence dynamics
is out of the ILV regime at t = 30 ps.

2. Comparison of the scaling laws

Once a crossover occurs out of the ILV regime into a second
regime dominated by either liquid viscosity or liquid inertial, the
theoretical model predicts the growth of the bridge radius follows the
scaling law r; oc t*°. Certainly, this scaling law is only valid when
the surface tension is a constant. However, it is shown in Fig. 6 that
the surface tension cannot be considered as a constant until r, >
6 nm. Accordingly, we use r, = 6 nm as the lower limit for the fit
to the MD data in the later time. Furthermore, from the study of
the coalescence dynamics of millibubbles, Thoroddsen et al. showed
that the scaling law r;, o< %% is valid for /R < 0.45."° Therefore,
r, = 13.5 nm is used as the upper limit for the fit to the MD data
in the later time. Out of these two limits, the r; oc ¢ scaling laws
for the viscous-dominated regime and inertial-dominated regime
are not valid. Applying the power function fit (r, < ") to the MD
data between the aforementioned lower and upper limits, we obtain
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n = 0.74, as shown in the inset of Fig. 5(a). This value is considerably
higher than n = 0.5 in the viscous-dominated or inertial-dominated
regime.

To understand the high exponent found in the MD data, we
calculate the Ohnesorge number for the 60-nm NBs in the model
fluid system. Using the fluid properties found in Sec. I1I, we obtain
Oh = 0.33. The experimental study on the coalescence of millibub-
bles shows the crossover from the liquid viscous regime to the liquid
inertial regime occurs when Ok is close to 0.3."* If this result is also
applicable to NBs, Oh = 0.33 indicates the coalescence dynamics of
NBs at later time is in a crossover regime where neither viscous stress
nor inertial stress in the surrounding liquid dominates the coales-
cence dynamics. To verify this prediction, we define the three terms
from left to right on the left hand side of Eq. (25) as the inertial term
T, acceleration term T, and viscous term T, respectively, and cal-
culate Tj, T,, and T, as a function of time during NB coalescence.
Since the prediction from Eq. (25) closely follows our MD results,
the ratio T',/T; calculated from Eq. (25) will be a good indicator of
the significance of viscous and inertial stresses in the surrounding
liquid on coalescence dynamics at later time.

It is shown in Fig. 5(b) that T;, T4, and T, at later time all
decay with time, and the magnitude of T, is much smaller than
T; and T,. The inset of Fig. 5(b) shows T, is consistently higher
than T, and after ¢ > 100 ps, the ratio T,/T; is nearly a constant
around 2.4. The ratio between T, and T; at later time confirms
that neither viscous nor inertial stresses are negligible. Therefore,
the coalescence dynamics of the 60-nm diameter NBs is not in the
viscous-dominated or inertial-dominated regime. In such a transi-
tion regime, r,(t) obtained from Eq. (25) predicts r; o< 1968 which
has a reasonable agreement with r,, oc t*”* found from the MD data.
This explains why the growth of the bridge radius does not follow
the scaling law r, oc £ at later time.

3. The size of fully merged equilibrium NB

The governing equation, i.e., Eq. (25), is derived based on the
assumption that r,/R is small and r7(r,) ~ Ax(ry). As r, approaches
and exceeds R during the coalescence, r.(r,) ~ Ax(r,) will not be
a good approximation and Eq. (25) will be invalid. Hence, it is not
suitable to use Eq. (25) to predict r, for the whole NB coalescence
process. Nevertheless, we can still predict the size of fully merged
NB using the following theoretical analysis.

The pressure of gas within the NB before coalescence begins is
given by

2
PB:P00+EY:PNE+PA7> (26)

where Py, and Pa, are the partial pressure of Ne and Ar in the gas
mixture within the NB, respectively. When our model fluid system is
at thermal equilibrium, Poo and P4, in Eq. (26) equal to the saturated
pressure of Ar ata flat and a curved liquid surface, respectively. Plug-
ging the fluid properties obtained in Sec. IIT and R = 30 nm into the
Kelvin equation,” we find there is only ~3% difference between Po,
and Pa,. Furthermore, the Laplace pressure 2y/R is about six times
of Poo in our model fluid system. Using Poo ~ P, and 2y/R > Peo,
Eq. (26) is reduced to

NNe

2
l:PNe—

R kBT (27)
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where we used the ideal gas approximation for gas Ne, with Nxe
being the number of Ne atoms in a single NB before coales-
cence begins. Assuming no Ne atoms diffuse across the NB sur-
face during the coalescence process, we apply the same analysis to
the fully merged NB with a new radius R, and volume V, and
obtain

ﬁ _ 2I\]Ne

= ksT. 28
R v, (28)

From the combination of Egs. (27) and (28), one can readily find
R, = v/2R. Note that this relation for NB is different from R,
= /2R that is often found in the coalescence of microbubbles or mil-
libubbles."" For microbubbles or millibubbles, the Laplace pressure
is usually much smaller than the pressure in liquid (2y/R < Peo).
Accordingly, the gas pressure within microbubbles or millibubbles
is always close to the pressure (P ) in the surrounding liquid, which
leads to R, = </2R.

As shown in Fig. 7, after the two 60-nm NBs fully merge into
a bigger NB at the end of our MD simulation, r,/R approaches
1.42 that is consistent with the theoretical prediction R, = V2R. At
t ~ 4 ns, one can see a small dip in the r,(¢) curve, which is caused
by the transient convex liquid-vapor interfaces. During the coales-
cence process, the bridge expansion pushes the surrounding liquid
in the radial direction resulting in a considerable curvature at the
two originally flat liquid-vapor interfaces at t ~ 4 ns, as shown in
Fig. 7. The curved surface added an extra Laplace pressure to liquid,
which slows down the bridge expansion. The convex liquid-vapor
interfaces return to almost flat again at ¢ ~ 8 ns and remain flat in the
rest of the coalescence process, as shown in Fig. 7. No oscillations
of merged NB are found in our MD model. This result is consistent
with our theoretical prediction that the liquid viscosity has a more
significant effect on NB coalescence.
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FIG. 7. Normalized bridge radius ry/R of two coalescing 60-nm and 35-nm NBs
obtained from MD simulations. Uncertainties are smaller than the symbols denot-
ing the MD data. The horizontal dashed line represents the maximum normalized
radius Ry, of the fully coalesced NBs.
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B. Effects of NB size on coalescence dynamics

Using the similar method, we study the coalescence dynam-
ics of NBs with a diameter ranging from 30 nm to 60 nm. For
all NB sizes, the MD simulation results show the diameter of fully
merged NB is about \/2 of that of the original NB (see Fig. 7 for
results of 35-nm and 60-nm NBs), and the merged NBs do not oscil-
late indicating significant viscous effects on NB coalescence. For
each NB size, we adjust the value of dimensionless constant ¢ in
Eq. (25) to obtain a good agreement between the prediction from the
continuum-based theoretical model and the MD simulation results.
As shown in Fig. 8(a) through 8(¢), the optimized ¢ value increases
with decreasing NB size. Nevertheless, they all fall in the range of
1.2 + 0.2, which indicates r7(rp) » Ax(rp) is a reasonable approxi-
mation for the principal radius of the capillary bridge between two
NBs. With the optimized ¢ values, Figs. 8(a)-8(e) show theoretical
predictions have generally a good agreement with MD results for all
NB sizes.

As the NB diameter decreases from 60 nm to 30 nm, the corre-
sponding Oh increases from 0.33 to 0.46. A higher Oh implies that
the viscous stress in liquid has a more significant effect on NB coales-
cence. Accordingly, one would expect the coalescence dynamics to
transit toward the viscous-dominated regime and the scaling expo-
nent at later time to approach 0.5 as NB size decreases. However,
we do not see such a trend from our MD data for Oh ranging from
0.33 to 0.46. For all NB sizes studied, a fit to the MD data at early

scitation.org/journal/phf

time (10 ps < t < 40 ps) of coalescence gives r,(t) oc t*© =% and a
fit to the MD data at later time gives r}(t) o< 076004 55 shown in
Figs. 8(f)-8(j). In all cases, we define the moment when r,/R = 0.45
as the upper limit of the later time of coalescence and the moment
when y = 0.99y as the lower limit.

An almost constant scaling exponent at later time could be
caused by the narrow range of Oh studied in this work. To find how
the relative significance of viscous stress and inertial stress changes
with Oh, we calculate T, and T} for each NB size from Eq. (25). Sim-
ilar to the inset of Fig. 5(b), we find the ratio T,/T; in each case is
nearly a constant at later time of coalescence. Figure 9 shows the
ratio T,/T; increases from 2.4 to 6.2 as Oh increases from 0.33 to
0.46. Even for the highest Oh in this study, T,/T; = 6.2 indicates that
the inertial term is non-negligible on the left hand side of Eq. (25).
Hence, the scaling law r;, o< t°? is still not applicable for the coales-
cence of 30-nm diameter NBs. On the other hand, the increase of
T,/T; from 2.4 to 6.2, indeed, shows the viscous term is much more
significant in the case with 30-nm diameter NBs. Using Eq. (25), we
find the theoretical prediction of the scaling exponent in the later
time of coalescence of 30-nm diameter NBs is ~0.61, which is appar-
ently lower than 0.73 found from the MD simulation [see Fig. 8(f)].
In fact, deviations between the theoretical prediction and the MD
results become more visible for smaller NBs, as shown in Figs. 8(a)
and 8(b).

There are two reasons that might lead to a higher than expected
scaling exponent in the coalescence of smaller NBs. First, as the NB
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FIG. 8. [(a)—(e)] Normalized bridge radius r,/R for NB diameters ranging from 30 nm to 60 nm obtained from MD simulations (scatters) and Eq. (25) (solid lines). The horizontal
dashed line show the upper limit r,/R = 0.45 for the power fit at later time of NB coalescence. The NB radius R, Oh, and the optimized ¢ are listed for each NB size. [(f)—(j)]

Logarithmic bridge radius log(r,) vs log(t) at early and later time.
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size gets smaller, the range of MD data that can be used for power
function fit at later time decreases. For the case with 30-nm diam-
eter NBs, only 7,(t) ranging from 4.0 nm to 6.7 nm are within the
lower and upper limits of the later time of coalescence. Moreover, it
is more difficult to visually identify the bridge interface for smaller
NBs in the MD model, which leads to a less accurate measurement of
rp(¢) in the MD model. It is challenging to obtain a reliable slope in
such a narrow range of r;, with relatively large uncertainties. Second,
we estimate the principal radius r; at the bridge as r.(r,) = cAx(rp)
in the theoretical model. As r, changes from 4.0 nm to 6.7 nm dur-
ing the coalescence of two 30-nm diameter NBs, Ax(ry), which can
be approximated as rbz/R, is only about 1 or 2 nm, i.e., the size of
a few fluid atoms. In this case, r; may not vary continuously as a
linear function of Ax. If r; is a more complex function of Ax for
smaller NBs, the theoretical model will give a different scaling law
at later time of coalescence. These complexities in the modeling of
smaller NBs might be the reason for the small discrepancy between
the theoretical predictions and MD results.

To observe a clear crossover from the viscous-dominated
regime and the inertial-dominated regime, one should study the coa-
lescence dynamics of a much wider range of NB sizes. However,
the computational cost for MD simulations of NBs of hundreds of
nm is prohibitive with the current computing power. One possible
solution to this problem in the future is that one can fix the NB
size at tens of nm and change Oh by replacing the liquid Ar with
other liquids having a wide range of viscosity, density, and surface
tension.

V. CONCLUSIONS

Using the combination of continuum-based theoretical model
and MD simulations, we studied the coalescence dynamics of NBs
of 30 nm-60 nm diameter. The coalescence of NBs is characterized
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by the expansion speed of the capillary bridge between two coalesc-
ing NBs. To understand the evolution of the capillary bridge radius
7, obtained from MD simulations, we derived a governing equation
for r;,(t) from the axisymmetric NS equation. Our modeling results
show the continuum-based theoretical prediction significantly over-
estimates the expansion speed at early time of NB coalescence. The
discrepancy is mainly caused by the very large curvature at the cap-
illary bridge between the coalescing NBs. Once we take into account
the curvature-dependent liquid-vapor surface tension and restrict
the minimum principal radius at the capillary bridge to the size
of the Ar atom in the MD model, the theoretical prediction agrees
with the MD data very well in both early time and later time of the
coalescence process. The Laplace pressure across the NB surface is
usually much greater than that in the liquid. As a result, the diam-
eter ratio of fully merged NB to that before coalescence begins is
about \/2, which is different from the diameter ratio of </2 for mil-
libubbles and microbubbles. Due to significant viscous effects on NB
coalescence, no oscillations of the merged NBs are observed for any
NB sizes studied in this work.

The Oh of NBs studied in this work varies from 0.33 to 0.46.
Using the governing equation derived from the NS equation, we cal-
culated the relative significance of viscous stress and inertial stress
in liquid surrounding the NBs during their coalescence. The calcu-
lation results show neither liquid viscosity nor liquid inertia dom-
inates at the later time of coalescence. In this case, our modeling
results show the scaling exponent in the scaling law r, o " is
n ~ 0.7 at later times of NB coalescence. This value is consider-
ably higher than n = 0.5 in the viscous-dominated regime or the
inertial-dominated regime. To observe a clear crossover from the
viscous-dominated regime and the inertial-dominated regime, it is
imperative in the future to study the coalescence of NBs in other
fluid systems that have a wide range of viscosity, density, and surface
tension.

ACKNOWLEDGMENTS

This work was supported by NSF under Grant No. 1911434.
Additionally, we would like to thank the Extreme Science and Engi-
neering Discovery Environment (XSEDE) for providing us super-
computer resources for MD simulations.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

M. Alheshibri, J. Qian, M. Jehannin, and V. S. J. Craig, “A history of nanobub-
bles,” Langmuir 32, 11086 (2016).

2y, Li, L. Hu, D. Song, and F. Lin, “Characteristics of micro-nano bubbles and
potential application in groundwater bioremediation,” Water Environ. Res. 86,
844 (2015).

3A. Agarwal, W.]. Ng, and Y. Liu, “Principle and applications of microbubble and
nanobubble technology for water treatment,” Chemosphere 84, 1175 (2011).

“R. Ahmadi, D. A. Khodadadi, M. Abdollahy, and M. Fan, “Nano-microbubble
flotation of fine and ultrafine chalcopyrite particles,” Int. J. Min. Sci. Technol. 24,
559 (2014).

5S. Calgaroto, A. Azevedo, and J. Rubio, “Flotation of quartz particles assisted by
nanobubbles,” Int. J. Miner. Process. 137, 64 (2015).

Phys. Fluids 32, 123304 (2020); doi: 10.1063/5.0030406
Published under license by AIP Publishing

32, 123304-10


https://scitation.org/journal/phf
https://doi.org/10.1021/acs.langmuir.6b02489
https://doi.org/10.2175/106143014x14062131177953
https://doi.org/10.1016/j.chemosphere.2011.05.054
https://doi.org/10.1016/j.ijmst.2014.05.021
https://doi.org/10.1016/j.minpro.2015.02.010

Physics of Fluids

SW. Zhou, H. Chen, L. Ou, and Q. Shi, “Aggregation of ultra-fine scheelite
particles induced by hydrodynamic cavitation,” Int. J. Miner. Process. 157, 236
(2016).

7B. A. Wills and K. Atkinson, “The development of minerals engineering in the
20th century,” Miner. Eng. 4, 643 (1991).

8J. B. Yianatos, L. G. Bergh, F. Diaz, and J. Rodriguez, “Mixing characteristics of
industrial flotation equipment,” Chem. Eng. Sci. 60, 2273-2282 (2005).

9Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, V. S. J. Craig, and
J. Hu, “Cleaning using nanobubbles: Defouling by electrochemical generation of
bubbles,” J. Colloid Interface Sci. 328, 10 (2008).

10C. F. Gurnham, “Aqueous wastes from petroleum and petrochemical plants,
M. R. Beychok, John Wiley & Sons, Inc., New York (1967). 370 Pages, $ 12.75,”
AIChE J. 14, 2 (1968).

"R, L. Stover, C. W. Tobias, and M. M. Denn, “Bubble coalescence dynamics,”
AIChE J. 43, 2385 (1997).

125, Orvalho, M. C. Ruzicka, G. Olivieri, and A. Marzocchella, “Bubble coales-
cence: Effect of bubble approach velocity and liquid viscosity,” Chem. Eng. Sci.
134, 205 (2015).

'3 A. Moreno Soto, T. Maddalena, A. Fraters, D. van der Meer, and D. Lohse,
“Coalescence of diffusively growing gas bubbles,” J. Fluid Mech. 846, 143 (2018).
”’], D. Paulsen, R. Carmigniani, A. Kannan, J. C. Burton, and S. R. Nagel,
“Coalescence of bubbles and drops in an outer fluid,” Nat. Commun. 5,1 (2014).
138, T. Thoroddsen, T. G. Etoh, K. Takehara, and N. Ootsuka, “On the coalescence
speed of bubbles,” Phys. Fluids 17, 1 (2005).

'8C. Li, A.-M. Zhang, S. Wang, and P. Cui, “Formation and coalescence of
nanobubbles under controlled gas concentration and species,” AIP Adv. 8,015104
(2018).

7Y -X. Chen, Y.-L. Chen, and T.-H. Yen, “Investigating interfacial effects on
surface nanobubbles without pinning using molecular dynamics simulation,”
Langmuir 34, 15360 (2018).

185, Maheshwari, M. van der Hoef, X. Zhang, and D. Lohse, “Stability of surface
nanobubbles: A molecular dynamics study,” Langmuir 32, 11116 (2016).

'9Y. Liu and X. Zhang, “Molecular dynamics simulation of nanobubble nucleation
on rough surfaces,” |. Chem. Phys. 146, 164704 (2017).

ARTICLE scitation.org/journal/phf

207, Huang, M. Su, Q. Yang, Z. Li, S. Chen, Y. Li, X. Zhou, F. Li, and Y. Song, “A
general patterning approach by manipulating the evolution of two-dimensional
liquid foams,” Nat. Commun. 8, 14110 (2017).

21c.R. Anthony, P. M. Kamat, S. S. Thete, J. P. Munro, J. R. Lister, M. T. Harris,
and O. A. Basaran, “Scaling laws and dynamics of bubble coalescence,” Phys. Rev.
Fluids 2, 083601 (2017).

22D, C. Wilcox, Basic Fluid Mechanics, 2nd ed. (DCW Industries, 2003).

1. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev. 159, 98 (1967).

243, Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J.
Comput. Phys. 117, 1 (1995).

25D, 1. Evans and B. L. Holian, “The nose-hoover thermostat,” J. Chem. Phys. 83,
4069 (1985).

267, Liang and P. Keblinski, “Coalescence-induced jumping of nanoscale droplets
on super-hydrophobic surfaces,” Appl. Phys. Lett. 107, 143105 (2015).

27R. Bardia, Z. Liang, P. Keblinski, and M. F. Trujillo, “Continuum and molecular-
dynamics simulation of nanodroplet collisions,” Phys. Rev. E 93, 053104 (2016).
28], G. Kirkwood and F. P. Buff, “The statistical mechanical theory of surface
tension,” J. Chem. Phys. 17, 338 (1949).

29]. P. R. B. Walton, D. J. Tildesley, J. S. Rowlinson, and J. R. Henderson, “The
pressure tensor at the planar surface of a liquid,” Mol. Phys. 48, 1357 (1983).

307, Liang and P. Keblinski, “Molecular simulation of steady-state evaporation
and condensation in the presence of a non-condensable gas,” ]. Chem. Phys. 148,
064708 (2018).

3R, Scott, M. P. Allen, and D. J. Tildesley, “Computer simulation of liquids,”
Math. Comput. 57, 442 (1991).

32(. Wilhelmsen, D. Bedeaux, and D. Reguera, “Tolman length and rigidity
constants of the Lennard-Jones fluid,” ]. Chem. Phys. 142, 064706 (2015).

33W. Helfrich, “Elastic properties of lipid bilayers: Theory and possible experi-
ments,” 7. Naturforsch. C 28, 693 (1973).

34R. C. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys. 17,
333 (1949).

33R. von Helmholtz, “Untersuchungen iiber Dampfe und Nebel, besonders iiber
solche von Losungen,” Ann. Phys. 263, 508 (1886).

Phys. Fluids 32, 123304 (2020); doi: 10.1063/5.0030406
Published under license by AIP Publishing

32, 123304-11


https://scitation.org/journal/phf
https://doi.org/10.1016/j.minpro.2016.11.003
https://doi.org/10.1016/0892-6875(91)90054-y
https://doi.org/10.1016/j.ces.2004.10.039
https://doi.org/10.1016/j.jcis.2008.08.064
https://doi.org/10.1002/aic.690140102
https://doi.org/10.1002/aic.690431002
https://doi.org/10.1016/j.ces.2015.04.053
https://doi.org/10.1017/jfm.2018.277
https://doi.org/10.1038/ncomms4182
https://doi.org/10.1063/1.1965692
https://doi.org/10.1063/1.5013244
https://doi.org/10.1021/acs.langmuir.8b03016
https://doi.org/10.1021/acs.langmuir.6b00963
https://doi.org/10.1063/1.4981788
https://doi.org/10.1038/ncomms14110
https://doi.org/10.1103/physrevfluids.2.083601
https://doi.org/10.1103/physrevfluids.2.083601
https://doi.org/10.1103/physrev.159.98
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1063/1.449071
https://doi.org/10.1063/1.4932648
https://doi.org/10.1103/physreve.93.053104
https://doi.org/10.1063/1.1747248
https://doi.org/10.1080/00268978300100971
https://doi.org/10.1063/1.5020095
https://doi.org/10.2307/2938686
https://doi.org/10.1063/1.4907588
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1063/1.1747247
https://doi.org/10.1002/andp.18862630403

