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Macroecological rules have been developed for plants and animals that describe

large-scale distributional patterns and attempt to explain the underlying physiological

and ecological processes behind them. Similarly, microorganisms exhibit patterns in

relative abundance, distribution, diversity, and traits across space and time, yet it

remains unclear the extent to which microorganisms follow macroecological rules initially

developed for macroorganisms. Additionally, the usefulness of these rules as a null

hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid

advancements in sequencing technology, we have seen a recent increase in microbial

studies that utilize macroecological frameworks. Here, we review and synthesize

these macroecological microbial studies with two main objectives: (1) to determine

to what extent macroecological rules explain the distribution of host-associated and

free-living microorganisms, and (2) to understand which environmental factors and

stochastic processes may explain these patterns among microbial clades (archaea,

bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial

and aquatic). Overall, 78% of microbial macroecology studies focused on free living,

aquatic organisms. In addition, most studies examined macroecological rules at the

community level with only 35% of studies surveying organismal patterns across space.

At the community level microorganisms often tracked patterns of macroorganisms for

island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients

(LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and

macroorganisms shared the same macroecological patterns, underlying environmental

drivers (e.g., temperature) were the same. Because we found a lack of studies for many

microbial groups and habitats, we conclude our review by outlining several outstanding

questions and creating recommendations for future studies in microbial ecology.

Keywords: microorganisms, Rapoport’s rule, Abundance/Occupancy, Bergmann’s rule, Theory of Island

Biogeography, Species-Area Relationship, Latitudinal Diversity Gradient, macroecology

INTRODUCTION

Understanding the factors that determine the abundance, distribution, and diversity of organisms
across spatial and temporal scales is a fundamental challenge in ecology. For plants and animals,
many macroecological rules have been theorized to explain the physiological, ecological, and
some evolutionary processes that underlie these patterns. Microorganisms also exhibit patterns in
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abundance, distribution, and diversity over space and time
(Martiny et al., 2006, 2011; Hanson et al., 2012; Talbot et al.,
2014; Kivlin, 2020). However, it is unclear if macroecological
rules developed for plants and animals apply to microorganisms
and if they could be used to improve predictions for abundance,
distribution, and diversity of microorganisms (Prosser et al.,
2007; Soininen, 2012; Shade et al., 2018; Kivlin et al., 2020).
Recent review papers have highlighted how macroecological
frameworks can be leveraged to investigate biogeographic
patterns in microorganisms (Shoemaker et al., 2017; Xu et al.,
2020). Yet, to our knowledge, no comprehensive literature search
has defined when microbial biogeographic patterns conform
to those expected by various macroecological rules or the
mechanisms driving microbial biogeographic patterns. Defining
which macroecological rules are universal across the tree of life
will allow for ecosystem-wide development of theory of common
mechanisms affecting community assembly, response to global
change, and recovery from human-induced disturbance.

Some macroecological rules should apply across the spectrum
of life. For example, those that describe patterns of abundance
or biodiversity of plants and animals (e.g., latitudinal/elevational
clines in biodiversity, species-area relationships, species-
abundance distributions, and island biogeographic patterns)
should easily translate to microorganisms since these rules
share a common theoretical underpinning of applying the
drivers of local, regional and continental community assembly
to larger scales. Community assembly of all organisms,
including microscopic ones, is driven by deterministic and
stochastic processes (Vellend, 2010; Nemergut et al., 2013).
Deterministic processes include environmental selection or
filtering, and biotic interactions such as competition and
facilitation (Funk et al., 2008; Goldford et al., 2018). Stochastic
processes that affect community assembly include dispersal
limitation, neutral processes of ecological and evolutionary
drift (Hubbell, 2001; Martiny et al., 2011), priority effects of
colonization (Fukami et al., 2010), legacy effects of previous
environmental conditions (Hawkes et al., 2017), and historical
vicariance of geographic position of land masses (Matheny
et al., 2009) or suitable habitat (Takacs-Vesbach et al., 2008).
Finally, selection regimes over long time periods can influence
community assembly through evolution (Kraft et al., 2007;
Starnawski et al., 2017). Because these explanatory drivers of
community assembly apply regardless of the focal organism,
community-level macroecological patterns driven by these
processes should hold across the tree of life (Horner-Devine
et al., 2004; Shade et al., 2018).

In contrast, other organismal and functional macroecological
rules, such as the Metabolic Theory of Ecology (MTE; Brown
et al., 2004), Species-Energy Theory (Wright, 1983), Bergmann’s
Rule (Bergmann, 1847), Foster’s Rule (Foster, 1964), and
Rapoport’s Rule (Stevens, 1989) may lack direct analogs to
microbial consortia because the mechanisms posited to underlie
these rules relate to traits (e.g., body size, thermoregulation,
or homeostasis) or energy sources (e.g., thermodynamics) that
may not exist or apply to microorganisms or that are difficult
to measure. This is particularly true of macroecological rules
that assume sexual dimorphism of two sexes (Rensch’s Rule;

Rensch, 1950), which apply well to many animals but break down
in organisms with simpler (e.g., asexual bacteria) or much more
complex mating systems (e.g., fungal species with hundreds of
mating types). Moreover, macroecological rules based on body
size lack direct analogs for most microorganisms where body size
could refer to cell size, colony size, or sporocarp size and therefore
difficult to systematically investigate. Even if a consensus could be
reached, DNA-based inference ofmicrobial abundance is unlikely
to represent organismal size when ribosomal copy number varies
100-fold amongmicrobial taxa and lacks clear phylogenetic signal
(Lofgren et al., 2019).

In addition to whether or not macroecological rules apply
to microorganisms, microbial groups may also vary in their
ability to conform to macroecological rules of plants and animals
due to differences in habitat or due to difference in microbial
groups (e.g., prokaryotes vs. multicellular eukaryotes). For
example, dispersal limitation of soil-borne and plant-associated
microorganisms, in general, should be much higher compared
to air-borne, water-borne, or animal-associated microorganisms
that are actively transported as animals explore surrounding
landscapes. Dispersal limitation should also be greater for
microbes with a multicellular life stage than those microbes that
remain unicellular throughout their whole life. This could limit
range sizes of terrestrial and plant-associated microorganisms
relative to aquatic or animal-associated microorganisms, with the
exception of isolated, island-like aquatic systems such as lakes
or other small bodies of water. In addition, climate fluctuations
of terrestrial ecosystems may be more pronounced than those
in aquatic ecosystems, which could affect organism range sizes
(Sorte et al., 2013). Finally, biotic interactions may be more
coupled in confined terrestrial spaces (e.g., soil pores) compared
to large or more well mixed aquatic and marine ecosystems.

Perhaps one of the most crucial distinctions among
microbial lifestyles is that of free-living versus host-associated
microorganisms (Figure 1). Some microorganisms are free-
living in soil or aquatic habitats. Distributions of these taxa
may be mostly affected by dispersal limitation and subsequent
environmental filtering, where traits such as dormancy (Lennon
and Jones, 2011) or reduced metabolic rates (Wisnoski et al.,
2020) allow some microorganisms to cope with unfavorable
environmental conditions. However, a large portion of microbial
diversity lives in symbiosis inside (endosymbiotic) or on
(episymbiotic) animal and plant tissues. For many vertically
transmitted host-associated microorganisms in animals and
some plants, dispersal of the microorganism often depends
on dispersal of the host (Salerno et al., 2016; Shade et al.,
2017), eventually leading to co-cladogenesis in each group
(Takiya et al., 2006; Schardl et al., 2008) and a strong signal
of biotic filtering on the microbiome among host taxa. This
is especially true when host-associated microbes are more
buffered from environmental conditions compared to free-
living microorganisms. Multiple lines of evidence suggest
that host-associated microorganisms (especially vertically
transmitted microorganisms) often have narrower thermal
tolerances (Dunbar et al., 2007; Kikuchi et al., 2016) and
reduced genome sizes and functions (Moran et al., 2008).
However, for other plant-associated microorganisms (e.g.,
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FIGURE 1 | The predicted relative importance of ecological and evolutionary
factors that drive the distributions of host-associated and free-living
microorganisms. Here, the hypothesized strength of the factor is illustrated by
the size of the arrow, with larger arrows representing stronger effects.
Examples of host-associated microorganisms include bacterial microbiomes
of beetle and deer digestive tracts, arbuscular mycorrhizal fungi, the
absorptive hyphae of ectomycorrhizal fungi, and root nodule-forming bacteria
(Rhizobium spp.). Examples of free-living microorganisms include soil and
aquatic aggregates of bacteria, fungi, and archaea and protists such as
diatoms.

mycorrhizal fungi), independent dispersal of plants and
microorganisms allows dispersal limitation and environmental
filtering (Hazard et al., 2013) to influence host-associated
microbial communities.

In this review, we first introduce seven macroecological rules
and discuss cases where they may apply to microorganisms.
We then conduct a literature meta-analysis to synthesize
available information on macroecological trends of
free-living and host-associated microorganisms from
terrestrial and aquatic ecosystems to understand the
extent to which microorganisms follow the same large-
scale macroecological patterns as animals and plants.
The objectives of this review are to (1) determine to
what extent macroecological rules explain the distribution
of host-associated and free-living microorganisms, and
(2) understand which environmental factors most affect
the distributions of host-associated versus free-living
microorganisms among microbial clades and habitats. We
focus on four macroecological rules at the organismal level
(Bergmann’s Rule, Rapoport’s Rule, Abundance/Occupancy
Relationships, and Gloger’s Rule), three rules that
describe/explain community assembly and biodiversity
[Latitudinal Diversity Gradient (LDG), Theory of Island
Biogeography, and Species-Area Relationships], and one
functional rule (MTE).

For each rule we collected studies by querying Web of Science
or Google Scholar with the search terms “rule name” AND
“micro∗” or “fung∗” or “bacteri∗” or “protist∗” or “archaea∗”
(query completed 06.15.2020). These queries returned studies
on fungi, bacteria, archaea, and protists (including diatoms).
Because many studies report trends consistent with these
rules without studying them directly, we also surveyed all

papers that were cited by or cited the papers in our query.
We did not include the term “macroecology” because many
papers including this term do not include primary data or
did not survey a given macroecological rule of interest. We
also did not include papers that collected appropriate data
but did not conduct statistics to analyze a macroecological
pattern as raw data availability varies and therefore was
beyond the purview of this synthesis. We did not include
human-associated microorganisms or green algae in our
survey. Human travel, diet, and medicinal applications can
affect microbiomes in complicated ways and therefore human
microbiomes were not deemed as natural communities for
the purposes of this review. Overall, this search resulted in
175 studies with 218 records (macroecological patterns for a
given microbial group within a study) across all continents.
For each study, we classified which macroecological rule(s)
were surveyed and each study organism (archaea, bacteria,
fungi, or protist), habitat (terrestrial or aquatic/marine), and
niche (free-living or host-associated). We considered species-
area relationships only for contiguous habitats and included
species-area relationships among island-like habitats (e.g., lakes,
tree holes, plant rhizosphere, and animals) with other island
biogeography studies. When available, we classified which
deterministic (e.g., resources and climate) and stochastic (e.g.,
dispersal limitation, priority effects) drivers were correlated
with each observed macroecological pattern. Despite collecting
218 records for this synthesis, data limitation precluded
a quantitative meta-analytical approach to addressing both
adherence of microorganisms to macroecological rules and the
environmental drivers influencing these distributions. Instead,
we use vote counting (Hedges and Olkin, 1980) to define
which macroecological rules were supported among microbial
guilds and lifestyles and which environmental factors may have
influenced these distributional patterns. Each time a study record
confirmed a macroecological rule, it received one positive vote,
and each time a study record provided contradictory evidence
for a given macroecological rule, it received one negative vote.
While vote counting techniques are sensitive to sample size
within studies, this analysis clearly demonstrates both when
microbial distributions conform to macroecological rules and
more importantly when gaps in scientific inquiry do not allow
us to make this conclusion.

REVIEW OF MACROECOLOGICAL
RULES

Organismal Macroecological Rules
Bergmann’s Rule

Bergmann’s rule, which states that body size decreases among
species with decreasing temperature, has primarily been studied
in mammals and birds. Not all birds and mammals follow the
rule, and even fewer smaller organisms, such as insects, conform
to it (Blackburn et al., 1999a; Meiri and Dayan, 2003). A possible
clue for ectotherms may be that Bergmann’s rule partially agrees
with the temperature-size rule, which states that ectotherms

Frontiers in Ecology and Evolution | www.frontiersin.org 3 April 2021 | Volume 9 | Article 633155



Dickey et al. Macroecological Rules and Microbes

develop more quickly with smaller body sizes under higher
temperatures (Zuo et al., 2012); a species’ body size is a result
of temperature dependent energy consumption and reallocation
which can vary over elevation and across latitudes.

There is some evidence supporting Bergmann’s rule for
microorganisms, such as bacterioplankton (Meador et al., 2009),
with smaller cells at higher temperatures (Daufresne et al., 2009).
The temperature-size relationship has also been examined as
a possible mechanism behind a Bergmann’s rule pattern in
microorganisms, stating that as temperature increases in aquatic
systems and nucleic acid content is reduced, and thus microbes
have smaller cells (Huete-Stauffer et al., 2016). Temperature-size
relationships have also been studied with ubiquitous microbes,
such as diatoms in geothermal streams, whereby there is no
observed relationship of this relationship (Adams et al., 2013).
While some evidence of Bergmann’s rule exists, significant
challenges in defining the size of many microorganisms, such
as multicellular fungal hyphae, must be standardized before
rigorous comparisons can be drawn.

Rapoport’s Rule

Rapoport’s rule states that the latitudinal ranges of plants and
animals are greater at higher compared to lower latitudes
(Stevens, 1989). Stevens (1989) originally proposed a mechanism
underlying this rule that relates to the climatic conditions under
which different organisms have evolved. Specifically, species at
higher latitudes must be able to cope with greater temporal
variability in climate compared to species at lower latitudes. As
a result, species that have evolved at higher latitudes should
be able to occupy larger spatial extents than species at lower
latitudes. The rule was later extended to elevational gradients
with the expectation that at higher elevations, climate is more
variable and thus high elevation species should have broader
elevational ranges (Stevens, 1992). Other possible mechanisms
for the rule have since been proposed, such as decreasing
land area available to species at lower latitudes, reduced
competition at higher latitudes, or extinction of species with
narrow ranges at high latitudes due to glaciation (Gaston
et al., 1998). Rapoport’s rule tends to be weaker in marine
compared to terrestrial systems and in the Southern compared
to Northern Hemisphere (Ruggiero and Werenkraut, 2007). The
rule has received such mixed support that some researchers have
questioned whether it is “time for an epitaph” for Rapoport’s
rule (Gaston et al., 1998; Gaston and Chown, 1999). Despite
this, ecologists are still intrigued by this macroecological rule
and continue to examine whether it holds in a host of taxa,
including microorganisms.

Thus far, support for Rapoport’s rule across latitude and
elevation in microorganisms is equivocal at best. In terrestrial
systems, the latitudinal ranges of fungal taxa (Tedersoo et al.,
2014; Cox et al., 2016) and ciliates appear to increase toward
the poles [W. Foissner, pers. comm. to Azovsky and Mazei
(2013)]. By contrast, several studies have observed smaller range
sizes of bacterial taxa at higher elevations and latitudes (Okie
et al., 2015; Lear et al., 2017; Wu et al., 2018). In marine
systems, a global study of bacteria found strong support for
Rapoport’s rule, with bacteria in the tropics having smaller ranges

than bacteria in temperate regions (Amend et al., 2013). The
relationship was so strong that the most abundant bacteria
in the tropics were completely absent from higher latitudes,
but even narrowly distributed bacteria in temperate regions
were found at lower latitudes (Amend et al., 2013). A second
study of marine bacteria also found that bacteria showed
narrower ranges at lower compared to higher latitudes, but
this was only true for bacteria in the phyla Bacteroidetes and
Cyanobacteria and the classes α-, β-, and γ- of the phylum
Proteobacteria (Sul et al., 2013). Researchers have also found
a reverse Rapoport’s rule in marine benthic ciliates. One study
found that ciliates had narrower ranges at higher latitudes
(Azovsky and Mazei, 2013). Support is also mixed for an
elevational Rapoport’s rule across microbial taxa. In a study
across fungal phyla (Basidiomycota, Ascomycota, Zygomycota,
Chytridiomycota, and Glomeromycota), fungi at higher elevations
had greater distributional ranges (Ogwu et al., 2019). In contrast,
bacteria and diatoms in streams in Asia and Europe did not
follow an elevational Rapoport’s rule (Teittinen et al., 2016;
Wang and Soininen, 2017).

Researchers have identified several possible mechanisms
leading to the distributions of microorganisms across latitudinal
and elevational gradients. Range sizes of some taxa have been
associated with variation in temperature and precipitation (Lear
et al., 2017), suggesting that environmental selection determines
range extents. However, there is some evidence that suggests
dispersal limitation may be the primary driver of range sizes
for some groups of microorganisms at larger spatial scales (Sul
et al., 2013), while environmental selection, competition, and
niche differentiation becoming more important factors at smaller
spatial scales (Kivlin et al., 2014).

Abundance/Occupancy Relationships

The abundance–occupancy (A/O) relationship refers to the
prevalent pattern among macroorganisms, whereby more
abundant species occupy more locations within a given range
(Gaston et al., 2000), both within and among species. Most A/O
relationships report positive correlations but fail to investigate
the potential reasons why this relationship forms. There are a
handful of empirical studies that show weakly positive, or even
negative trends amongst plants (Boeken and Shachak, 1998), fish
(Marshall and Frank, 1994), and birds (Blackburn et al., 1999b).
In addition, evidence of positive A/O relationships have been
found for protists (Warren and Gaston, 1997), bacteria (Holt
et al., 2004), and freshwater diatoms (Heino and Soininen, 2006;
Spatharis et al., 2009; Soininen and Teittinen, 2019).

In general, the mechanisms resulting in the A/O pattern
are not well understood. The A/O relationship can occur
when extinction and colonization are density-dependent
(Warren and Gaston, 1997). In experimental microcosms
with constant resources, when dispersal was allowed, the
relationship tracked the carrying capacity hypothesis (i.e.,
locally abundant species have lower extinction and higher
colonization rates than species with low abundance; Holt et al.,
2002). However, this study found that the relationship was not
contingent on dispersal; without dispersal, the A/O relationship
arose through extinction (Holt et al., 2002). Moreover, the
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A/O relationship does not always depend on environmental
resource consistency. For example, the relationship held in
heterogeneous environments, though to a lesser degree than
in homogeneous environments (Holt et al., 2004). In field-
based observations, the A/O relationship has been observed
with soil fungal assemblages where dispersal had less of a
role than environmental filtering on species distributions
(Kivlin et al., 2014). Mechanisms behind this pattern were
attributed to soil nutrients, though the relationship was weak
(Kivlin et al., 2014).

Niche-based processes can also create A/O relationships
among organisms. In microcosm experiments with protists,
biotic interactions strengthened A/O relationships (Holt
et al., 2002). Likewise, in natural systems Rocha et al.
(2018) found that niche-based variables were the primary
predictors for the positive A/O relationship observed in
freshwater diatoms and that the effect of niche breadth on
the relationship was less important than local environmental
niche position. In animal host-associated intestinal bacteria,
Green et al. (2016) found support for the A/O relationship
that they attributed to multiple factors, including dispersal
limitation, host selection, historical contingency, and
stochastic processes.

Gloger’s Rule

Gloger (1833) observed a relationship between plumage
coloration and climate variation in birds, predicting that darker
coloration due to pigmentation occurred in warmer, more
humid tropical regions while lighter colors occurred in cooler
areas toward the poles. There is limited evidence for Gloger’s
rule in organisms other than animals. However, pigments such
as melanin are also an important protective mechanism for
many microorganisms, since darker pigments can provide
protection from ionizing radiation and desiccation (Dadachova
and Casadevall, 2008; Fernandez and Koide, 2013). Pigmentation
may also play a role in thermoregulation and energy exchange by
increasing or decreasing light absorption or reflectance (Cordero
et al., 2018). Consequently, pigmentation could potentially
provide an important adaptive function for microbes.

However, rather than following Gloger’s rule, evidence from
microbial distributions thus far supports the theory of thermal
melanism, whereby greater melanism increases solar radiation
absorption (e.g., Kettlewell, 1973; Brakefield, 1984). This has
been shown both observationally and experimentally in yeast
where pigmentation increases heat capture. For example, in
contrast to Gloger’s rule, free-living, dark-pigmented yeasts were
found more often outside of the tropics (Cordero et al., 2018).
This suggests pigmentation provides an adaptive advantage for
these microorganisms at higher latitudes by increasing heat
capture. Similarly, a survey of ∼3,000 European macrofungal
assemblages showed mushrooms were more darkly colored
in colder climates (Krah et al., 2019). Mean temperature
and in some cases, seasonality were identified as drivers of
mushroom coloration, and increased reproductive success was
suggested as a potential advantage of darker pigmentation in
colder climates. While suggestive that Gloger’s rule may not
apply to microorganisms, evidence thus far is mainly derived

from free-living fungi and has not been examined in other
microbial groups.

Community Level Macroecological Rules
Latitudinal Diversity Gradient

The LDG, whereby biodiversity increases from the poles
to the equator, is a common large-scale pattern in ecology
(Jablonski et al., 2006). Many invertebrate and vertebrate species
exhibit this gradient, as do vascular plants and some fungi
and marine bacteria (Hillebrand, 2004). However, many
macroorganisms do not exhibit a LDG (Gillman et al.,
2015), owing to legacies of environmental disturbance,
dependence on environmental factors that do not trend
with latitude, or dependence on biotic interactions with
other organisms whose diversity also does not scale linearly
with latitude. However there is more observed variation
amongst studies that investigate species richness and latitude
patterns for microorganisms than there is for macroorganisms
(Thompson et al., 2017).

Early reports on microbial diversity suggested that some
fungi and marine bacteria may follow the classic LDG pattern
much as plants and animals do (Hillebrand, 2004). Further
studies confirmed this pattern in stream diatoms, marine
bacterioplankton, marine tintinnids, Streptomyces bacteria,
freshwater fungi, and most fungal taxonomic groups (Fuhrman
et al., 2008; Tedersoo et al., 2014; Andam et al., 2016; Hyde
et al., 2016). The main drivers of this pattern were mean
annual precipitation, temperature, carbon availability, and
substrate pH, all of which can affect microbial activity,
energy acquisition and longevity. However, microbes also
tend to follow a hump-shaped diversity pattern with latitude
within a hemisphere such that the greatest diversity is found
at intermediate latitudes. This trend was demonstrated in
planktonic bacteria (Milici et al., 2016), ectomycorrhizal fungi
(Tedersoo et al., 2014), aquatic hyphomycete fungi (Jabiol
et al., 2013; Duarte et al., 2016), saprotrophic stream fungi
(Seena et al., 2019), and other fungal guilds (Větrovský et al.,
2019). Potential drivers of this type of distribution include sea
water temperature, thermoclines, day length, and phosphorus
levels for aquatic species, dispersal limitation in terrestrial
microbes, and plant host-related diversity and distribution in
ectomycorrhizal fungi.

Other patterns of diversity have also been found across
latitudes. A study of stream diatoms found that richness
showed a U-shaped pattern. However, the study ranged
only from subtropical to temperate latitudes in the northern
hemisphere (Passy, 2010). Thus, a different pattern might
have been observed had a larger latitudinal gradient been
examined. In addition, for both the hump-shaped and U-shaped
diversity distributions, sampling bias toward temperate areas
may have influenced these results. Overall, a majority of
studies found no pattern in microbial diversity across latitude.
These include microbes in the Pacific Ocean (Baldwin et al.,
2005), marine free-living ciliates (Azovsky and Mazei, 2013),
freshwater diatoms (Soininen and Teittinen, 2019), heterotrophic
bacterioplankton (Schiaffino et al., 2013), autotrophic eukaryotes
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(Schiaffino et al., 2016), soil bacteria (Fierer and Jackson, 2006;
Hendershot et al., 2017), and soil fungi (Hendershot et al.,
2017). Instead, soil pH was an important driver of distributions
for terrestrial microorganisms in these studies, but localized
climatic factors, nutrient availability, dispersal limitations, and
scale of study may also play a role. Species richness of some
ecto- and endoparasites also does not vary with latitude, since
they are insulated from environmental conditions by their hosts
(Rohde, 1978, 1999).

Theory of Island Biogeography

The dynamic equilibrium Theory of island Biogeography is
an influential framework for understanding species diversity
patterns. Its original proponents (MacArthur and Wilson,
1967) predicted two general patterns: (1) larger islands have
more species at equilibrium, since extinction rates decline
and colonization rates increase with increased area and (2)
islands at a greater distance from the “mainland” or source
population have fewer species at equilibrium, as colonization
rates decrease with distance. Traditionally applied to groups of
oceanic islands, the theory has recently been used to understand
microbial biogeography across many scales on patchy, island-
like systems. These include roots (Peay et al., 2007), leaves
(Andrews et al., 1987; Kinkel et al., 1987), lakes or pools
(Reche et al., 2005), and non-human animal organs (Loudon
et al., 2016; Moeller et al., 2017). The theory has also been
applied to other discrete habitats that are separated by sharp
differences in temperature (Whitaker et al., 2003; Darcy et al.,
2018), substrate textural or chemical qualities such as oxygen
availability or host-secreted metabolites (Loudon et al., 2016),
or other abiotic factors that have been shown to structure
microbial distributions.

Results from several studies support the general relationship
between microbial diversity and island size, although there
is no consensus on how habitat size is measured amongst
varying “island-like” systems (Itescu, 2019). For example,
Darcy et al. (2018) observed that bacterial diversity within
cryoconite holes in Antarctic glaciers is positively correlated
with hole area, whereas Bell et al. (2005) found bacterial
genetic diversity in water-filled tree holes increased with
water volume. Studies have also found fungal species richness
increases with tree host population size in arctic and alpine
environments (Chlebicki and Olejniczak, 2007) and as a
function of tree photosynthetic tissue volume for ectomycorrhizal
fungi (Peay et al., 2007; Glassman et al., 2017a). Yet, some
studies fail to detect a significant relationship between species
diversity and island area, such as AM fungal communities
on true islands, bacterial richness in oak litter patches and
filamentous fungi on apple leaves (Kinkel et al., 1987; Davison
et al., 2018; Spiesman et al., 2018). In some cases, the lack
of an observed relationship is likely because environmental
heterogeneity relevant for focal taxa does not scale with
island size (Teittinen and Soininen, 2015). The application
of the Theory of Island Biogeography across many scales
(e.g., tree holes to oceanic islands) for microorganisms reflects
the multitude of scales at which habitat heterogeneity and

dispersal affect microbial distributions. Yet, how microbial
distributions on island-like habitats differ across these scales
warrants further attention.

The mechanisms that produce microbial diversity patterns
across islands of various sizes are still debated. Recent studies
have found these patterns hold even after explicitly accounting
for environmental variables. For example, forest fragment size
predicted diversity of root-associated fungi in a dominant tree
even after accounting for the effects of soil carbon (Vannette et al.,
2016). Dinnage et al. (2019) determined that tree size explained
more variation in rhizobia diversity than other edaphic factors.
Various host-associated microbial clades have differing responses
to ecological drift, host size, and other environmental factors (Li
et al., 2020). For example, bacterial alpha diversity increased with
island area, which may be explained by differences in overall
immigration and extinction rates (Dinnage et al., 2019). However,
fungal beta diversity increased with area, which instead suggests
an effect of greater microenvironmental variation in larger patch
sizes (Chlebicki and Olejniczak, 2007). Further research into
mechanisms underlying diversity-area patterns may clarify such
differences across taxa, although studying processes such as local
extinction in microbial communities may not be straightforward,
particularly in natural systems (but see Andrews et al., 1987).

Empirical evidence that microbial diversity and community
similarity decline as a function of distance from the source
population is mixed across the literature, reflecting taxon-specific
patterns as well as the need for more research. A significant
challenge in applying island biogeographic theory to microbial
communities in island-like systems is that the microorganism
source, or “mainland” population, is often difficult to define, and
thus most studies instead consider only distances among islands.
Interestingly, most of the studies that assess the effects of distance
from the mainland have used the roots of isolated or planted
pine trees as “islands” and a denser, nearby pine forest as the
“mainland” (Peay et al., 2010, 2012; Bahram et al., 2013; Glassman
et al., 2017a,b). For example, Bahram et al. (2013) and Glassman
et al. (2017a) both found that ectomycorrhizal fungal community
similarity and diversity declined with increasing distance from
the natural forest’s edge. The majority of studies examining
how distance among “islands” shapes community similarity and
diversity find spatial autocorrelation. For instance, communities
of hot spring-dwelling archaea (Whitaker et al., 2003) and protists
in lakes (Lepère et al., 2013) become more dissimilar as a
function of distance, rather than variation in environmental
factors. This suggests that for these organisms, the difficulties of
dispersing among patches of suitable habitat are more important
for community structure than environmental filtering.

Exceptions to the predictions of island biogeographic theory
reveal that the relative importance of environmental filtering and
dispersal limitation is taxon- and scale-specific. For example,
Vannette et al. (2016) determined that the degree of forest
fragment isolation was important in structuring the communities
of some classes of root-associated fungi but not others. In
other cases, lack of support may instead be due to the spatial
scale considered. Darcy et al. (2018) observed positive spatial
autocorrelation of cryoconite glacier hole bacterial communities
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among glaciers, but very little within glaciers, suggesting that had
they sampled at a smaller scale, theymay not have found evidence
in line with island biogeographic theory. The importance of
scale is also taxon-specific because taxa differ in their dispersing
and colonizing abilities (Peay et al., 2012), likely explaining why
Teittinen and Soininen (2015) did not find spatial structuring
of diatom communities in springs. Overall, more manipulative
experiments to assess why and how taxa differ in their dispersal
capacities would help assess the relevance of an island-distance
relationship for microorganisms.

Species-Area Relationships

The positive relationship between species richness (S) and
the surveyed area (A) is one of the clearest, least disputed
macroecological patterns and is fundamental to understanding
the inherent heterogeneity of global biodiversity (Arrhenius,
1921). The power-law S = cAz has been used to compare the
relationship between species number and area, where c is the
intercept and the exponent z measures the rate of community
turnover across a standardized spatial scale. This phenomenon
has been explored across myriad taxa, including birds (Jetz and
Rahbek, 2001), mammals (Lomolino, 1982), plants (Honnay
et al., 1999), terrestrial microbial eukaryotes (Green et al., 2004),
soil bacteria (Horner-Devine et al., 2004), aquatic bacteria (Reche
et al., 2005; Martiny et al., 2011), ectomycorrhizal fungi (Peay
et al., 2007), and vertebrate gut bacteria (Godon et al., 2016).
Yet, the power-law often fails to predict species richness for
many organisms (McCoy and Connor, 1976; Connor andMcCoy,
1979) indicating that this relationship may only apply to a
subset of spatial scales (i.e., local or regional), habitat types, or
taxonomic groups.

Among microbial studies that investigate species-area or taxa-
area relationships, microbial diversity often increases with spatial
scale but to a much lower extent (slope z = 0.02–0.1) than
observed for macroorganisms [slope z = 0.3–0.6, see Green and
Bohannan (2006) and references therein]. The observed lower
slopes in microorganisms in comparison to macroorganisms
may be due to inconsistency in taxonomic comparisons
made with direct observation versus DNA sequencing. For
instance, 97% clustering is a fairly coarse clustering strategy
for microorganisms that may obscure patterns of species
turnover (Storch and Šizling, 2008). Spatial scaling of microbial
diversity may vary from that of macroorganisms for many
reasons including the higher diversity of microorganisms versus
macroorganisms, loose species definitions for microorganisms,
dormancy of microbial taxa (Jones and Lennon, 2010), or
extracellular DNA confounding species richness estimates
(Carini et al., 2016).

In addition to methodological concerns, many variables
other than spatial extent affect the distribution of free-living
and host-associated microorganisms. For example, microbes
associated with marshland habitat respond to both geographic
distance and sediment moisture (Horner-Devine et al., 2004).
While species-area relationships are beginning to be explored
across microbial systems, many confounding factors exist
when comparing studies, such as differences in spatial extent
or environmental heterogeneity. Illustrating this point is the

finding that the rate of community turnover depends on
whether microbial species richness is measured within or across
habitats (Martiny et al., 2011). In addition, determining patterns
of species richness over space is even more intractable for
host-associated microbial taxa, such as ectomycorrhizal fungi,
where host effects and dispersal limitation might conflate the
relative importance of other environmental factors in prediction
of species richness (Tanesaka, 2012). Nevertheless, despite
inconsistencies in the strength of the relationship of species
richness and area, taxa within most microbial guilds and lifestyles
increase in diversity as more space is sampled.

Functional Macroecological Rules
Metabolic Theory of Ecology

The MTE predicts that the metabolism of individual organisms
increases with environmental temperature, often with a 3/4th
scaling to body size (Brown et al., 2004). Corollary predictions
suggest that metabolic rates of all organisms are a combination of
the allometric scaling of their bodymass and biochemical kinetics
(West et al., 1997) which leads to a negative association between
population carrying capacity and temperature and therefore a
positive association between temperature and species richness
(Brown et al., 2004). While supported in some plant and animal
systems, considerable controversy surrounds the universality of
metabolic theory. For example, many underlying assumptions of
metabolic theory, such as the actual scaling of surface area to
volume ratio across organisms and enzymatic activation energies,
remain untested or unproven across the tree of life (Duncan et al.,
2007; Price et al., 2012).

In microbial systems, this theory has been extended to
extracellular enzyme activities (Elias et al., 2014), which
are assumed to reflect intracellular metabolic rates. Many
studies across environmental temperature gradients find positive
relationships between temperature and soil enzyme activities and
respiration (Xu et al., 2017) as well as between temperature and
microbial diversity (Okie et al., 2015; Zhou et al., 2016; Wu et al.,
2018). Similarly, meta-analyses confirm that metabolic efficiency
(i.e., the quantity of resources incorporated into biomass relative
to uptake) scales with body size among microorganisms in
terrestrial and aquatic ecosystems (Sinsabaugh et al., 2015).
However, metabolic scaling in microorganisms rarely follows the
3/4th power to body size (DeLong et al., 2010) and studies are
often confounded by other abiotic and biotic factors that also shift
with temperature, such as variation in water, nutrient availability,
plant diversity, or productivity (Zhou et al., 2016). Furthermore,
thermal acclimation (Bradford et al., 2008) and adaptation (Alster
et al., 2020) can alter microbial temperature responses in less
than a decade. Thus, while evidence in support of metabolic
scaling of microbial processes seems confirmatory, the rule
should be examinedmore carefully across gradients that decouple
temperature from other environmental drivers over evolutionary
time. In addition, cell size is not linearly related to metabolic
rates in marine phytoplankton communities (Marañón, 2015),
suggesting that the relationship between organismal size and
metabolismmay apply to aggregates of microorganisms but break
down at the smallest, cellular scales.
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LITERATURE SYNTHESIS RESULTS

Across all macroecological rules the majority of macroecological
microbial studies (78%) have been conducted on free-living
microorganisms, mainly in aquatic ecosystems (Table 1 and
Figure 2). Citations corresponding with Table 1 can be found in
Supplemental Material 1. In contrast, few studies have examined
similar patterns in host-associated microorganisms with the
notable exceptions of studies of latitudinal diversity and island
biogeographic patterns focused on plant-associated fungi (e.g.,
mycorrhizal fungi and endophytes; Figure 2). Furthermore,
the bulk of these studies examined community-level trends in
microbial macroecology (71%), with less than 35% of studies
occurring at the organismal level (Figure 2). Within community-
based macroecological rules, LDGs were the more commonly
studied, followed by the Theory of Island Biogeography and then
species-area relationships.

Conformance to Macroecological Rules
Sixty-three percent of the studies we examined in this synthesis
confirmed similar patterns of microbial and macro-organismal
distributions. In particular, organismal-level microorganism
patterns supported macroecological rules the most (Bergmann’s
Rule – 75% confirm; Rapoport’s Rule – 85% confirm; and
Area-Occupancy – 100% confirm). Notably, Gloger’s Rule of
increasing pigmentation at lower latitudes was reversed for
fungi in the only two published studies, which suggested
that melanization was associated with thermal adaptation to
colder, more polar latitudes. However, community-level patterns
were not as consistent among taxa. For example, patterns
of microbial diversity did not consistently decrease from the
equator to the poles as expected from macroorganisms (32%
confirm). Instead, microorganisms exhibited reverse, hump-
shaped, and indistinct diversity patterns with latitude (Figure 3).
In contrast, rules predicted by the dynamic equilibrium Theory
of Island Biogeography, were largely upheld (74% confirm) across
many systems (e.g., terrestrial host-associated mycorrhizal fungi,
aquatic bacteria and protists) with increasing diversity on larger
islands (but see notable exceptions, e.g., leaf endophytic fungi;
Figure 3). Similarly, diversity was often negatively correlated with
island distance from the source population, especially for plant-
host associated microorganisms. All descriptions of microbial
species-area relationships noted increased species diversity
as more habitat area was sampled. Finally, for functional-
based macroecological rules, evidence for metabolic scaling of
microbial function confirmed expected positive temperature-
dependence of microbial activity in 93% of studies but was
examined in only 14 studies and never in host-associated
microbial communities.

Drivers of Macroecological Rules
When macroecological rules were upheld in microorganisms,
factors driving these patterns were mostly similar to those
hypothesized for the macroorganisms studied to date (Table 1).
For example, patterns consistent with the rules predicted by
the dynamic equilibrium Theory of Island Biogeography were
often correlated with island patch size and dispersal, whereas

LDGs and metabolic scaling followed temperature gradients
(but see Hawkins and Diniz-filho, 2004 for a discussion of
confounding effects of temperature and latitude). However, there
were notable exceptions. For example, we expected substrate
pH to be a strong determining factor for microbial richness
patterns due to its pivotal role in explaining beta diversity at
large spatial scales. Instead, pH was only related to species-
area relationships and island size in island biogeography (Fierer
and Jackson, 2006). Other environmental factors related to
climate and resources (carbon, nutrients) often were correlated
with many microbial macroecological patterns. In addition,
dispersal limitation and patch size were among the main
correlates of microbial distributions, regardless of habitat or
host-associated versus free-living status. While data were scarce,
the distributions of host-associated microorganisms tended to
be structured more heavily by biotic factors (e.g., host identity,
microbial interactions) than were free-living taxa, as expected in
Figure 1. Similarly, when comparisons were possible (e.g., LDG,
Species Area Relationship, and Theory of Island Biogeography)
there were no clear differences in drivers of terrestrial and
aquatic microorganisms or amongmicrobial kingdoms (Table 1).
Clearly more investigation into several macroecological rules
such as Gloger’s Rule and Bergmann’s Rule is warranted, as is
more in-depth inquiry of the processes driving macroecological
patterns, since over 30 studies (14%) found support for microbial
congruence with macroecological rules but did not test or
describe a process underlying these patterns.

DISCUSSION

Many factors should be considered when one compares these
microorganismal trends to those of macroorganisms. Many
microbial studies did not explicitly test a macroecological
rule and thus were not searchable in Web of Science or
Google Scholar. In addition, null results are less likely to
be published. These factors could have biased our findings
toward rule confirmation rather than exception. Biologically,
patterns of microbial distributions obtained from sequencing
may sample a different subset of organisms than those derived
from observational studies of plants and animals. DNA-based
sampling encompasses both dormant and active states, which
may increase estimates of microbial diversity as compared to
plants and animals. An analog would be to sample all plant and
animal gametes, which clearly is not feasible. Microorganisms
that undergo horizontal gene transfer or have higher DNA
substitution rates may also evolve faster than macroorganisms,
allowing greater ability to respond to microclimates and shifts
in environments than plants and animals. This could be why
microbial distributions seem to track local nutrients or niches
more than would be predicted by theories mentioned above
for macroorganisms.

Understudied Macroecological Rules in
Microorganisms
Many macroecological rules are still not addressable for
microorganisms. For example, validation of the species-energy
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TABLE 1 | Evidence for each group of organisms is represented by kingdom for protists (P), fungi (F), bacteria (B), and archaea (A).

Organismal (physiological) Community Functional

Factor Bergmann’s

Rule

Rapoport’s

Rule

A/O Gloger’s Rule Latitudinal Diversity Gradient Theory of Island Biogeography Species-Area

Relationship

Metabolic Theory of

Ecology

Substrate

Properties

Patch Size BT (Godon et al., 2016; Dinnage
et al., 2019),

FT (Peay et al., 2007; Tanesaka,
2012; Vannette et al., 2016;

Glassman et al., 2017a,b), PT

(Ishtiaq et al., 2010; Spurgin et al.,
2012), BA (Bell et al., 2005; Reche
et al., 2005; Darcy et al., 2018), BT

(Li et al., 2020), FT (Tanesaka, 2012;
Li et al., 2020), PA (Patrick, 1967;
Lepère et al., 2013; Jüttner et al.,

2018)

FT (van der Gast et al.,
2011), FA (Duarte et al.,

2017)

Nitrogen PA (Svensson
et al., 2014)

FT (Kivlin et al., 2014) PT (Lara et al., 2016) FT (Vannette et al., 2016; Glassman
et al., 2017a; Boeraeve et al., 2019)

BA (Horner-Devine et al.,
2004; Martiny et al., 2011;

Santos et al., 2016)

BA (Sinsabaugh et al.,
2015; Arandia-Gorostidi
et al., 2017), BT (Okie

et al., 2015; Sinsabaugh
et al., 2015), FA

(Sinsabaugh et al., 2015),
FT (Sinsabaugh et al.,

2015)

Carbon FT (Davison et al., 2015), FA (Hyde
et al., 2016), PT (Lara et al., 2016)

FT (Vannette et al., 2016; Glassman
et al., 2017a), BT

(Delgado-Baquerizo et al., 2018)

BA (Horner-Devine et al.,
2004)

BA (Sinsabaugh et al.,
2015), BT (Sinsabaugh

et al., 2015), FA

(Sinsabaugh et al., 2015),
FT (Sinsabaugh et al.,

2015)

Phosphorous PA (Svensson
et al., 2014)

FT (Glassman et al., 2017a), BT

(Delgado-Baquerizo et al., 2018)
BA (Santos et al., 2016),

PA

(Goldenberg Vilar et al.,
2014)

BA (Sinsabaugh et al.,
2015), BT (Sinsabaugh

et al., 2015), FA

(Sinsabaugh et al., 2015),
FT (Sinsabaugh et al.,

2015)

Micronutrients FT (Jiao and Lu, 2020) FT (Tedersoo et al., 2014) BT (Dinnage et al., 2019), FT

(Glassman et al., 2017a)
BT (Meyer et al., 2018),

PA (Goldenberg Vilar et al.,
2014)

Salinity PA (Svensson
et al., 2014)

BA (Logares et al., 2013)

pH BT (Dinnage et al., 2019), FT

(Glassman et al., 2017a; Boeraeve
et al., 2019), BT (Delgado-Baquerizo

et al., 2018), PA (Soininen et al.,
2007)

BT (Meyer et al., 2018), BT

(Fierer and Jackson, 2006;
Tu et al., 2016)

BT (Okie et al., 2015)

Conductivity FT (Glassman et al., 2017a), PA

(Aarnio et al., 2019)

Biotic

Interactions

Host FT (Arnold and Lutzoni, 2007) BT (Godon et al., 2016; Loudon
et al., 2016), FT (Chlebicki and

Olejniczak, 2007; Belisle et al., 2012)

FT (Van Der Linde et al.,
2018), FT (Feinstein and

Blackwood, 2012)
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TABLE 1 | Continued

Organismal (physiological) Community Functional

Factor Bergmann’s

Rule

Rapoport’s

Rule

A/O Gloger’s Rule Latitudinal Diversity Gradient Theory of Island Biogeography Species-Area

Relationship

Metabolic Theory of

Ecology

Niche Position
and Breadth

PA (Heino and Soininen, 2006;
Heino and Tolonen, 2018;

Rocha et al., 2018; Vilmi et al.,
2019)

BT (Godon et al., 2016; Moeller
et al., 2017)

Microbe-Microbe
Competition

BT (Holt et al., 2004), PT (Holt
et al., 2004)

BT (Loudon et al., 2016)

NPP FT (Liu S. et al., 2020)

Climate

Temperature PA (Svensson
et al., 2014)

BA (Lear et al., 2017) FT (Davison et al., 2015; Lu et al.,
2018), BA (Fuhrman et al., 2008;

Stomp et al., 2011; Kruk et al., 2012;
Sul et al., 2013; Vogt et al., 2019),

BT (Tu et al., 2016), FA (Hyde et al.,
2016), FT (Liu S. et al., 2020), PA

(Dolan et al., 2016), PT (Lara et al.,
2016)

FT (Botnen et al., 2019) BA (Martiny et al., 2011),
BT (Fierer and Jackson,
2006; Tu et al., 2016;

Deng et al., 2018)

AT (Wu et al., 2018), BA

(Arandia-Gorostidi et al.,
2017; Jiang et al., 2019),

BT (Okie et al., 2015; Zhou
et al., 2016; Xu et al.,

2017; Wu et al., 2018), FT

(Zhou et al., 2016; Xu
et al., 2017)

Precipitation BA (Lear et al., 2017) FT (Tedersoo et al., 2014) BT (Dinnage et al., 2019; Li et al.,
2020), FT (Botnen et al., 2019)

BA (Martiny et al., 2011),
BT (Fierer and Jackson,
2006; Tu et al., 2016)

Stochastic

Processes

Dispersal
Limitation

BA (Sul et al., 2013) BA (Mo et al., 2018), BT (Holt
et al., 2004), FT (Kivlin et al.,
2014), PT (Holt et al., 2004)

BA (Sul et al., 2013), BT (Andam
et al., 2016)

BT (Loudon et al., 2016; Moeller
et al., 2017), FT (Peay et al., 2007,
2010, 2012; Bahram et al., 2013;
Vannette et al., 2016; Glassman
et al., 2017a,b; Boeraeve et al.,
2018), PT (Ishtiaq et al., 2010;

Spurgin et al., 2012)AA (Whitaker
et al., 2003), BA (Darcy et al., 2018),

FT (Li et al., 2020), PA (Soininen
et al., 2007; Lepère et al., 2013;

Santos et al., 2016)

FT (Green et al., 2004)

Unknown

Mechanism

BA (Meador et al.,
2009), PA

(Soininen and
Kokocinski, 2006)

AA (Sintes et al., 2015;
Raes et al., 2018b), BA

(Amend et al., 2013; Sul
et al., 2013; Wang and

Soininen, 2017; Raes et al.,
2018b), FA (Raes et al.,

2018b), FT (Tedersoo et al.,
2014; Cox et al., 2016;

Ogwu et al., 2019)

BT (Nemergut et al., 2011;
Green et al., 2016; Stopnisek
and Shade, 2020), AA (Zhou

et al., 2019; Liu J. et al., 2020),
BA (Pommier et al., 2007;

Humbert et al., 2009; Östman
et al., 2010; Nemergut et al.,

2011; Liu et al., 2015; Bienhold
et al., 2016; Liao et al., 2017;

Mo et al., 2018), BT (Nemergut
et al., 2011; Valverde et al.,

2014; Ji et al., 2020), FT (Zhang
et al., 2018; Gange et al., 2019;
Dickie et al., 2020), PT (Warren

and Gaston, 1997)

BA (Shu and Jiao, 2008; Thompson
et al., 2011), BT (Weiser et al., 2018),

FT (Weiser et al., 2018)

FT (Helander et al., 2007; Botnen
et al., 2019), BA (Barberán and

Casamayor, 2014), PA (Macingo
et al., 2019)

FT (Kranabetter et al.,
2018), PT (Ishtiaq et al.,
2010), AA (Barreto et al.,
2014; Li and Ma, 2019),

AT (Zhou et al., 2008), BA

(Smith et al., 2005; Barreto
et al., 2014; Zinger et al.,
2014), BT (Noguez et al.,
2005; Zhou et al., 2008;
Terrat et al., 2015), FT

(Zhou et al., 2008), PA

(Finlay et al., 1998;
Azovsky, 2002), PT

(Wetzel et al., 2012)
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TABLE 1 | Continued

Organismal (physiological) Community Functional

Factor Bergmann’s

Rule

Rapoport’s

Rule

A/O Gloger’s Rule Latitudinal Diversity Gradient Theory of Island Biogeography Species-Area

Relationship

Metabolic Theory of

Ecology

Contradictory

Evidence

PA (Adams et al.,
2013)

PA (Azovsky and Mazei,
2013; Teittinen et al., 2016)

FT (Krah et al.,
2019), FT

(Cordero et al.,
2018; Krah et al.,

2019)

FT (Tedersoo et al., 2010, 2012,
2014; Timling et al., 2012; Holt et al.,

2015; Glynou et al., 2016; Pärtel
et al., 2017; de Menezes et al.,

2018; Hu et al., 2019), PA (Rohde,
1978), AA (Sintes et al., 2015; Raes
et al., 2018a; Ibarbalz et al., 2019),
AT (Ma et al., 2017; Weiser et al.,
2018), BA (Baldwin et al., 2005;
Humbert et al., 2009; Ghiglione

et al., 2012; Schiaffino et al., 2013,
2016; Sul et al., 2013; Milici et al.,
2016; Raes et al., 2018a; Ibarbalz
et al., 2019; Moss et al., 2020), BT

(Fierer and Jackson, 2006; Xia et al.,
2016; Hendershot et al., 2017; Ma
et al., 2017; Terrat et al., 2017; Tian

et al., 2018; Bickel et al., 2019;
Delgado-Baquerizo and Eldridge,
2019; Heděnec et al., 2019; Pino

et al., 2019; Liu S. et al., 2020), FA

(Baldwin et al., 2005; Jabiol et al.,
2013; Duarte et al., 2016; Schiaffino

et al., 2016; Raes et al., 2018a,b;
Ibarbalz et al., 2019; Seena et al.,

2019; Hassett et al., 2020), FT (Shi
et al., 2014; Hendershot et al., 2017;

Ma et al., 2017; Heděnec et al.,
2019; Pino et al., 2019), PA (Dolan
et al., 2006; Hessen et al., 2006;

Olguin et al., 2006; Vyverman et al.,
2007; Passy, 2010; Azovsky and

Mazei, 2013; Svensson et al., 2014;
Soininen et al., 2016; Passy et al.,

2018; Kahlert et al., 2020)

FT (Andrews et al., 1987; Kinkel
et al., 1987; Grilli et al., 2015; Da
Silva et al., 2017; Davison et al.,

2018), BA (Sommaruga and
Casamayor, 2009; Logue et al.,
2012; Várbíró et al., 2017), BT

(Spiesman et al., 2018), PA (Hessen
et al., 2006; Teittinen and Soininen,
2015; Bolgovics et al., 2016, 2019)

BA (Marañón, 2015)

Letters are color-coded green for host-associated microbiomes and purple for free-living microbiomes. Superscript letters designate aquatic (A) or terrestrial (T) habitat. Rules examined are Bergmann’s Rule, Rapoport’s

Rule, Abundance/Occupancy Relationships (A/O), Gloger’s Rule, Latitudinal Diversity Gradient, Theory of Island Biogeography, Species-Area Relationships, and Metabolic Theory of Ecology. Rows are ecological factors

that are grouped by Substrate Properties (both physical and chemical properties), Biotic Interactions, Climate, Stochastic Processes, Unknown Mechanisms, and Contradictory Evidence. A study was counted and

placed under Unknown Mechanism, if the rule was upheld for microorganism but did not investigate or model any ecological factor in regard to this observed pattern. The row Contradictory Evidence includes studies

where no support, or another pattern, was observed for each rule. This row helps elucidate inconsistencies or disagreements in the applicability of macroecological rules and patterns to the field of microbial ecology.
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FIGURE 2 | Numbers of publications for each queried macroecological rule across free-living and host-associated microorganisms in aquatic and terrestrial
environments. Heat map indicates the number of supporting publications per grid square with total number of publications denoted for each row and column on the
left and top sides of the chart.

theory (Wright, 1983) is largely lacking for microorganisms that
gain energy from multiple sources (e.g., photoautotrophic and
chemolithotrophs). Examinations of center-periphery dynamics
in which organisms are expected to have the highest abundance
at the center of their range (Hengeveld and Haeck, 1982) are
also lacking. Accurate range maps are not available for the
majority of microorganisms (but see Kivlin, 2020), and when
they are, do not contain information on microbial abundance.
Other macroecological rules related to organismal size (e.g.,
Foster’s Rule; Foster, 1964) or sexual selection (e.g., Rensch’s Rule;
Rensch, 1950) require detailed morphological measurements
across space that are not generated from DNA-based microbial
observations. As data on microbial distributions and microbial
traits (e.g., Zanne et al., 2020) accumulates, many of these
understudied rules may be addressable in the near future.

Outstanding Questions
Several outstanding questions and subsequent discussion points
remain after our synthesis. First, if a given macroecological

rule is supported, are there important environmental factors or
interactions among environmental drivers specific to microbial
taxa (e.g., soil pore size) that were not captured in previous
studies? If so, can these explain some of the cases where
microorganisms follow macroecological patterns but where
the proposed causal mechanism for macroorganisms seems
inapplicable? Second, how should we conceptualize traits
of microorganisms, such as body size, to compare with
macroorganisms? So far, microbial body size has been measured
as cell size, but extensions to sporocarp or colony size
could better reflect ideas of resource allocation and use
underlying some theories of macroecology (Young, 2006).
Third, how do the evolutionary rates of microbial speciation
and extinction affect our interpretation of macroecological
rules, such as those associated with the MTE or the dynamic
equilibrium Theory of Island Biogeography? For example,
are biologically diverse islands hotspots for speciation or
cold spots for extinction, or are patterns relating to island
biogeography theory solely driven by ecological dispersal
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FIGURE 3 | Predicted macroecological patterns based on proposed macroecological rules for plants and animals (blue) versus observed patterns for free-living
(purple) and host-associated (green) microorganisms grouped at organismal (A), community (B), and functional (C) levels. Trends here are generated from the
predominant pattern or all patterns from our synthesis when there was no consensus on vote counting. Microbial patterns match those of plants and animals for
organismal (but see Gloger’s Rule) and functional levels, but community-level patterns are variable, reflecting different ecological drivers of macro- and
microorganism distributions.

trajectories? Finally, how does temporal turnover of microbial
communities influence our conceptualization of macroecological
patterns that are inferred from single time point studies? Are
macroecological patterns of microorganisms consistent intra-
and inter-annually? Data from multi-year studies may address
most of these questions and can allow assessment of ecological
and evolutionary turnover in microbial communities in a variety
of habitats.

Best Practices in Microbial
Macroecology
To spur future studies, we have developed a list of best
practices for the future of microbial macroecology. First, we

recommend hypothesis-driven inquiry where researchers use
macroecological rules as null hypotheses instead of surveying
DNA for de novo patterns. To illustrate this further, one
could test the null hypothesis that rhizosphere microbes have
no difference in mean range size at higher elevations than
lower elevations (Rapoport’s Rule) given their association with
their host. Second, macroecological rules should be used as a
framework to connect multiple factors influencing biogeographic
patterns (e.g., patch size and dispersal limitation among islands).
Third, we should consider unique limitations and prospects of
microbial ecology (microbial morphology and physiology, DNA-
based studies, destructive sampling, horizontal gene transfer,
the effect of spatial scale relative to the system, pooling across
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replicates within sites for DNA sequencing) and interpret
findings in this light. For example, Dickey et al. (2020)
shows that rhizosphere bacterial communities vary within
the rhizosphere habitat and that DNA sequencing resolution
affects estimates of microbial richness. When comparing
macroecological rules across the tree of life, collection
methods and statistics should be standardized as much as
possible to avoid over-estimating microbial diversity. This
could be accomplished by standardizing sampling effort
among taxa through rarefaction or creating universal species
concepts that encompass variable selection regimes instead
of universal cutoff of 97% to define microbial taxa (e.g.,
Beaulieu et al., 2012). Furthermore, sampling efforts in
tropical regions should be increased to counterbalance the
sampling bias in temperate regions. Fourth, researchers
should examine more than DNA (e.g., organismal traits,
metabolomes) when surveying microorganisms to understand
organismal trait-based and functional macroecological
patterns. Finally, we should conduct longitudinal studies
across years to understand microbial fluctuations due to
ecological and evolutionary processes. The future is open
for many lines of inquiry into the patterns and processes
underlying microbial macroecology. The promising analogs
to established macroecological rules for macroorganisms
and notable exceptions we found here provide a roadmap
to guide forecasts of microbial distributions under current
future environmental conditions.
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GLOSSARY

Endosymbiotic:Microorganisms that colonize inter- or intracellular space of plants, animals, and fungi.
Episymbiotic:Microorganisms that live on the surface of plants, animals, and fungi.
Historical vicariance: Contemporaneously observed geographic disjunction in species ranges caused by historical severance of a
contiguous species range due to separation of land masses or geological events (e.g., river gorges).
Island: An island is both a true island of land surrounded by water and island-like habitats that are spatially and temporally isolated
from habitats of the same type (sensu Itescu, 2019).
Legacy effects: Effects of prior environmental conditions on subsequent organismal physiology, diversity, composition, and
distributions after environmental conditions have changed.
Macroecological rules: Generalizable patterns of organismal distributions, abundances, and diversity supported by known processes
of organismal evolution, physiology, community assembly, and/or dispersal.
Microorganisms:Here, we define microorganisms as microscopic fungi, bacteria, archaea, and protists.
Priority effects: When the order of arrival at a given habitat gives primary colonizers an advantage in using resources to be able to
outcompete subsequent colonizers.
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