

**PROCEEDINGS OF  
THE ROYAL SOCIETY B**

BIOLOGICAL SCIENCES

**Contributions of environmental and maternal transmission  
to the assembly of leaf fungal endophyte communities**

|                               |                                                                                                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                      | <i>Proceedings B</i>                                                                                                                                                                     |
| Manuscript ID                 | RSPB-2021-0621.R2                                                                                                                                                                        |
| Article Type:                 | Research                                                                                                                                                                                 |
| Date Submitted by the Author: | n/a                                                                                                                                                                                      |
| Complete List of Authors:     | Bell-Dereske, Lukas; Institute of Microbiology Czech Academy of Sciences Laboratory of Environmental Microbiology<br>Evans, Sarah; Michigan State University, Kellogg Biological Station |
| Subject:                      | Ecology < BIOLOGY, Plant science < BIOLOGY, Microbiology < BIOLOGY                                                                                                                       |
| Keywords:                     | leaf fungal endophytes, community assembly, environmental transmission, maternal transmission, perennial grass, <i>Panicum virgatum</i>                                                  |
| Proceedings B category:       | Ecology                                                                                                                                                                                  |
|                               |                                                                                                                                                                                          |

**SCHOLARONE™**  
Manuscripts

**Author-supplied statements**

Relevant information will appear here if provided.

***Ethics***

*Does your article include research that required ethical approval or permits?:*

This article does not present research with ethical considerations

*Statement (if applicable):*

CUST\_IF\_YES\_ETHICS :No data available.

***Data***

*It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?:*

Yes

*Statement (if applicable):*

Sequence data are available at NCBI SRA under Bio-Project no. PRJNA709151, and datasets, bioinformatics scripts and metadata used in the current study are available at [https://github.com/Idereske/Bell-Dereske\\_Evans\\_Fugal\\_Rain](https://github.com/Idereske/Bell-Dereske_Evans_Fugal_Rain) and archived at DOI: 10.5281/zenodo.4604699

***Conflict of interest***

I/We declare we have no competing interests

*Statement (if applicable):*

CUST\_STATE\_CONFLICT :No data available.

***Authors' contributions***

CUST\_AUTHOR CONTRIBUTIONS QUESTION :No data available.

*Statement (if applicable):*

CUST\_AUTHOR CONTRIBUTIONS TEXT :No data available.

1 **Contributions of environmental and maternal transmission to the assembly of leaf fungal  
2 endophyte communities**

3

4 Lukas P. Bell-Dereske<sup>1\*</sup> (<https://orcid.org/0000-0001-9951-2222>)

5 Sarah E. Evans<sup>2</sup>

6 <sup>1</sup>Laboratory of Environmental Microbiology, Institute

7 of Microbiology of the Czech Academy of Sciences

8 <sup>2</sup>W.K. Kellogg Biological Station, Michigan State University

9 Department of Integrative Biology, Michigan State University

10 Ecology and Evolutionary Biology Program

11 \*corresponding author: [lukas.bell-dereske@biomed.cas.cz](mailto:lukas.bell-dereske@biomed.cas.cz)

12 **Abstract**

13 Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize  
14 leaves through maternal transmission, e.g., via the seed, **and** through environmental transmission,  
15 e.g., via aerial dispersal. The relative importance of these two pathways in assembly and function  
16 of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass  
17 (*Panicum virgatum*) LFEs in a greenhouse and field experiment as communities assembled from  
18 seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds,  
19 seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of  
20 switchgrass LFE richness (>65%) than were found in seed endophytes (>25%). Exposure of  
21 germinating seeds to rain **inoculum** increased dissimilarity between LFE communities and seed  
22 endophytes, increasing the abundance of rain-**derived taxa**, but did not change diversity. In the  
23 field, seedling LFE composition changed more over time, with a decline in seed-**derived taxa and**  
24 **an increase in richness**, in response to environmental transmission than LFE of adult plants. We  
25 show that environmental transmission is an important driver of LFE assembly, and likely plant  
26 growth, but its influence depends on both the conditions at the time of colonization and plant life  
27 stage.

28

29

30 Keywords: leaf fungal endophytes, community assembly, environmental transmission, maternal  
31 transmission, perennial grass, *Panicum virgatum*

32 **1. Introduction**

33 Globally the leaf is one of the largest terrestrial biotic habitats for microbial communities,  
34 representing  $6.4 \times 10^8 \text{ km}^2$  of global surface area [1]. Within this habitat, leaf fungal endophyte  
35 (LFE) taxa are found in all plant species surveyed to date and contribute to plant host growth and  
36 survival. Leaf fungal endophytes are taxa living asymptotically within, or between, cells of  
37 host leaves for the majority of the fungus' life cycle [2]. These taxa can take on many roles in  
38 relation to their plant host, including mutualistic (e.g. increasing drought tolerance [3]), neutral  
39 (e.g. latent saprotrophs [4]), or pathogenic, both weak and latent [5]. Thus, LFEs are an  
40 important factor in determining plant community composition and productivity [6, 7]

41 Despite the importance of LFEs to large-scale processes, the factors that determine the  
42 composition of these communities are thus far unresolved. Microbial community assembly is  
43 strongly shaped by selection, or biotic filtering [8, 9]. Selection can be observed when different  
44 plant species host different LFE communities, even at the same sites [10]. However, many  
45 studies now show that selection by the host plays a relatively minor part in assembly, compared  
46 to other processes, as indicated by LFE communities showing strong signatures of site [11, 12].  
47 This importance of site could be due to environmental selection (e.g., site's climate) or spatial  
48 dynamics (e.g., dispersal limitation within and between sites) outweighing host selection [13].  
49 Historical and current climatic factors may filter regional pools of LFEs [14, 15] (e.g., those in  
50 soil or air) affecting the kind of taxa that are available to colonize the leaf. Thus, while host  
51 selection no doubt plays a role in LFE assembly, predicting its assembly will require that we  
52 understand dispersal, transmission, and colonization.

53 Leaf fungal endophyte transmission can be broadly split into maternal, i.e., taxa  
54 transmitted directly or indirectly from maternal plants, and environmental, i.e., taxa transmitted

55 from surrounding environment. Our understanding of maternal transmission **comes from**  
56 **studying** systemic LFE, *i.e.*, **those** distributed throughout the host plant, while localized LFEs  
57 **with restricted distributions within plants** make up a higher proportion of **global LFE** diversity  
58 [2, 16]. While environmental transmission may come from many sources (*e.g.*, soil and other  
59 plants), here we focus on aerial transmission since it may be especially important to LFEs, as leaf  
60 surfaces have high exposure to atmospheric deposition. Colonization of **aerially** transmitted fungi  
61 may be particularly successful during rain events, when fungal communities become more active  
62 and release more spores and hyphae than during dry periods [17, 18]. However, the importance  
63 of environmental transmission, relative to maternal transmission, **is unknown** for LFEs.

64 **The contributions** of maternal versus environmental transmission **to LFE communities**  
65 **may** alter the direction and intensity of interactions between host plants and LFEs. For instance,  
66 **fungi originating** from maternal transmission are predicted to form strong plant-fungal  
67 interactions because of LFE dependence on the host for survival and growth [19] giving rise to  
68 cross-generational mutualistic and/or parasitic interactions. Although less is known about the  
69 functional implications of environmental transmission, this mode is the dominant mode of  
70 transmission of pathogenic taxa [20], but also may be important in the spread of some  
71 mutualistic LFEs (*e.g.*, [21]) and saprotrophs [4]. With few characterizations of aerial dispersal,  
72 and even fewer that contextualize its impact in combination with maternal transmission, it has  
73 been impossible to assess the relative importance of transmission mode, and the outcome on  
74 microbe-host interactions [2].

75 Plant life stage is also likely to interact with modes of transmission in the assembly of  
76 LFEs. Seedling LFEs are likely more variable and have higher beta diversity (*i.e.* more  
77 differences between individuals) than mature leaves due to the lesser selection by physical and

78 chemical defenses. Additionally, mature leaves have experienced longer exposure to the  
79 propagules coming from the environment likely stabilizing the community [22, 23]. Leaf fungal  
80 endophyte communities increase in alpha diversity and abundance as leaves age [21].  
81 Furthermore, the seedling LFE community is strongly affected by seed endophytes (due to the  
82 proximity in time) and soil fungal community (due to its proximity in space) than the mature  
83 LFE community. These differences in the contribution of transmission modes between LFE of  
84 seedling and mature leaves is of particular importance for perennial species since LFE must  
85 either overwinter with their host or recolonize each growing season.

86 We quantified the importance of maternal and environmental transmission of fungal  
87 communities to the LFEs of seedlings and adult plants, testing three hypotheses. First, we  
88 hypothesize that (1) rain community shapes LFEs and reduces the relative contribution of seed  
89 endophytes. We predict exposure to the rain **inoculum** will alter the LFE composition and  
90 increase LFE diversity. We test this by manipulating seed exposure to **live/sterile** rain **inoculum**  
91 in petri dishes (Fig. 1a). Second, we hypothesize that (2) the importance of maternal vs.  
92 environmental transmission in LFE assembly depends on plant life stage. We predict that **seed**  
93 **endophytes** will be abundant in the seedling LFEs, but replaced as seedlings are exposed to  
94 environmental transmission, and test this using seedling and **adult** plants in the field (Fig. 1b).  
95 Finally, we hypothesize (3) that the mode of transmission will alter the putative function of LFE  
96 communities. Maternal contributions may result in more mutualistic LFE communities, while a  
97 high **environmental** contribution could increase pathogens. We infer putative functions using  
98 previously-published effects of these taxa on host growth [3, 24, 25] and on the possible sources  
99 of LFEs [26].

100

101 **2. Material and methods**102 **(a) Site and focal host**

103 We focused on the assembly of the LFE community of switchgrass (*Panicum virgatum*) because  
104 it is a perennial bioenergy crop of economic importance that hosts potentially-beneficial LFEs [3,  
105 27, 28], but little is known about the sources of these LFEs (but see [26]). All field samples were  
106 collected, and experiments were conducted, in a mature switchgrass monoculture established in  
107 2009 at the Marshall Farms site of the Great Lakes Bioenergy Research Center Scale-up  
108 experiment (42.4475522 N, 85.3109636 W). For site and management descriptions, see [29].

109

110 **(b) Seed endophyte and rain fungal collection**

111 Seeds used for both the petri and field experiments were Cave-in-Rock switchgrass variety from  
112 2007 lot SFD-07-F11 (USDA Elsberry Plant Materials Center). Seeds were surface sterilized and  
113 stratified at 4°C in petri dishes with autoclave filter paper soaked with nanopure water for ~2  
114 months. On July 10, 2018, five random groups of 3-5 seeds were frozen at -80°C for sequence-  
115 based characterization of the maternal community (hereafter, ‘seed endophytes’) with this  
116 characterization used for both experiments.

117 At four field blocks, near trays of seedlings (see ‘Field experiment’), we set out rain  
118 collectors to capture the aerial dispersed, both dry and wet, fungal community that the seedlings  
119 and adult plants were exposed to over the course of the experiment (hereafter, ‘rain fungi’). Rain  
120 collectors were left in the field for the full 51 days of the experiment with samples collected  
121 within 6 hours of each rain event (15 events and 60 total samples). In this way, we captured a  
122 realistic view of what the leaf sees, all air/wind deposition up to, and in, a rain event. Rain from  
123 two rain events were used to inoculate germinating seeds for the petri experiment (hereafter,

124 ‘rain inoculum’) and used in the characterization of rain fungi for both experiments. Rain was  
125 brought back to the lab, vacuum filtered, and stored at -80°C prior to characterization of rain  
126 fungi for each sample separately. For a full description of rain collectors and collection, see  
127 Supplementary Methods.

128

129 **(c) Petri dish experiment**

130 To test hypothesis 1, we directly manipulated the presence/absence of rain inoculum on the LFE  
131 community of germinating seeds in petri dishes (hereafter ‘Petri experiment’; Fig. 1a). In each  
132 100 mm x 15 mm petri dish 20 seeds from the stratified batch described above were place on  
133 autoclaved Whatman no. 5 filter paper. Petri dishes received 5mL of either autoclave sterilized  
134 rainwater or live rainwater (hereafter, ‘sterilized rain’ and ‘live rain’, respectively). Sterilized  
135 rain was autoclaved using a 30min liquid cycle then cooled at 4°C for at least 2 hrs. Petri dishes  
136 were sealed with parafilm and placed in the greenhouse. This experiment was conducted twice  
137 with rainwater collected (see ‘Rain collection’) on July 21, 2018 (Round 1) and August 21, 2018  
138 (Round 2), seeds were allowed to germinate and grow for 24 and 28 days, respectively. For each  
139 rain event, two petri dishes were inoculated from collections from three field blocks (total 24  
140 petri dishes). At harvest, fungal colonization was visually estimated by number of seeds with  
141 fungal growth, germination was recorded, and germinated seedlings were bulk by petri dish then  
142 stored at -80°C.

143

144 **(d) Field experiment**

145 To test hypothesis 2, we sowed 10 seeds per pot into autoclaved 50:50 sand and vermiculite in  
146 107mL conetainers (SC7 Stewe and Sons, Tangent, Oregon) that were eventually placed in the

147 field (hereafter, 'Field experiment'; Fig. 1b). The 48 pots were blocked into four groups of 12 by  
148 tray to control for greenhouse effects and watered daily with nanopure water in an empty  
149 greenhouse for 6 days whereupon seedlings began to emerge from the soil (July 16, 2018) and  
150 seedlings were transported to the field. Eight of the pots (two per block) transported to the field  
151 were haphazardly chosen for harvest. Five of these pots, with emerged seedlings, were used to  
152 characterize initial LFE community and colonists from the greenhouse (hereafter, 'start  
153 seedlings'). Of the remaining pots, 10 pots were randomly distributed in 98 cell trays at each of  
154 four locations along the southern and western edge of the field (hereafter, 'field blocks')  
155 surrounding the mature stand of switchgrass. Plants and pots were not allowed to touch the soil  
156 or adult plants; therefore, any environmental transmission of fungi occurred through aerial  
157 spread. Seedlings were fertilized at the beginning of the experiment and every week with 10 mL  
158 of 0.2  $\mu$ m filtered half strength Miracle-Gro All Purpose Liquid Plant Food. After 52 days in the  
159 field (September 9, 2018), leaves from the 17 emerged seedlings that survived (4-5 seedlings per  
160 field block; hereafter, 'end seedlings'). At establishment and end of experiment, leaves from  
161 three randomly chosen adult plants were harvested at each field block (four adult plant replicates;  
162 hereafter, 'start adults' and 'end adults', respectively). All plant material was stored at -80°C  
163 prior to sequencing.

164

### 165 (e) Fungal community characterization

166 For full description of community characterization, see Supplemental Methods. Plant  
167 samples, seeds and leaves, were surface sterilized then DNA was extracted using Plant DNeasy  
168 kits. Rna DNA was extracted from filters using PowerWater kits (Qiagen, Hilden, Germany).  
169 Communities were characterized using 250-bp paired-end MiSeq sequencing (MSU Genomics

170 Core, East Lansing, MI) of the ITS2 region [30]. Sequences were merged, quality checked, and  
171 clustered into zero-radius operational taxonomic units (hereafter, approximate sequence variants  
172 or ASVs) using unoise3 [31]. We used the level of 100% similarity to be conservative in our  
173 estimate of overlap between rain fungi and plant communities. We classified representative  
174 sequences against the UNITEv8.2 database [32] using CONSTAX [33]. We identified and  
175 removed possible contaminant taxa based on blank controls using microDecon [34]. Finally, we  
176 rarified the community to a depth of 1,000 reads resulting in 2,586 ASVs and 117,000 reads. In  
177 total, four plant samples were filtered out due to poor amplification and sequencing (Table S1).

178 To determine possible functional roles of LFEs, addressing hypothesis 3, we matched  
179 ASVs to previously published switchgrass LFEs at  $\geq 97\%$  sequence similarity. Leaf fungal  
180 endophytes were classified into pathogens, mutualists, or context mutualist based on published  
181 effects of LFE on switchgrass [14, 15, 24]. Putative sources of LFEs were classified based on  
182 significant plant community indicator taxa from [26]. For a full description of the functional  
183 classifications, see Supplemental Methods.

184

### 185 (f) Statistical analysis

186 We used indicator value index [35], the product of taxon's specificity (i.e., uniqueness to  
187 a given habitat) and fidelity (i.e., frequency of occurrence in a given habitat), to classify the  
188 likely sources of LFE, either rain fungi or seed endophytes. We weighted this value by taxon  
189 abundances to calculate the contribution of sources to the LFE community. We also calculated  
190 the abundance of significant indicator taxa ( $p < 0.05$ ). We created PERMANOVA and mixed  
191 effects models to test the dissimilarity between, and diversity of, LFE communities, seed  
192 endophyte, and rain fungi (see Supplemental Methods). Additionally, we tested whether

193 community change was more driven by nestedness (i.e., loss of taxa with no replacement) or  
194 turnover (i.e., loss of taxa with replacement) [36] by calculating the ratio (nestedness:turnover;  
195 higher values indicate a larger role for nestedness). All PERMANOVA [37] and mixed effects  
196 models [38] included field block as a random grouping variable.

197

### 198 **(3) Results**

199 Rain fungi showed tremendous taxonomic and functional variability over the course of  
200 the experiment (Fig. S1 and S2). The richness and diversity of rain fungi was also consistently  
201 higher than the LFE community (Fig. S3 and S4). Basidiomycota dominated rain fungi until the  
202 end of the experiment, when Ascomycota reached equal abundance (Fig. S2a). Overall, these  
203 rain fungi appear to be a significant source of LFE taxa; rain fungi made up >65% of the richness  
204 and ~90% of the reads found in adult and seedling LFE communities.

205

#### 206 **(a) Hyp 1: Rain inoculum alter LFE**

207 We found that live rain inoculum altered the LFE of germinating seeds (Table S2, Fig  
208 S5); however, the strength of these effects differed across our two experimental rounds.  
209 Specifically, live rain increased similarity between LFE communities and rain fungi in round 2,  
210 but significantly increased dissimilarity between LFEs and seeds in round 1 (Table S3; Fig. 2a),  
211 and only when taking account abundance (i.e., Bray-Curtis distance). In both rounds, live rain  
212 increased rain-indicator taxa in LFE communities, without increasing LFE diversity (Table S4;  
213 Fig. S3) or replacing seed-indicator taxa (Table S5; Fig. 3a and S6a). Though turnover explained  
214 much of the difference between LFE communities and each source (rain or seeds), nestedness

215 explained more differences between LFE communities and rain fungi, presumably because LFEs  
216 were a subset of the highly diverse rain fungal community (Table S3; Fig. 2c and S7a).

217 In general, rain fungi were highly distinct from both LFEs and seed endophytes, (Fig.  
218 S5), tended to have lower variance in terms of taxa presence/absence (i.e., Jaccard distance;  
219 Table S4; Fig. S8b), and higher diversity (Fig. S3). There were also significant differences in  
220 rain fungi used in round 1 and round 2 (pairwise PERMANOVA  $p<0.03$ ). Rain fungi in round 1,  
221 collected earlier in the summer, was more dominated by Basidiomycota, specifically  
222 Agaricomycetes, Exobasidiomycetes, and Tremellomycetes, while round 2 was dominated by  
223 Ascomycota, specifically Dothideomycetes (Fig. S9). Still, across both rounds, live rain exposure  
224 consistently increased the abundance of Dothideomycetes and Sordariomycetes while decreasing  
225 abundance of Tremellomycetes, which dominated seeds and LFEs receiving sterilized rain (Fig.  
226 S9b). Finally, inoculation with live rain did not significantly alter seed germination rate (Fig.  
227 S10a) or visible fungal colonization (Table S6; Fig. S10b).

228  
229 **(b) Hyp 2: Importance of seed endophytes and rain fungi across two life stages**

230 Leaf fungal endophyte communities of both life stages, end seedling and adult plants, were  
231 significantly different than the starting LFE communities (Table S7; Fig. S11) and gained rain  
232 indicators (Tukey HSD:  $p=0.016$ ; Table S8; Fig. 3b) by the end of the experiment. Seedling LFE  
233 communities shifted more from start to end compared to adult plants (Jaccard-based  
234 composition; Table S9; Fig. 4b) and experienced a significant loss of seed indicator taxa (Fig.  
235 3b). In addition, the richness of seedling LFEs more than doubled from start to end while there  
236 was no change in adult LFEs (Table S10; Fig. S4a). Still, some patterns were similar across life  
237 stage. Seedling LFEs were no more similar to rain fungi than adults (Fig. 4ab) supported by the  
238 fact that LFEs had similar contributions from rain fungi overall (Fig. 3b). While turnover

239 dominated changes in fungal communities, when comparing relative importance between life  
240 stages, nestedness contributed more to the distance between rain fungi and end adult LFEs (Fig.  
241 4c and S12a).

242 The endophyte communities of the seeds, start seedlings, and start adults were dominated  
243 by likely yeast from Basidiomycota, specifically Tremellomycetes, but, by the end of the  
244 experiment, both adult plants and seedlings were dominated by Ascomycota, specifically  
245 Dothideomycetes (Fig. S13). There was no difference in beta-dispersion across endophyte  
246 communities (Table S10; Fig. S14).

247

### 248 (c) Hyp 3: Mode of transmission alters function of LFE communities

249 Switchgrass LFEs were common in rain fungi (~18% of reads; Fig. 5a and S1a).  
250 Pathogens made up the largest portion of the putative LFEs found in rain fungi (~11% of reads;  
251 Fig. 5b and S1b). In the field experiment, the relative proportion of pathogens in seedling LFE  
252 increased from start to end (Fig. 5b) further supporting rain as the dominant pathway for  
253 pathogens. This was corroborated by the petri experiment, in which LFEs originating from live  
254 rain were primarily pathogens (Fig. S15b). We found no recorded mutualists in the seed  
255 endophyte community (Fig. 5cd) instead likely pathogens made up ~16% of the putative LFE  
256 found in seed endophytes (Fig. 5b). On the other hand, mutualists and context mutualists were  
257 found in rain fungi (Fig. 5cd and S1cd). In general, functional attributes of LFEs changed more  
258 in seedlings than adults, consistent with the compositional data (Fig. 5).

259

### 260 (4) Discussion

261 We show how maternal and environmental transmission contribute to short-term (post  
262 germination) and long-term (adult leaves) assembly of leaf fungal endophyte (LFE)  
263 communities. We found that rain (representing wet and dry aerial dispersal) is comprised of a  
264 rich community of fungi, many of which are found in LFE communities, and exposure to this  
265 environmental transmission changes LFE composition. Together this suggests rain is an  
266 important driver of LFE assembly, supporting our first hypothesis. This first look at the relative  
267 influence of seed **vs. rain** communities in LFE assembly revealed three roles for environmental  
268 transmission. First, rain affects **LFE assembly**, but **these effects are likely temporally dependent**  
269 **and not necessarily predictable. Depending on characteristics of the rain event**, rain **inoculum**  
270 **seems to shift the** germinating LFE community compositionally away from seed endophytes by  
271 **enrichment of taxa and** not by displacing **seed endophytes**. As LFEs continue to assemble under  
272 environmental transmission, and increase in richness, seed indicators are lost from the LFE  
273 community. Second, LFE communities of early life stages (seedlings) are most responsive to  
274 environmental transmission. We observed large shifts in LFE composition when seedlings were  
275 exposed to **environmental transmission**, and relatively little change in adult LFE. Finally, wet  
276 and dry aerial dispersed fungi, integrated through rain, hosts a large temporally variable  
277 community of putative LFEs, with fungi able to colonize contributing unique functions to the  
278 LFE community.

279

280 **(a) Rain fungi shifts LFE community away from the maternal endophytes via enrichment**

281 We show that environmentally transmitted taxa can alter the communities of germinating  
282 seedlings, reducing similarity to maternal communities, but not through displacement of seed  
283 endophytes by novel rain fungi. Rather, LFEs became more dissimilar to seed endophyte

284 communities under the first round of inoculation (Fig. 2a) without a loss of seed endophytes  
285 (Fig. 3a). This lack of displacement of seed endophytes may be driven by rain inoculum  
286 enriching taxa that have overlapping presence in seed endophytes and rain fungi (>55% of seed  
287 endophytes are found in rain fungi) which may be the result of historical environmental  
288 transmission. Even though all seeds were from the same USDA grown population, gamma  
289 diversity across seeds was high (>150 ASVs; Table S1). This rich pool of maternal taxa may  
290 have originated from aerial dispersed microbes colonizing florets during fertilization and seed  
291 development (reviewed in [39]). Seed endophytes possibly originating from 'historical'  
292 environmental transmission makes separating environmental and maternal transmission  
293 challenging, but our study allows the separation of maternal contributions from contemporary  
294 environmental transmission. We primarily found that rain inoculum increased the abundance of  
295 Ascomycota and pathogens (Fig. S9a and S15b), but effects of environmental transmission  
296 appeared temporally dependent.

297 High diversity and temporal variability in the rain fungi seems to have important  
298 implications for the assembly of LFEs. Despite the rich rain fungal community, inoculation with  
299 rain inoculum had no effect on LFE diversity (Fig. S3). Many rain fungi may not have been able  
300 to colonize the plant due to strong leaf selection, making increasing abundance of extant  
301 endophytes the primary effect of rain inoculum, not introduction of new taxa. The increased  
302 similarity between LFE and rain fungi only in round 2 (Fig. 2a) may be partially a result of the  
303 variability of the rain fungi over time. Specifically, rain inoculum used for round 2 had a higher  
304 portion of Ascomycota (Fig. S9a), a high portion of previously documented LFEs, mostly  
305 putative pathogens (Fig. S15ab; [15, 24]), and higher concentrations of fungal hyphae and spores  
306 (data not included). The higher concentration of putative LFEs, and fungi in general, may have

307 increased colonization success and thus environmental transmission [40, 41]. Variation in rain  
308 chemistry between rounds also could have driven the rain **inoculum** effect on LFE, nitrate levels  
309 were higher the week that round 2 inoculant was collected (~2X higher, Station MI26  
310 <http://nadp.slh.wisc.edu/ntn/>). Regardless of the mechanism, our study highlights LFE assembly  
311 may be sensitive to the changes in the composition, and colonization ability, of rain **fungi**, which  
312 **appear** highly temporally variable (Fig. S1a). Additionally, this temporal dependency of  
313 colonization appears to continue into the adult life stage since rain indicators increased in the  
314 LFE community over time (Fig. 3b). Our results, as well as a recent study of switchgrass fungal  
315 epiphytes in our region [42] show seasonal succession in the leaf microbiome which may be  
316 driven by an active exchange between the leaf microbiome and the rain community.

317

318 **(b) Seedlings are more responsive to environmental transmission than adults**

319 Persistence of seed endophytes and magnitude of temporal change in the LFE community  
320 differed by life stage, confirming our second hypothesis. The change in the presence and absence  
321 of taxa best captured the greater change in LFE communities, and increased dissimilarity from  
322 seed **endophytes** (Fig. 4b), in seedlings compared to adults, suggesting changes in rare taxa drove  
323 shifts in community composition. Our findings are consistent with other studies that have found  
324 greater temporal change in seedling than adult LFE communities [22, 43]. These rapid changes  
325 in seedling LFE may be driven by a lack of physical and chemical defenses making the leaves of  
326 seedlings more susceptible to colonization from external sources. Early life stages may be  
327 especially important in shaping the final LFE community, and we show they are susceptible to  
328 environmental transmission, including of pathogens (Fig. 5b).

329        Though their importance declined with exposure to rain *inoculum*, seed endophytes had a  
330    surprisingly long-lasting presence in the switchgrass LFE community. Our finding that seed  
331    indicators persisted into seedling and even adult stages (making up ~14% of adult reads; *Fig*  
332    *S6b*) suggests that even though *colonization of rain fungi reduces its importance*, the seed  
333    community is still important for long-term LFE dynamics. To better understand the long-term  
334    effects of seed endophytes on LFE communities requires experimental manipulation such as  
335    knocking out the current seed endophyte community *and monitoring LFE assembly*. Importantly,  
336    though seed endophytes are a part of the long-term LFE community, two-month-old seedling  
337    LFE communities already greatly diverge from the seed endophyte community (*Fig. S11*).

338        Though the drivers of the shift differed between the two life stages, both the seedling and  
339    adult LFE communities *tended to* show increased relative abundances of rain indicators (*Fig.*  
340    *3b*). In contrast to the petri experiment, the colonization of novel rain fungi played a role in  
341    seedling LFE community change and increased LFE richness (*Fig. S4a*). Interestingly, the  
342    increase in richness with exposure to rain *inoculum* did not occur in the LFE of seedlings in the  
343    petri experiment (*Fig. S3a*). It is possible that the relatively short duration, or the single  
344    inoculation under controlled conditions, of the petri experiment reduced our ability to observe  
345    the effects of rain *inoculum* on LFE richness. *Though turnover dominated the changes in the*  
346    *LFE communities*, compared to seedlings, the adult LFE community was more of a taxonomic  
347    subset of the rain fungi (i.e., higher nestedness *Fig. 4c*), suggesting that adult plants may exert  
348    higher selection on colonists from the diverse rain community.

349

350    **(c) Environmentally transmitted taxa contribute unique functions to LFEs**

351 Our data also suggests that transmission pathway influences LFE functional diversity and  
352 LFE community impact on plant host, partially supporting our third hypothesis. Rain fungi  
353 hosted many taxa that have been identified as switchgrass LFEs from previous culture-based  
354 surveys (Fig. S1a; [15, 24, 26]), allowing us to infer putative functions. The dominance of  
355 putative pathogens in rain fungi, and the fact that these groups became abundant in the seedling  
356 LFE by the end of the experiment (Fig. 5b), suggests that rain is a significant source for pathogen  
357 dispersal [20, 44, 45]. Contrary to our predictions, seed endophytes hosted no recorded  
358 mutualists and instead hosted putative LFE composed of possible pathogens (Fig. 5b).  
359 Furthermore, we found that rain hosted a small portion of LFE mutualists and context mutualists,  
360 beneficial under drought but antagonistic under other conditions [14]. These mutualists became  
361 somewhat enriched in both the adult and seedling LFE communities by the end of the experiment  
362 (Fig. 5cd) highlighting that aerial transmission can introduce both beneficial as well as harmful  
363 taxa.

364 Rain also appears to be a major pathway for the transmission of taxa from surrounding  
365 plant communities. Leaf fungal endophytes that have been found to be indicative of prairie  
366 ecosystems [26] were present at low frequency, but consistent levels across rain events. These  
367 same taxa became relatively dominant in the final seedling community compared to all other  
368 LFE communities (Fig. 5e). Since our field experiment was conducted near an experimental  
369 prairie restoration [29], these taxa may also be colonists from the prairie plant community in our  
370 experiment, highlighting the potential for spillover between cultivated and non-cultivated lands  
371 via aerial dispersal [46]. On the other hand, taxa indicative of the specific population from which  
372 our target switchgrass plants were derived (i.e., Cave-in-Rock variety) [26] were relatively rare  
373 in the rain fungal and LFE communities (Fig. 5f). This suggests that selection of regional pools

374 of potential LFEs by nearby plant communities may explain the ‘site signal’ found in many LFE  
375 studies [11, 12].

376

377 **(5) Conclusion**

378 Rain, as an integrator of wet and dry aerial dispersal, hosts a functionally diverse  
379 community of putative LFEs and alters community assembly and function. We found that seed  
380 endophytes remained in the LFE communities of seedlings and adult plants, but exposure to  
381 environmental transmission made LFE communities less similar to seed [endophytes](#) and  
382 increased the contribution of aerial transmitted taxa to the LFE community, demonstrating that  
383 environmental transmission is an important driver of LFE community assembly. This interaction  
384 is dynamic over time, with plant ontogeny and seasonal shifts in rain community composition  
385 and chemistry likely affecting assembly outcomes. Future work should test the seasonal LFE-  
386 rain interchange and its importance for long-term dynamics of the plant microbiome.

387

388 **Data accessibility.** Sequence data are available at NCBI SRA under Bio-Project no.  
389 PRJNA709151, and datasets, bioinformatics scripts and metadata used in the current study are  
390 available at [https://github.com/ldereske/Bell-Dereske\\_Evans\\_Fugal\\_Rain](https://github.com/ldereske/Bell-Dereske_Evans_Fugal_Rain) and archived at DOI:  
391 10.5281/zenodo.4604699

392 **Competing interests.** We declare we have no competing interests.

393 **Funding.** Support for this research was provided by the MMRNT project (DOE BER Office of  
394 Science award DE-SC0014108), by the DOE Great Lakes Bioenergy Research Center (DOE  
395 BER Office of Science DE-SC0018409 and DE-FC02-07ER64494), and by the NSF Long-Term  
396 Ecological Research Program (DEB 1832042 and 1637653) at the Kellogg Biological Station.

397 **Acknowledgements.** We thank Tayler Ulbrich, Corinn Rutkoski, Heather Kittredge, and Holly  
398 Vander Stel for help with field and lab work, and Kevin Dougherty for help with lab work and  
399 experimental design. This work took place on occupied Anishinaabe land where Hickory  
400 Corners, Michigan is now located. We thank local communities and the state of Michigan for  
401 maintaining and allowing access to the field sites. This is Kellogg Biological Station contribution  
402 number 2286.

403 **References**

404

405 [1] Lindow, S.E., Hecht-Poinar, E.I. & Elliott, V.J. 2002 *Phyllosphere Microbiology*, APS

406 Press/American Phytopathological Society.

407 [2] Rodriguez, R.J., White, J.F., Arnold, A.E. &amp; Redman, R.S. 2009 Fungal endophytes:

408 diversity and functional roles. *New Phytologist* **182**, 314-330. (doi:10.1111/j.1469-

409 8137.2009.02773.x).

410 [3] Giauque, H., Connor, E.W. &amp; Hawkes, C.V. 2019 Endophyte traits relevant to stress

411 tolerance, resource use and habitat of origin predict effects on host plants. *New Phytologist* **221**,

412 2239-2249. (doi:10.1111/nph.15504).

413 [4] Osono, T. 2006 Role of phyllosphere fungi of forest trees in the development of decomposer

414 fungal communities and decomposition processes of leaf litter. *Canadian Journal of*415 *Microbiology* **52**, 701-716. (doi:10.1139/w06-023).

416 [5] Lofgren, L.A., LeBlanc, N.R., Certano, A.K., Nachtigall, J., LaBine, K.M., Riddle, J., Broz,

417 K., Dong, Y., Bethan, B., Kafer, C.W., et al. 2018 *Fusarium graminearum*: pathogen or418 endophyte of North American grasses? *New Phytologist* **217**, 1203-1212.

419 (doi:10.1111/nph.14894).

420 [6] Clay, K. &amp; Holah, J. 1999 Fungal endophyte symbiosis and plant diversity in successional

421 fields. *Science* **285**, 1742-1744. (doi:10.1126/science.285.5434.1742).422 [7] Cheplick, G.P. & Faeth, S.H. 2009 *Ecology and evolution of the grass-endophyte symbiosis*.

423 New York, NY, Oxford University Press.

424 [8] Fu, H., Uchimiya, M., Gore, J. & Moran, M.A. 2020 Ecological drivers of bacterial  
425 community assembly in synthetic phycospheres. *Proceedings of the National Academy of  
426 Sciences* **117**, 3656-3662. (doi:10.1073/pnas.1917265117).

427 [9] Langenheder, S. & Székely, A.J. 2011 Species sorting and neutral processes are both  
428 important during the initial assembly of bacterial communities. *The Isme Journal* **5**, 1086.  
429 (doi:10.1038/ismej.2010.207).

430 [10] U'Ren, J.M., Lutzoni, F., Miadlikowska, J., Laetsch, A.D. & Arnold, A.E. 2012 Host and  
431 geographic structure of endophytic and endolichenic fungi at a continental scale. *American  
432 Journal of Botany* **99**, 898-914. (doi:10.3732/ajb.1100459).

433 [11] Seabloom, E.W., Condon, B., Kinkel, L., Komatsu, K.J., Lumibao, C.Y., May, G.,  
434 McCulley, R.L. & Borer, E.T. 2019 Effects of nutrient supply, herbivory, and host community  
435 on fungal endophyte diversity. *Ecology* **100**. (doi:10.1002/ecy.2758).

436 [12] Lumibao, C.Y., Borer, E.T., Condon, B., Kinkel, L., May, G. & Seabloom, E.W. 2019  
437 Site-specific responses of foliar fungal microbiomes to nutrient addition and herbivory at  
438 different spatial scales. *Ecology and Evolution*. (doi:10.1002/ece3.5711).

439 [13] Higgins, K.L., Arnold, A.E., Coley, P.D. & Kursar, T.A. 2014 Communities of fungal  
440 endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized  
441 by strong spatial structure. *Fungal Ecology* **8**, 1-11.  
442 (doi:<http://dx.doi.org/10.1016/j.funeco.2013.12.005>).

443 [14] Giauque, H. & Hawkes, C.V. 2016 Historical and current climate drive spatial and temporal  
444 patterns in fungal endophyte diversity. *Fungal Ecology* **20**, 108-114.  
445 (doi:<https://doi.org/10.1016/j.funeco.2015.12.005>).

446 [15] Giauque, H. & Hawkes, C.V. 2013 Climate affects symbiotic fungal endophyte diversity  
447 and performance. *American Journal of Botany* **100**, 1435-1444. (doi:10.3732/ajb.1200568).

448 [16] Newcombe, G., Harding, A., Ridout, M. & Busby, P.E. 2018 A Hypothetical Bottleneck in  
449 the Plant Microbiome. *Frontiers in microbiology* **9**, 1645-1645.  
450 (doi:10.3389/fmicb.2018.01645).

451 [17] Crandall, S.G. & Gilbert, G.S. 2017 Meteorological factors associated with abundance of  
452 airborne fungal spores over natural vegetation. *Atmospheric Environment* **162**, 87-99.  
453 (doi:<https://doi.org/10.1016/j.atmosenv.2017.05.018>).

454 [18] Rathnayake, C.M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P.S.,  
455 O'Shaughnessy, P.T. & Stone, E.A. 2017 Influence of rain on the abundance of bioaerosols in  
456 fine and coarse particles. *Atmos. Chem. Phys.* **17**, 2459-2475. (doi:10.5194/acp-17-2459-2017).

457 [19] Gundel, P.E., Rudgers, J.A. & Ghersa, C.M. 2011 Incorporating the process of vertical  
458 transmission into understanding of host–symbiont dynamics. *Oikos* **120**, 1121-1128.  
459 (doi:10.1111/j.1600-0706.2011.19299.x).

460 [20] Kinkel, L.L. 1997 Microbial population dynamics on leaves. *Annu. Rev. Phytopathol.* **35**,  
461 327-347. (doi:10.1146/annurev.phyto.35.1.327).

462 [21] Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N. & Herre, E.A.  
463 2003 Fungal endophytes limit pathogen damage in a tropical tree. *Proceedings of the National  
464 Academy of Sciences of the United States of America* **100**, 15649-15654.  
465 (doi:10.1073/pnas.2533483100).

466 [22] Oono, R., Lefèvre, E., Simha, A. & Lutzoni, F. 2015 A comparison of the community  
467 diversity of foliar fungal endophytes between seedling and adult loblolly pines (*Pinus taeda*).  
468 *Fungal biology* **119**, 917-928. (doi:10.1016/j.funbio.2015.07.003).

469 [23] Arnold, A.E. & Herre, E.A. 2003 Canopy cover and leaf age affect colonization by tropical  
470 fungal endophytes: Ecological pattern and process in *Theobroma cacao* (Malvaceae). *Mycologia*  
471 **95**, 388-398.

472 [24] Kleczewski, N.M., Bauer, J.T., Bever, J.D., Clay, K. & Reynolds, H.L. 2012 A survey of  
473 endophytic fungi of switchgrass (*Panicum virgatum*) in the Midwest, and their putative roles in  
474 plant growth. *Fungal Ecology* **5**, 521-529. (doi:<https://doi.org/10.1016/j.funeco.2011.12.006>).

475 [25] Giauque, H. 2016 Hierarchical controls of endophyte-mediated drought tolerance :  
476 ecological, physiological, and molecular. (

477 [26] Whitaker, B.K., Reynolds, H.L. & Clay, K. 2018 Foliar fungal endophyte communities are  
478 structured by environment but not host ecotype in *Panicum virgatum* (switchgrass). *Ecology* **99**,  
479 2703-2711. (doi:10.1002/ecy.2543).

480 [27] Connor, E.W., Sandy, M. & Hawkes, C.V. 2017 Microbial Tools in Agriculture Require an  
481 Ecological Context: Stress-Dependent Non-Additive Symbiont Interactions. *Agron. J.* **109**, 917-  
482 926. (doi:10.2134/agronj2016.10.0568).

483 [28] Hestrin, R., Lee, M.R., Whitaker, B.K. & Pett-Ridge, J. 2021 The Switchgrass Microbiome:  
484 A Review of Structure, Function, and Taxonomic Distribution. *Phytobiomes Journal* **5**, 14-28.  
485 (doi:10.1094/pbiomes-04-20-0029-fi).

486 [29] Abraha, M., Gelfand, I., Hamilton, S.K., Chen, J. & Robertson, G.P. 2018 Legacy effects of  
487 land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems.  
488 *Ecological Applications* **28**, 1362-1369. (doi:10.1002/eap.1745).

489 [30] Ihrmark, K., Bödeker, I.T.M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J.,  
490 Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K.E., et al. 2012 New primers to  
491 amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural

492 communities. *FEMS Microbiology Ecology* **82**, 666-677. (doi:10.1111/j.1574-  
493 6941.2012.01437.x).

494 [31] Edgar, R.C. 2016 UNOISE2: improved error-correction for Illumina 16S and ITS amplicon  
495 sequencing. *bioRxiv*, 081257. (doi:10.1101/081257).

496 [32] Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R.H. & Kõljalg, U.  
497 2020 UNITE USEARCH/UTAX release for eukaryotes. Version 04.02.2020. *UNITE*  
498 *Community*. (doi:<https://doi.org/10.15156/BIO/786376>).

499 [33] Gdanetz, K., Benucci, G.M.N., Vande Pol, N. & Bonito, G. 2017 CONSTAX: a tool for  
500 improved taxonomic resolution of environmental fungal ITS sequences. *BMC Bioinformatics* **18**,  
501 538. (doi:10.1186/s12859-017-1952-x).

502 [34] McKnight, D.T., Huerlimann, R., Bower, D.S., Schwarzkopf, L., Alford, R.A. & Zenger,  
503 K.R. 2019 microDecon: A highly accurate read-subtraction tool for the post-sequencing removal  
504 of contamination in metabarcoding studies. *Environmental DNA* **1**, 14-25.  
505 (doi:10.1002/edn3.11).

506 [35] Dufrêne, M. & Legendre, P. 1997 Species assemblages and indicator species: the need for a  
507 flexible asymmetrical approach. *Ecological monographs* **67**, 345-366.

508 [36] Baselga, A. & Orme, C.D.L. 2012 betapart: an R package for the study of beta diversity.  
509 *Methods in Ecology and Evolution* **3**, 808-812. (doi:10.1111/j.2041-210X.2012.00224.x).

510 [37] Clarke, K. & Gorley, R. 2006 PRIMER v6: User Manual/Tutorial. *PRIMER-E, Plymouth*,  
511 192pp.

512 [38] Bates, D., Mächler, M., Bolker, B. & Walker, S. 2015 Fitting Linear Mixed-Effects Models  
513 Using lme4. *Journal of Statistical Software* **67**, 48. (doi:10.18637/jss.v067.i01).

514 [39] Shade, A., Jacques, M.-A. & Barret, M. 2017 Ecological patterns of seed microbiome  
515 diversity, transmission, and assembly. *Current Opinion in Microbiology* **37**, 15-22.  
516 (doi:<https://doi.org/10.1016/j.mib.2017.03.010>).

517 [40] Ownley, B.H., Griffin, M.R., Klingeman, W.E., Gwinn, K.D., Moulton, J.K. & Pereira,  
518 R.M. 2008 Beauveria bassiana: Endophytic colonization and plant disease control. *Journal of*  
519 *Invertebrate Pathology* **98**, 267-270. (doi:<https://doi.org/10.1016/j.jip.2008.01.010>).

520 [41] Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R., Afolabi, O.G., Hussain, M., Qasim,  
521 M. & Wang, L. 2018 Prospects of endophytic fungal entomopathogens as biocontrol and plant  
522 growth promoting agents: An insight on how artificial inoculation methods affect endophytic  
523 colonization of host plants. *Microbiological Research* **217**, 34-50.  
524 (doi:<https://doi.org/10.1016/j.micres.2018.08.016>).

525 [42] Bowsher, A.W., Benucci, G.M.N., Bonito, G. & Shade, A. 2021 Seasonal dynamics of core  
526 fungi in the switchgrass phyllosphere, and co-occurrence with leaf bacteria. *Phytobiomes*  
527 *Journal* **5**, 60-68. (doi:10.1094/phytobiomes-07-20-0051-r).

528 [43] Maignien, L., DeForce, E.A., Chafee, M.E., Eren, A.M. & Simmons, S.L. 2014 Ecological  
529 Succession and Stochastic Variation in the Assembly of *Arabidopsis thaliana* Phyllosphere  
530 Communities. *mBio* **5**. (doi:10.1128/mBio.00682-13).

531 [44] Park, H., Kim, S., Gruszewski, H.A., Schmale, D.G., Boreyko, J.B. & Jung, S. 2020  
532 Dynamics of splashed droplets impacting wheat leaves treated with a fungicide. *Journal of The*  
533 *Royal Society Interface* **17**, 20200337. (doi:doi:10.1098/rsif.2020.0337).

534 [45] Kim, S., Park, H., Gruszewski, H.A., Schmale, D.G. & Jung, S. 2019 Vortex-induced  
535 dispersal of a plant pathogen by raindrop impact. *Proceedings of the National Academy of*  
536 *Sciences*, 201820318. (doi:10.1073/pnas.1820318116).

537 [46] Bell, T. & Tylianakis, J.M. 2016 Microbes in the Anthropocene: spillover of agriculturally  
538 selected bacteria and their impact on natural ecosystems. *Proceedings of the Royal Society B:*  
539 *Biological Sciences* **283**, 20160896. (doi:10.1098/rspb.2016.0896).

540

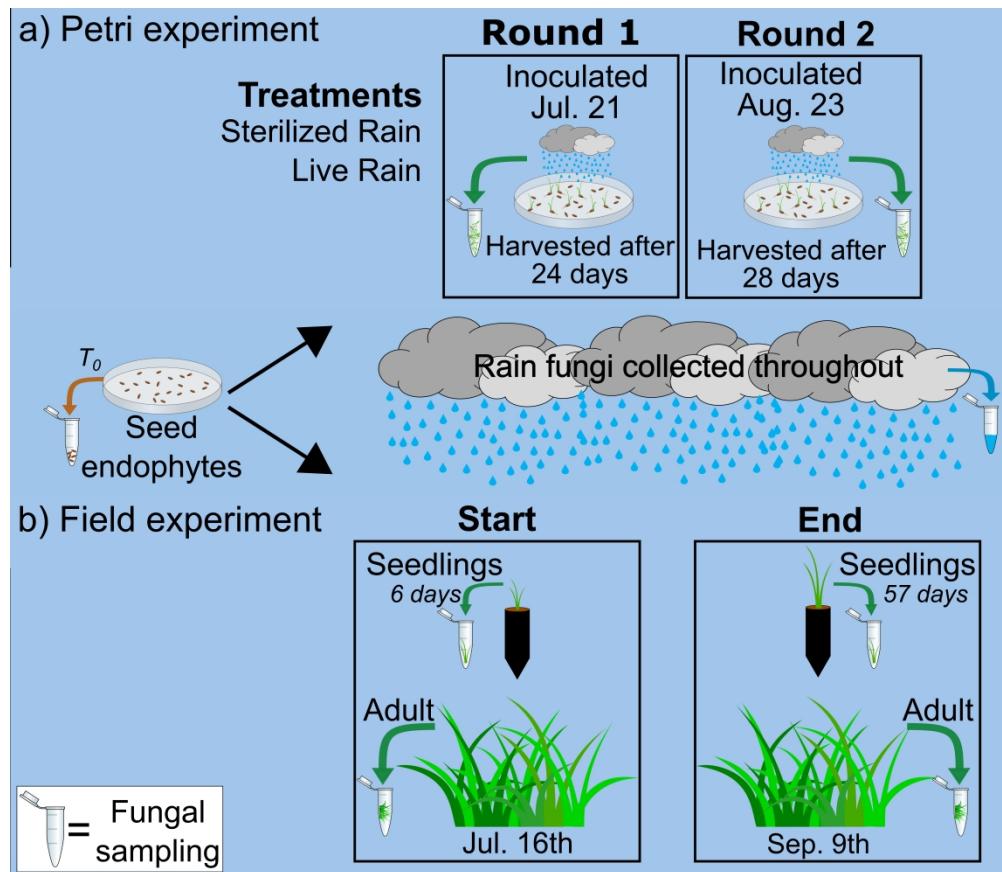



Figure 1. Two experiments were established to test the importance of maternal and environmental transmission in leaf fungal endophyte (LFE) community assembly. a) The petri experiment tested the effects of rain inoculum from two rain events (rounds) on germinating seedlings by inoculating seeds with autoclaved sterilized rain or live rain. b) The field experiment tested the correlation between seedling and adult LFE communities to rain fungi by placing greenhouse germinated seedlings in a field monoculture of adult switchgrass. We collected seedling and adult samples at the start and end of the experiment to characterize the change in LFEs. Seed endophytes were used to characterize the maternally transmitted community while rain fungi were collected throughout the experiment, with events characterized separately, to capture the environmentally transmitted community. For full numbers of replicates, see Table S1).

2062x1789mm (79 x 79 DPI)

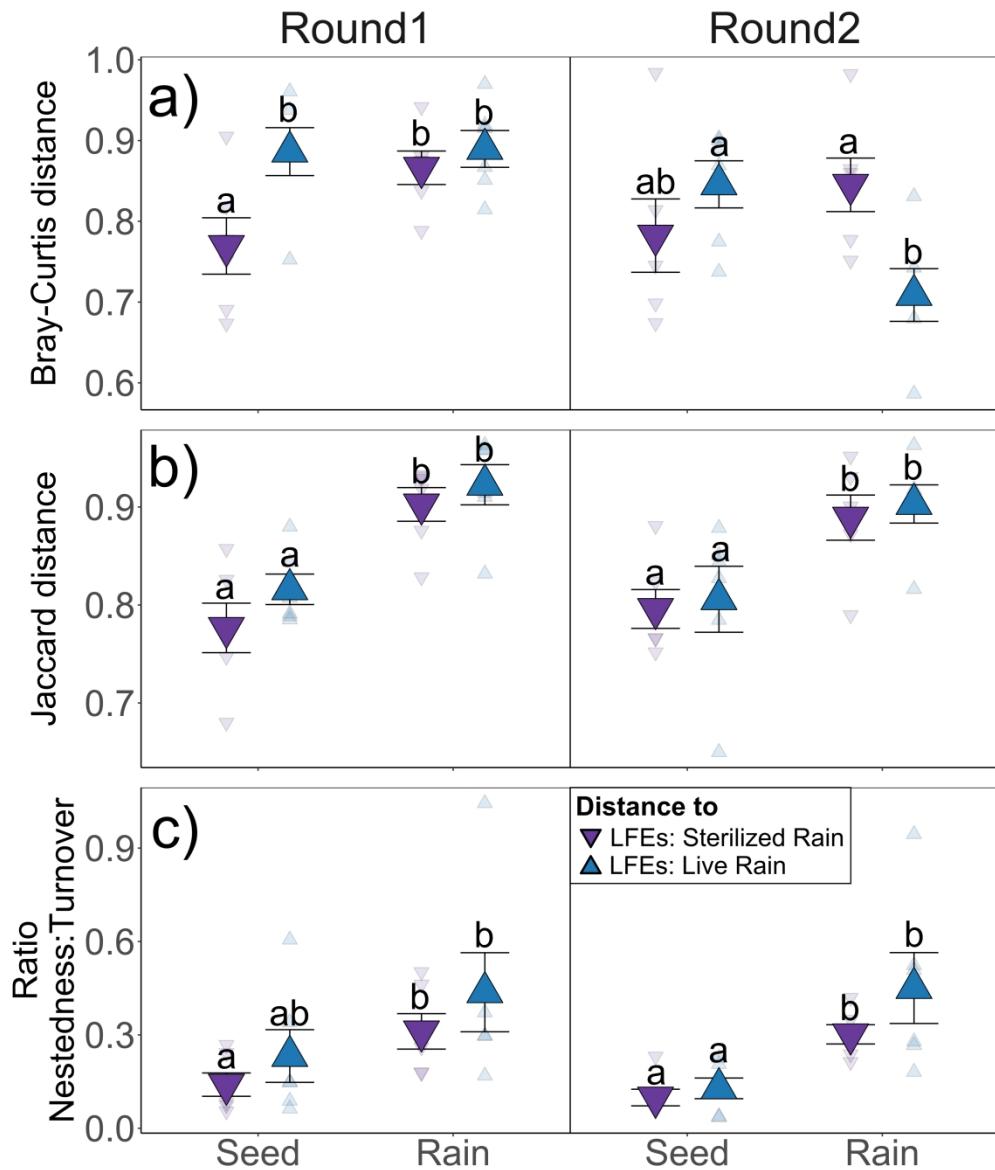



Figure 2. Pairwise community distance of leaf fungal endophyte (LFE) communities to seed endophytes (Seed) or rain fungal (Rain) communities using a) Bray-Curtis, b) Jaccard distance, and c) ratio of nestedness to turnover of seedlings receiving autoclave sterilized rain (dark purple triangle pointing down) or live rain (dark blue triangle pointing up). Round of inoculations are Round 1 (July 21) and Round 2 (August 21). Points represent means with SE. Raw data is represented by transparent points. Within round posthoc pairwise significances are FDR adjusted represented by letters.

738x874mm (118 x 118 DPI)

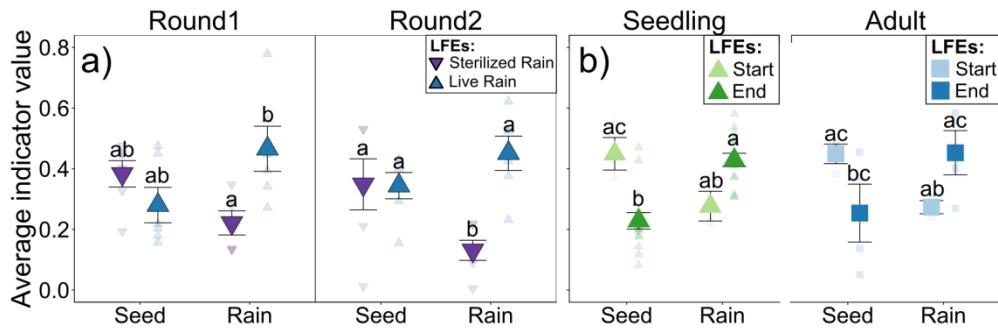



Figure 3. Average seed endophyte and rain fungal indicator values in leaf fungal endophyte (LFE) communities of the a) petri experiment and b) field experiment. a) Germinating seedling LFE communities were inoculated in Round 1 (July 21) and Round 2 (August 21) with autoclave sterilized rain (dark purple triangle pointing down) or live rain (dark blue triangle pointing up). b) Seedling LFEs were characterized at the start (July 16: light green triangle) or end (September 5: dark green triangle), and adult LFEs were characterized at the start (July 16: light blue square) or end (September 5: dark blue square). Points represent means with SE. Raw data is represented by transparent points. FDR adjusted posthoc pairwise significances for a) within round comparisons for petri experiment and b) all sample comparisons for field experiment are represented by letters.

1221x407mm (39 x 39 DPI)




Figure 4. Pairwise community distance using a) Bray-Curtis, b) Jaccard distance, and c) ratio of nestedness to turnover from end (September 5) seedling and adult leaf fungal endophyte (LFE) communities to start LFE (July 16; seedlings: green triangle or adults: blue square), seed endophytes (red circled x), or rain fungi (black circles). Points represent means with SE. Raw data is represented by transparent points. Posthoc pairwise significances are FDR adjusted represented by letters, and no letters indicate no significant difference.

672x1076mm (118 x 118 DPI)

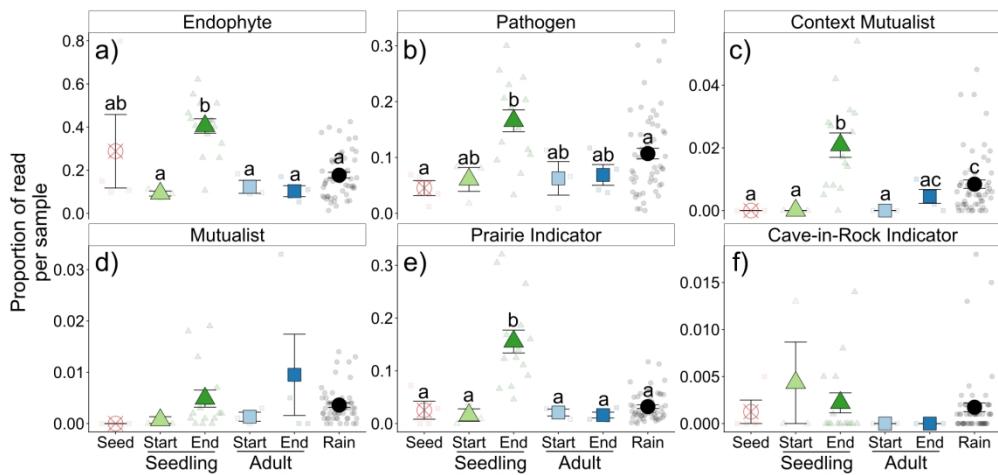



Figure 5. Proportion of fungal reads matching previously published endophytes. Points are seed endophytes (red circled x), rain fungi (black circles), seedling leaf fungal endophyte (LFE) collected at the start (July 16: light green triangle) or end (September 5: dark green triangle), adult LFE collected at the start (July 16: light blue square) or end (September 5: dark blue square). Points represent means with SE. Raw data is represented by transparent points. FDR adjusted posthoc pairwise significances are represented by letters, and no letters indicate no significant difference.

1355x638mm (39 x 39 DPI)