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ABSTRACT. This paper investigates the stability of traveling wave solutions to the
free boundary Euler equations with a submerged point vortex. We prove that suf-
ficiently small-amplitude waves with small enough vortex strength are conditionally
orbitally stable. In the process of obtaining this result, we develop a quite general sta-
bility /instability theory for bound state solutions of a large class of infinite-dimensional
Hamiltonian systems in the presence of symmetry. This is in the spirit of the seminal
work of Grillakis, Shatah, and Strauss (GSS) [20], but with hypotheses that are relaxed
in a number of ways necessary for the point vortex system, and for other hydrodynami-
cal applications more broadly. In particular, we are able to allow the Poisson map to
have merely dense range, as opposed to being surjective, and to be state-dependent.
As a second application of the general theory, we consider a family of nonlinear
dispersive PDEs that includes the generalized Korteweg—de Vries (KdV) and Benjamin—
Ono equations. The stability or instability of solitary waves for these systems has
been studied extensively, notably by Bona, Souganidis, and Strauss [6], who used a
modification of the GSS method. We provide a new, more direct proof of these results,
as a straightforward consequence of our abstract theory. At the same time, we allow
fractional dispersion, and obtain a new instability result for fractional KdV.
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1. INTRODUCTION

The persistence of localized regions of vorticity is a remarkable feature of two-
dimensional incompressible inviscid fluid motion. For instance, high Reynolds number
flow over an immersed body may produce a wake of shed vortices outside of which the
velocity field is largely irrotational. While the small-scale structure of these regions
can be quite intricate, their large-scale movement is well predicted by the so-called
Helmholtz—Kirchhoff point vortex model, so long as they remain sufficiently isolated. The
stability of various configurations of point vortices in a fixed domain has therefore been
the subject of extensive study since the early work of Poincaré [41]. In this paper, we are
interested in point vortices carried by water waves. Unlike the fixed domain case, this
will involve understanding the subtle dynamical implications of wave-vortex interactions.
Our main results concern the orbital stability of small-amplitude solitary waves with a
single point vortex.

To state things more precisely, by “water” we mean an incompressible, homogeneous,
and inviscid fluid occupying a time-dependent domain €; C R2. For simplicity, assume
that at time ¢t > 0, €; consists of the (unbounded) region lying below the graph of a
function n = n(t, z1), and above €; is vacuum. This is a free boundary problem, in the
sense that 7 is not prescribed, but evolves dynamically.

Let v = v(t, -): © — R? denote the fluid velocity at time ¢t > 0. The vorticity is
defined to be the quantity

(1'1) W= VL v, VL = (*8@78‘11)’

measuring the circulation density of the fluid. Mathematically, a point vortex describes
the situation where w = €dz(y), a weighted Dirac measure supported at z = #(t) € (.
We call € the vortex strength and T the vortex center. It is fairly easy to see that this
is not a valid measure-valued solution of the vorticity equation, as the advection term
v - Vw has no distributional meaning. Instead, we ask only that the velocity field be a
weak solution to the incompressible irrotational Euler equations away from the vortex
center. That is,

Ov+V-(v®v)=-Vp—ge in Q\ {z(¢)},
(12&) W = Gd‘f(t) in Qt,
V U = 0 in Qta

with each of these holding in the sense of distributions. Here p = p(¢, -): @ — R is the
pressure and g > 0 is the acceleration due to gravity. We consider the finite excess energy
case where v(t) € Li () N L?( \ Uy) for every neighborhood Uy 3 Z(t). The motion

of the point vortex is taken to be governed by the Helmholtz—Kirchhoff model

(1.2b) O = (v - 2ivl log|- — x)
7r

)
z
where the subtracted term is the velocity field generated by the point vortex. Thus (1.2b)
states that the vortex center does not self-advect, but rather is transported only by the
irrotational part of the fluid velocity field.
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Finally, the evolution of the free boundary is coupled to that of the fluid by the
requirements that

on = (=0, n, 1) - v,

o p=00n (355

on the interface S; := 0§, and where b > 0 is the coefficient of surface tension, and
() == +/1+]-|? is the useful Japanese bracket. The first of the requirement in (1.2c)
is the kinematic condition, linking the surface to the velocity field. The second is the
dynamic condition, which states that the pressure deviates from atmospheric pressure
(normalized here to 0) in proportion to the signed curvature of the surface.

Point vortices have been studied in fluid mechanics for centuries. The specific model
(1.2a)—(1.2b) was first proposed by Helmholtz [24] and Kirchhoff [27] for incompressible
fluids in a fixed domain. Later, Marchioro and Pulvirenti (see [31] and [32, Chapter
4]) offered a rigorous justification by proving that (1.2a)—(1.2b) is the limiting equation
governing the motion of vortex patch solutions of the Euler equations as the diameter
of the patch approaches 0. Another derivation was given by Gallay [16], who showed
that the system can be obtained as the vanishing viscosity limit for smooth solutions of
the Navier—Stokes equation with increasingly concentrated vorticity. The recent work
of Glass, Munnier, and Sueur [18] provides a second physical interpretation: they prove
that the Helmholtz—Kirchhoff system governs irrotational incompressible inviscid flow
around an immersed rigid body, with a fixed circulation around the body, in the limit
where the body shrinks to a point in a specific way.

The primary objective in this paper is to study the stability of steady solutions of the
water wave with a point vortex problem (1.2). An existence theory for waves of this type
was given by Shatah, Walsh, and Zeng [43]. The analogous problem for capillary-gravity
waves in finite-depth water was recently considered by Varholm [47], and for gravity
waves by Ter-Krikorov [46] and Filippov [13,14]. These are among the very few examples
of exact steady water waves with localized vorticity currently available. Numerical studies
of water waves with a point vortex have been carried out in [10-12], for example.

Stated informally, our main result is as follows. First, observe that in a neighborhood
of S, the velocity field v can be decomposed as

v=V&+eVO,

where ®(t, -) is harmonic in §;, and © is an explicit function depending on Zz that
captures the contribution of the point vortex; see Section 5.1. The system (1.2) can then
be reformulated as an equation for u = (1, ¢, Z), where

o =o(t,z1) = ®(t, z1,n(t, z1)).
A solitary wave in this setting corresponds to a solution of the form
u(t,x1) = (n°(z1 — ct), (21 — ct), € + cteq),
for some spatially localized (n¢, ¢, z¢) and wave speed ¢ € R.

Theorem 1.1 (Main result). Every symmetric solitary capillary-gravity water wave
with a point vortex (n°, ¢, z°) having (n, ¢°), ¢, and € sufficiently small is conditionally
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orbitally stable in the following sense. For all R > 0 and p > 0, there exists pg > 0 such
that, if (n,¢,x) is any solution defined on a time interval [0,ty), obeying a bound

(13) tﬁﬁﬂmumm+uwwmﬁﬂm;+uxm)<m

and having initial data satisfying
17(0) = 1%l i1 + llp(0) = %Il 3 + 12(0) — 2 < po,
then

() sup inf (lln(t - — ) =l + ot - — ) = @Fl 3+ [2(0) + se1 — 7)< p.
te[0,tp) sER

A more precise version is given in Theorem 6.1. Several remarks are in order. Orbital
here refers to the fact that we are controlling the distance to the family of translates of
the steady wave; this is natural given the translation-invariant nature of the problem. It
is also important to note that py above is independent of tg, and hence the conclusion
of Theorem 1.1 is much stronger than just continuity of the solution map at (¢, ¢, z¢).
Indeed, for a global-in-time solution, this gives orbital stability in the classical sense. The
norm occurring in (1.3) represents the lowest regularity in which a local well-posedness
theory has been established for irrotational capillary-gravity waves [1]. On the other
hand, the norm in (1.4) is associated to the physical energy for the system, which we
will discuss shortly.

Our approach is to rewrite (1.2) as an infinite-dimensional Hamiltonian system of the
general form

du
e J(u)DE(u),

with uw appropriate Banach space. Here, E is a functional (the energy), and J is a state-
dependent skew-adjoint operator (the Poisson map). A similar system was established
formally by Rouhi and Wright [42]; we use a slightly different version, and give a rigorous
proof in Section 5.2.

As the entire problem is invariant under translation, there is a conserved momentum
functional P = P(u). A natural strategy for analyzing the (orbital) stability of bound
states in abstract Hamiltonian systems with symmetries is to use the energy-momentum
method first introduced by Benjamin [5]. In brief, this method involves constructing a
Lyapunov functional using a carefully chosen combination of £ and P. Actually carrying
out this argument, however, can be quite challenging. Over three decades ago, Grillakis,
Shatah, and Strauss [20] introduced a powerful machinery — now commonly referred
to as the GSS method — which essentially reduced these many difficulties down to
discerning the convexity or concavity of a single scalar-valued quantity called the moment
of instability.

Not surprisingly, this paper had an enormous impact on the field and generated a great
deal of research activity. However, the hypotheses of GSS limit somewhat its applicability
to infinite-dimensional Hamiltonians with more complicated structure. For instance, they
require that the operator J is surjective, and independent of the state u. But, recall that
the Poisson map for the Korteweg—de Vries (KdV) equation is 9, which is not surjective
in the natural class of spaces. In fact, for water waves with a point vortex (1.2), we will
see that J is neither independent of state, nor surjective.
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There is also a somewhat practical issue with the functional analytic setting. Consider
for a moment the irrotational case. GSS supposes that the Cauchy problem is globally
well-posed in the energy space. But, as remarked above, the local well-posedness of the
gravity water wave problem with surface tension proved by Burq, Alazard, and Zuily
in [1] takes n(t) € H3" and (t) € H>/?>* N HY2. On the other hand, the kinetic energy
is given by the much rougher [v||2,, and the potential energy is equivalent to ||n|%..
Moreover, writing the kinetic energy in terms of (7, ) yields

1
o0y = 5 [ eCmpda,

where G(n) is the Dirichlet-Neumann operator; see the discussion in Section 5.1. For this
energy to be smooth as a functional of (7, ¢) in the Sobolev setting, one must have that
n € H3/?+ < Whoo In effect, then, there are three levels of regularity: a rough space in
which the physical energy is defined, an intermediate space where the energy functional
is smooth, and a yet higher regularity space where we can hope to have well-posedness.
This situation is exceedingly common in the analysis of quasilinear equations. Indeed, it
is the natural by-product of so-called higher-order energy estimates, which are among
the most basic and widespread tools in nonlinear PDE theory.

With that in mind, as one of the primary contributions of this paper, we introduce a
new abstract stability /instability-result in the spirit of GSS, but with relaxed assumptions;
making it directly applicable to problems such as (1.2). Specifically, we allow for a large
class of state-dependent Poisson maps J = J(u), and essentially only require that J is
injective with dense range. Moreover, the entire theory is formulated in a scale of Banach
spaces, offering a simple way to accommodate gaps between the necessary regularity
levels for the energy. Finally, in view of the point vortex problem, we allow the symmetry
group to be merely affine.

There are a number of new assumptions and technical conditions, but the main
conclusion is the same as that of GSS: stability or instability of the bound state hinges
on the sign of a scalar quantity. Because of the mismatch in spaces, our results are
conditional in the sense that they only hold on a time interval in which the solutions of
the problem exist and their growth is controlled. Using this general theory, we are then
able to address the question of stability of traveling water waves with a point vortex and
prove Theorem 1.1. Finally, we also consider a further application of this same framework
to KdV, and related dispersive model equations.

One of the main inspirations for this paper is Mielke’s work on conditional energetic
stability of irrotational solitary waves on water of finite depth with strong surface
tension [34], in which he also had to modify the GSS method to deal with the mismatch
between well-posedness and energy spaces. While our basic strategy is the same, we make
the additional effort of formulating a general theory which also deals with instability.
On a technical level, the presence of the point vortex requires a number of non-trivial
modifications. Mielke’s work was followed by a series of papers proving the existence and
conditional stability of different families of solitary water waves by a variational approach
in which the waves are constructed using the direct method of the calculus of variations
as minimizers of the energy subject to the constraint of fixed momentum. The stability
of the set of minimizers then follows directly from classical arguments by Cazenave and
Lions. In particular, Buffoni [7] considered solitary waves on finite depth with strong
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surface tension. He also obtained partial results in the case of finite depth and weak
surface tension, as well as in the case of infinite depth [8,9], which were later completed
by Groves and Wahlén [21,22]. More recently, these authors also extended the method
to solitary water waves with constant vorticity [23]. Similar to the present study, the
Hamiltonian formulation is non-canonical in that case. It is likely that direct variational
methods could be used also in the presence of point vortices.

Plan of the article. In Section 2, we give a detailed description of our results regarding
conditional orbital stability and instability of bound states in abstract Hamiltonian
systems with symmetry. Our main result on orbital stability is Theorem 2.4, which is
proved in Section 3. The unstable case is addressed in Theorem 2.6, whose proof is
carried out in Section 4.

We return to the water wave with a point vortex problem in Section 5, where it is
shown that (1.2) can be reformulated as an infinite-dimensional Hamiltonian system of
the type covered by the general theory. In Sections 6, we characterize the spectrum of
the so-called linearized augmented Hamiltonian at a solitary wave, which is used to prove
our main result: small-amplitude and small vorticity symmetric solitary capillary-gravity
water waves with a point vortex are conditionally orbitally stable; see Theorem 6.1.

To demonstrate the broader implications of the general theory, we consider a large
family of nonlinear dispersive PDEs in Section 7. These serve as approximate models for
water waves, and include both the KdV and Benjamin-Ono (BO) equations. Because
the corresponding J is not surjective between the relevant spaces, these equations lie
outside the GSS framework. In [6], Bona, Souganidis, and Strauss overcame this difficulty
by supplementing the basic approach of GSS with a consideration of the mass. On
the other hand, the general theory we develop in the present paper can be directly
applied to this family of equations, meaning we are able to give a new proof of the
Bona—Souganidis—Strauss theorem as a straightforward application. In fact, this also
furnishes new instability results for fractional KdV; see Theorem 7.4

2. GENERAL SETTING AND MAIN RESULTS

2.1. Formulation and hypotheses. We will work with a scale of spaces
W=V <X,

where X is a real Hilbert space, while V and W are reflexive Banach spaces. The
inner product on X will be denoted by (-, -)x, and the corresponding norm by |- ||x.
Likewise, let || - ||y and || ||w be the norms for V and W, respectively. We write X* for the
(continuous) dual of X, which is naturally isomorphic to X via the mapping I: X — X*
taking u € X to (u, -)x € X*. We will not make this identification here, but rather use I
explicitly. On the other hand, we will simply identify X** with X, and likewise for V and
W. The pairing of X and X* we denote by (-, - )x+xx, while (-, - )yw+xw is the pairing
between W* and W; when there is no risk of confusion, we will omit the subscript.
Intuitively, X is the energy space for the system under consideration. This is where
the Hamiltonian structure will be formulated, and is the natural setting for analyzing
the spectrum. On the other hand, V is a space where the conserved quantities are
smooth. Finally, we think of W as a “well-posedness space”, with the norm coming from
higher-order energy estimates used to prove that the Cauchy problem is at least locally
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well-posed in time. The norm on W also plays the secondary role of allowing us to get
control over V via interpolation. More precisely, we require the following:

Assumption 1 (Spaces). Let X, V, and W be given as above. Assume that there exist
constants 6 € (0,1] and C' > 0 such that

(2.1) [ull < CllullZ ulliy
for all u € W.

Remark 2.1. A useful consequence of (2.1) is that, if FF € C3(V;R), and B C W is a
bounded set, then

Fla+ ) ~ F(x) = {DF(z), h) + 3 (D*F(x)h, h) + O(]E)
forx € Vand h € B.

It is often necessary to restrict attention to some smaller subset of these spaces in order
to ensure that the problem is well-defined. For example, in the case of the traveling waves
with a point vortex, there must be a positive separation between the vortex center and
the air—sea interface. Abstractly, we will handle these types of situations by introducing
an open set O C X, where solutions must live.

Suppose that J: D(J) ¢ X* — X is a closed linear operator, and that we for each
u € O NV have a bounded linear operator B(u) € Lin(X). We endow X with symplectic
structure in the form of the state-dependent Poisson map

(2.2) J(u) == B(u)J,
which is required to satisfy a number of hypotheses.

Assumption 2 (Poisson map).

(i) The domain D(J) is dense in X*.

(i) J is injective.

(iii) For each u € O NV, the operator B(u) is bijective.

(iv) The map u +— B(u) is of class C*(O N V; Lin(X)) N C*(O N'W; Lin(W)).
(v) For each u € ONYV, J(u) is skew-adjoint in the sense that

{(J(wv, w) = =(v, J(u)w)

for all v,w € D(J).

Remark 2.2. Note that this does not assume that J(u) is surjective, which is a significant
departure from GSS. Below, we will require something slightly stronger than that the
range of J(u) is dense in X.

The main object of interest for this work is the abstract Hamiltonian system

du
(2.3) i J(u)DE(u), uli—o = uo,

where E € C3(O NV;R) is the energy functional. In addition to the energy, we suppose
that there is a second conserved quantity P € C3(ONV;R), which we call the momentum.
In order to state what it means to be a solution of (2.3), and to work with it in a
meaningful way, we need to be able to view DE(u) and DP(u) as elements of X*.
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Assumption 3 (Derivative extension). There exist mappings VE, VP € C°(O NV;X*)
such that VE(u) and VP(u) are extensions of DE(u) and DP(u), respectively, for every
uec ONV.

We say that u € CY([0,t9); O N'W) is a solution of (2.3) on the interval [0, to) if

d
dt
is satisfied in the distributional sense on (0, ¢(), the initial condition u(0) = wy is satisfied,
and both ¥ and P are conserved.

Of particular importance is the situation where the system (2.3) is invariant with
respect to a symmetry group. Specifically, we assume that there exists a one-parameter
family of affine maps T'(s): X — X, with linear part dT'(s)u := T'(s)u — T'(s)0, having
the properties described below. We refer to [19] for a background on affine groups on
Banach spaces.

(2.4) (u(t), wy = —(VE(u(t)), J(u(t))w) for all w € D(J),

Assumption 4 (Symmetry group). The symmetry group 7'(-) satisfies the following.

(i) (Invariance) The neighborhood O, and the subspaces V and W, are all invariant
under the symmetry group. Moreover, I-1D(J) is invariant under the linear
Symmetry group.

(ii) (Flow property) We have T'(0) = dT'(0) = Idx, and for all s,r € R,

T(s+r)=T(s)T(r), and hence dT(s+r) =dT(s)dT(r).
(iii) (Unitarity) The linear part dT'(s) is a unitary operator on X, and an isometry on
V and W, for each s € R.
(iv) (Strong continuity) The symmetry group is strongly continuous on X, V, and W.

(v) (Affine part) The function T(-)0 belongs to C3(R; W), and there exists an

increasing function w: [0, 00) — [0, 00) such that
IT(s)0llw < w(||T(s)0|lx), forall s € R.
(vi) (Commutativity with J) For all s € R,
25) JIdT(s) = dT(s)JI,
' dT'(s)B(u) = B(T(s)u)dT'(s), forallue ONV.

(vii) (Infinitesimal generator) The infinitesimal generator of T is the affine mapping
T'(0)u = lin%)(s_l(T(s)u - u)) = dT'(0)u + T7(0)0,
s—

with dense domain D(77(0)) C X consisting of all v € X such that the limit
exists in X (note that D(77(0)) = D(dT(0)) by the first part of assumption
(v)). Similarly, we may speak of the dense subspaces D(7"(0)|ly) C V and
D(T'(0)|w) € W on which the limit exists in V and W, respectively.

We assume that VP (u) € D(J) for every u € D(T'(0)]y) N O, and that

(2.6) T (0)u = J(u)VP(u)
for all such u. Moreover, we assume that

(2.7) JIdT'(0) = dT"(0)JI.
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(viii) (Density) The subspace
D(T'(0)w) N Rug J

is dense in X.
(ix) (Conservation) For all u € ONV, the energy is conserved by flow of the symmetry
group:

(2.8) E(u) = E(T(s)u), for all s € R.

Remark 2.3. There are some immediate consequences of the above assumptions. We can
combine parts (ii) and (vi) to deduce that

dT(s)J(u)l = J(T'(s)u)IdT (s), foralls e R,ue ONYV,
and as a consequence of the unitarity of dT'(s), the operator d1”(0) is skew-adjoint on X.
Moreover, if u € D(T'(0)|y) N O, then s — P(T(s)u) has derivative
(VP(T(s)u), T'(0)T (s)u) = (VP(T(s)u), J(T(s)u) VP(T(s)u)) =0

by (2.6) and the skew-adjointness of J(T'(s)u). Thus, by density of D(T"(0)|y) in V, the
flow of the symmetry group also conserves the momentum for all u € ONV:
(2.9) P(u) = P(T(s)u), for all s € R.

We say that u € C*(R;O N'W) is a bound state of the Hamiltonian system (2.3)
provided that it is a solution of the form

u(t) =T(ct)U,,

for some c € R and U, € O N'W. We will also refer to U, itself as a bound state. If T’
represents translation, then bound states correspond to the familiar notion of traveling
waves, such as the ones we will study later. For the general setting, we take it as given
that an analogous family is available:

Assumption 5 (Bound states). There exists a one-parameter family of bound state
solutions {U. : ¢ € T}, where Z C R is a non-empty open interval, to the Hamiltonian
system (2.3). The family enjoys the following properties.

(i) The mapping c€ Z+ U. € ONW is C*.

(ii) For all c € Z,

(2.10) U, € D(T"(0)) N D(JIT'(0)),
and
(2.11) U,, JIT'(0)U. € D(T"(0)]w).

(iii) The non-degeneracy condition 7"(0)U, # 0 holds for every ¢ € Z. Equivalently,
due to (2.6), U, is never a critical point of the momentum.
(iv) Either s — T(s)U, is periodic, or liminf ;o [|T'(s)Uc — Ucl|x > 0.

Observe that, due to (2.8) and (2.9), the energy and momentum of 7'(s)U, are inde-
pendent of s. For a fixed parameter ¢, the corresponding augmented Hamiltonian is the
functional E. € C3(V N O;R) defined by

E.(u) = E(u) — cP(u).
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Assumption 5 ensures that U. € D(77(0)), and so it follows from (2.4), (2.6), and
Assumption 2 that

(2.12) DE.(U,) = DE(U.) — ¢DP(U.) = 0,

meaning U, is a critical point of E.. Due to this observation, we can think of each of
the bound state U, as being a critical point of the energy with the constraint of a fixed
momentum, with the wave speed c arising naturally as a Lagrange multiplier. Also,
differentiating (2.12) with respect to ¢ reveals that

(2.13) (DEU) e ) = (DPWD). .

Commonly in applications, the bound states sit at a saddle point of the energy. That
is, the second derivative of the augmented Hamiltonian at U, has a single simple negative
(real) eigenvalue, a 0 eigenvalue generated by the symmetry group, and the rest of the
spectrum lies along the positive real axis; bounded uniformly away from the origin. This
is the basic setting of the problem considered in Grillakis, Shatah, and Strauss [20], and
it is precisely what we will encounter in our study of water waves later. We therefore
make the following hypotheses about the configuration of the spectrum for the general
theory.

Assumption 6 (Spectrum). The operator D?E..(U,.) € Lin(V, V*) extends uniquely to a
bounded linear operator H.: X — X* such that:

(i) I7'H. is self-adjoint on X.

(i) The spectrum of I~!H, satisfies

(2.14) spec (I71H.) = {—p2}u {0} UX,,

where —,u% < 0 is a simple eigenvalue corresponding to a unit eigenvector y., 0 is
a simple eigenvalue generated by 7', and ¥, C (0,00) is bounded away from 0.

2.2. Main results on stability and instability. The central question we wish to
address is whether the bound states of Assumption 6 are stable or unstable. As there is
an underlying invariance with respect to the group 7', it is most natural to understand
stability and instability in the orbital sense. For any U € X, we call the set {T'(s)U :
s € R} the U-orbit generated by T. Formally speaking, U, is orbitally stable provided
that any solution to the Cauchy problem that is initially close enough to the U.-orbit
generated by 7' (in the X norm) remains near the orbit for all time. Conversely, orbital
instability describes the situation where there exists initial data arbitrarily close to the
U.-orbit that nevertheless leaves some neighborhood of the orbit in finite time.

Making these concepts rigorous for the problem at hand is complicated both by the
lack of a global well-posedness theory for the Cauchy problem (2.3), and especially the
mismatch of the energy and well-posedness spaces. For that reason, all of our results will
necessarily be conditional in that they will hold only so long as we know the solution
exists, and that its growth in W is controllable.

The moment of instability, which we call d, is the scalar-valued function that results
from evaluating the augmented Hamiltonian along the family of bound states:

(2.15) d(c) = E.(U.) = E(U.) — cP(Uy).
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Note that because each bound state U, is a critical point of the augmented Hamiltonian,
differentiating d gives the identity

dU.
(2.16) d(c) = <DEC(UC), dc> _P(U.) = —P(UL),
and differentiating once more yields
du, dU. dU,
1" _ FeN 2 ¢ c
(2.17) d'(c) = <DP(UC)7 i > <D E.(U,) T de >,

where the last equality follows from (2.13).
For each p > 0, let

X . .3 _
Ur = {u €0 inf |lu—T(s)Ue]x < P}

be the tubular neighborhood of radius p in X for the U.-orbit generated by T'. We also
define

BY = {u € ONW: inf |T(s)ullw < R}

for all R > 0, which collapses to a ball if the symmetry group has no affine part.
Our first result states that if d”’(c¢) > 0 at a certain wave speed ¢ € Z, then U, is
conditionally orbitally stable.

Theorem 2.4 (Stability). Suppose that the above assumptions hold. If d"(c) > 0, then
the bound state U, is conditionally orbitally stable in the following sense. For any R > 0
and p > 0, there exists pg > 0 such that, if u: [0,to) — Bl is a solution of (2.3), with

indtial data ug € Z/{gi, then u(t) € L{ff for all t € ]0,tp).

Remark 2.5. As will become clear in the next section, the stability theorem holds under
weaker hypotheses. Most notably, we can drop the intersection with D(7"(0)|w) in
Assumption 4(viii).

In order to prove an instability result, we need to know that (2.3) can be solved at
least locally around the U.-orbit. If we introduce

U = {u €ONW : inf llu—T(s)Usllw < y}
for v > 0, we mean the following.

Assumption 7 (Local existence). There exists vg > 0 and ¢y > 0 such that for all initial
data ug € U, , there exists a unique solution to (2.3) on the interval [0, to).

With the above hypothesis, we can conclude that if d”(c) < 0, then U, is conditionally
orbitally unstable.

Theorem 2.6 (Instability). If d’(c) < 0 and Assumption 7 is satisfied, then the bound
state U, is orbitally unstable: There exists a vg > 0 such that for every 0 < v < vy, there
exists initial data in U whose corresponding solution exits L{BX in finite time.

If X = W, we also obtain a more conventional stability result as a corollary of
Theorem 2.4.
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Corollary 2.7 (Stability when X = W). If d’(c) > 0, Assumption 7 holds, and X =W,
then the bound state U, is orbitally stable: For any v > 0, there exists vy > 0 such that
the solution for any initial data ug € Ul\i’z] exists globally, and stays in U)" .

Together, Theorem 2.6 and Corollary 2.7 essentially recover the classical GSS theory
in the special case that X =W, J is a state-independent isomorphism, 7'(s) is linear, and
the Hamiltonian system (2.3) is globally well-posed. The only exception is that, in the
interest of brevity, we have not addressed the situation where d”’(c) = 0.

Lastly, let us comment on how the above results relate to the recent monumental
paper of Lin and Zeng [29], which studies the dynamics of linear Hamiltonian systems
under weaker assumptions on the Poisson map than ours (for instance, they allow an
infinite-dimensional kernel). While this theory concerns the linear case, under some
conditions it can be applied to construct invariant manifolds for nonlinear systems as
well; see the work of Jin, Lin, and Zeng [25,26]. When this can be accomplished, it gives
considerably more information than the conditional orbital stability /instability we obtain
from Theorem 2.4 or Theorem 2.6. However, the methodology has difficulty attacking
equations for which the solution map incurs a loss of derivatives, such as quasilinear
problems. To overcome this, one needs the linear evolution to display sufficiently strong
smoothing properties, which limits somewhat its applicability. By contrast, the framework
we present here is adapted to the quasilinear setting by design, and does not rely on
linear estimates.

3. STABILITY IN THE GENERAL SETTING

The purpose of this section is to prove Theorem 2.4 on the conditional orbital stability
of the bound state U, under the hypothesis that d”(c) > 0. Our basic approach follows
the ideas of Grillakis, Shatah, and Strauss, but many adaptations are required due to
the more complicated functional analytic setting. Interestingly, the state dependence of
J is less of an issue for this argument than one may expect.

We begin with a technical lemma which states that, in a sufficiently small tubular
neighborhood Mgg of U,, one can find a parameter value s (depending on u) such that the
distance between T'(s)u and U, in the energy norm is minimized.

Lemma 3.1. If s — T(s)U. is not periodic, then then ezists a p > 0 and a function
se C’Z(UX;R) such that, for all u € Ugg the following holds.

a) [|T(5(u))u —Ue|x < ||T(r)u — Ue|x, for all r € R.
b) (T'(3(u))u — U, T'(0)Uc)x = 0.

5(T(r)u) = §(u) —r for all r € R.

For alluelxlX and v € X,

(o1(u),v)
ri(u)
ra(u) (o1 (u), v)? o 1 (u), v)(oa(u), v)

(D?*3(u)v,v) = — () — 5 )

(Ds(u),v) =
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where
on(u) = ITW(=5()U,, k=
r1(u) = HT (O)Uell% — (T(3(u))u — T"(O)Uc)x,
) = (T(3(w)u — Ue, T"(0)Ue).
(e) We have D5(u) € D(J) for every u € UX, and the map g: L{ff NW — W defined
by g(u) :== J(u)D3(u) is of class C’l(Z/IX NW; W).

If instead s — T(s)U. has minimal period ¢, then the same result is true except § €
C’Q(Z/lX R/((R)), and the equality in part (c) holds modulo £.

Proof. For s € R and u € X, set

ro(u

1 1
h(u, s) = SIIT(s)u — Uclx = gllu = T(=3)Uel%-

Then

Osh(u, s) = (T(s)u — U, T'(0)U,)x,

03h(u,s) = |IT'(0)Uell% — (T(s)u — U, T"(0)Ue)x:.
Clearly 9sh(U,,0) = 0 and 92h(U,,0) = ||T"(0)U.||% > 0. The implicit function theorem
then ensures the existence of a ball Bs C X centered at U,, an interval (—sp, o), and a
C? map 3: Bs — (—s0, s0) such that the equation dsh(u,s) = 0 has a unique solution
s = 5(u) € (—so,s0) for all u € Bs. Thus s = §(u) uniquely minimizes h(u, -) on (—so, so)
for any fixed u € Bs.

We will only present the argument for the non-periodic orbits as the proof for the

periodic case requires only a simple modification. Assumption 5(iv) then guarantees that
there exists an 17 > 0 such that

inf |T(s)U, — Ue|lx > n.
$2>50
Let p := min(n/3,6). Then, if w € B, and r € R are such that |T(r)u — U.|lx <
IT(5(u))u — U], we have
[T(r)Ue = Uellx = [[dT'(r)(Uec — w) + T(r)u — Uelx < [|Ue — ullx + [|T(5(u))u — Uellx
< 2flu = Uellx <,

which implies that r € (—sg, sg) and hence r = 3(u) by uniqueness. This completes the
proof of parts (a) and (b) for u € B,.
For part (c), note that if both u and T'(r)u lie in B,, then

IT(3(u) = )T (r)u = Uellx = [|T(5(u))u = Uellx < IT#)u — Uellx

for all t € R. In particular, if we choose t = 5(T'(r)u) 4+ r, we obtain part (c) on B, by
uniqueness. Moreover, as a consequence, we can proceed to extend 5 to all of ugg through

$(u) = 3(T'(r)u) +r,

where 7 is such that T'(r)u € B,. This is well defined, since if both T'(r)u and T'(s)u lie
in B,, then
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by part (c) on B,,.
The identities in part (d) follow by straightforward calculations. Finally, for any
u € U, we have o1(u) € D(J) by Assumption 5(ii) and (2.5), and since moreover

J(u)o1(u) = B(u)dT(—3(u))JIT' (0)U,
by (2.5), part (e) follows from (2.11) and Assumption 2(iv). O
By Assumption 6(ii), we know that X admits the spectral decomposition
X =X_®X®Xy,

where X_ := span {x.}, Xo = span {T"(0)U.}, and X is the positive subspace of I~ H,.
Here we are using the fact that 7(0)U. is a generator for the kernel of I~'H,.. Observe
that the restriction of 7' H, to X is a positive operator, in the sense that there exists
an a = a(c) > 0 such that

(3.1) (Hev,v) > aljv||% for all v € X,

The following lemma describes a version of this inequality which holds also outside
X4,

Lemma 3.2. Suppose that y € X is such that (H.y,y) < 0. Then there exists a constant
& > 0 such that

(3.2) (Hev,v) > allvlk
for every v € X satisfying
(3.3) (Hey,v) =0 and (T'(0)Ue, v)x = 0.
Proof. We decompose y as

y = aoXe + boT"(0)U. + po, for some ag,bg € R, pg € X,
from which we compute that

(Hey,y) = —aguz + (Hepo, po),

or

(3.4) aguz = (Hepo, po) + [(Hey, ),

which in particular implies that a2 > 0.
Now, let v be as in the statement of the lemma. Using the spectral decomposition of
X, we may likewise write

v = aXe+p, for some a € R, p € X4,
as v has no component in Xy, by assumption. Moreover, we have
0= <Hcyvlv> = _aoaﬂg + <Hcp05p>7

and therefore

(Hepo, p)

35 a =
(3.5) o
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It follows that
<Hcp07p>2

(Hev,v) = —a*pi + (Hep,p) = —~—55"— + (Hep, p)
aO:uc
<Hcpo,po>> |(Hcy, )| [(Hey, )|, o
>\ 1 - —55— [{Hep,p) = —5 5 (Hep,p) > a—5 5 ||p|
< aZu? ‘ auz agu’ x

by the Cauchy-Schwarz inequality applied to H.|x, , (3.4), and (3.1). Finally, the result
now follows by combining this inequality with

| Hepol%-
vl = a® + [IplI% < ( S+ 1 el
aO:uc

where we have utilized (3.5). O

We obtain the following as a corollary.

Corollary 3.3. Suppose that d”(c) > 0. Then there exists a constant & > 0 such that
(3.2) holds for every v € X satisfying

(VP(U.),v) =0 and (T'(0)U,, v)x = 0.

Proof. 1f d”(¢) > 0, we may apply Lemma 3.2 with y = dgcc, by (2.17). Furthermore, we
have H, %% = VP(U,) due to (2.13). O

Note that in the setting of Lemma 3.1(a),
IT(5(u) —Ullx = in]£ IT(r)u —Ue|lx < p, for all u € Z/{ff,
re

whence it makes sense to define the map
L X = X
M:U; 5> ue T(3(uw)u e,

whenever p > 0 is small enough for the lemma to apply. Note that M is also invariant
under the action of T', as

(3.6) M(T(s)u) =T(8(T(s)u))T(s)u =T(5(u) — )T (s)u =T(5(u))u = M(u),

where the second equality comes from Lemma 3.1(c). Moreover, we are able to bound
M (u) in the smoother norm.

Lemma 3.4. Let R > 0, and suppose that p > 0 is like in Lemma 3.1. Then
|M(u)|[w < R+ w(p+ |ltwox||R + || Uellx) for all u € I/Igg NBY.
Proof. If u € Z/lgg N B}, then in particular there exists an r € R such that ||T(r)ullw < R.
Set v = T'(r)u, and observe that
1M (w)[lw = [[M (v)lw = [|dT'(5(v))v + T (5(v))0llw < R+ w([|T(5(v))0]|x)

by (3.6) and Assumption 4(v). The final bound is obtained by combining this inequality
with

|T(5(v))0)lx = [|M(v) — Ue + Ue — dT'(5(v))v]|x
< p+|Uelx + lowex|| R,
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where we have used that v € L{ff, since ugg is invariant under 7', and that W embeds

continuously into X. O

We will now use Lemmas 3.2 and 3.4 to obtain the key inequality needed to prove
stability. It is convenient to introduce the notation

(3.7) M, ={ueOnV:Pu)=PU.)}
for the level set of the momentum associated with U..

Lemma 3.5. Suppose that d"(¢) > 0. Then, for any R > 0, there exist p > 0 and 8 > 0
such that

(3.8) E(u) — E(Uc) > BI|M(u) = Uellz  for allu e Uy N M. NBg.

Moreover, the assumption that d”(c) > 0 can be removed under the additional restriction
that (Hey, M (u) —U.) =0 for a fized y € X such that (H.:y,y) < 0.

Proof. Let u be as in the statement of the lemma, and set v := M (u) — U.. Expanding
E. in a neighborhood of U, in V, recalling that U, is a critical point and that both the
energy and momentum are conserved by the group, yields

(3.9) Eu(u) = Bo(U +v) = Be(Ue) + 5 (He,) + O(olf}).

Note that (v, 7'(0)U.)x = 0 by Lemma 3.1(b), so if in addition (H.y,v) = 0, then
Lemma 3.2 ensures the existence of an & > 0, independent of v, such that

(Hev,v) > ajvl%.
If, on the other hand, d”(¢) > 0, we decompose v as
(3.10) v=AN+w, N:=I1'VP(U,),

with (IV,w)x = 0. Taking the inner product of both sides of (3.10) with N, and using
that P(U. +v) = P(U.), we find

MINI = (v, N)x = (DP(Ue),v) = O(|v%),
whence A = O(||v||%). It follows that
(Hev,v) = (Hew,w) + O(||v][7).

We wish to apply Corollary 3.3 to obtain a lower bound for (H.w,w). In that
connection, observe that (VP(U.),w) = 0, as w is orthogonal to N by construction.
Moreover,

(w, T"(0)Ue)x = (v, T"(0)Uc) — N(VP(U,), T"(0)Uc) = 0
in view of Lemma 3.1 and (2.6). Thus
(Hev,v) > allw|f + O([v][7),
where we can eliminate w in favor of v by observing that

lwll = (lvllx = MINIx)? = (vl = OllvlI$)-
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In either case, the desired lower bound (3.8) follows if we can control the cubic O(||v][3)-
remainder in (3.9) by using the quadratic |v||%. This is precisely the motivation behind
Assumption 1. Indeed, (2.1) and Lemma 3.4 imply that

2460 1-6 0 —0
Il < Cllvlig vl ® < Co’ IR +w(p + lowox| R + 1Uellx) + |1Uellw] " lvl%,

which enables us to absorb the remainder into the quadratic term by taking sufficiently
small p. Note that we can replace E. by E due to the assumption that u € M.. O

We are now prepared to prove the main theorem of the section on the conditional
orbital stability of the bound state U..

Proof of Theorem 2.4. Seeking a contradiction, suppose there exist R > 0, p > 0, and a
sequence of solutions uy, : [0,t}) — B}, with initial data u?, such that || M (u})—U.|x — 0,
but for which

[ M (un(7n)) — Uellx = p
for some 7, € (0,%7). Without loss of generality, we may take 7, to be the first time that
Uy, exits Z/{ff. Moreover, we can shrink ugg such that Lemma 3.5 applies. Together with
the conservation of energy and momentum, we deduce the existence of a 5 > 0 such that

E(ug) = E(Uc) 2 BIM (un(m)) = Uellk = Bp?
for every n. On the other hand, E(uj) = E(M(ug)), and ||M (ug) — U.|[x — 0. Combined
with the fact that sup,, || M (uf) — Ue||lw <r 1 by Lemma 3.4, we can use Assumption 1 to
deduce that M (ug) — U, in V, and therefore that E(uj) — E(U.). But this contradicts

the strictly positive lower bound on E(uj) — E(U,.) derived above, and hence we have
arrived at a contradiction. g

4. INSTABILITY IN THE GENERAL SETTING

This section is devoted to proving Theorem 2.6 on the conditional orbital instability of
Ue, under the hypothesis that the moment of instability satisfies d”(¢) < 0. In contrast to
Section 3, the state-dependence of the Poisson map J presents a more serious technical
challenge to the analysis here.

4.1. Identification of a negative direction. Because we do not assume that J(u)
is surjective, and because x. does not necessarily lie in W, we must make further
modifications to the GSS program. The next lemma shows that it is possible to find a
negative direction z € W that is not only tangent to M., but also lies in the range of a
restriction of J(U.). This follows from a surprisingly simple density argument.

Lemma 4.1. Suppose that d"(c) < 0. Then there exists z € D(T'(0)|w), of the form
2= JU.)IZ for some Z € D(T'(0)), such that

(4.1) (D’E.(U.)z,2) <0  and  (DP(U.),z) = 0.
Proof. For ease of notation, we once again set N := I~V P(U.). Defining the quadratic
form Q € C°(X;R) by

Q(u) == (Heu,u),

we see that (4.1) can be rephrased as z satisfying
Q(z) <0 and (N,2)x =0.
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The element
(VP(U.), xc) dU,
= X
Y d"(c) dc tXe €
satisfies both of these properties because
(VP(Ue),xe)> 5
AV \MeXel N -
d/,(c) He < 07 ( ) y)X 0
by (2.13) and (2.17). However, y does not necessarily lie in D(7”(0)|w), nor must it be
in the range of J(U.,).
Note that B(U.) restricts to an isomorphism on D(T”(0))|w by (2.5). Thus, if
J(U)IZ € D(T'(0)|w), then JIZ € D(T'(0)|w), and consequently Z € D(T"(0)) by
(2.7). To complete the proof, it suffices to show that

U == D(T"(0)|w) N Rng J (Ue)

is dense in N+, where N+ = {u € X : (N,u)x = 0}. Recall that U is dense in X due to
Assumption 4(viii).

First we claim that there exists v € U such that (N,v)x # 0. Were this not the
case, we would have U C N+, which would contradict its density in X. Without loss
of generality, we may choose v such that (N,v)x = 1. Now, let u € N be given. By
density, there exists an approximating sequence {u,} C U with u,, — u in X. Putting

Qy) =

Wy, = up — (N, up)x0,
we see that the sequence {w,} C N+ NTU, and that
wp, = u— (N,u)gyv =uin X,

whence U is indeed dense in Nt.
By the argument above, there is a sequence {z,} € UN N+ such that z, — y in X.
For n sufficiently large, Q(z,) < 0 by continuity, and so the lemma is proved. (]

4.2. Lyapunov function. In the previous subsection, we constructed a vector z in the
negative cone of H., that moreover is tangent to the fixed momentum manifold M, at
U.. The strategy at this point is to use z to build a Lyapunov function for the abstract
Hamiltonian system (2.3), and thereby prove instability.

In the next lemma, we follow Grillakis, Shatah, and Strauss by introducing a functional
A; designed so that the corresponding Hamiltonian vector field (i) points in the direction
z at U, and (ii) is in the kernel of DP in a tubular neighborhood of U.,.

Lemma 4.2. There exists a p > 0 and a functional A € Cl(u§;R) having the following

properties:
(a) A(T(s)u) = A(u), for all u € Uy and s € R.

(b) DA(u) € D(J), for all u € UY.

(¢) J(Ue)DA(U.) = —%, where z is like in Lemma 4.1.

(d) The mapping u +— J(u)DA(u) is of class CY(UY; W), where v > 0 is such that
uelUl C ugg; and

(e) (DP(u),J(u)DA(u)) =0 for all u € U)".
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Proof. Let z and Z be given as in Lemma 4.1, and choose p > 0 so that Lemma 3.1
applies. Put
(4.2) A(u) = —(Z,M(u) = Ue)x ~ forall u € U,
for which part (a) follows immediately from the corresponding property of M established
in (3.6). The regularity of 3, and the properties of Z, also show that A is C! with
(4.3) DA(u) = ((dT"(—5(u)) Z,w)x — (Z,T'(5(w))0)x)D5(u) — 1dT(—5(u))Z
for all u € Z/{gg. Since D3(u) lies in D(J) by Lemma 3.1, while IdT(—5(u))Z is in D(.J)
by Assumption 4(i), this proves part (b).

Next, choose v > 0 such that U} C U;g. When u € UY N D(T'(0)|w), the formula for
DA(u) in (4.3) simplifies to

(4.4) DA(u) = (DP(u), h(u))D5(u) — IdT(—5(u))Z,
with
(4.5) h(u) = J(u)IdT(—5(u))Z = B(u)dT(—5(u))B(U.) 2.

Here we have used (2.6), Assumption 4(vi), and the skew-adjointness of J(u). By density
of D(T'(0)|w) in W, the formula in (4.4) is, in fact, valid for every u € U)".
Moreover, applying J(u) to (4.4) leads to the expression

(4.6) J(w)DA(u) = (DP(u), h(u))g(u) — h(u),

where g is the function defined in Lemma 3.1. We have already confirmed that g has the
required properties for part (d), and in light of (4.5) and the fact that z € D(T"(0)|w) and
(2.5), so does u — J(u)DA(u). From Lemma 3.1 we see that §(U.) = 0, and therefore
h(U.) = z. Evaluating (4.6) at u = U, then yields

(4'7) J(UC)DA(UC) = <DP(Uc)ﬂ Z>9(Uc) —r =%

by (4.1), which is part (c).
Finally, since the map s — A(T'(s)u) has derivative

0= (DA(u), T"(0)u) = (DA(u), J(u)VP(u)) = —(DP(u), J(u) DA(u))

at s = 0 for every u € U ND(T’(0)|w) by part (a), part (e) follows after another appeal
to density. Here we have once again made use of the identity (2.6). g

With the functional A in hand, we next consider the ordinary differential equation

du
{dA = —J(u(\)DA(u()))
u(0) = v,

(4.8)

posed in U, where v > 0 is taken small enough for Lemma 4.2 to apply. Part (d) of the

14

lemma guarantees the existence of a unique solution, ® = ®(\,v) € C*(N;UY), to (4.8),
where

(4.9) N ={(\v) eRxUy : |A| < Ao},

with 0 < 19 < v and \g = A\g(r9) > 0. By appealing to the commutation identities in
(2.5) and Lemma 4.2(a), we find

(4.10) T(s)®(\,v) =P\, T(s)v)



20 K. VARHOLM, E. WAHLEN, AND S. WALSH

whenever both sides of this equation make sense, which in particular justifies that Ao can
be taken to be a constant in (4.9).
Observe that

(4.11) W®(0,U,) =z

as a result of Lemma 4.2(c). Furthermore, since

9
O\
by Lemma 4.2(d), we have
(4.12) P(®(\,v)) = P(v), for all (A\,v) € N.

P(B(\,v)) = —(DP(®(X, v)), J(B(A, v)) DAB(\,v))) = 0

That is, the flow of (4.8) preserves the momentum.

Lemma 4.3 (Lyapunov function). There ezists a v > 0 and a functional A € C*(U)"; R),
vanishing on the U.-orbit, such that

E(®(A(v),v) > E(U.)  forallv e U) N M,.

One can interpret this lemma as follows. Because of (4.12), the flow of (4.8) leaves
the momentum invariant but it may change the energy in either direction near U.. By
avoiding the problematic negative direction in a suitable way, and using Lemma 3.1(b) to
deal with Xy and the orbit under 7', we can make sure that the energy does not decrease.

Proof of Lemma 4.3. We wish to apply Lemma 3.5. To that end, define the function
f: N —=Rby

f\v) = (Hez, M(P(N\,v)) — Up)
= <cha dT(g((I)))((I) - Uc)> + <chaT(‘§((I)))Uc - Uc>a

which evidently satisfies f(0,U.) = 0. It is not obvious that this function is differentiable,
but by differentiating the identity E.(u) = E.(T(s)u), one finds that

(D?E(T(=s)u)dT(—s)v, w) = (D*E.(u)v, dT(s)w)
forall se R,u e ONV, and v,w € V, and thus in particular that
F(Av) = (D*Ee(T(=3(®))U:)dT(=3(D))z, ® — Ue) + (Hez, T(3(®))Ue — Ue),

holds for all (\,v) € N. This expression shows that f € C*(NV;R), as E. € C3(ONV;R)
and both U, and z are in D(7”(0)|w). Moreover,

Orf(0,U.) = (Hez,2) + (D3(U,), 2){(H.2, T'(0)U.) = (H.z,2) < 0,
since (H.z,T'(0)U.) = (2, H.T'(0)U,) = 0.

An application of the implicit function theorems tells us that there exists a neighborhood
Y of U, in Z/{yg', and a C'-mapping A: V — (=g, \g) satisfying
(4.13) f(A(v),v) = (Hez, M(®(A(v),v)) —U) =0  forallve).
In view of (4.10) and (3.6), we have f(\,T(s)v) = f(\,v) for all s € R and (\,v) € N,
so A can be extended to a tubular neighborhood U, of the U-orbit.
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We may now use Lemma 3.5 to conclude that, possibly upon shrinking &, there
exists a 8 > 0 such that

B(@(A@),0)) — B(U.) = BIM (@A), v)) - U2
for every v € U N M... In particular, the result follows. O
Lemma 4.4. There exists a v > 0 such that

E(U.;) < E(v) + A(v)S(v) for allv e U) N M.,
wherein
(4.14) S() = —(DE(v), J(v)DA(v)).
Proof. Define the C*'(N;R)-function

g\, v) = E(®(A,0)) = Ec(®(A,v)) + cP(v),

where we have exploited (4.12) in evaluating P at v. Then, suppressing the dependence
of ® on (A, v), we find

Org(\ ) = (DEL(®), 038) = —(DE(®), J(®)DA(D)),
so Oyg € C1(NV;R) as well by Lemma 4.2(e). It therefore makes sense to compute
939(0,Ue) = (D*Ec(U)0r2(0, Uc), 032(0, Ue)) = (Hez, z) <0,
where we have used that U, is a critical point of E., and the last inequality is Lemma 4.1.
We also see that
Mg(0,v) = =(DE(v), J(v)DA(v)) = =(DE(v), J(v) DA(v)) = S(v)
for every v € L{BX . It follows that
g(Av) < g(0,0) + Oxg(0, v)A

for small enough A, and a possibly smaller neighborhood of U,.. This neighborhood can
be made tubular, by the same reasoning as in the proof of Lemma 4.3. The desired upper
bound now follows by setting A = A(v) and using Lemma 4.3. O

The final lemma we need in order to prove the instability theorem is the following.

Lemma 4.5. Suppose that d"(c) < 0. Then there exists a C*-curve v: (—1,1) — W
such that

(i) ¥(0) = Uc and ¥'(0) = 2;

(ii) ¢(s) € M, for all s € (—1,1);

(iii) F o1 has a strict local mazimum at 0.
Proof. Define ¢: (—Ao, Ao) = W by ¢(s) := ®(s,U,). Then 1(0) = U, by definition of
®, while ¢/(0) = z is (4.11). We also know that the flow of (4.8) conserves momentum,
whence 1(s) € M, for all s € (—Ao, Ag). Finally, the proof of Lemma 4.4 shows that ) is

C?, and that F o) has a strict local maximum at 0. The result is now obtained by a
possible reparameterization. O

Remark 4.6. The properties of the curve in Lemma 4.5 show that U, is not a local
minimizer of the constrained minimization problem

min{E(u) : u € M.}.
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4.3. Proof of the instability theorem.

Proof. Assume, to the contrary, that we do not have instability. Then for every vy > 0,
small enough for local existence from Assumption 7, there exists a 0 < v < 1 such that
solutions corresponding to initial data in " exist globally in time and stay inside u,YOV .
Fix such a 1, which we also require to satisfy the hypotheses of the lemmas in this
section.

By the above reasoning, there exists a unique global in time solution

u® e CO([O,OO),U,YS’)

to (2.3), with initial data u®(0) = ¥(s), for all |s| < 1. Here, 1 is the curve from
Lemma 4.5. Since ¢(s) € M, by Lemma 4.5(ii), the solutions u* all live on M, due to
conservation of momentum.

From Lemma 4.4, and conservation of energy, we obtain the inequality

E(Ue) — E(¢(s)) < Au(1)S(u*(t))

for all |s| < 1 and ¢ € [0,00). By choosing A\g < 1 in (4.9), we can assume that |[A(u)| <1
for all u € U,y . Thus

(4.15) S ()] = E(Ue) — E(¥(s)) > 0

for all 0 < |s| < 1 and t € [0, 00), where the strict inequality stems from Lemma 4.5(iii).
Moreover, by continuity, this implies that S o u® does not change sign.
Since J: D(J) C X* = X is a closed operator, we may view I := D(.J) as a Banach
space with the graph norm
[vllp = l[ollx + [[Jollx,
and in this norm the map u + J(u) is of class C°(O N'W; Lin(D, X)) by Assumption 2.
It follows that the map u + J(u)* is in C°(O N'W; Lin(X*,D*)). From (2.4) we obtain

d S S S S * S
2\ (0),v) = —(VE@W (1), J(u’(t))v) = ={J(u*(1))"VE(u’(t)), v)
for every v € . Now, since the embedding D — X* is dense, we have X — D*. We can
therefore view u® as a member of C°([0,00), U, ) N C*((0,00),D*), with
(w)'(t) = =J (u*(t))"VE(u(t))

for all t € (0,00). Furthermore, the functional A in Lemma 4.2 can be viewed as a
member of C' (U, ; R), with the derivative DA in C°(U,); D). As the embedding W < X
is dense and W is reflexive, the embeddings X* <— W* and D — W* are likewise dense.

We may now apply [20, Lemma 4.6] to conclude that A o u® € C1([0, 00),R), and that

(Aou?)'(t) = —(J(u*(t))"VE(u*(t), DA(u*(t)))
= —(DE(u’(t)), J (v’ (1)) DA(u’(t))) = S(u’(t)),
whence
[A(u?(t)) — A(¥(s))| = HEU:) — E(y(s)))
for all 0 < |s| < 1 and ¢ € [0,00) by (4.15). This shows that A o u® is unbounded, but

we also have
|A(u)| < [|Z][x | M (u) — Uellx < | Z]Ixlewx|lvo
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for every u € U, by the definition of A in (4.2). We have arrived at a contradiction, and
must conclude that the U.-orbit is unstable. O

5. HAMILTONIAN STRUCTURE FOR WATER WAVES WITH A POINT VORTEX

With our general machinery in place, we turn to the question of stability of solitary
capillary-gravity waves with a submerged point vortex. The next subsection recalls how
this system was formulated by Shatah, Walsh, and Zeng in [43]. In Section 5.2, we show
that the problem can be rewritten once more as an abstract Hamiltonian system of the
general form (2.3), and verify that the corresponding energy, momentum, Poisson map,
symmetry group, and bound states meet the many requirements of Section 2.1.

5.1. Nonlocal formulation. Consider the capillary-gravity water wave problem with a
point vortex described in (1.2). In any simply connected subset of €, \ {Z}, the velocity
v can be decomposed as

(5.1) v=V®+ VO,

where ® is harmonic on €2; and © is harmonic on the subset. The latter represents
the vortical contribution of the point vortex. Since the surface is a graph, we will use
© = ©1 — O9, where

O1(z) = 1 arctan <‘ S ),

T x—.ﬂ-l—xg—.fg

Oz(z) = 1 arctan( S — )

™ |x — 2| — zo — T2

Then © is harmonic on the open set {z € R?: 21 # &1 or || < —Z2}, and VO extends
to a smooth velocity field on Q; \ {Z}. The purpose of O3, which corresponds to a mirror
vortex at 7’ == (71, —2), is to make VO decay faster as |x| — co. Indeed, VO is L? on
the complement of any neighborhood of x in €.

For later use, we also introduce notation for the harmonic conjugate of ©, which takes
the form I' =Ty — I'y with

1 . 1 o
(5.2) I(z) = 5 log |z — x|, Ta(x):= 5 log |z — Z'|.

Note that the convention used here is that VO = V1T, where we recall that V= is the
skew gradient introduced in (1.1).

The rationale behind splitting v according to (5.1) is that it nearly decouples the
tasks of determining the rotational and irrotational parts of the velocity. Indeed, ©
is entirely explicit given Z, which solves the differential equation (1.2b). The main
analytical challenge is determining ® and 7. But for this we can proceed as in the
classical Zakharov—Craig—Sulem formulation of the irrotational water wave problem:
Because ® is harmonic, it is enough to know 7 and the trace

¢ =p(x1) = (z1,m(21))

of ® on the surface. Notice that n and ¢ then have the fixed spatial domain R. The
problem can therefore be reduced to the boundary, with the rotational part VO|gs, being
viewed as a forcing term.
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On S, we must ensure that the kinematic condition and Bernoulli condition are
satisfied. Naturally, these will now involve tangential and normal derivatives of ® and ©.
Here and in the sequel, we will therefore make use of the shorthands

V| = (_77/8371 + 83:2)‘5157 Vr = (arl + 77/6372)‘5’5’

which arise when parameterizing the free surface using 7. Note also that we are using the
convention that spatial derivatives of quantities restricted to the boundary are denoted by
a prime, while 0, is reserved for functions of two or more spatial variables. Exceptions
will be made for certain differential operators, when this does not cause ambiguities.

The tangential derivative Vr® is simply ¢’, but to express the normal derivative V, ®
requires using the nonlocal Dirichlet-Neumann operator G(n): H*(R) — H*~1(R), which
is defined by

(5-3) G(n)¢ == VL(H(n)9),

where H(n)¢ € H' () is uniquely determined as the harmonic extension of ¢ € H¥(R)
to Qt.

It is well known that, for any ko > 1, k € [1/2 — ko, 1/2 + ko], and 5 € H*+1/2(R),
the operator G(n) is an isomorphism. Moreover, the mapping n — G(n) is analytic,
G(n): HY*(R) — H~'/2(R) is self-adjoint, and G(0) = |8,,|, the Calderén operator. We
refer the reader to [43, Appendix A], [44, Section 6], or [28, Chapter 3 and Appendix A]
for more details.

Finally, using the Dirichlet—Neumann operator, we can rewrite the water wave problem
with a point vortex in terms of (1, ¢, Z) as

O =Gn)e +eV.LO,
N2 _2 /! IG o G 2 / /!
Do — — (") n902<(7/7>);0 (G(n)p) _gn+b(<n,>)
(5.4) U , 7
— 'O ls — 5 (IVOP) s + tls - 0z,
Ot:f = V(I)(SZ‘) — Eaxl @2(i)€1,

where, to simplify the notation, we have introduced Z := 01 + O3 and £ = (O4,, Ey,).
The motivation for this choice being that Vz0 = —£.

The first equation in (5.4) is simply the kinematic condition in (1.2c), while the second
follows from evaluating Bernoulli’s law along the free surface using the dynamic condition
to replace the trace of the pressure with the (signed) curvature. Finally, the third equation
is just (1.2b) in view of the splitting (5.1). Observe that 0,z can easily be eliminated
from the equation for dyp, but we opt not to do so.

5.2. Hamiltonian formulation. We now endeavor to rewrite (5.4) as a Hamiltonian
system for the state variable u = (n, ¢, z). The first step is to fix a functional analytic
framework. For that, we introduce the continuous scale of spaces

(5.5) X=X} x X x Xg 1= H*2R) x (B*R) 0 HYV2(R)) xR?, £ >1/2,

For each k > 1/2, X¥ is a Hilbert space, and the embedding X* «— X" is dense for all
1/2 <k <k.
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For the energy space, we take
(5.6) X :=XY2 = HY(R) x H?(R) x R?,
which has the space
X* = HY(R) x H Y2(R) x R?
as its dual, and for which the isomorphism I: X — X* takes the explicit form
I=(1-82,10s |, dge).

This choice for X ensures that V® € L?(€;), and therefore that the kinetic energy
corresponding to the irrotational part of the velocity is finite.

On the other hand, anticipating the Dirichlet—Neumann operator, we expect to need
k> 1in (5.5) to ensure that the energy is smooth. With that in mind, set

(5.7) V=X = HY2H(R) x (H*(R) N H'Y2(R)) x R?,
where by X!'* we mean X'** for a fixed 0 < s < 1. For the well-posedness space we use
(5.8) W= XP/2 = B3 (R) x (HP/*(R) N H2(R)) x R

A local well-posedness result at this level of regularity was obtained for irrotational
capillary-gravity water waves by Alazard, Burq, and Zuily [1]. While the Cauchy problem
for (5.4) has not yet been studied, it is reasonable to suppose that local well-posedness
will hold in the same space. In our setting, this is the minimal regularity required to
have the traces of the velocity be Lipschitz on the surface.

Note that our results hold with any smoother choice of W as well. We also mention
that very recently Su [45] has obtained long time well-posedness results for gravity waves
with a point vortex (corresponding to b = 0). The Gagliardo—Nirenberg interpolation
inequality yields the following for our choice of spaces.

Lemma 5.1 (Function spaces). Let X, V, and W be defined by (5.6), (5.7), and (5.8),
respectively. Then there exists a constant C' > 0 and 0 € (0,1/4) such that Assumption 1
1s satisfied.

Lastly, recall that for the problem to be well-defined, the surface must lie between the
point vortex at Z € §;, and its mirror at z’. We therefore let
O = {u eX: o< U(Ii‘l) < —i’g},

and seek solutions taking values in O N'W at each time.
We endow X with symplectic structure by prescribing a Poisson map. First, consider
the linear operator J: D(J) C X* — X defined by

0 1 0 0
- [-10 o0 0

(5.9) J = 0 0 o |
0 0 —! 0

with the natural domain

D(J) = (H'(R) N HY2(R)) x (H'(R) N H/2(R)) x R?.
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One can understand J as encoding the Hamiltonian structure for the point vortex
and water wave in isolation. To get the full system, we must incorporate wave-vortex
interaction terms. For each u € O NV, define

(5.10) Lin(X) 3 B(u) == Ildx + K(u),
where K(u) € Lin(X) is the finite-rank operator given by
0 0 0 0 CIREN)
—— —EE;EQ |S 6@3;1 |S €®x1 ‘S 65:)32 |S <E$2.|Sa 77>
Kl = 0 1 0 0 |
-1 0 0 0 T2

for all w € X. The full Poisson map is formed, like in (2.2), by composing J with B(u):

A

Lemma 5.2 (Properties of J). For each u € ONV, the operator J(u): D(J) C X* - X
s given by

0 1 0 0
=1 Jyo  Joz  Ju
0 Jso 0 e 1]
0 Jip —€1 0

(5.11) J(u) = B(u)J =

where the entries are given by
Jag = —€E4,|5(+,Ou) + €04, (-, Z0sls),
Joz = —Eu, s,
Jog = O s,
J32 = (-, Exsls),
Jiz = —(-, 04 s),

and Assumption 2 is satisfied.

Proof. 1t is clear from its definition in (5.9) that J is injective and closed, and its domain
D(J) is dense in X* by Lemma A.1. Thus parts (i) and (ii) of Assumption 2 hold. Now,
fix u € ONV and consider the operator B(u) given by (5.10). The map /C(u) has finite
rank, so B(u) is a compact perturbation of identity. In particular, B(u) is Fredholm of
index 0. On the other hand, B(u) is clearly injective, and thus it must be an isomorphism
on X. This proves part (iii). The properties of the mapping u — B(u) asked for in
part (iv) are obvious from the definition (5.10). Finally, the skew-adjointness of J(u) is
apparent from the formula (5.11). O

Next, we must determine the energy associated to a water wave with a point vortex.
Classically, the kinetic energy is given by % [|v(t)|? dz. To adapt this to the point vortex
case, we use the splitting (5.1) and formally integrate by parts. This produces traces
on S, plus terms at the vortex center. We neglect the singular one, corresponding
to I'1, which is equivalent to removing the self-advection of the point vortex as in the
Helmholtz—Kirchhoff model. Ultimately, this leads us to define the energy functional
E = E(u) to be

(5.12) E(u) = K(u) + V(u),
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where
K(u) = Ko(u) + €K1 (u) + €2 Ko(u)

1 1
- f/ oG (n)g di +e/ oV, O dry + ~€ </ 0|5V, O dr; +I‘2($)>
2 Jr R 2 R

is the kinetic energy, and

(5.14) Vi = [ (o + ble) ~ 1)) oy

is the potential energy. Notice that V' depends solely on the surface profile. A similar
procedure also shows that

(5.15) P = P(u) :== exg — /Rn'(gp + €0|g) dx;.

is the momentum carried by a water wave with a submerged point vortex.

It is easy to see that E, P € C*°(ONV;R). For the convenience of the reader, the first
and second Fréchet derivatives of ' and P are recorded in Appendix C. By inspection,
we see that DE and DP admit the explicit extensions

(5.16) VE(u) = (Ep(u), E,(u), VzE(u)),
(5.17) VP(u) = (Py(u), P,(u), Vz P(u)),
in C*(0ONV;X*), with

(5.13)

, /2_2/ 'G — (G 2 1N/
B! (u) = (¥) 77902<§77,7>);0 (G(n)p) +gn_b((2’>)

'0 e
(5.18) + €9’ Ou |5, + g(l *lse
E(u) = G(n)p + VL0,
1
VaB(u) i= —5¢ / V. (0€) do — ¢ / oV €y — 2,,05()es,
R R

and
PTli(u) = 90, + €Oy ls,,

(5.19) Pou) = —1f,
VzP(u) = eeg + e/ n'€|s, dzy.
R

Thus Assumption 3 is indeed satisfied.
The next lemma confirms that the Hamiltonian system for this choice of the energy
and Poisson map corresponds to the water wave with a point vortex problem in (5.4).

Theorem 5.3 (Hamiltonian formulation). A function u == (n,¢,7) € C1([0,t9); WN O)
is a solution of the capillary-gravity water wave problem with a point vortex (5.4) if and
only if it is a solution to the abstract Hamiltonian system

(5.20) CC%‘ — J(u)DE(u),

where J = J(u) is the Poisson map (5.11) and E is the energy functional defined in (5.12).
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Proof. Written out more explicitly using (5.11), the Hamiltonian system (5.20) is
dm = E,(u)
Op = — E%(U)

+ e€ls, - (B (), Bay) + €' 0a, B (), — (B} (1), O,) — €05, E(u))
0 = ((E(u), Za) + €05, E(w), — (B}, (u), Os,) — €05, E(u))

(5.21)

Using (5.18), we see that the first of Hamilton’s equations is
9y = G(n)p + €VLO,

which is equivalent to the kinematic boundary condition in (5.4). Moreover, the equation
for 0yp above agrees with the corresponding one in (5.4), as the final term is simply
€€|s, - Orx by the third equation in (5.21).

Only the equation for the motion of the point vortex remains. Written out explicitly,
we find that

_ €
0tz = [ (pV.02, = Ou | Gln)e) dor + 5 [ (015 V101, — 0|5, V.0) dy
= [ N-(I';,V¥ — VI, )dS + g N - (T, VI — T'VT,, ) dS,
St St

where ¥ is the harmonic conjugate to ® in ); and N is the outward-pointing unit normal.
Now, owing to the fact that T' and 'y, are harmonic on R?\ {Z,z'}, the final integral is
equal to

/ (TayTs, =TTy d =0
To=

by path independence. Here we have used that I' =T';, = 0 on {z2 = 0}.
On the other hand, we have the identity

N - (T4, V¥ — UVT,,)dS = N - (T, V¥ — UVT,,)dS
St |lx—Z|=r

for all 0 < r < 1. Notice ‘ghat I'y is harmonic in 2, so only I'1 contributes in the limit
r — 0. Setting  — Z = re’, under the natural identification, we have

27 )
/ 'z N-V¥dS = / C;S(e) (cos(8),sin(f)) - VE(z 4 re'?) df
lx—z|=r 0 r

1
47

/Ozrr(l + cos(0/2),sin(0/2)) - VU (z + re?) do

and

27 7 i6
_/ UN VT, dS = 1/ cos(0) LE L)
|z—Z|=r 2 0

™

do
r

2m 1
1 )
= — (14 cos(0/2),sin(0/2)) - VU(E + tre®) dt d6.
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In total, then,

872 = lim N - (T,, VU — UVT,,)dS = U, (z),

r—0 |e—z|=r
and an essentially identical argument shows that
Oty = =02, ¥(T) — €0z, O2(2).

Recalling that ¥ and ¢ are harmonic conjugates, these two equations are equivalent to
the vortex dynamics equation in (5.4).

Finally, conservation of the energy F is immediate from the fact that u is a C'* solution
of (5.20). The conservation of momentum P is simply a consequence of (2.6), which we
verify below in Lemma 5.4. (]

5.3. Symmetry. Let T'=T(s): X — X be the one-parameter family of affine mappings
given by
(522) T(s)u = (77( _8)’90(' _5)753—}_561)’ s €R,

representing the invariance of the underlying system with respect to horizontal translations.
The linear part of the family is

(523) dT(S)’LL = (77( - S), SD( - S)7i)a s € Ra
and the infinitesimal generator of T is the affine operator
(5.24) T'(0) = dT'(0) +T'(0)0 = —(0zy,0z,,0) + (0,0, e1),

with domain D(17(0)) = X3/2,
Lemma 5.4 (Properties of T'). The group T(-) satisfies Assumption 4.

Proof. Parts (i), (ii), and (iii) are obvious from the definition of 7". The strong continuity
of the group in the respective spaces is likewise straightforward. Observe also that
T(t)0 = t(0,0,e1), which has norm |¢| in both X and W. Thus part (v) holds with
w(t) =t.

For part (vi), note that dT'(s) is invariant on I~ D(J), which is therefore the common
domain of definition for both sides at the top of (2.5). Verifying that we have equality in
the two equations for all s € R is then just a matter of inserting the definitions. For part
(vii), observe that D(T"(0)]y) = X**. That VP(u) € D(J) for any u € O N D(T'(0)|y)
follows from its formula in (5.17) and (5.19). Moreover, (2.6) and (2.7) can be obtained
by direct computation.

To verify part (viii), note that

RugJ = (H'(R)N H~Y2) x (H-YR) N HY?) x R?,  D(T'(0)|w) = X"/,
D(T'(0)|w) NRng J = (HYR) N H~Y?) x (H"Y(R) N H"/2(R) N HY?) x R?,

which is certainly dense in X (cf. Lemma A.1). Finally, the conservation of energy under
the group (ix) is immediate given the translation invariant nature of E in (5.12), (5.13),
and (5.14). O
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5.4. Traveling waves. In Theorem B.1, we prove the existence of a surface of small-
amplitude traveling wave solutions of the point vortex problem, parameterized by the
vortex strength ¢ and the depth of the point vortex a. For the stability analysis, however,
it is important to fix €, as it appears as part of the equation. We will therefore consider
the families

(5.25) 61 = {Us(e,a) = (n(€,a), p(€,a), —aez) :a €L} CONW

of traveling water waves with a point vortex of strength e at —aes, traveling at speed
c(e€, a), for nontrivial compact intervals Z C (0,00) and 0 < € < 1. From (B.2) we see
that a — c(€, a) is a diffeomorphism onto its image when € # 0 is sufficiently small, which
justifies viewing %7 as being parameterized by the wave speed c.

Lemma 5.5. For each nontrivial compact intervals T C (0,00) and 0 < € < 1, the
family €5 satisfies Assumption 5.

Proof. From the construction of ¢ in Theorem B.1, we know that the mapping ¢ — U,
is of class C''. Since the existence theory can be carried out for any k > 3/2, we can
ensure that U, and déic satisfy Assumption 5(ii). Also, the non-degeneracy condition (iii)

holds for small enough € in view of (B.2). Finally,
IT(8)Uc = Uellx > [(se1 — aez) — aea| = ||,

so the second option in (iv) holds. O

Formally, the traveling waves on % are stable if we can show that the moment of
instability defined in (2.15) has positive second derivative. This can be shown to be the
case when € is small.

Lemma 5.6. Fizx a nontrivial compact interval T C (0,00). Then
d"(c(e,a)) > 0, forallaeZ,

when 0 < |¢] < 1.

Proof. By (2.17),

(5.26) dac(e,a)d"(c(e,a)) = —(DP(Ucte,a))s DaUc(c,a))

and from Appendix B

1
c(e,ap) = ~Zmat +0(e3)

Ue(e,ap) = (0,0, —aez) + (n2(a),0,0)e? + O(€%)
in C1(Z;W). From the latter expression, and (5.19), we find that
VP(Usea) = (0, (-,0),0, e2)e — (0,m5(a), 0)e* + O(e)
in C%(Z,X*), and we can finally deduce from (5.26) that

(16 + 0(63)>dll(c(57 0) = e + O(&)

4dma?
or

d"(c(e,a)) = 4ma® + O(€?)
in C°(Z,R). The right hand side is positive on Z for sufficiently small € # 0. O
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6. STABILITY OF SOLITARY WAVES WITH A POINT VORTEX

In the previous section, we confirmed that the capillary-gravity water wave problem
with a point vortex has a Hamiltonian formulation (5.20) that is invariant under the
translation group 7'(-) defined in (5.22), and we introduced the corresponding trio of
Banach spaces W — V — X in (5.6)-(5.8). We are now prepared to state and prove the
main theorem:

Theorem 6.1 (Main theorem). Fiz a nontrivial compact interval T C (0,00) and
0 < |¢] < 1. Then the family €5 of solitary capillary-gravity water waves with a
submerged point vortex are conditionally orbitally stable in the sense of Theorem 2.4.

It is important at this point to emphasize that the family 47 comprises all even
traveling wave solutions of (5.4) with (7, ¢, ¢) and € in a neighborhood of 0, in a certain
function space setting; see Appendix B for more details. Thus, the stability furnished by
Theorem 6.1 applies to all even waves that are sufficiently small-amplitude, slow moving,
and have small enough vortex strength.

We have already addressed a number of the hypotheses of the general theory. Moreover,
Lemma 5.6 shows that the family €5 is formally orbitally stable for 0 < |¢|] < 1. The
only remaining task — which is by far the most difficult — is to verify that the waves
in €7 lie at a saddle point of the energy with a one-dimensional negative subspace, as
required by Assumption 6. Our basic approach follows along the lines of Mielke’s study
of the irrotational case [34], with many modifications necessitated by the presence of the
point vortex.

Recall that the family of traveling waves {U.} are critical points of the augmented
Hamiltonian E. := FE — cP. Because ¢ occurs quadratically in F, and

(Do) = | @G0 +evi0 +a)doy,
we can eliminate ¢ by introducing
(V) = =G (en' +€V10),
u*(v) = (773 (p*(’u),i') ev,
and the augmented potential

(6.2) V() = min B, 0.2) = Eolus(0).

2

(6.1)

for v = (n,i‘) S V1,3 N 01,3. Here
V173 =V x Vg, 01,3 = {(ﬁ,.f) X1 xX3:Z9 < 77(.%1) < —:Z‘Q}.
Note that ¢, € C* (V1300 3; Xg/2+) and u, € C*° (V13N 01 3;V), whence in particular
Vaue ¢ C°(Vy3;R).
For later use, we also define
a=a(v) = (V(He))ls, b="0b(v) :=a+eVO|g — cey.

Thus a is the irrotational part of the velocity field, and b is the relative velocity field,
both restricted to the surface. Observe that by = n'b; by (6.1). Because we are working
with the steady problem, in what follows we simply write S rather than S;.
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Lemma 6.2. For allv € V13N Oy 3 and v = (1,Z) € Vi 3, we have

(6.3) (D2VE(0)d, 0)vy yxvy 5 = (D Ee(us(0))0, 0)vy jxv,
— {L(0)0, G(n) T L(v)0)xzxx,
where
(6.4) L(v)i = G(n)(azn) + (b17) + VL€ - &
defines a bounded linear operator L(v) € Lin(Xy 3;X3).
Proof. By the definitions of ¢, in (6.1) and V2"8 in (6.2), it follows that
(DV(0),0) = (Do Ee(ux(v)),0) + (DvEe(ux(v)), 0) = (Dy Ee(us(v)), 0),
and
(D?V2U8 ()0, ) = (DyDypEe(us(v))(Dps(v),0),0) + (D} Ee(u(v))0, 0)
= —(D Ee(us(v)){Dps(v),0), (Dps(v), 0)) + (D Ee(us(v))0, ),
which yields the claimed formula after computing that

G(){(Dps(v),0) = —(DyG(n)7), ps(v)) + ([€Ouy |5 — J) +€ViE - T
= G(n)(azn) + (b17) + €V, & - 7. O

The next lemma further unpacks the expression (6.3) to obtain a quadratic form
representation on the energy space, in preparation for the verification of Assumption 6.

Lemma 6.3 (Extension of D*V2%8). For allv € V13N Oy 3, there is a self-adjoint linear
operator A(v) € Lin(Xy 3;X] 3) such that

<D2Vcaug(v>,[)7 w>V’{73 xVi3 = <A(U)’D7 w>X’1‘73 xX1,3

for all v, € Vy 3. Explicitly,

A A13)
6.5 A == * y
(6.5) <A13 Ass

with entries given by

Aqn = (g +b501)7 — (<n[j>37'7/>/ — Mij,
Ag3z = b1 Vr (G(n) 'VLE - €) - &
Al = e/lRﬁblVT(G(n)_leE — &) dx,
Azz = DIE(uy) + € /R ViE®G(n) Vil da,

Here M7 = —b1(G(n) 1 (b10)), 20y = (z @y + y @ x)/2 is the symmetric outer
product, and an explicit expression for D2E.(uy) is given in (6.6).
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Proof. Due to symmetry, it is sufficient to consider the diagonal. A series of rather
lengthy, but direct, computations show that

[ @G L@ dn = [ aiGm)am)dn + [ iMidn
R R R
+ /R(Clgbll — Cllzbl)ﬁZ dzy + 27 - ‘/R(GQVJ_f — bl(G(T])flef)/)f] dzq

+e2zT (/ ViE® G(’U)_1VJ_§ d:vl);fc,
R
while

<D,27Ec(u*)n,77> = /RagﬁG(T])(agf]) dxy + /R(g + EblvT@xz + 025/1)772 dx

b <\ 2
+/R<77,>3(77) dxy,
VoD Ee(uw,), i) = ¢ /R (021 € — by V€ das,

and

(6.6) D2E.(u.) = 2 D2To(7) — € /

[ (G D26 + D) s dar + & [ V160 ¢ day

62

-3 (V.OD20 + VrOD2T)|5 dxy.
R

Thus, using Lemma 6.2, we find

b

!
<D2V?ug(v>"[)7@> = /R(g—i- 5/251)772 dzy —/R<<n,>37'7/) ndry — /Rﬁ/\/lﬁdxl

+ 263 - /R 0LV (G(n) "' VLE — €) dany

437 (D2Ew) — @ [ Vig o Gl I Vagdn )
R
which yields the claimed operator A. (I

Remark 6.4. Under natural symmetry assumptions on v, the expression for Ass can be
simplified further. Specifically, if 5 is even and x; = 0, then

Asz = 26Dy (Z) —¢ /

(Gn)p. D20+, DD s dar €2 [ V.€0(€=Gln)™'V18) dan,
R R

and all three terms are diagonal matrices.

We can now confirm that the augmented Hamiltonian admits an extension to the
energy space.

Lemma 6.5 (Extension of D*E,.). For allv € Vi 3Ny 3, there is a self-adjoint operator
H.(v) € Lin(X,X*) such that

(6.7) (D? B (4 (0) )i, W) ye oy = (He(v) 1,0 50X
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for all u,w € V. The operator is given by

Idx* 0 0 * -1 * )
o : | (AW) + L) G L) —L(v)* [0
wion (16§ ) (o eepene gy )

0
where L(v) and A(v) are as defined in Lemmas 6.2 and 6.3, respectively. The adjoint
L(v)* € Lin(X2; X7 3) is given by

[,(’U)*QO = (a2G(77)S0 - blgb/a E<VJ_£7 30>) )
and we have
(6.8) (Hett, i)xcsxxx = (A(0)0, )ty w1 +(G(0) (9= G(0) T L0), (¢ =G (0) ™ L))zt
for all u € X.

Proof. Again, we need only consider the diagonal. By Lemmas 6.3 and 6.2 one has

<D2Ec(u* (’U))l'l/, ’1'1,>V* <y = <A’U + ﬁ(’U)*G(T])il,C(U)’[), ’[)>X* $xX1,3

1,
+ <D?DEC(U* (V)@ + 2Dy Dy Ec(us(v))0, @>V§ xVs
for all 4 € V, and it is simple to verify that

(Do Dy Ec(x(v))0, @)vs vy = —(L(0)0, §)x3 X,
for all v € V173 and P E Vs. O

Using the representation for D?V21 furnished by Lemma 6.5 in conjunction with the
asymptotics derived in Appendix B, we are at last able to prove that Assumption 6 is
satisfied.

Theorem 6.6. Let Z C (0,00) be a nontrivial compact interval, and consider the family
of bound states €5 defined in (5.25), furnished by Theorem B.1. Fiz 0 < |¢| < 1. Then
the spectrum of He = Hc(c q)(v(€,a)) has the form

spec(I ' H,) = {—p2} U {0} U X,

for all a € T, with —p2 < 0 and 0 being simple eigenvalues, and X. C (0,00) bounded
away from 0.

Proof. Under this hypothesis, we may view H. as a small perturbation of the block
diagonal operator
g—bd2 0 0
( 0 |0z, | O) € Lin(X, X"),
0 0 0

whose spectrum clearly consists of a part ¥ C (0,00) bounded away from 0, plus the
eigenvalue 0 with multiplicity two. Thus the spectrum of H. will have a part ¥. C (0, c0)
bounded away from 0, plus two eigenvalues near the origin. We know that one of these
is exactly 0, with corresponding eigenvector 7”(0)U.. Finally, from Lemma 5.6 and
(2.17) we see that % is a negative direction for H.. Thus the other eigenvalue has to be
negative. O
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At this stage, we have completely verified that the myriad hypotheses of the abstract
stability theory are satisfied for the solutions constructed in Appendix B. Theorem 6.1
therefore follows immediately from Theorem 2.4.

7. STABILITY FOR A CLASS OF DISPERSIVE MODEL EQUATIONS

As a second illustration of the abstract theory, we devote this section to studying the
stability properties of solitary wave solutions to the nonlinear dispersive PDE

(7.1) O = 0x(A%u — uP),
where u = u(t,z): R x R — R is the unknown, A = |0,|, @ € (1/3,2], and

(1,1+a)1-a)™h ae(1/3,1),

(72) peNm{(l,oo) aell2].

Heuristically, a describes the strength of the dispersion, while p describes the strength of
the nonlinearity.

Equations of the general form (7.1) include a number of extremely important hydro-
dynamical models. In particular, when p = 2, the cases @ = 1 and a = 2 are known as
the Benjamin—Ono equation (BO) and Korteweg—de Vries equation (KdV), respectively.
KdV, among many other things, governs surface waves in shallow water. Benjamin—-Ono
models the motion of waves along the interface between two infinitely deep fluid regions
in a certain long-wave regime [4, 38].

In [6], Bona, Souganidis, and Strauss investigated the orbital stability and instability
of solitary-wave solutions to (7.1) for a € [1,2]. Their strategy relied on many of the
ideas underlying the GSS method. However, as we will see below, the corresponding
Poisson map J was not surjective, and hence a number of adaptations were necessary.
Specifically, the authors made use of another conserved quantity — the mass [ udx —
requiring them to obtain estimates on the spatial decay rates of solitary waves in order
to ensure the persistence of integrability.

Our purpose in this section is to offer a new proof of the Bona, Souganidis, and Strauss
theorem that follows directly from the stability machinery presented in Section 3 and
Section 4. Because we do not appeal to the mass, no asymptotic estimates are required.
Notice also that we treat “fractional” dispersive model equations for which a € (1/3,1).
Orbital stability results for a« € (1/2,1) have been obtained by Linares, Pilod, and
Saut [30], and Angulo Pava [39]; we discuss the connections between these works and the
present paper further below. Theorem 7.4 below gives conditional orbital instability for
fKdV (p = 2) when « € (1/3,1/2), and this appears to be new. Indeed, Linares, Pilod,
and Saut observe that the Bona, Souganidis, and Strauss approach almost works in this
regime, except that the tail estimates fail to hold.

While we do not pursue it here, one can also consider more general nonlinearities
at the expense of some sharpness. Another interesting possible extension is to study
dispersive PDEs like the Whitham equation, where A% in (7.1) is replaced by a Fourier
multiplier with an inhomogeneous symbol.

It is also important to note that, by specializing to specific choices of @ and p, one
can say much more. As one example, for @« = 2 (gKdV), Pego and Weinstein [40],
Mizumachi [35], Martel and Merle [33], and Germain, Pusateri, and Rousset [17] obtain
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asymptotic stability results (in different topologies) for various subcritical cases p < 5.
For supercritical waves p > 5, Jin, Lin, and Zeng [25] were able to completely classify the
H' dynamics near the family of solitary waves using invariant manifold techniques. The
main appeal of our approach is its relative simplicity, and the fact that it simultaneously
addresses the range of dispersion strengths a € (1/3,2] and nonlinearities (7.2).

7.1. Reformulation as a Hamiltonian system. Formally, the expression inside the
parentheses on the right-hand side of (7.1) is the derivative of the energy

1 a 1
. Eu) =~ [ (A%u)? _7/ P gy
(7.3) () 2/R( b~ [ wrtar

This suggests that the natural energy space is X := H %(R), with the dual space X* =
H~2(R), and the isomorphism I: X — X* given by (A)®. The condition a > 1/3 ensures
the existence of admissible p, those satisfying (7.2), which in particular implies that
X « LPTL(R). Observe that E defined according to (7.3) then lies in C*°(X;R), and
that indeed

DE(u) = A% —u?
for all u € X. We may therefore take
(7.4) V= X.

The local and global well-posedness of the Cauchy problem for (7.1) is still an active
subject of research, and what is currently known depends considerably on o and p. To
state things concisely, we suppose that (7.1) is known to be locally well-posed in H® for
s> sp = sp(a,p), and set

(75) _ {X if & > so(a,p),

H**(R) if § < so(a,p).

At present, the best known result when p = 2 is so(«,2) = 3/2 — 5a/4, and hence (7.1)
is globally well-posed in X when o > 6/7 and p = 2; see [36,37]. This is conjectured to
hold for all a > 1/2, which corresponds to the L? subcritical case.

However, for fKdV with a € (1/3,6/7], the functional analytic setup in (7.5) will lead
to a conditional stability or instability result. This is essentially what is done by Angulo
Pava in [39, Theorem 1.1], as well as Linares, Pilod, and Saut in [30, Theorem 2.14],
who treat the range o € (1/2,1). We caution, however, that in both of these papers the
definition of “conditional stability” is less conditional than ours: we require the solution
to remain in the ball BY, while they only ask for it to exist.

Next, define the Poisson map J: D(J) C X* — X by

(7.6) J = 0Oy,

with domain D(J) := H'*2(R). As J is independent of state, it can be identified with .J
in Assumption 2. Moreover, J is clearly injective, and skew-adjoint. The Cauchy problem
for (7.1) can now be restated rigorously as the abstract Hamiltonian system

(7.7) %(u(t),w) = (uP — A%, dpw)  for all w € H'F2(R), w(0) = uo,

by specializing the general system in (2.4).
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The equation (7.1) possesses a number of symmetries, but the one of most interest to
us is spatial translation invariance. For each s € R, we define T'(s) € Lin(X) by

(7.8) T(s)u:=u(- —s),

and this forms a group of unitary operators on X. Its infinitesimal generator is 77(0) =
—0,, with domain D(T"(0)) = H'* 2 (R). Moreover, since T"(0) = .J(—tx_x~), the group
generates the momentum

(7.9) P(u) = %(—u,u) = —% /Ru2 dx,

which also is of class C*°(X;R).
The next lemma collects and expands upon these observations to confirm that the
Hamiltonian formulation meets the requirements of the general theory.

Lemma 7.1. The Hamiltonian formulation (7.7) of the dispersive model equation (7.1)
satisfies Assumptions 1-4.

Proof. Because V = X, both Assumption 1 and Assumption 3 hold trivially. Likewise,
for J defined as in (7.6), we have already verified that the relevant requirements of
Assumption 2 are met. To show that the symmetry group satisfies Assumption 4 requires
chasing the definitions. Both invariance and the commutativity are readily checked, as
differentiation commutes with translation. Finally, the only remaining property that
requires elaboration is (viii). We see that

H'Y#2(R) N9, H' 2 (R) if 2> so(a,p)
D(T'(0)|w) NRng J = ’ o 2 e
(T"(0)[w) ng {H(1+S°)+(R) N 8xH1+5(R) if % < so(a, p),

which is dense in X by the same kind of argument as in Lemma A.1. ([

7.2. Solitary waves and spectral properties. It is well known that the dispersive
models captured by (7.1) support solitary waves u(t) = T'(ct)U, = U.(- — ct) for all ¢ > 0.
Recall that such U, € X must satisfy

(7.10) DE.(U.) = A*U. —U? + cU. = 0, (in X¥)

and by introducing the scaling

(7.11) Ue = 7T Q(ch -)

we see that all such waves are just scaled versions of solutions of the equation
(7.12) Q+AQ = Q".

Lemma 7.2. If Q € X is a nontrivial solution of (7.12), then the family {U.: ¢ € (0,00)}
defined through (7.11) satisfies Assumption 5.

Proof. By a standard bootstrapping argument, we have that any such solution @) lies in
H"(R) for every r > 0. Since U, is defined by (7.11), parts (i)-(ii) are therefore immediate.
Finally,

llirln_jnf T (s)Ue. — Ucllx = 2||Uc||x > 0,

so the second option of part (iv) holds. O
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It is also easily seen that if @ # 0 solves (7.12), then @ is a critical point of the
Weinstein functional J € C%(X\ {0}; (0, oo)) defined by

H ||“

p+1
N [

||u||Lp+1(R)

We say that a solution @ of (7.12) is a ground state if @) is not just a critical point of
J, but also an even, positive minimizer. Since J is invariant under scaling, the same is
then true of each U,, solving (7.10), defined through (7.11). Note that the corresponding
operator H, € Lin(X, X*) is given by

Hou = D2EC(UC)U = A% — pUg’_lu + cu,

which is clearly self-adjoint. We have the following result, due to Frank and Lenzmann [15],
vastly generalizing earlier results for KdV [48] and BO [2,3].

Lemma 7.3. There exists a unique ground state solution Q € X of (7.12). Moreover,
for each ¢ € (0,00), the spectrum of the operator H. corresponding to the bound state
solution U, defined by (7.11) satisfies

spec I 1 H, = {—p2}u{0}UX,,

where —p? < 0 and 0 are simple eigenvalues, and L. C (0,00) is bounded away from zero.
That is, Assumption 6 is satisfied.

Of course, ) cannot be written down explicitly for most choices of o and p. Famously,
for KdV

3 x
Qkav(z) = B sech? <2),
while Benjamin [4] exhibited the ground state
@so(z) =
for BO in his original paper on the topic.

2
1+ 22

7.3. Stability and instability. The analysis of the previous subsection confirms that
the family {U. : ¢ € (0,00)} corresponding to the unique ground state @ of (7.12)
furnished by Lemma 7.3 falls into the scope of the general stability theory developed
in Section 3 and Section 4. We therefore obtain the following extended version of the
classical result of Bona, Souganidis, and Strauss [6]:

Theorem 7.4. If p < 2a+ 1, then each solitary wave in the family {U. : ¢ € (0,00)} is
conditionally orbitally stable in the sense of Theorem 2.4 when § < so(a,p), and orbitally
stable in the sense of Corollary 2.7 when § > so(c,p). When p > 2a + 1, the solitary
waves are orbitally unstable in the sense of Theorem 2.6.

Proof. Whether U, is stable or not reduces to the sign of d”(c), where we recall that
d(c) = E.(U,.) is the moment of instability. Exploiting the scaling (7.11) and the identity
(2.16), we find

1 1 2 1
d(0) = =P(U) = 5 [ U2da= 27T Qllagy
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whence
2 1 0 if 2 1
sgnd"(c)zsgn(—) ~ 1 p<iath
<0 ifp>2a+1,

p—1 «
which gives the statement in the theorem. ([
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APPENDIX A. FUNCTION SPACES

Define the Schwartz class S(R) to be the set of all f € C*(R) such that 2" f(™)(z) €
L>*(R) for all n,m € Np, and also the subspace Sy(R) of those f € S(R) for which

™ (0) = 0 for all n € Ny. For every s € R, we define the inhomogeneous Sobolev space
H?*(R) to be the completion of S(R) with respect to

(A1) 1F 1l zs ey = 11€-)° Fll ey,

which can be realized as the space of all f € S'(R) for which f € Ll _(R) and | f|| H(R) <
0.

The homogeneous Sobolev space H*(R), on the other hand, is defined to be the
completion of Sp(R) with respect to

(A.2) 1l izs @y = M- PP Fll 2wy < o0,
and for s < 1/2 it can be realized like before as the space of all f € §'(R) for which
f e L} (R) and 1Nl sy < o0. If's = 1/2, set n = |s +1/2], so that s = n + «
with o € [~1/2,1/2). Then H*(R) can be realized as the space of all f € §'(R) such
that £ € H*(R), modulo polynomials of degree at most n — 1, with the norm (A.2)
interpreted as || f™|| .

On domains © C R?, we shall only have use for H'(), defined as the space of
f € LL .(Q)/R for which Vf € L*(Q).

loc

Lemma A.1 (Density). For all s,r € R, the space H*(R) N H"(R) is dense in both
H*(R) and H"(R).

Proof. Define x, = Xi/n<|¢|<n for all n € N. Suppose first that f € H*(R), and set
fn = F Y xnf) for n € N. Then f, € H*(R) N H"(R) and
1f = fallgs@y = 1(-)°(1 = Xn)fHL?(]R)a

so fn — f in H*(R). Next, suppose that f € H" and choose k € N large enough so that
r —k < 1/2. Then the sequence

fo = F 7 (xaf B (i6)F) € H*(R) N " (R)
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converges to f in H"(R). O

APPENDIX B. EXISTENCE THEORY

In this appendix, we present a slightly modified version of the existence theory for
capillary-gravity waves with a point vortex due to Shatah, Walsh, and Zeng [43]. The
original paper fixes the location of the vortex, which is ill-suited for us. Since € appears in
the Poisson map, it must be held fixed on any family of waves to which we wish to apply
the general stability theory. We can obtain such families by also allowing the location of
the point vortex to vary.

Specifically, we suppose that the point vortex is situated at £ = —aes, where a > 0. A
symmetric traveling wave solution to (5.4) having wave speed ¢ must then satisfy the
abstract operator equation

(B.1) F(n,,c;€,a) =0,
with .7 = (F1, Fa, F3): O C (X x R x (0,00)) = Y defined by

12 — G (G 2 AN
_ (@) =27p (7/7);0 (G(n)y) —c«p’+gn—b< nl>

2(n’) (')
/ 62 2
+ e ls + 5 (IVOF)[s — ecOu s

Fa(n, ¢, ¢6,a) = cn + G(n)p +€VL0,

€
F3(n, 0,65 6,0) = c = (H(0)$)a, (0, —a) + —,

where H(n) denotes the harmonic extension operator. We will use the spaces
X = HYR) x (HE(R) N H2(R)) x R,
Y = H"2(R) x (HF"Y(R) N H;Y?) xR
for any k > 3/2 fixed, with the subscripts indicating odd and even, and the open set
O ={(n,p,cea) € X xR x(0,00):|n0)| < a}.
The map % is then C* (even analytic), and we have the following existence theorem.
Theorem B.1. There exists a C*°-surface
{(n(e,a),p(e,a);€,a) : (e,a) e U C O x R x (0, 00)

of solutions to (B.1), with U an open neighborhood of {0} x (0,00). Asymptotically, the
solutions are of the form

3
—~
o
S
~—
Il
[
N
3
[\
—
S
S~—
_l’_
o)
—~
™
IS
SN—

(B.2) ple,a) = O(e),

in CL ((0,00); X), with

x2 _ a2
(B.3) ci(a) = ——, n2(a) = m(g —bd7,) ™ (W)
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Proof. As in [43], this result follows from the implicit function theorem applied to .# at
the trivial solutions (0;0,a) for a € (0,00). We compute
g —bo2 0 0
Dx.7(0;0,a) = 0 |0 | 0],
0 —(H(0))z;(0,=a) 1
which is clearly an isomorphism X — Y, as it is a lower diagonal matrix with isomorphisms

on the diagonal. Finally, the asymptotic expansions listed in (B.2) can be found by
implicit differentiation. U

It is possible to write the leading order surface term 72 in terms of the so-called
exponential integral Ej.

Theorem B.2. Define the holomorphic function f: C\ (—o0,0] — C by

f(2) = ¢ By (=) = (3 + log(z))e” — 3. S EH,
k=1

where v is the Euler—Mascheroni constant and Hy, is the k-th harmonic number. If we
write w = x + ia = /g/b(x1 + ia), then

1

ma(z1) = mﬁ2($), 72(z) == Re <f(w>+f(_w)>

2
More explicitly,

() = [(7 + log(\/m)) cos(a) — gsin(a)] cosh(z)

+ sin(a) arctan(z/«) sinh(x) — i Hax (a:2 + ozz)kTQk (x)

= (2k)! Va? + a?
for all x € R, with T}, being the k-th Chebyshev polynomial.
Proof. By using (B.3) and the scaling, we see that 72 solves the differential equation

5 _ 22 — o?
fio(x) — iy (x) =
and one may directly verify that g(z) == (f(2) + f(—2))/2 satisfies g(z) — ¢"(2) = 272 in

(22 + a?)?
C\ R. Moreover, this is the unique solution that vanishes at infinity, as it can be shown
using a well-known asymptotic series for E; that g(z) = 1/22 + O(27%) as |z| = c0. O

= Rew 2,

APPENDIX C. DERIVATIVES OF THE ENERGY AND MOMENTUM

We record here the derivatives of E and P up to order two. Fix u = (n,¢,2) € VN O,
and let @ = (0, ¢, ) € V represent a variation. Some of the integrals must be understood
in the dual-pairing sense. To simplify the notation, we also introduce

a = (V¢H>|57 5 = (@aipEacQ) = _viev

b= (Gn Znn).

Sz Toxo

and note that
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Variations of Kj. From (5.13) we compute
(DypKo(u) / ¢G(n)p day,
Datow)i) =5 [ olDGnyi o) dos = [ i(5la - Gl ) doa
with second variations
(D2Ko()p ) = [ Glnpda,
(DD Ko(ip,i) = [ DG ) doy = [ e = axGln)e) da,

Dio(wii) = 5 [ UDIG) ) der = [ (dhaaiP + axilGln) i) da,

where the explicit expressions for the shape-derivatives only hold when ¢ € XS/ 2,

Variations of K;. From (5.13) we find quickly that

(Dy K1 (u),m) :/Rﬁ@/@mlbdiﬁl, (DpKi(u) /‘PVL@diUh
and
V() = = [ ¢Vi€dar
The second variations are thus
(D2 ()i ) = / P Onmlsdr,  (DyDK(w)i, §) = / 19O di,
Va(DnKi(u) /77<P§m|5d$17 Va(Dy K1 (u) /SOVJ_fdxla
and

D2K(u) = / oV, D20 du;.
R

Note that in the above computations we have made repeated use of the fact that © is
harmonic in a neighborhood of the surface S. In particular, this implies that

(C.l) VJ_@zl = VT@xQ = (@m!s)’, Vj_ezz = _VTG)m = _<@r1’5)/'

Similar identities hold for = as well.
Variations of K3. From (5.13) we find

(DyKaw) i) = 5 [(VOPsder,  VaKa(w) = VI2(a) - 5 [ V(08 don.
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second variations are thus

(D3 o) = [ (VO VOu,)[si oy,
V(D (), ) = — /R ((Ds€)VO)s a1,

D2Ky(u) = 2D2Ts( / V.(0D26 + £€7) day.

Variations of V. From (5.14) we have

(DpV (u),n) = /R<g?7 - b(%))ﬁdm,

@i = [ () dor.

1
(n')?

Variations of P. Lastly we consider the momentum. The first variations are given by

and

(D,Pw.i) = (& + Onls)dor,  (DPlu).g) =~ [ n/pdon,

VzP(u) = eey +e/ n'&ls dxy.
R

Likewise, we find that the second variations are

(D2P(u)i, i) = € / POumslsdrs,  (DyDyP(u)i, @) = — /]R 7 dey,

Vi(DyP(u),n) = —e/ Née,|s day, D2P(u) = —e/ 7 (D20)|s dz1 .
R
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