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Abstract
Subgraph matching is a fundamental task in many applica-
tions which identifies all the embeddings of a query pattern
in an input graph. Compilation-based subgraph matching sys-
tems generate specialized implementations for the provided
patterns and often substantially outperform other systems.
However, the generated code causes significant computation
redundancy and the compilation process incurs too much over-
head to be used online, both due to the inherent symmetry in
the structure of the query pattern.

In this paper, we propose an optimizing query com-
piler, named GraphZero, to completely address these limi-
tations through symmetry breaking based on group theory.
GraphZero implements three novel techniques. First, its sched-
ule explorer efficiently prunes the schedule space without
missing any high-performance schedule. Second, it automati-
cally generates and enforces a set of restrictions to eliminate
computation redundancy. Third, it generalizes orientation,
a surprisingly effective optimization that was only used for
clique patterns, to apply to arbitrary patterns. Evaluation on
multiple query patterns shows that GraphZero outperforms
two state-of-the-art compilation and non-compilation based
systems by up to 40X and 2654X, respectively.

1 Introduction

Subgraph matching identifies all embedddings of specific
query patterns in input graphs, which is important for bioin-
formatics [22, 55], social networks [39, 56], and fraud detec-
tion [5, 12]. Triangle counting represents a simple subgraph
matching task, where the pattern is a triangle and the goal
is to count all its instances in an input graph. While triangle
counting is much more costly to solve than many graph traver-
sal problems, matching larger patterns (e.g., size-7 cliques)
involves even more complex algorithms and may need hours
or days to finish.

∗equal contribution

Subgraph matching problems have attracted significant
attention in the data analytics community. A common ap-
proach is to design efficient algorithms for individual pat-
terns [4, 13, 60]. IEEE, Amazon and MIT organize an annual
challenge to rank the submitted implementations for triangle
counting [1]. However, this approach is not scalable for gen-
eral subgraph matching, as the number of patterns increases
exponentially in the pattern size. For example, there exist 112
size-6 connected patterns but 853 size-7 connected patterns.

Many software systems have been proposed to perform sub-
graph matching for arbitrary patterns [6,8,11,19,41,50,53,59].
Despite their generality, these systems leave much perfor-
mance on the table due to two reasons. First, they implement
a generic algorithm that handles arbitrary patterns but does
not perform particularly well for any of them. It is why man-
ual implementations of specialized algorithms for specific
patterns are still popular. Second, some of them need to run
isomorphism check online to verify whether a produced em-
bedding uniquely matches the pattern of interest, which may
incur substantial overhead for non-trivial patterns.

The compilation approach for subgraph matching has ad-
vantages as shown in systems like EmptyHeaded [3] and
AutoMine [37]. They generate specialized algorithms for
the given pattern and compile it to efficient low-level code.
The code has a nested-loop structure, each level growing the
embedding by one vertex towards the pattern through set
operations on the neighbor lists (e.g, set intersection). If an
embedding is identified by the innermost loop, it guarantees to
match the pattern and avoids online isomorphism test. Several
non-compilation based systems, represented by RADS [19]
and GraphFlow [26], find an optimized matching order, which
leverages the given pattern to improve performance in a simi-
lar manner.

While compilation-based subgraph matching systems of-
ten substantially outperform other systems [3, 37], they have
three problems. The first problem is that their generated code
incurs significant computation redundancy due to identifying
the same embedding multiple times. For a size-7 near-clique,
which is a clique with one absent edge, they identify each



embedding 120 times. The second problem is their slow com-
pilation speed. For example , AutoMine uses a brute-force
approach to enumerate all possible schedules (i.e., vertex
matching orders). As a result, its search algorithm may un-
necessarily traverse schedules that generate the same code. If
used as an offline compiler, the compilation overhead may be
acceptable especially because most real-world applications
only match small patterns. But it may be problematic if Au-
toMine is used as a just-in-time compiler for dynamic queries
where the overhead lies on the critical path. Finally, these sys-
tems can only apply the orientation optimization [51] to clique
patterns by enforcing edge traversals from lower-degree ver-
tices to higher-degree vertices. Although this optimization
alone can produce up to tens of times performance improve-
ment for triangle counting [24, 47], most patterns can not
enjoy this benefit.

Addressing the three problems faces substantial challenges.
First, patterns and their inner structures have symmetry. Con-
sider the rectangle pattern. All four vertices are initially equiv-
alent due to the four-way rotational symmetry. After fixing
one vertex, there is still a two-way mirrored symmetry be-
tween the two vertices attached to the first, leading to a total
multiplicity of 8. The symmetry leads to different ways to
map the query pattern to the vertices in the graph. Although
symmetry breaking has been used in prior systems [18, 19],
it is unclear how to completely eliminate symmetry-related
redundancy correctly and efficiently in a compilation-based
system. Second, the schedule space can be enormous, and
different schedules may produce programs that differ dra-
matically in performance. However, pruning the schedule
space naively (e.g., setting an upper bound on the number of
explored schedules) may miss high-performance schedules.
Third, the orientation optimization can be applied to clique
patterns because they are perfectly symmetric, meaning that
any pair of vertices can be exchanged yet still preserving
the pattern. Most patterns do not have this property, so it is
unclear whether they can also benefit from this optimization.

In this paper, we present GraphZero, an optimizing query
compiler for subgraph matching that systematically addresses
these challenges to enable zero redundancy in both compila-
tion and execution. GraphZero contains three key components:
a schedule explorer, a redundancy optimizer, and an orien-
tation optimizer. Given the patterns of interest, the schedule
explorer only searches for schedules of potentially different
performance. The redundancy optimizer automatically gener-
ates a set of restrictions for the found schedule and enforces
the restrictions on it to completely eliminate computation re-
dundancy. The orientation optimizer successfully generalizes
the application of the orientation optimization to arbitrary
patterns.

The fundamental idea for GraphZero to break symmetry
is to use more than the topology information, such as vertex
ID or degree. We observe that the differences between dif-
ferent ways to identify the same embedding are essentially

automorphisms, which are isomorphisms from the embed-
ding to itself. The number of automorphisms determines the
degree of redundancy. By enforcing a set of automatically gen-
erated restrictions between discovered vertices, GraphZero
reduces the number of automorphisms to one. Consequently,
the generated code identifies each instance exactly once. It is
worth mentioning that different from existing symmetry break-
ing techniques [18], GraphZero enforces a high-performance
schedule and at most one restriction for each matched vertex.
Moreover, GraphZero uses automorphisms to prune the sched-
ule space and only discovers one of the equivalent schedules
that correspond to the same automorphism group. It still finds
the optimal schedule because all the equivalent schedules or-
der the set operations in the same way and hence have the
same performance. Finally, GraphZero enjoys a byproduct of
the enforced restrictions, which is that for each restriction it
can also restrict an edge traversal order that generalizes the
orientation optimization.

We have extensively evaluated all the three components of
GraphZero by comparing it with two state-of-the-art subgraph
matching systems. Our experimental results demonstrate per-
formance improvements of up 40X for single pattern match-
ing over AutoMine as well as up to 2654X improvement over
RADS [19]. GraphZero generates high performance sched-
ules up to 197X faster than AutoMine for multiple complex
patterns. Moreover, GraphZero’s generalized orientation op-
timization produces up to 88.6X performance improvement
over the unoriented version.

We make the following contributions in this paper: 1) We
reveal that the inherent symmetry in graph patterns is a fun-
damental reason for computation redundancy and the slow
compilation speed of existing compilation-based subgraph
matching systems; 2) We propose to use group theory to break
symmetry through automatically generated and enforced re-
strictions, which not only completely eliminates redundancy
in the generated code but also substantially prunes the sched-
ule search space; 3) We generalize the orientation optimiza-
tion to arbitrary patterns by leveraging the generated restric-
tions; 4) We present an optimizing compiler that integrates
the proposed techniques to substantially outperform two state-
of-the-art systems with fast compilation.

2 Background and Motivation

2.1 Definition of Subgraph Matching
A subgraph S = (VS,ES) of an input graph G = (VG,EG) is
vertex-induced if VS ⊂ VG and ES contains all edges in EG
where the source and destination vertices are in VS. A vertex-
induced subgraph S matches the query graph Q if S is iso-
morphic to Q. Subgraph matching, as explored in this paper,
discovers all distinct subgraphs that match the query graph.
The query graphs are assumed to be connected and undirected
with or without vertex labels. The input graph is directed or



undirected with or without vertex labels.

2.2 Basics of Compilation-Based
Subgraph Matching Systems

Figure 1 (a) demonstrates the basic workflow of compilation-
based subgraph matching systems. Given the pattern of in-
terest, they find a matching order of its vertices, making sure
that any vertex except the first one is connected to at least one
vertex matched before it. A schedule can then be naturally
generated following this order with present edges encoded
by set intersections and absent edges by set differences. For
example, D is connected to both B and C but not A. Thus,
D should be in the intersection of B’s and C’s neighborhood
but not in A’s neighborhood. Finally, these systems compile
the schedule into a nested loop structure, the inner-most loop
of which identifies the embeddings of the pattern. Since the
matching order determines a schedule, we use a total order on
the label set to represent the schedule. For example, the sched-
ule shown in Figure 1 (a) can be represented by [A,B,C,D].
This approach readily generalizes to any query pattern, as
long as the compilation time is reasonable.

2.3 Problems and Challenges

2.3.1 Computation redundancy

Every subgraph matching system needs a way to test isomor-
phism, that is, determine what pattern a particular subgraph
matches. Compilation-based systems embed the isomorphism
test in the generated code itself, using the nested loop struc-
ture to filter embeddings down to those that match the desired
structural pattern. Doing so discovers the vertices in a partic-
ular order, what we call a mapping from the pattern’s labeled
vertices to the embedded vertices in the graph. However, the
label set may be mapped to the vertices of the same embed-
ding in different ways. Figure 1 (b) shows that there exists
eight different mappings for a rectangle instance, leading to
eight times over-counting (also called multiplicity) and com-
putation redundancy.

AutoMine partially solves the problem by introducing the
concept of root symmetry. It checks whether a schedule’s first
two vertices are equivalent and if so only processes that first
“root" edge in one direction. For many patterns, this success-
fully cuts the computation redundancy in half. However, as
Figure 2 shows, the number of possible mappings explodes
with the number of vertices in the pattern. Ideally, the sys-
tem should only identify each instance exactly once and so
completely eliminate computation redundancy.

Challenges. The scheduling approach of existing
compilation-based systems is fundamentally unequipped
to handle this multiplicity problem. All the mappings
correspond to the same topology and cannot be differentiated
by only set operations. As such, the symmetries in a pattern

induce the same multiplicity in any possible schedule for
that pattern. The symmetry may express itself in different
ways in different schedules, as the vertices that can satisfy
a particular mapping depend on both the schedule and the
previously explored vertices. This diversity is a key reason
the problem is both challenging to handle and valuable to
solve. Our approach must find all the symmetries and a way
to break them to make the mapping unique.

2.3.2 Brute-force Schedule Generation

Existing systems, such as AutoMine and GraphFlow, use a
naive approach to schedule generation. It first enumerates
all possible schedules and uses a performance model to rank
them. This process is inefficient because many schedules cor-
respond to the same code and thus have the same performance.
AutoMine takes over 147 seconds to generate schedules for 7-
vertex motif counting. When used as a just-in-time compiler,
this latency can be problematic because the schedule search
overhead lies on the critical path.

Challenges. The compilation process introduces a chicken-
and-egg problem: we want to avoid an exhaustive search of the
scheduling space while still identifying a high-performance
schedule, which is however unknown until after exploring the
space. We can run isomorphism test to filter out schedules
that produce the same code, but the testing itself involves an
exponential algorithm. Moreover, estimating the performance
of schedules is more complex when computation redundancy
is eliminated.

2.3.3 Generalization of Orientation Optimization

Orientation is a popular optimization for triangle count-
ing [24, 47, 51]. By only allowing higher-degree vertices to
be discovered after lower-degree vertices to form triangles,
the optimization effectively prunes half of the edges (i.e., the
ones from higher-degree vertices to lower-degree vertices) but
still preserves the structure of all triangle embeddings. How-
ever, it can achieve significant speedups much larger than
2X because the time complexity of triangle counting grows
super-linearly with the maximum degree. Existing systems
can apply orientation to clique patterns thanks to the perfect
symmetry. However, most patterns cannot enjoy the benefit
from the orientation optimization in these systems.

Challenges. Generalizing the orientation optimization to
cover arbitrary patterns is difficult due to their arbitrary topol-
ogy. Enforcing an order for vertex discovery based on degree
conceptually prunes edges from the graph data. Doing so
may miss some embeddings of interest when it is necessary
to discover a vertex from a higher-degree vertex due to the
chosen schedule but the edge is not present. While manual ap-
plication of the optimization for specific patterns is possible,
automating it in a compiler demands a systematic approach.
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3 Overview of GraphZero

The overall workflow of GraphZero has four stages as shown
in Figure 3. Taking a pattern as the input, the schedule ex-
plorer searches only part of the schedule space while guar-
anteeing that the optimal schedule is discovered. Based on
a performance model, the schedule explorer estimates the
performance of the searched schedules and produces a high-
performance schedule for the redundancy optimizer. The re-
dundancy optimizer then generates a set of restrictions and
enforces them on the schedule to perform redundancy-free
computation. The orientation optimizer, which is optional,
reindexes the vertices in the input graph based on decreasing
degree and leverages the generated restrictions to conceptually
prune the corresponding edges from higher-degree to lower-
degree vertices while keeping the entire graph. Finally, the
optimized schedule can run on the reindexed graph to match
the input pattern. Although the discussion focuses on one pat-
tern for simplicity, if provided multiple patterns GraphZero
merges the schedules to only generate one matching program.

4 Redundancy-Free Code Generation

In this section, we first explain the essential reason for com-
putation redundancy and build the connection between re-
dundancy and automorphisms, which is the key concept from
group theory to address the problem. We next describe the
approach to completely eliminating computation redundancy
through automatically generated and enforced restrictions,
followed by a method to minimize the overhead to implement
the restrictions in the generated schedule. Finally, we show
what the output looks like with and without these restrictions.

4.1 Computation Redundancy and Automor-
phism

The computation redundancy problem caused by over-
counting is rooted in the symmetry in the pattern. For example,
given an embedding of the rectangle pattern, each of the four
vertices in the embedding can be indistinguishably mapped to
the first label in the schedule. Once the first vertex in the em-
bedding is mapped, both its neighbor vertices can be mapped
to the second label of the schedule. The multiplicative map-
ping choices result in the eight times over-counting. Note that
selecting a better schedule does not solve the problem because
the symmetry cannot be broken by only set operations.

A mapping represents a one-to-one relationship between
the labels in the pattern and the vertices in the embedding.
If we give a total ordering to the embedding vertices, each
mapping can be represented by a total ordering of the labels.
Consider the example in Figure 1. We have [A,B,C,D] to
denote the schedule, so a total ordering of the embedding
vertices can be [2,3,8,7]. The mapping from [A,B,C,D] to
[2,8,3,7] can then be represented by the total ordering of
the labels: [A,C,B,D]. We call a total ordering of the labels
that corresponds to a mapping a valid ordering. Not all total
orderings correspond to a mapping. For instance, [A,C,D,B]
is not a valid ordering because C and D are connected in the
pattern, but the embedding vertices 3 and 8 are not.

Each valid ordering is essentially a permutation of the to-
tal ordering representing the schedule 1. Each such permu-
tation function is called an automorphism in group theory,
which is an isomorphism from the pattern to itself and hence
preserves the structure of the pattern. If an automorphism
repositions a label A to the original position of another label
B (e.g., [A,B,C,D]→ [B,A,C,D]), we say that the automor-
phism moves A to B for simplicity. All the automorphisms for
the same pattern form an automorphism group. The size of
the automorphism group determines the number of times for
over-counting. Ideally, we want to reduce the size of the group
to one to completely eliminate computation redundancy.

1A total ordering is a set plus the relation on the set, but we treat it as a
label array to simplify the discussion
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4.2 Breaking Symmetry through Restrictions

The key idea is that we can enforce restrictions on the IDs of
the embedding vertices to break the symmetry inherent in the
pattern. Vertices are not reused within the same embedding,
so there is a natural total ordering on the IDs. Consider the
rectangle pattern in Figure 1 again. We have observed that
the first label in the schedule can be mapped to any of the
four embedding vertices. The restriction we enforce is that
the first mapped vertex should have the highest ID among
the four embedding vertices. Doing this effectively reduces
the over-counting by four times because only two mappings,
namely [A,B,C,D]→ [8,7,2,3] and [A,B,C,D]→ [8,2,7,3]
respect the restrictions. We then enforce another restriction
that the ID of the second mapped vertex should be larger than
that of the third mapped vertex. The end result is that the
only way to identify the embedding is through the mapping
[A,B,C,D]→ [8,7,2,3], which completely solves the over-
counting problem.

We make two observations on the example. First, the re-
strictions are each a transitive binary relation (i.e., larger than)
between the IDs of two embedding vertices. Second, we can
use a binary ordering relation on the labeled vertices of the
pattern to represent the restriction on the embedding vertices.
As such, the partial ordering {(A,B),(A,C),(A,D),
(B,C)} should be sufficient to generate all restrictions.

Algorithm 1 generalizes the idea and generates such a par-
tial ordering for an arbitrary pattern with a given schedule.
The algorithm at the beginning computes the automorphism
group by trying all permutations of the vertex labels and fil-
tering out invalid ones, which do not preserve the pattern.
It then iterates through all labeled vertices in the schedule.
In each iteration, it determines all the labeled vertices indis-
tinguishable from the traversed vertex v after prior partial
ordering. For each of of these labeled vertices x(v), which
the automorphism x maps v to, the algorithm adds a binary
relation (v,x(v)) to the resultant partial ordering. At the end
of the for loop, only automorphisms that do not move the
traversed vertices are used to generate binary relations for the
next traversed vertex.

The following theorem allows us to use these relations to
uniquely discover each embedding exactly once.

Theorem 1 : For an arbitrary pattern P and its schedule S,
let L be the partial ordering on the label set in P generated by

Algorithm 1: Restriction generation algorithm
input : P : the pattern.
input : S : the schedule.
output : L : a partial ordering on the labels

1 begin
2 Aut← all the automorphisms of P
3 L← an empty partial ordering.

// iterate through these in order,
S[0],S[1], · · ·

4 for v in S do
// stabilized_aut contains all

automorphisms that do not move
the vertices we have iterated
over

5 stabilized_aut← []
6 for x ∈ Aut do
7 if x(v) = v then

// x does not move v
8 add x to stabilized_aut

9 else
// x moves v and indicates a

binary ordering relation
10 add (v,x(v)) to L, if not present

11 Aut← stabilized_aut



Algorithm 1. Given an instance of P, denoted by e, in a graph
G there exists exactly one mapping M from P to e if for each
binary ordering relation (S[i],S[ j]) in L, we add a restriction
M(S[i]).id > M(S[ j]).id.

This proof is split into two components. The first shows that
at most one mapping exists that follows the ordering. The
second shows that any instance that matches a mapping has
at least one mapping that follows the restrictions.

To prove that at most one mapping exists, we perform a
proof by contradiction. Assume two distinct mappings, M1
and M2. Then, M1 and M2 must differ in at least one vertex.
Let the first vertex in which they differ be d. Then, there is
an automorphism that does not moves any of the vertices
of S before d, which maps M1 to M2. There is therefore
an automorphism A such that M1(A(x)) = M2(x). Note that
M2(d) 6= M1(d), so M2(d) = M1(A(d))< M1(d) is a restric-
tion that is enforced. However, note that symmetrically, we
also have M1(d)< M2(d), which is a contradiction, so there
cannot be two distinct mappings that both obey the partial
orderings.

To prove that there is at least one mapping that satisfies the
restrictions imposed by the binary relations, we first present
the following lemma, which shows an important property of
these automorphisms that allow us to apply them without
changing any relations.

Lemma 1 Consider any automorphism A, which maps S[i]
to S[i], for i < k. A does not move the set of binary relations
(S[a],S[b]) where a < k, if we apply the automorphism to
each binary relation (X ,Y ) to become (A(X),A(Y )), over all
automorphisms. As a consequence, applying such an auto-
morphism does not break the relations.

First, for any b < k, the binary relations do not move, so they
are automatically satisfied. Now, consider (S[a],S[b]) as a
binary relation, where b≥ k. Then, there exists an automor-
phism, which does not move S[ j] for j < a and maps S[a] to
S[b]. There is then an automorphism obtained by composition,
which maps S[a] to A(S[b]) but does not move S[ j] for j < a.
(S[a],A(S[b])) is thus a binary relation in the original set.
Therefore, the set of binary relations after the automorphism
is a subset of the binary relations before the automorphism.
Then, symmetrically, since the automorphism is invertible
with an automorphism, the set of relations is the same before
and after the automorphism is applied.

That is, we can apply a sequence of N automorphisms, and
make a corresponding sequence of labelings: M0,M1,M2,
· · ·MN . Each member of these labelings will satisfy the follow-
ing: M j satisfies all relations of the form (S[z],S[k]), where
k < j and z can be any index. Note that we can allow M0
to be M. We shall prove that we can construct this sequence
iteratively.

We consider Mk and construct Mk+1. Let z be the index such
that Mk(S[z]) is maximized, and where (S[z],S[k]) is a relation,

or z = k. Note that if z = k, we can just take Mk+1 = Mk,
as Mk satisfies the restrictions because Mk(S[z]) < Mk(S[k])
for all z where (S[z],S[k]) is a relation we have. Otherwise,
there is an automorphism A that does not move Mk(S[x]) for
x < k, but moves Mk(S[z]) to Mk(S[k]). This is required for
the restriction to exist.

We shall prove that letting Mk+1 = MkA (i.e., Mk+1(x)
= Mk(A(x))) satisfies the restrictions we desired. By the
lemma, all relations (S[a],S[b]) where b < k are still satis-
fied. To prove that Mk+1 satisfies the restrictions of the form
(S[x],S[k]). Note that S[z]> S[d] for any d where there is an
automorphism moving S[k] to S[d]. For any x where such an
automorphism exists, (A(S[x]),S[k]) is also a restriction be-
cause there is an automorphism moving S[k] to A(S[x]). There-
fore, Mk+1(S[x]) = Mk(A(S[x])) < Mk(S[z]) = Mk+1(S[k]).
Thus, Mk+1 satisfies the restrictions we desired. This com-
pletes the recursive step.

We can then construct MN , which is a mapping that satis-
fies all the binary relations in the partial ordering. Therefore,
we have proved that the algorithm will find every distinct
mapping at least once and at most once, so it finds each one
exactly once, as desired.

Algorithm 1 and Theorem 1 demonstrate the possibility to
completely remove computation redundancy. Implementing
the restrictions in the code generator is simple. The compiler
needs to insert bound checks when generating a for loop as
demonstrated in Figure 4 (a).

4.3 Minimizing the Overhead of Enforcing
Restrictions

Figure 4 (a) shows that when discovering one vertex the code
may need to perform multiple checks, which incurs non-trivial
overhead especially for large patterns. We want to minimize
the number of checks to increase performance. For example,
within Figure 4 (a), the v0 < v2 check is made redundant by
the v0 < v1 check and the v1 < v2 check. These correspond
to the (A,C), (A,B) and (B,C) relations generated by the
schedule, respectively. The following theorem generalizes
this process, and shows that we only need to generate one
relation per matched vertex.

Theorem 2 Given the set of binary relations generated by
Algorithm 1, for each k (0 ≤ k < |S|) where S is the input
schedule, we only keep (S[z],S[k]) where z is maximized for k,
we still properly enforce all the original binary relations.

We omit the complete proof but describe its basic idea
based on proof by contradiction. Assume that we require two
binary relations (X ,Z) and (Y,Z) in the partial ordering with-
out having (X ,Y ) or (Y,X). Due to Algorithm 1, we have two
automorphisms mapping X and Y to Z, respectively, which
implies that we must have an automorphism to map between
X and Y . We therefore must have either (X ,Y ) or (Y,X) in
the partial ordering, which contradicts the assumption.



We can utilize Theorem 2 to modify Algorithm 1 to store
a map of chosen relations. Instead of adding (v,x(v)) as a
relation, we set the value in the map for x(v) to be v, repre-
senting that the only relation that needs to be checked for
x(v) is (v,x(v)). Figure 4 (b) shows the generated code for
rectangle counting after applying this optimization.

5 Fast Schedule Generation

In this section, we first explain the reason schedules of the
same pattern have dramatically different performance. We
describe the schedule generation algorithm used in existing
systems and show why it incurs tremendous overhead, fol-
lowed by the algorithm used in GraphZero’s schedule ex-
plorer to efficiently prune the search space. We finally present
GraphZero’s method of estimating performance of schedules
bounded with restrictions.

5.1 Performance Differences
The performance of different schedules can vary significantly.
To illustrate this, we compare two schedules for tailed triangle.
As shown in Figure 5, the two schedules search for the vertices
in [A,B,C,D] and [C,D,B,A] order according to the labels in
the diagram. The key difference between these schedules
is intuitive: the schedule [C,D,B,A] executes its innermost
loop once for each triangle embedding in the graph, while the
schedule [A,B,C,D] does it once for every wedge (i.e., a two-
edge path). In some of the graphs we evaluate for this paper,
wedges may appear over 500X more frequently than triangles.
So if the amount of work done inside the innermost loop is
comparable, the schedule [C,D,B,A] should have much better
performance.

5.2 Brute-Force Schedule Generation
To avoid missing high-performance schedules, existing
compilation-based systems take a conservative approach and
tests if each permutation of the labeled vertices is a valid
schedule as shown in Algorithm 2. Recall that a schedule is
considered valid if each vertex, except for the first, is directly
connected to at least one vertex that comes before it. This
allows it to be described as a member of a composition of set
differences and intersections of the neighbor sets of previous
vertices.

We can easily improve the schedule generation using Al-
gorithm 3, which recursively searches only valid schedules.
However, the algorithm is still inefficient for non-trivial pat-
terns. To understand the complexity of traversing all valid
schedules, we consider a path of length n. There are n starting
vertices to choose from and picking any vertex except the two
end vertices leaves the remaining task as finding the valid
schedules for the two sub-paths on the two sides. We omit
the proof but just show that there exist a total of 2n−2 valid

Algorithm 2: Automine’s schedule generation
input : P : the pattern.
output : schedules : the list of all valid schedules

1 begin
2 for permutation S of the vertices in P do
3 if S is a valid schedule then
4 add S to schedules

schedules. In another example, a clique of n vertices, all n!
possible schedules are valid.

Algorithm 3: Schedule generation algorithm - smart
brute force

input : P : the pattern.
output : schedules : list of all valid schedules for P

1 schedules← []
2 call recursive_generate_0([])
3 Procedure recursive-generate_0

input :sched - a partially built schedule
4 if sched covers all vertices in the pattern then
5 add sched to schedules

6 else
7 if sched is empty then
8 valid_next← P’s vertices

9 else
10 valid_next← all vertices in P connected

to sched but not in sched
11 for Vertex v ∈ valid_next do
12 call recursive_generate_0(sched+[v])

5.3 Pruning the Valid Schedule Space
The vast scheduling space described previously is expensive
to search exhaustively, so we need an efficient method to prune
the space without missing any potentially high-performance
schedule. A key observation we have is based on the clique
example. Although it has n! schedules, all of them generate
the same sequence of set intersection operations and hence
generate the same code. We call such schedules equivalent
schedules. If two schedules are not equivalent, we call them
distinct schedules. In general, any two schedules are equiv-
alent if and only if there is an automorphism that maps one
to the other. As an example, [A,B,C,D] and [A,B,D,C] are
equivalent schedules for the tailed triangle in Figure 5. Recall
that the multiplicity, M, of all valid schedules is the same
because it is an inherent property of the pattern. Therefore,
if K schedules are valid for a pattern, there exist K/M dis-
tinct schedules. The goal of the schedule explorer is to only



input: 𝐺 the graph

output: 𝑐𝑜𝑢𝑛𝑡 the number of induced q2 in 𝐺
begin

𝑐𝑜𝑢𝑛𝑡 ← 0

for 𝑣0 ∈ 𝐺 do

for 𝑣1 ∈ 𝑁 𝑣0 do

if 𝑣0 < 𝑣1 then

break

for 𝑣2 ∈ 𝑁 𝑣0 − 𝑁 𝑣1 do

if 𝑣0 < 𝑣2 then

break

if 𝑣1 < 𝑣2 then

break

for 𝑣3 ∈ 𝑁 𝑣1 ∩ 𝑁 𝑣2 − 𝑁 𝑣0 do

if 𝑣0 < 𝑣3 then

break

𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

(a) Applying All Restrictions

input: 𝐺 the graph

output: 𝑐𝑜𝑢𝑛𝑡 the number of induced q2 in 𝐺
begin

𝑐𝑜𝑢𝑛𝑡 ← 0

for 𝑣0 ∈ 𝐺 do

for 𝑣1 ∈ 𝑁 𝑣0 do

if 𝑣0 < 𝑣1 then

break

for 𝑣2 ∈ 𝑁 𝑣0 − 𝑁 𝑣1 do

if 𝑣1 < 𝑣2 then

break

for 𝑣3 ∈ 𝑁 𝑣1 ∩ 𝑁 𝑣2 − 𝑁 𝑣0 do

if 𝑣0 < 𝑣3 then

break

𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

(b) One Restriction per Vertex

Figure 4: Matching rectangle with restrictions

begin

count ← 0

for 𝑣0 ∈ 𝑉 do

for 𝑣1 ∈ 𝑁 𝑣0 do

for 𝑣2 ∈ 𝑁 𝑣0 ∩ 𝑁 𝑣1 do

s ← 𝑁 𝑣2 − 𝑁 𝑣0 − 𝑁 𝑣1
count ← count + |s|

count ← count / 2

begin

count ← 0

for 𝑣0 ∈ 𝑉 do

for 𝑣1 ∈ 𝑁 𝑣0 do

for 𝑣2 ∈ 𝑁 𝑣1 − 𝑁 𝑣0 do

s ← 𝑁 𝑣1 ∩ 𝑁 𝑣2 − 𝑁 𝑣0
count ← count + |s|

count ← count / 2
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Figure 5: Tailed triangle counting with two different schedules

generate these distinct schedules.
Algorithm 4 describes GraphZero’s schedule search ap-

proach which efficiently prunes the search space without miss-
ing high-performance schedules. The optimizations appear
in two places: 1) valid schedule generation and 2) equivalent
schedule pruning.

Each recursive invocation of the procedure
recursive_generate tries to include one more vertex
into the input schedule until the schedule covers all vertices
in the pattern. To avoid generating invalid schedules, after
the first vertex has been selected only vertices adjacent to at
least one vertex already in the schedule are considered for
extending the schedule (lines 9-12,23). These are the vertices
contained within valid_next.

The insight to prune the schedule space is similar to the
idea used in Algorithm 1. When extending the partial sched-
ule to include a vertex from valid_next, selecting different
vertices may produce equivalent partial schedules due to au-
tomorphisms. Algorithm 4 leverages the automorphisms to
partition valid_next into disjoint sets, such that for any two
vertices x,y in a set, any schedule generated by considering

x next is equivalent to one considering y next. This property
exists if and only if there is an automorphism remaining that
moves x to y. Hence, the algorithm only expands the partial
schedule by including the first vertex in each set and marks
the rest as processed (line 22). A processed vertex is never
considered to extend the partial schedule, thus pruning the
schedule space.

Theorem 3 For a given pattern, Algorithm 4 generates all
distinct schedules, and generates no two equivalent schedules.

We first prove that it generates no two equivalent schedules.
Say that it produces two equivalent schedules, S1 and S2. Let
the first vertex at which S1 and S2 differs be v1 in S1 and v2
in S2. There is necessarily an automorphism mapping S1 to
S2, as they are equivalent. When the algorithm produces the
two schedules, at the point where v1 and v2 are processed,
neither must be marked by the other. However, since there is
an automorphism mapping S1 to S2, v1 would mark v2 and
v2 would mark v1. This is a contradiction. Therefore it is
impossible for the algorithm to generate both S1 and S2.

We then prove that every valid schedule is equivalent to
one generated by the algorithm. Suppose, for the sake of
contradiction, that a schedule S is not equivalent to any gener-
ated schedule. Then there must exist a smallest i(0 < i≤ |S|)
where the subschedule formed by the first i vertices (denoted
as S[0 : i]) are not equivalent to any generated subschedule
of the same length. Note that i cannot be 0, as all empty
schedules are equivalent. The algorithm should generate a
schedule T such that T [0 : i−1] is equivalent to S[0 : i−1].
The automorphism x1 under which the two subschedules are
equivalent moves S[i] to some vertex v. If the algorithm ex-
tends T [0 : i− 1] by including v as the next vertex, T [0 : i]
is equivalent to S[0 : i], which is a contradiction. Otherwise,
we must have a schedule T ′ such that T ′[0 : i− 1] is identi-
cal to T [0 : i− 1] and an automorphism x2 to move T ′[i] to
v for v to be marked. Then the automorphism composed by
x2x−1

1 moves T ′[i] to S[i], which means T ′[0 : i] is equivalent



Algorithm 4: Schedule generation algorithm
input : P : the pattern.
output : schedules : the list of all distinct valid

schedules for P
1 begin
2 schedules← []
3 Aut← all the automorphisms of P
4 call recursive_generate([],Aut.{}, schedules)

5 Procedure recursive-generate
input :sched - a partially built schedule
input :aut - automorphisms that move v to v for

v ∈ sched
input :valid_next - list of potential next vertices
input :schedules - list of distinct schedules

6 if sched covers all vertices in the pattern then
7 add sched with partial ordering relations to

schedules
8 End this procedure call

9 if sched is empty then
10 iterate_over← P.vertices

11 else
12 iterate_over← valid_next

13 for v ∈ iterate_over do
14 if v is marked as processed then
15 continue

16 else
17 stabilized_aut← []
18 for x ∈ Aut do
19 if x(v) = v then
20 add x to stabilized_aut

21 else
22 mark x(v) as processed

23 call recursive-generate(sched+[v],
stabilized_aut,
valid_next ∪N(v)−{v},schedules)

to S[0 : i]. Therefore, every valid schedule is equivalent to one
generated by the algorithm.

5.4 Performance Model

Now that we have successfully generated all distinct sched-
ules, we need a performance model to select a high-
performance schedule. Recall that once a schedule is gen-
erated, it is naturally mapped to a nested loop structure with
restrictions as explained in Section 4. Figure 4 (b) shows the
nested loop structure with one restriction per nested for loop
for rectangle matching. The performance model needs to esti-
mate for each nested for loop 1) the number of iterations and
2) the number of iterations in which the restriction is satisfied.
For the third for loop in the example, the performance model
should estimate the number elements in N(v0)−N(v1) and
the number of times v1 < v2 holds.

The absolute numbers depend on the graph because in
general the larger the graph is the bigger those numbers are.
We therefore build a probabilistic model, assuming n vertices
in the graph and a probability p for an edge to exist. For a
for loop, given that its number of iterations is determined by
k1 set intersections and and k2 set differences, the number of
iterations is estimated as npk1+1(1− p)k2 by assuming that
edge edge is equally likely to occur in a set operation.

Note that given the estimation above, we only need to
model the probability of satisfying the restriction. However,
it is more difficult because the probability to satisfy the re-
striction in one for loop depends on the restrictions in all
the for loops above it. We therefore model the probability of
satisfying all checks up to the restriction of the considered
for loop. We omit the formulas to derive these probabilities
due to limited space, but will include them in the final version.
Finally, we sum up the cost of all for loops to estimate the
performance of the schedule.

6 Generalizing Orientation-Based Optimiza-
tion

In this section, we first explain why the orientation optimiza-
tion is important for subgraph matching and the problems
of generalizing it for arbitrary patterns. We then present
GraphZero’s method to leverage the automatically generated
restrictions for the generalization.

Orientation optimization enforces an order to discover ver-
tices by only allowing higher-degree vertices to be discov-
ered after lower-degree vertices. It works well for triangle
counting because every instance of the triangle pattern can be
represented by a DAG, starting from the lowest-degree vertex
and ending with the highest-degree vertex. The optimization
allows pruning all edges from a higher-degree vertex to a
lower-degree vertex but still guarantees that every triangle
instance can be identified.
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Figure 7: Bounded Intersection Benefits

While the optimization only reduces the number of edges to
process by a factor of 2, it substantially reduces the neighbor
set size of “hot” vertices, which appear more frequently in
patterns. Consider a star topology graph of N+1 vertices with
the center “hot” vertex connected to each of the other vertices.
With orientation optimization, its neighbor set becomes empty.
But in the original graph, the neighbor set of size N needs to
be accessed N times.

Generalizing the orientation optimization faces two prob-
lems. First, the direction of the pruned edge may interfere with
the discovery order determined by the schedule. For instance,
a restriction of the schedule may require that two mapped
vertices vi and v j should satisfy vi.ID > v j.ID, but vi’s degree
is larger than v j’s degree. In this case, the pruned edge is
necessary for the schedule to discover v j from vi. Second, the
orientation optimization must prune edges to gain benefit, but
the same graph may also be used by other applications which
may not work with the modified dataset.

GraphZero generalizes the orientation optimization on ar-
bitrary patterns without pruning any edge by implementing
two techniques. The first technique reindexes the vertices
such that the higher-degree vertices must have a smaller ID
than that of the lower-degree vertices, as shown in Figure 5.
It uses the original IDs for tie-breaking when vertices have
the same degree. Recall that when GraphZero enforces a re-
striction (vi.ID > v j.ID), it also respects the discovery order
from lower-degree vertices to higher-degree vertices by only
allowing v j to be discovered after vi. The second technique
extends the set operations to leverage the restrictions for early
exit (i.e., reducing the accessed elements in neighbor sets).
Given a restriction (vi.ID > v j.ID), when discovering v j we
are only interested in the neighbors in vi’s neighbor set whose

Graphs #Vertices #Edges Description

CiteSeer [15] 3264 4536 Publication citations
Wiki-Vote [33] 7115 100762 Wiki Editor Voting

MiCo [15] 96638 1080156 Co-authorship
DBLP [9, 10] 317080 1049866 Co-authorship
Patents [34] 3.8M 16.5M US Patents

LiveJournal [7] 4.8M 42.9M Social network
Orkut [2] 3.1M 117.2M Social network

UK-2002 [9, 10] 18.5M 261.8M Web graph
Twitter [9, 10, 29] 41.7M 1.2B Social network

Table 1: Graph Datasets

ID is less than vi.ID. We can hence use vi.ID as a bound
to perform the set operations. Because the neighbor sets are
stored as sorted lists of integers, a linear scan finds the output
vertices in sorted order, and can terminate whenever a bound
condition is met. The technique is particularly useful for large-
degree vertices as shown in Figure 7. After the reindexing,
v1, a large-degree vertex, has a small ID as 1. If there exists
a restriction involving v1, the intersection can use v1.ID as
the bound. In the example, the original intersection needs to
traverse all elements in N(v1) while the bounded intersection
only traverses three elements in total.

7 Evaluation

In this section, we evaluate GraphZero and compare it with
RADS, a state-of-the-art non-compilation based system, and
AutoMine, a state-of-the-art compilation-based system. The
highlights of the results are as follows: 1) GrapZero running
on a single machine is up to 2654X faster on a small graph
and up to 57.8X faster on two large graphs than RADS run-
ning on a 10-machine cluster. 2) For 10 different workloads
on real-world graphs, GraphZero is up to 40X faster than
AutoMine running on the same machine. 3) The compilation
time reduction opens up the potential for a just-in-time com-
pilation process with up to 197X speedup over the AutoMine
compiler. 4) The generalized orientation optimization obtains
the benefits of AutoMine’s clique-specific optimization for
arbitrary patterns yielding up to 88.6X speedup.

7.1 Methodology
7.1.1 Experimental Setup

Table 1 shows the 9 real-world graphs used in the experi-
ments. AutoMine uses 5 of them to demonstrate that it outper-
forms prior matching systems including Arabesque [50] and
RStream [53] by up to 4 orders of magnitude. We hence also
use these graphs to experiment with GraphZero. We include
DBLP and UK2002 used in the evaluation of RADS [19]. We
also include Wiki-Vote to observe scalability to large patterns
and Twitter to evaluate scalability to large graphs. We run
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Figure 8: Query Patterns
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Figure 9: Speedup versus RADS on DBLP

experiments on machines with 2 8-core Intel Xeon E5-2670
CPUs (hyperthreading disabled) and 64GB of memory. Each
machine runs Red Hat Enterprise Linux 6.9 with Linux kernel
version 2.6 and gcc version 4.4.7, which we use with opti-
mization level O3. Figure 8 shows the 13 patterns we focus
on for this evaluation, which range in size from 3 to 7 vertices.
We also perform motif counting, a popular application used to
evaluate many other subgraph matching systems [25, 37, 53],
on up to 5 vertices using aggregate schedules to efficiently
count all motifs on a particular number of vertices.

7.2 Performance Comparison

7.2.1 Individual Patterns

Since the RADS system is not released, we refer to the perfor-
mance results collected on a 10-machine cluster (each with
16 cores) reported in the paper [19]. As Figure 9 shows, on
the DBLP graph, GraphZero outperforms RADS by 1131X
on q1 and up to 2654X on q7, a complex 6-node pattern. The
worst case for GraphZero, q5, still reduces the execution time
from 269s down to 14s. On the larger graphs, the greater com-
putational resources in the cluster become a larger advantage
for RADS as seen in Figure 10. Even still, the q1 runtime
on UK-2002 is reduced from 11700s in RADS to 202s in
GraphZero.

To compare with AutoMine, we run 6 matching applica-
tions, corresponding to the non-clique target patterns in Figure
8, on the 5 smaller graphs. This directly showcases the im-
provements that multiplicity reduction offers. Notice that in
Figure 11, GraphZero outperforms AutoMine by up to 40X
for q13 and 22X for q5, running on Wiki-Vote and Patents
respectively. The best case scenario for those is expected to
be 120X and 5X if the multiplicity reduction provided linear
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Figure 10: Speedup versus RADS on Two Queries

Graph App. AutoMine GraphZero

CiteSeer
3-MC 1.6ms 0.9ms
4-MC 11.9ms 2.4ms
5-MC 537ms 38ms

Wiki-Vote
3-MC 34.5ms 9.2ms
4-MC 11.5s 1.7s
5-MC 5300s 500s

MiCo
3-MC 230ms 60ms
4-MC 45.2s 15.2s
5-MC 5.56h 1.2h

Patents
3-MC 1.9s 0.74s
4-MC 82.1s 10.2s
5-MC 117m 12.7m

LiveJournal 3-MC 13.4s 4.04s
4-MC 367m 54m

Orkut 3-MC 82.2s 23.1s
4-MC 43.7h 7.4h

Twitter 3-MC 31.3h 3.9h

Table 2: Motif Counting Performance

speedup, but GraphZero’s generalized orientation optimiza-
tion allows us to exceed that in the case of q5.

7.2.2 Motif Counting

Motif Counting finds all connected patterns of a specified
number of vertices, for our purpose between 3 and 5. Both
the complexity of each pattern and the number of patterns
increase quickly with the number of vertices, with only 2
patterns on 3 vertices, but 21 on 5 vertices. We run Motif
Counting for 3, 4, and 5 vertices on all 7 graphs with a 72
hour timeout. Table 2 shows all of the results that completed
within the time limit. We observe that GraphZero outperforms
AutoMine for all workloads with the smallest speedup of
1.75X and largest speedup of 14X. Notice that as the motif
size increases, there is a corresponding sharp increase in the
computational costs. We therefore only successfully finish
the experiments on Motif-3 and Motif-4 with LiveJournal and
Orkut and Motif-3 with Twitter. For the five smallest graphs,
where the speedup is relatively small for Motif-3 (up to 3.8X),
we see a trend of increasing speedup relative to AutoMine.
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Figure 12: Individual Pattern Compilation Time

On Motif-5, the speedup ranges from 4.7X to 14X.

7.3 Schedule Generation
7.3.1 Compilation Speed Comparison for Individual

Patterns

Considering patterns individually provides a direct compari-
son between the compilers in a pattern query scenario. Fig-
ure 12 shows that where the AutoMine compiler takes up to
121ms for q13, the GraphZero compiler takes just 0.6ms, a
197X speedup. Other 7-vertex patterns may take even longer.
Of the 853 patterns of 7 vertices, the 4 most expensive (shown
as 7_804, 7_775, 7_835 and 7_796) take over 149ms on their
own in AutoMine. GraphZero completes all of these in un-
der 30ms each, with an average speedup of over 8.7X and
a maximum of 15.1X on the 7_775 pattern (meaning index
775 in pattern discovery order). The results demonstrate that
GraphZero’s compilation technique has promise for use in a
just-in-time compiler.

7.3.2 Compilation Speed Comparison for Motifs

Combining the schedules for multiple patterns improves per-
formance through data reuse, but can be expensive at compi-
lation time. For Motif-7, each individual pattern is expensive
to compile, and the aggregate compilation for all 853 patterns
takes AutoMine over 2.5 minutes to complete. The speedup
that GraphZero achieves on individual patterns naturally ben-
efits the combined case, with a total compilation time of just
37 seconds, a 4X performance improvement. This trend will
only continue with larger patterns, and with this performance,
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Figure 13: Estimated versus Actual Performance on Patents

GraphZero has the potential to consider even larger patterns
in the future.

7.3.3 Performance Modeling

The performance model, as discussed in Section 5, estimates
the number of operations each schedule needs to perform. It
does not have to estimate real runtime, as its only purpose
is to find the highest performance schedule. The estimates
are computed in terms of number of operations performed in
a uniform random graph with 1000 vertices and an average
degree of 5. We show in Figures 13 that the estimated cost
and real performance are strongly correlated. The Coefficient
of Determination describes the strength of statistical correla-
tion, with 1 being a correlation that is perfectly defined by the
data. We observe that for Patents this value comes out as 0.94,
demonstrating the strong relative predictive capabilities of the
performance model. The selected schedule according to the
heuristic described in Section 5.4 was the best schedule on
Patents, though run-to-run variation can be up to 5%. Accord-
ing to these results, we conclude that the performance model
and heuristic successfully ensure that GraphZero selects a
high-performance schedule.

7.4 Orientation Optimization

7.4.1 Cliques

The AutoMine work generalizes the orientation optimiza-
tion to any-size cliques, but requires manually pruning all
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Figure 15: Speedup from Orientation

edges from higher-degree vertices to lower-degree vertices.
GraphZero’s schedules automatically implement the optimiza-
tion when running on the oriented graph. Figure 14 uses the
automatically generated code from AutoMine as the baseline
and shows the speedups of AutoMine with manual pruning
and GraphZero with both unoriented and oriented graphs on
q1 and q4 (triangles and size-4 cliques). We only show the
four largest graphs in which q1 matching takes at least 100ms.
The manual pruning makes AutoMine much faster than the
baseline, producing on average a 24.9X speedup for q1 and
7.7X for q1. GraphZero without orientation achieves up to
94% of its performance on MiCo q1, but falls behind in most
other cases. The oriented graph, however, allows GraphZero
to achieve up to 1.4X and up to 2X speedup over AutoMine
with Manual Pruning on q1 and q4, respectively, both with
MiCo. We point out that GraphZero with orientation and
AutoMine with manual pruning process the same amount
of graph data (i.e., the edges from lower-degree vertices to
higher-degree vertices). The extra performance benefit from
GraphZero with orientation is from better load balance be-
cause of the degree-based sorting.

GraphZero’s final performance beats default AutoMine by
an average of 30.7X on q1 and 9.4X on q4. It is especially
interesting that GraphZero achieves a 192X speedup over the
baseline for Twitter from using the orientation technique for
q1. A plausible reason is that because Twitter is the largest
graph, its high-degree vertices contribute to a greater portion
of the runtime than for other graphs.

CiteSeer Wiki-Vote MiCo Patents LiveJournal Orkut Twitter
3.3ms 10.2ms 32ms 0.88s 1.7s 2.8s 77.7s

Table 3: Graph reindexing overhead

7.4.2 General Patterns

We evaluate the speedup directly attributed to the orientation
in GraphZero for three queries – q2, q5, and q7, on which Au-
toMine cannot apply the optimization. Figure 15 demonstrates
the speedup of GraphZero with orientation over GraphZero
without orientation. The performance improves by up to 4.2X,
with q5 seeing the most benefit at an average of 2.9X and
q7 seeing the lowest benefit at an average of 2.1X. These
results are expected because the sparsity of the q2 and q5
patterns makes them more likely to include high-degree ver-
tices, whereas the dense subpatterns (q1 subgraphs) in q7
filter out many of those high-degree vertices. But the benefit
from orientation optimization is maximized on high-degree
vertices.

7.4.3 Cost Benefit Analysis

Using the oriented graph typically improves performance, but
not necessarily for free. Applying the orientation optimization
in GraphZero incurs overhead for the reindexing process. If
the processing happens offline, there is no runtime overhead
since the resultant graph is structurally equivalent to the origi-
nal. We also consider the possibility of reindexing the graph
just-in-time, as the operations have low complexity compared
to large pattern matching. Table 3 reports the reindexing over-
head for all the graphs used for evaluation. On CiteSeer, the
smallest graph with only 4536 edges, even the 3.3ms time
is large compared to the total mining time, so it is not worth
applying the optimization. However, as the graph size in-
creases, the benefit of orientation substantially outweighs the
overhead. For the largest graph Twitter, reindexing takes 77.7
seconds, but saves over 4 hours of processing for q1. while
the absolute cost to orient the graph indeed grows with the
graph, the performance benefit scales up far faster.

8 Related Work

General graph analytics systems. Many graph processing
systems, including GraphLab [35], Graph [30], Gemini [61],
Pregel [36], GridGraph [62], XStream [42], and Ligra [46],
expose a think-like-a-vertex or think-like-an-edge abstraction,
which makes it easy to express graph traversal algorithms
such as breadth first search. The distributed systems focus
on optimizing communication [45], locality [17], and load
balance [27], whereas the single-machine systems heavily
optimize I/O scheduling [57], minimize data loading [52],
or trade off accuracy for performance [28]. However, none
of these systems can be easily used to compose subgraph



matching applications, because of the gap between the low-
level abstraction and the structural patterns.

Subgraph matching systems. Single-machine subgraph
matching systems focus on optimizing the matching order
and avoiding redundant computation. Turboiso [21] uses a
spanning tree of the query graph to speed up matching, but
it enumerates numerous false positive matches and fails to
enforce high-performance matching orders. Han et al. [20]
propose adaptive matching orders to improve performance
and pruning by failing set to reduce redundancy. Sun et al. [48]
design the LIGHT system, which defers the materialization
of pattern vertices and converts the candidate set computation
into finding the minimum set cover to eliminate redundancy.
Distributed subgraph matching systems strive to optimize
pattern decomposition for matching [6, 31, 41, 44, 49], mini-
mize inter-machine communication [19, 54], or improve load
balance [8].

Almost all subgraph matching systems use the symmetry-
breaking technique proposed by Grochow and Kellis [18].
GraphZero is different in three ways. First, GraphZero com-
pletely eliminates redundancy in schedule search, which is
never explored before. Second, GraphZero can generate re-
strictions for a given high-performance schedule, while previ-
ous systems can not simultaneously enforce a schedule and
break symmetry. Third, GraphZero guarantees to enforce a
minimum number of restrictions.

Graph mining systems. Graph mining systems can also
performs subgraph matching because they can search for struc-
tural patterns in graphs. Arabesque [50] is the first distributed
graph mining system that supports high-level interfaces for
user to easily specify and mine patterns. A number of graph
mining systems are then proposed with optimized memory
consumption [11], depth-first search [14], out-of-core pro-
cessing [53, 59], or approximate mining support [25, 38]. As
pointed out in [37], these systems implement generic but
inefficient mining algorithms and incur unnecessary global
synchronizations.

AutoMine is a unique graph mining system built upon a
set-based representation. Given a list of patterns, its compiler
can automatically generate a nested loop structure of set in-
tersection and subtraction operations to identify all of them.
It substantially outperforms prior graph mining systems and
is hence used as the baseline to evaluate GraphZero. Emp-
tyHeaded [3] and GraphFlow [26] are similar systems, but
they focus on optimizing set intersection operations and can-
not handle missing edges in patterns. For example, they may
consider the two-edge path in a triangle as an instance of the
wedge pattern, which is unacceptable in many applications.
In contrary, GraphZero, like AutoMine, supports arbitrary pat-
terns and completely eliminates redundancy in both schedule
search and code execution.

Optimizing compilers for graph processing. Many com-
pilers for graph analytics perform sophisticated optimizations
once the graph algorithm is clearly expressed using the pro-

vided domain-specific language. GraphIt [58] enables user
to describe the graph algorithm in the algorithm language
and how the algorithm should be optimized in the schedul-
ing language. This separation allows the user to focus on
algorithm design and offload the optimization tasks to the
compiler. Green-Marl [23], SociaLite [43], and Abelian [16]
can automatically parallelize and optimize graph algorithms
but the optimization space they can explore is significantly
smaller compared with GraphIt. Pai and Pingali [40] pro-
pose a set of compiler optimization techniques to efficiently
map graph algorithms to the GPU architecture. None of these
compilers can generate efficient graph mining algorithms, let
alone remove redundancy, which is one of GraphZero’s most
important contributions.

Orientation optimization. The orientation optimization
was first proposed by Latapy [32] for triangle counting. Shun
et al. [47] and Voegele et al. [51] extend it for parallel trian-
gle counting. Hu et al. [24] applies it to triangle counting on
GPUs. AutoMine is the first work that generalizes the opti-
mization for any-size clique patterns. To our knowledge, no
prior work could apply the optimization to arbitrary patterns,
which is made possible in GraphZero.

9 Conclusion

We proposed an optimizing compiler, GraphZero, that sys-
tematically addresses the limitations of existing compilation-
based subgraph matching systems. GraphZero breaks symme-
try in patterns, which causes serious performance and compi-
lation overhead problems in other systems, through automati-
cally generated and enforced restrictions. It leverages the gen-
erated restrictions and generalizes an important optimization
for subgraph matching to arbitrary patterns based on a rein-
dexing technique. The experiments showed that GraphZero
substantially outperformed both RADS and AutoMine for
multiple patterns on real-world graphs.
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