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Abstract. In this announcement, we report results on the existence of families of large-amplitude internal

hydrodynamic bores. These are traveling front solutions of the full two-phase incompressible Euler equation

in two dimensions. The fluids are bounded above and below by flat horizontal walls and acted upon by gravity.

We obtain continuous curves of solutions to this system that bifurcate from the trivial solution where the

interface is flat. Following these families to the their extreme, the internal interface either overturns, comes

into contact with the upper wall, or develops a highly degenerate “double stagnation” point.

Our construction is made possible by a new abstract machinery for global continuation of monotone

front-type solutions to elliptic equations posed on infinite cylinders. This theory is quite robust and, in

particular, can treat fully nonlinear equations as well as quasilinear problems with transmission boundary

conditions.

Résumé. Dans cette note, nous présentons des résultats d’existence d’ondes de Mascaret de grandes ampli-

tudes. Cela correspond à des ondes progressives pour l’équation d’Euler incompressible à deux phases en

deux dimensions d’espace. Les fluides sont délimités au-dessus et au-dessous par des parois horizontales et

sont soumis à leurs gravités. Nous obtenons des courbes continues de solutions à ce système qui bifurquent

de la solution triviale où l’interface est plate. A la limite, l’interface interne se renverse, entre en contact avec

la paroi supérieure, ou développe un point de «double stagnation» très dégénéré.

Notre construction est rendue possible grâce à une nouvelle méthode abstraite pour la continuation

globale des solutions de type front monotone aux équations elliptiques, posées sur des cylindres infinis. Cette

théorie est assez robuste et, en particulier, peut traiter des équations entièrement non linéaires ainsi que des

problèmes quasi-linéaires avec des conditions aux limites de transmission.
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1. Introduction

The world’s oceans are stratified in the sense that the fluid density increases with depth. While

small in relative terms, this density variation can dramatically affect the dynamics and, in par-

ticular, allows for the formation of large scale internal waves that remain coherent over long dis-

tances. In many settings there are two regions with nearly constant density separated by a thin

layer, called the pycnocline, where density gradients are large. This permits the system to be mod-

eled as two constant density fluids with different densities, divided by a sharp interface along

which waves can propagate. Unlike surface waves in a homogeneous density fluid1, these inter-

nal waves can take the form of fronts or (smooth) hydrodynamical bores. These are steady solu-

tions where the internal interface is asymptotically flat both upstream and downstream of the

wave but with different heights.

Let us restrict attention to the simplest configuration where the two fluid layers are irrotational

and bounded from above and below by rigid flat boundaries as shown in Figure 1. There is an

extensive applied literature on this problem, mostly centered around linear or weakly nonlinear

model equations which are valid only for small amplitudes [18], as well as a growing body of

rigorous results. For bores in the full nonlinear equations, the first rigorous existence results

date back to the work of Amick and Turner [3], confirming formal predictions based on the

weakly nonlinear extended Korteweg–de Vries equation. Alternative proofs have subsequently

been given using different methods by Mielke [28], Makarenko [25], and the authors [7].

In this announcement, we report the first construction of genuinely large-amplitude bores.

One can no longer expect to base such an analysis on a well-chosen model equation, and instead

we rely on a new abstract global bifurcation theory tailored to front-type solutions of elliptic

equations in cylindrical domains [8].

1.1. Formulation and existence theory

The problem can be mathematically formulated as follows. The unknown interface S = {(x, y) :

y = η(x)} separates two open fluid regions D1 and D2 as shown in Figure 1. Here the lower region

D1 has constant density ρ1 > 0, and is bounded below by a rigid barrier at height y = −λ. The

upper region D2 is likewise bounded above by a rigid barrier at y = 1−λ and has constant density

0 < ρ2 < ρ1. Note that the total height of the channel is normalized to 1.

Assuming incompressibility, the velocity field in each fluid is given by (∂yψ,−∂xψ) for some

stream function ψ satisfying

∆ψ= 0 in D1 ∪D2 (1a)

together with the so-called kinematic boundary conditions

ψ= 0 on S ,

ψ=λ on y =−λ,

ψ=λ−1 on y = 1−λ,

(1b)

and the dynamic boundary condition

1

2

q
ρ|∇ψ|

2
y
+

JρK
F 2

y =
JρK

2
on S , (1c)

1The nonexistence of irrotational bores in constant density water was first established by Rayleigh [32]; see also

Lamb [24, Chapter VIII, part 187]. In the rotational setting, it is a consequence of the analysis in [41, Section 3.2]
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are O(1), and in particular in the absence of surface tension forces [30, 39]. Rigorous verification

of these results remains an outstanding open problem, but significant progress has been made

by Constantin, Varvaruca, and Strauss [12]. They used global bifurcation theory to construct a

continuous curve of solutions, which in principle are allowed to overturn. Based on subsequent

numerics [16, 17] it is conjectured that these curves indeed contain overhanging waves, but a

rigorous proof has so far been elusive. We mention related work on periodic internal gravity

waves [26, 37] and internal gravity-capillary waves [2].

Theorem 2(a) is tantalizingly close to a proof of overturning. The only other possibility is a

highly degenerate type of singularity that has not been observed in numerics [15]. Moreover,

there is hope that such singularities could be ruled out through a completely local analysis. By

comparison, the global bifurcation results in [2, 12, 37] allow for a wide range of possibilities. The

price we pay for this apparent advantage is twofold. First, we work with a reformulation of (1) that

degenerates as an overturning wave is approached. This allows us to detect overturning more

easily, but prevents us from continuing further to obtain truly overhanging waves. Second, we

construct bores rather than periodic or solitary waves. This introduces serious difficulties related

to the unboundedness of the fluid domain as well as the lack of symmetry for the solutions. Once

these considerable obstacles have been overcome, however, we find ourselves with more concrete

information about the solutions than would be available in the periodic or solitary wave cases.

2. Global bifurcation of monotone fronts

2.1. Motivation from second-order ODEs

As mentioned above, Theorem 1 is obtained through a much more general set of results on the

global bifurcation of monotone fronts in elliptic PDE. Before presenting those ideas, let us briefly

discuss the setting of second-order ODEs where it is easier to construct concrete examples.

In fact, an equation of this type is frequently used as a simplified model for the internal

wave system (1). Under the assumption that the waves are long (in some appropriate sense)

but not necessarily small amplitude, Miyata [29] and Choi–Camassa [10, 11] independently

derived a time-dependent PDE related to the Serre–Green–Naghdi system. Referred to as the

MCC equation, this model reduces to the extended Korteweg–de Vries equation mentioned in

the introduction in the small-amplitude limit, but it is far more accurate for waves of moderate

and even large amplitude. With our current notation, the MCC equation reads

ζ2
x =

3ζ2

2F 2

(λ+ζ)(1−λ−ζ+F 2)ρ2 − (1−λ−ζ)(λ+ζ−F 2)ρ1

(1−λ)2(λ+ζ)ρ2 +λ2(1−λ−ζ)ρ1
(4)

in integrated form, where here we write ζ rather than η for the deflection of the interface to

emphasize the distinction with the full system (1). In differentiated form, (4) can be written as

ζ̈+Vz (ζ,λ) = 0 (5)

for an explicit V =V (z,λ) that is analytic in its arguments and where dot denotes derivative in x.

Here we are viewing the densities ρ1,ρ2 as fixed and the Froude number F as given by (2), so that

the upstream depth λ of the lower fluid layer is the only parameter. A bore now corresponds to a

heteroclinic orbit of (5) connecting two distinct equilibria.

For general equations of the form (5) and a given pair of equilibria, it is relatively straightfor-

ward to formulate general conditions which guarantee the existence of heteroclinic orbits. For

instance we have the following.

Proposition 3. Consider the second-order ODE (5). Suppose that for a fixed parameter λ0, there

are two distinct rest points Z−(λ0) and Z+(λ0) that are conjugate in that

V (Z−(λ0),λ0) =V (Z+(λ0),λ0). (6)
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6 R. M. Chen, S. Walsh and M. H. Wheeler

Assume also that the potential satisfies a heteroclinic nondegeneracy condition

V (z,λ0) <V (Z±(λ0),λ0) for z between Z+(λ0) and Z−(λ0), (7)

and spectral nondegeneracy condition

Vzz (Z−(λ0),λ0), Vzz (Z+(λ0),λ0) < 0. (8)

Then there exists a solution (ζ0,λ0) to (5) with ζ0(x) → Z±(λ0) as x →±∞.

Stated simply, the problem of finding heteroclinic solutions to the ODE (5) amounts to verify-

ing the existence of conjugate rest points of V ( · ,λ0) satisfying a type of heteroclinic nondegen-

eracy condition (7) and a spectral nondegeneracy condition (8). We can moreover consider the

case when there is a smooth family of conjugate rest points Z+(λ) and Z−(λ) that satisfy (6)–(8)

for λ in a neighborhood of λ0. It is not hard to see that there will then exist a local curve Kloc of

heteroclinic orbits bifurcating from (ζ0,λ0). Clearly, one can continue this curve at least as far as

the above hypotheses are satisfied along it.

Applying Proposition 3 to the MCC model (4), we find that for any λ ∈ (0,1) there is always a

unique smooth heteroclinic orbit connecting the rest points Z−(λ) = 0 and Z+(λ) = λ+, where

here λ+ is given by (2). Recall that for the full problem, numerical evidence [15] suggests that

some bores are instead overturning. Such waves would violate the long-wave assumption made

in the derivation of (4), and so this discrepancy is to be expected.

2.2. Monotone fronts solutions to elliptic PDE

Keeping in mind the above discussion, consider now the following (fully) nonlinear PDE:










A(y,u,∇u,D2u,λ) = 0 in Ω,

B(y,u,∇u,λ) = 0 on Γ1,

u = 0 on Γ0,

(9)

where λ ∈ R is a parameter, and the domain Ω= R×Ω
′ is an infinite cylinder with bounded base

Ω
′ ⊂ R

d−1. For simplicity, assume that Ω is connected with a C 2+α boundary ∂Ω = Γ0 ∪Γ1, for a

fixed α ∈ (0,1) and such that Γ0∩Γ1 =;. Points in Ω will be denoted (x, y), where x ∈R and y ∈Ω
′.

We assume that A and B are real analytic in all of their arguments and that (9) is uniformly

elliptic with a uniformly oblique boundary condition on Γ1. Through the Dubreil-Jacotin trans-

form, the internal waves problem (1) can be rewritten roughly in this form with upstream layer

depth ratio as the parameter. In fact, the dynamic condition (1c) will lead to a nonlinear trans-

mission problem, but this can be handled through a small modification.

Define a front to be a solution (u,λ) of (9) that enjoys the classical regularity u ∈C 2+α
b

(Ω) and

has distinct point-wise limits as x →−∞ and x →+∞; thinking of water waves, we call these the

upstream and downstream states, respectively. From the structure of the equation, one can prove

that they are in fact x-independent solutions of (9). We call a front monotone provided ∂x u ≤ 0

(or ∂x u ≥ 0) in Ω, and strictly monotone if ∂x u < 0 (or ∂x u > 0) in Ω∪Γ1.

Fronts are the PDE analogues of heteroclinic solutions to the ODE (5) with the (unbounded)

axial direction identified with the evolution variable. We may then ask: (i) under what conditions

does (9) support (monotone) fronts, and (ii) do these fronts persist for non-perturbative param-

eter values. The first of these questions has been pursued by many authors. The most common

approaches include monotonicity methods [5, 40] and center manifold reduction [22, 27], which

has been applied to our system (1) in [3, 7, 28].

Our main abstract result addresses the second problem, namely the global continuation of a

given curve Cloc of perturbative strictly monotone fronts. In brief, it gives conditions analogous

to those of Proposition 3 under which the local curve Cloc can be extended to a larger curve C of
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strictly monotone fronts. These hypotheses are discussed in the next subsection. In Section 2.4,

we give a sharp set of alternatives that characterize the limiting behavior as one follows the

resulting global curve to its extreme. The statement of the global bifurcation theorem is found

in Section 2.5.

2.3. Hypotheses

In what follows, we suppose that there exists a local curve Cloc of strictly monotone front

solutions to (9). To simplify the notation, it is useful to write (9) as the abstract operator equation

F (u,λ) = 0.

One can easily verify that F is real analytic as a mapping C 2+α
b

(Ω)×R→Cα
b

(Ω)×C 1+α
b

(Γ1).

First, we note that the system (9) is invariant under translation in x, and so ∂x u lies in

kerFu(u,λ) by an elliptic regularity argument. For simplicity, we assume that along the local

curve the kernel is exactly one dimensional:

kerFu(u,λ) = span{∂x u} for all (u,λ) ∈Cloc. (H1)

The next hypothesis corresponds to the spectral non-degeneracy condition (8) in the ODE

setting. For a monotone front (u,λ), the Fréchet derivative Fu(u,λ) is a linear elliptic operator

whose coefficients have well-defined limits as x →±∞. Restricting the domain to x-independent

functions, this gives elliptic operators on Ω
′ that we call the transversal linearized operators at

x =+∞ and x =−∞. One can show that these will have principal eigenvalues that we will denote

by σ±
0 (u,λ). Recall from elliptic theory, the principal eigenvalue is real and lies strictly to the right

of the rest of the spectrum.

In analogy to the assumption (8) in Proposition 3, we focus on the situation where

σ−
0 (u,λ), σ+

0 (u,λ) < 0 for all (u,λ) ∈Cloc. (H2)

Observe that (H2) is equivalent to the essential spectrum of the limiting linearized operators

being properly contained in left complex half-plane C−.

The final hypothesis is made with an eye towards applications. Usually, one obtains Cloc

through a preliminary local bifurcation argument. A common scenario on unbounded domains

is that Cloc originates from an x-independent solution to (9) that is singular in the sense that the

linearized operator there fails to be Fredholm. With that in mind, suppose that Cloc admits the

C 0 parameterization

Cloc = {(u(ε),λ(ε)) : 0 < ε< ε0} ⊂F
−1(0),

where

(u(ε),λ(ε)) → (u0,λ0) as ε→ 0+, and σ+
0 (u0,λ0) = 0 or σ−

0 (u0,λ0) = 0. (H4)

We label this condition (H4) rather than (H3) for consistency with [8].

2.4. Alternatives

Taking for granted that Cloc can be extended, the next question is what we might encounter at

the extreme of the resulting global curve. To form intuition for the PDE case, let us consider in

tandem the simpler task of continuing the curve Kloc of heteroclinic solutions to the ODE (5).

An obvious possibility is that the heteroclinic orbits persist for all parameter values (hence λ is

unbounded along the curve) or that arbitrarily large fronts exist (that is, ζ is unbounded in norm).

This alternative has a straightforward translation to the PDE setting: we say that a sequence of

monotone fronts {(un ,λn)} experiences blowup provided that

‖un‖C 2+α(Ω) +|λn | −→∞. (A1)
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persists for λ = λ∗, but the spectral condition (8) is violated at Z−. The Jacobian matrix for the

corresponding planar system will then cease to be invertible downstream, and the orbit no longer

decays exponentially as x →−∞. For λ>λ∗, the heteroclinic orbit degenerates into a homoclinic

orbit to ζ= 1, while ζ= 0 becomes a center.

The analogous scenario in the PDE setting should naturally involve the spectrum of the

linearized problem at infinity. In particular, we say a sequence of strictly monotone fronts

{(un ,λn)} experiences spectral degeneracy if

σ−
0 (un ,λn) → 0 or σ+

0 (un ,λn) → 0. (A3)

Recalling (H2), we see that spectral degeneracy indicates resonance: the essential spectrum of

the linearized problem upstream or downstream moves through the origin. Were this to occur,

F will lose semi-Fredholmness and its zero-set may not be relatively compact. In connection

to traveling waves in reaction-diffusion equations, (A3) corresponds to the onset of “essential

instability” [33, 34].

2.5. Statement of abstract results

Having developed the necessary intuition, we are now prepared to present the main global

bifurcation theorem.

Theorem 4 (Global bifurcation). Consider the elliptic PDE (9). Let Cloc be a curve of strictly

monotone front solutions which bifurcates from a singular point as in (H4) and satisfies the kernel

(H1) and spectral (H2) conditions. Then Cloc is contained in a global C 0 curve

C := {(u(s),λ(s)) : 0 < s <∞} ⊂F
−1(0)

of strictly monotone front solutions with the properties enumerated below.

(a) (Alternatives) For any sequence sn → +∞, along some subsequence, (u(sn),λ(sn)), the

blowup (A1), heteroclinic degeneracy (A2), or spectral degeneracy (A3) alternative will

occur.

(b) (Analyticity) At each point, C admits a local real-analytic reparameterization.

(c) For all s sufficiently large, (u(s),λ(s)) 6∈Cloc. In particular, C is not a closed loop.

It bears repeating that the above theorem applies to a broad class of problems as it makes

no structural hypotheses on the system beyond analyticity of (A,B) and ellipticity. There is a

substantive body of work on fronts for semi-linear PDEs arising in reaction-diffusion equations

(see [40] and the references therein). To the best of our knowledge, however, Theorem 4 is the first

systematic treatment that applies even to fully nonlinear problems. For example, in addition to

the water wave applications discussed above, the general theory is used in a forthcoming paper

to construct large nonlinear elastostatic fronts [9].

Theorem 4 is also distinctive in that it avoids making assumptions on the compactness

properties of F beyond the local curve. Classical global bifurcation theory makes comparatively

stringent requirements that are appropriate for elliptic PDEs set on bounded domains but not the

present problem. For instance, Buffoni–Toland [6] ask that the zero-set F
−1(0) be locally compact

and Fu(u,λ) be Fredholm index 0 for (u,λ) ∈ F
−1(0). The seminal work of Rabinowitz [31]

assumes that F is locally proper and Fredholm index 0 throughout its domain (though it need

not be analytic).

The basic philosophy inherent to our approach is that, on unbounded domains, it is more

natural to think of the failure of these compactness properties as an alternative, and then seek to

classify it in terms of qualitative features of the solutions. It is truly remarkable that the simple set

C. R. Mathématique, 0000, 1, no 0, 000-000



10 R. M. Chen, S. Walsh and M. H. Wheeler

of possibilities for the ODE (5), when properly interpreted, exhaustively categorize the limiting

behavior for solution curves to the vastly more complicated PDE (9).

Let us conclude by briefly outlining how Theorem 4 is used to construct large-amplitude bores.

Local curves Cloc of small-amplitude monotone front solutions to the internal wave problem

(1) were obtained in [3, 7, 25, 28]. In [7] this was done using a novel center manifold reduction

method that is particularly well suited to verifying that the hypotheses (H1), (H2), and (H4) hold.

Due to its variational structure, (1) possess several conserved quantities: the mass flux, energy,

and flow force through any vertical cross-section of the fluid domain must be the same. The

upstream and downstream states must therefore be conjugate in that the values of these three

quantities will agree. For (1), this requirement is so restrictive that, in fact, at every λ, there is a

unique downstream state that is conjugate to the fixed upstream state. This insight drastically

simplifies the task of computing the spectrum of the transversal linearized operators at x =±∞,

and indeed, we are able to rule out spectral degeneracy (A3) entirely. It also disqualifies the

heteroclinic degeneracy alternative, as the three limiting states in (A2) would be distinct and

pairwise conjugate, which is impossible. Thus blowup (A1) occurs as we follow the global bore

curve. Through elliptic regularity theory, we obtain uniform a priori bounds that show this must

coincide with the stagnation limit (3).
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