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Abstract. In this announcement, we report results on the existence of families of large-amplitude internal
hydrodynamic bores. These are traveling front solutions of the full two-phase incompressible Euler equation
in two dimensions. The fluids are bounded above and below by flat horizontal walls and acted upon by gravity.
We obtain continuous curves of solutions to this system that bifurcate from the trivial solution where the
interface is flat. Following these families to the their extreme, the internal interface either overturns, comes
into contact with the upper wall, or develops a highly degenerate “double stagnation” point.

Our construction is made possible by a new abstract machinery for global continuation of monotone
front-type solutions to elliptic equations posed on infinite cylinders. This theory is quite robust and, in
particular, can treat fully nonlinear equations as well as quasilinear problems with transmission boundary
conditions.

Résumé. Dans cette note, nous présentons des résultats d’existence d’'ondes de Mascaret de grandes ampli-
tudes. Cela correspond a des ondes progressives pour I'équation d’Euler incompressible & deux phases en
deux dimensions d’espace. Les fluides sont délimités au-dessus et au-dessous par des parois horizontales et
sont soumis a leurs gravités. Nous obtenons des courbes continues de solutions a ce systéme qui bifurquent
de la solution triviale ou1 I'interface est plate. A la limite, I'interface interne se renverse, entre en contact avec
la paroi supérieure, ou développe un point de «double stagnation» trés dégénéré.

Notre construction est rendue possible grace a une nouvelle méthode abstraite pour la continuation
globale des solutions de type front monotone aux équations elliptiques, posées sur des cylindres infinis. Cette
théorie est assez robuste et, en particulier, peut traiter des équations entierement non linéaires ainsi que des
problémes quasi-linéaires avec des conditions aux limites de transmission.
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1. Introduction

The world’s oceans are stratified in the sense that the fluid density increases with depth. While
small in relative terms, this density variation can dramatically affect the dynamics and, in par-
ticular, allows for the formation of large scale internal waves that remain coherent over long dis-
tances. In many settings there are two regions with nearly constant density separated by a thin
layer, called the pycnocline, where density gradients are large. This permits the system to be mod-
eled as two constant density fluids with different densities, divided by a sharp interface along
which waves can propagate. Unlike surface waves in a homogeneous density fluid!, these inter-
nal waves can take the form of fronts or (smooth) hydrodynamical bores. These are steady solu-
tions where the internal interface is asymptotically flat both upstream and downstream of the
wave but with different heights.

Let us restrict attention to the simplest configuration where the two fluid layers are irrotational
and bounded from above and below by rigid flat boundaries as shown in Figure 1. There is an
extensive applied literature on this problem, mostly centered around linear or weakly nonlinear
model equations which are valid only for small amplitudes [18], as well as a growing body of
rigorous results. For bores in the full nonlinear equations, the first rigorous existence results
date back to the work of Amick and Turner [3], confirming formal predictions based on the
weakly nonlinear extended Korteweg—de Vries equation. Alternative proofs have subsequently
been given using different methods by Mielke [28], Makarenko [25], and the authors [7].

In this announcement, we report the first construction of genuinely large-amplitude bores.
One can no longer expect to base such an analysis on a well-chosen model equation, and instead
we rely on a new abstract global bifurcation theory tailored to front-type solutions of elliptic
equations in cylindrical domains [8].

1.1. Formulation and existence theory

The problem can be mathematically formulated as follows. The unknown interface . = {(x, y) :
¥y =n(x)} separates two open fluid regions 2, and 2, as shown in Figure 1. Here the lower region
2, has constant density p; > 0, and is bounded below by a rigid barrier at height y = —A. The
upper region 2, is likewise bounded above by a rigid barrier at y = 1 — A and has constant density
0 < p2 < p1- Note that the total height of the channel is normalized to 1.

Assuming incompressibility, the velocity field in each fluid is given by (3,v, —d,y) for some
stream function vy satisfying

Ay=0 in2,UP, (1a)
together with the so-called kinematic boundary conditions
=0 on.#,
w=2A ony=-1, (1b)

y=21-1 ony=1-A4,
and the dynamic boundary condition

[e] . _ el

?yz 2 on.#, (1c)

1
5 [o1vyr?] +

1The nonexistence of irrotational bores in constant density water was first established by Rayleigh [32]; see also
Lamb [24, Chapter VIII, part 187]. In the rotational setting, it is a consequence of the analysis in [41, Section 3.2]

C. R. Mathématique, 0000, 1, n° 0, 000-000



R. M. Chen, S. Walsh and M. H. Wheeler 3

D3
upstream 1 y’) density po downstream

p) 7 |
density p1 A+1(x) i Ay

77

Figure 1. A bore in a two layer fluid.

where F > 0 is a dimensionless parameter called the Froude number and [-] = (-)2 — (-); denotes
the jump of a quantity across the interface .. These are supplemented with the asymptotic
conditions

Vy —(0,-1), n—0 as x — —oo, (1d)
n—As=A#0 as x — +oo (1e)

as shown in Figure 1.
We are interested in classical solutions to (1) which enjoy the regularity

YeCH ' @INCGT @) @10,  neC®),

for a fixed a € (0, 1), and where the subscript ‘b’ indicates uniform boundedness. As is well known
in the literature on internal waves, this situation is only possible provided the Froude number F
and constant A, are given explicitly by

e VPV P
- T = — + = T = —
VP1+ /D2 VP1+ /D2
see for instance [23, Appendix A]. Note that we are working in units where the height of the
channel is the length scale, and the upstream (relative) velocity is the velocity scale.
Our first theorem is the following global bifurcation result [8].

)

Theorem 1 (Large-amplitudebores). Fixa € (0,1) and densities0 < p, < py. There exist C* curves
€+ ={W(s),n(s),A(s)) : £s € (0,00)}

of classical solutions to the internal wave problem (1)-(2) with the following properties.
(a) (Strict monotonicity) Each solution on €~ is a strictly monotone bore:
+0,n(s) <0 onR,
0w ($)>0 InD1(s)UDL(s)UL(s),
Oy (s) <0 inDy(s) UDa(s).

(b) (Stagnation limit) Following €*, we encounter waves that are arbitrarily close to having a
horizontal stagnation point on the internal interface:

lim supd,y;(s) =0, fori=1or2. 3)

S—’iOO(Sp(s)

(c) (Laminar origin) Both €~ and €™ emanate from the same laminar solution in that
ns)—0, Vy(s)—(0,-1), A(s)—= At ass—0=+.

An overview of the proof of Theorem 1 is given at the end of Section 2.5.
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Figure 2. Limiting configurations of monotone bores.

1.2. Overhanging water waves

The next result characterizes the limiting form of the profile along €*.

Theorem 2 (Limiting interface).

(a) (Overturning or singularity) In the limit along €™, either the interface overturns in that
limsup (10,7 ($)ll eo®) = 00,
§——00

or it becomes singular in that we can extract a translated subsequence
n(s) —n* eLip®) inCy foralle€ (0,1)

such that {y < n*(x)} simultaneously fails to satisfy both an interior sphere and exterior
sphere condition at a single point on its boundary.
(b) (Overturning or contact) Following €%, either the interface overturns or it comes into
contact with the upper wall:
limsupA(s) =1 or limsup [10xn(8) |l Lo ) = o0.
§—00 §—00

We conjecture that the singularity alternative in (a) can be eliminated with further analysis,
and hence that overturning occurs. This would be consistent with numerical work of Dias and
Vanden-Broeck [15], which suggests that the interfaces along €~ overturn while those along €*
come into contact with the upper wall as shown in Figure 2 to form a so-called “gravity current”.
In the latter case, von Kdrman [21] asserted that the interface must meet the wall at exactly a 60°
angle. This was based on a formal calculation in the vein of the classical work of Stokes [36] on
extreme surface water waves. The computations in [15] corroborate von Karmén'’s conjecture, but
rigorous verification remains an important open question.

The conclusion of Theorem 2 should be compared with earlier work on overturning or over-
hanging water waves. These are waves for which the interface . ceases to be a graph. Since we
are speaking of traveling wave solutions, this configuration persists for all time, a quite strange
phenomenon that has sparked intense mathematical interest.

There are three main physical effects to be considered: gravity, surface tension forces along
the interface, and vorticity, either continuously distributed throughout the fluid or concentrated
into a internal vortex sheet as in (1). When only gravity is present, overturning waves cannot
exist [4, 35, 38]. When only surface tension forces or capillarity is present, on the other hand,
there is an exact family of overhanging periodic solutions due to Crapper [14]. These waves
have subsequently been perturbed by Akers, Ambrose, and Wright [1] and Cérdoba, Enciso, and
Grubic [13] to obtain overhanging gravity-capillary waves where the (dimensionless) gravity is
small. Very recently, another family of explicit overhanging waves has been discovered [16, 19, 20]
where only vorticity is present.

In the above existence results, gravity is either neglected or treated as a small parameter.
However, numerical work has shown that overhanging waves can also exist when gravity effects
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are O(1), and in particular in the absence of surface tension forces [30, 39]. Rigorous verification
of these results remains an outstanding open problem, but significant progress has been made
by Constantin, Varvaruca, and Strauss [12]. They used global bifurcation theory to construct a
continuous curve of solutions, which in principle are allowed to overturn. Based on subsequent
numerics [16, 17] it is conjectured that these curves indeed contain overhanging waves, but a
rigorous proof has so far been elusive. We mention related work on periodic internal gravity
waves [26,37] and internal gravity-capillary waves [2].

Theorem 2(a) is tantalizingly close to a proof of overturning. The only other possibility is a
highly degenerate type of singularity that has not been observed in numerics [15]. Moreover,
there is hope that such singularities could be ruled out through a completely local analysis. By
comparison, the global bifurcation results in [2,12,37] allow for a wide range of possibilities. The
price we pay for this apparent advantage is twofold. First, we work with a reformulation of (1) that
degenerates as an overturning wave is approached. This allows us to detect overturning more
easily, but prevents us from continuing further to obtain truly overhanging waves. Second, we
construct bores rather than periodic or solitary waves. This introduces serious difficulties related
to the unboundedness of the fluid domain as well as the lack of symmetry for the solutions. Once
these considerable obstacles have been overcome, however, we find ourselves with more concrete
information about the solutions than would be available in the periodic or solitary wave cases.

2. Global bifurcation of monotone fronts
2.1. Motivation from second-order ODEs

As mentioned above, Theorem 1 is obtained through a much more general set of results on the
global bifurcation of monotone fronts in elliptic PDE. Before presenting those ideas, let us briefly
discuss the setting of second-order ODEs where it is easier to construct concrete examples.

In fact, an equation of this type is frequently used as a simplified model for the internal
wave system (1). Under the assumption that the waves are long (in some appropriate sense)
but not necessarily small amplitude, Miyata [29] and Choi-Camassa [10, 11] independently
derived a time-dependent PDE related to the Serre-Green-Naghdi system. Referred to as the
MCC equation, this model reduces to the extended Korteweg—de Vries equation mentioned in
the introduction in the small-amplitude limit, but it is far more accurate for waves of moderate
and even large amplitude. With our current notation, the MCC equation reads

(2_gf}A+(x1—A—(+F%pz—u—i—ch+E—F%p1
¥ 2F? A-)2A+Dp2+A2(1-A-0)p

in integrated form, where here we write { rather than n for the deflection of the interface to

emphasize the distinction with the full system (1). In differentiated form, (4) can be written as

(+ VN =0 (5)

for an explicit V = V(z, 1) that is analytic in its arguments and where dot denotes derivative in x.
Here we are viewing the densities p1, p2 as fixed and the Froude number F as given by (2), so that
the upstream depth A of the lower fluid layer is the only parameter. A bore now corresponds to a
heteroclinic orbit of (5) connecting two distinct equilibria.

For general equations of the form (5) and a given pair of equilibria, it is relatively straightfor-
ward to formulate general conditions which guarantee the existence of heteroclinic orbits. For
instance we have the following.

4

Proposition 3. Consider the second-order ODE (5). Suppose that for a fixed parameter Ay, there
are two distinct rest points Z_(Ao) and Z, (Ay) that are conjugate in that

V(Z-(A0), Ao) = V(Z+(A0), Ao). (6)
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6 R. M. Chen, S. Walsh and M. H. Wheeler

Assume also that the potential satisfies a heteroclinic nondegeneracy condition
V(z, o) < V(Z+(Ag), o) for z between Z. (L) and Z_(Ay), )]
and spectral nondegeneracy condition
Vza(Z- (M), Ao), Vzz(Z+(Ao), Ao) <O. 8
Then there exists a solution ({o, Ag) to (5) with {y(x) — Zi+(Ag) as x — +oo.

Stated simply, the problem of finding heteroclinic solutions to the ODE (5) amounts to verify-
ing the existence of conjugate rest points of V' (-, A¢) satisfying a type of heteroclinic nondegen-
eracy condition (7) and a spectral nondegeneracy condition (8). We can moreover consider the
case when there is a smooth family of conjugate rest points Z, (1) and Z_(A) that satisfy (6)-(8)
for 1 in a neighborhood of Ay. It is not hard to see that there will then exist a local curve %y of
heteroclinic orbits bifurcating from ({¢, 1¢). Clearly, one can continue this curve at least as far as
the above hypotheses are satisfied along it.

Applying Proposition 3 to the MCC model (4), we find that for any A € (0,1) there is always a
unique smooth heteroclinic orbit connecting the rest points Z_(1) = 0 and Z; (1) = 1, where
here A, is given by (2). Recall that for the full problem, numerical evidence [15] suggests that
some bores are instead overturning. Such waves would violate the long-wave assumption made
in the derivation of (4), and so this discrepancy is to be expected.

2.2. Monotone fronts solutions to elliptic PDE

Keeping in mind the above discussion, consider now the following (fully) nonlinear PDE:
A, u, Vi, D*u,A)=0  inQ,
B(y,u,Vu,1) =0 only, 9)
u=0 only,

where A € R is a parameter, and the domain Q = R x Q' is an infinite cylinder with bounded base
Q' < R, For simplicity, assume that Q) is connected with a C>*® boundary 0Q = I'yuT, for a
fixed a € (0,1) and such that TyNT'; = @. Points in Q will be denoted (x, y), where xe Rand y € Q'.

We assume that A and B are real analytic in all of their arguments and that (9) is uniformly
elliptic with a uniformly oblique boundary condition on I';. Through the Dubreil-Jacotin trans-
form, the internal waves problem (1) can be rewritten roughly in this form with upstream layer
depth ratio as the parameter. In fact, the dynamic condition (1c) will lead to a nonlinear trans-
mission problem, but this can be handled through a small modification.

Define a front to be a solution (¢, 1) of (9) that enjoys the classical regularity u € Cﬁ’r“(ﬁ) and
has distinct point-wise limits as x — —oo and x — +o0; thinking of water waves, we call these the
upstream and downstream states, respectively. From the structure of the equation, one can prove
that they are in fact x-independent solutions of (9). We call a front monotone provided d,u < 0
(or 0xu =0) in Q, and strictly monotoneif 0xu <0 (ord,u>0)in QuUT];.

Fronts are the PDE analogues of heteroclinic solutions to the ODE (5) with the (unbounded)
axial direction identified with the evolution variable. We may then ask: (i) under what conditions
does (9) support (monotone) fronts, and (ii) do these fronts persist for non-perturbative param-
eter values. The first of these questions has been pursued by many authors. The most common
approaches include monotonicity methods [5, 40] and center manifold reduction [22, 27], which
has been applied to our system (1) in (3,7, 28].

Our main abstract result addresses the second problem, namely the global continuation of a
given curve %), of perturbative strictly monotone fronts. In brief, it gives conditions analogous
to those of Proposition 3 under which the local curve %6, can be extended to a larger curve € of
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strictly monotone fronts. These hypotheses are discussed in the next subsection. In Section 2.4,
we give a sharp set of alternatives that characterize the limiting behavior as one follows the
resulting global curve to its extreme. The statement of the global bifurcation theorem is found
in Section 2.5.

2.3. Hypotheses

In what follows, we suppose that there exists a local curve %6j,. of strictly monotone front
solutions to (9). To simplify the notation, it is useful to write (9) as the abstract operator equation

F(u,A) =0.

One can easily verify that & is real analytic as a mapping C2*%(Q) x R — C(Q) x C}*%(I'}).

First, we note that the system (9) is invariant under translation in x, and so d0,u lies in
ker %, (u, ) by an elliptic regularity argument. For simplicity, we assume that along the local
curve the kernel is exactly one dimensional:

ker &, (u, 1) = span{0u} for all (u, A) € Goc. (HD)

The next hypothesis corresponds to the spectral non-degeneracy condition (8) in the ODE
setting. For a monotone front (u, 1), the Fréchet derivative %, (u, 1) is a linear elliptic operator
whose coefficients have well-defined limits as x — +oo. Restricting the domain to x-independent
functions, this gives elliptic operators on Q' that we call the fransversal linearized operators at
X = +oo and x = —oo. One can show that these will have principal eigenvalues that we will denote
by 03’ (u, A). Recall from elliptic theory, the principal eigenvalue is real and lies strictly to the right
of the rest of the spectrum.

In analogy to the assumption (8) in Proposition 3, we focus on the situation where

oo W, A), o5 (w,A) <0 forall (u,A) € Gloc. (H2)

Observe that (H2) is equivalent to the essential spectrum of the limiting linearized operators
being properly contained in left complex half-plane C_.

The final hypothesis is made with an eye towards applications. Usually, one obtains %jo¢
through a preliminary local bifurcation argument. A common scenario on unbounded domains
is that %), originates from an x-independent solution to (9) that is singular in the sense that the
linearized operator there fails to be Fredholm. With that in mind, suppose that 6. admits the
C" parameterization

Gioc = {(u(e), M) :0< e <o} < F(0),
where
(u(e), A(€)) — (ug,Ag) ase— 0+, and og(uo,/lo) =0or o, (up,Ag) =0. (H4)

We label this condition (H4) rather than (H3) for consistency with [8].

2.4. Alternatives

Taking for granted that %j,. can be extended, the next question is what we might encounter at
the extreme of the resulting global curve. To form intuition for the PDE case, let us consider in
tandem the simpler task of continuing the curve %], of heteroclinic solutions to the ODE (5).

An obvious possibility is that the heteroclinic orbits persist for all parameter values (hence A is
unbounded along the curve) or that arbitrarily large fronts exist (that is, { is unbounded in norm).
This alternative has a straightforward translation to the PDE setting: we say that a sequence of
monotone fronts {(u,, 1,)} experiences blowup provided that

lttnll c2va gy + [An] — oo (A1)

C. R. Mathématique, 0000, 1, n° 0, 000-000
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Figure 3. An ODE of the form (5) that experiences a heteroclinic degeneracy (A2).
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Figure 4. An ODE of the form (5) that experiences a spectral degeneracy (A3).

Note that in applications, it is often necessary to formulate the theory for (u, 1) lying in an open
subset of C2t%(QQ) x R rather than the whole space. For example, our analysis of internal waves
supposes the absence of horizontal stagnation, which corresponds to a pointwise inequality for
a certain derivative of u. In that case, the definition of blowup will include the possibility that the
sequence limits to the boundary of this set.

Another alternative for the ODE (5) is that the heteroclinic nondegeneracy condition (7) is
violated in the limit. It could then happen that the heteroclinic orbit between the equilibria
Z_(A) and Z, (A1) breaks down and a new heteroclinics is born that connects one of them to
an intermediate rest point as in Figure 3. For the PDE (9), the upstream and downstream states
play the role of the equilibria in the original heteroclinic orbit, and the intermediate equilibrium
would correspond to a distinct x-independent solution.

To formulate this more precisely, observe that by composing with a sequence of translations in
the x-direction, we can shift the incipient intermediate state upstream or downstream so that the
solutions locally — but not uniformly — converge to a new front. With that in mind, we say that
a sequence of strictly monotone fronts {(u,, 1,)} experiences a heteroclinic degeneracy if there is
a sequence x, — +oo so that the three limits

lim lim u,(x+xy,, ), hm llrn Up(x,-), lim lim u,(x,-) existand are distinct. (A2)
X—Fo0 n—00 —00 X— n—00 X——00

One can further assume that (u, (- + x5, ), A,) converges in Clzoc(ﬁ) to a monotone front (uy, As).

Finally, it can happen that as we continue .#j,, the spectral non-degeneracy condition (8)
fails. Figure 4 shows how this might occur in a specific example. For A < 1*, there is a monotone
increasing heteroclinic orbit connecting the constant solutions Z_ = 0 and Z; = 1. This orbit

C. R. Mathématique, 0000, 1, n° 0, 000-000
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persists for A = A*, but the spectral condition (8) is violated at Z_. The Jacobian matrix for the
corresponding planar system will then cease to be invertible downstream, and the orbit no longer
decays exponentially as x — —oo. For 1 > 1%, the heteroclinic orbit degenerates into a homoclinic
orbit to { = 1, while { = 0 becomes a center.

The analogous scenario in the PDE setting should naturally involve the spectrum of the
linearized problem at infinity. In particular, we say a sequence of strictly monotone fronts
{(un, An)} experiences spectral degeneracy if

0y Wn,Ap) =0  or  oy(un,An)—0. (A3)

Recalling (H2), we see that spectral degeneracy indicates resonance: the essential spectrum of
the linearized problem upstream or downstream moves through the origin. Were this to occur,
& will lose semi-Fredholmness and its zero-set may not be relatively compact. In connection
to traveling waves in reaction-diffusion equations, (A3) corresponds to the onset of “essential
instability” [33, 34].

2.5. Statement of abstract results

Having developed the necessary intuition, we are now prepared to present the main global
bifurcation theorem.

Theorem 4 (Global bifurcation). Consider the elliptic PDE (9). Let 6joc be a curve of strictly
monotone front solutions which bifurcates from a singular point as in (H4) and satisfies the kernel
(H1) and spectral (H2) conditions. Then %o is contained in a global C° curve

€ = {(u(s),A(s)):0< s < oot < F10)

of strictly monotone front solutions with the properties enumerated below.

(a) (Alternatives) For any sequence s, — +oo, along some subsequence, (u(sy),A(sn)), the
blowup (Al), heteroclinic degeneracy (A2), or spectral degeneracy (A3) alternative will
occur.

(b) (Analyticity) At each point, € admits a local real-analytic reparameterization.

(c) For alls sufficiently large, (u(s), A(S)) € Gioc- In particular, € is not a closed loop.

It bears repeating that the above theorem applies to a broad class of problems as it makes
no structural hypotheses on the system beyond analyticity of (A, B) and ellipticity. There is a
substantive body of work on fronts for semi-linear PDEs arising in reaction-diffusion equations
(see [40] and the references therein). To the best of our knowledge, however, Theorem 4 is the first
systematic treatment that applies even to fully nonlinear problems. For example, in addition to
the water wave applications discussed above, the general theory is used in a forthcoming paper
to construct large nonlinear elastostatic fronts [9].

Theorem 4 is also distinctive in that it avoids making assumptions on the compactness
properties of & beyond the local curve. Classical global bifurcation theory makes comparatively
stringent requirements that are appropriate for elliptic PDEs set on bounded domains but not the
present problem. For instance, Buffoni-Toland [6] ask that the zero-set & ~1(0) be locally compact
and %, (u, 1) be Fredholm index 0 for (1,1) € &~ 1(0). The seminal work of Rabinowitz [31]
assumes that & is locally proper and Fredholm index 0 throughout its domain (though it need
not be analytic).

The basic philosophy inherent to our approach is that, on unbounded domains, it is more
natural to think of the failure of these compactness properties as an alternative, and then seek to
classify it in terms of qualitative features of the solutions. It is truly remarkable that the simple set

C. R. Mathématique, 0000, 1, n° 0, 000-000



10 R. M. Chen, S. Walsh and M. H. Wheeler

of possibilities for the ODE (5), when properly interpreted, exhaustively categorize the limiting
behavior for solution curves to the vastly more complicated PDE (9).

Let us conclude by briefly outlining how Theorem 4 is used to construct large-amplitude bores.
Local curves %o of small-amplitude monotone front solutions to the internal wave problem
(1) were obtained in [3, 7, 25, 28]. In [7] this was done using a novel center manifold reduction
method that is particularly well suited to verifying that the hypotheses (H1), (H2), and (H4) hold.
Due to its variational structure, (1) possess several conserved quantities: the mass flux, energy,
and flow force through any vertical cross-section of the fluid domain must be the same. The
upstream and downstream states must therefore be conjugate in that the values of these three
quantities will agree. For (1), this requirement is so restrictive that, in fact, at every A, there is a
unique downstream state that is conjugate to the fixed upstream state. This insight drastically
simplifies the task of computing the spectrum of the transversal linearized operators at x = oo,
and indeed, we are able to rule out spectral degeneracy (A3) entirely. It also disqualifies the
heteroclinic degeneracy alternative, as the three limiting states in (A2) would be distinct and
pairwise conjugate, which is impossible. Thus blowup (A1) occurs as we follow the global bore
curve. Through elliptic regularity theory, we obtain uniform a priori bounds that show this must
coincide with the stagnation limit (3).
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