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Abstract. We consider anti-plane shear deformations of an incompressible elastic solid whose
reference configuration is an infinite cylinder with a cross section that is unbounded in one direction.
For a class of generalized neo-Hookean strain energy densities and live body forces, we construct
unbounded curves of front-type solutions using global bifurcation theory. Some of these curves
contain solutions with deformations of arbitrarily large magnitude.

1. Introduction

Consider an elastic solid whose undisturbed state is an infinite cylinder Ω × R where the co-
ordinates are chosen so that the cross-section Ω := R × (−π

2 ,
π
2 ) lies in the xy-plane and the

generator parallels the z-axis. For simplicity, suppose that the lateral boundaries at {y = ±π/2}
are held fixed. Anti-plane shear occurs when the solid is displaced out of the xy-plane and the
deformation is independent of z. This leads to considerable analytical simplification since the full
three-dimensional field equations can be reduced to a two-dimensional scalar elastostatic model.
Anti-plane shear is studied in connection to contact mechanics [31], rectilinear steady flow of in-
compressible non-Newtonian fluids [9], structures with cracks [26], and phase transitions in solids
[30], among many other areas. From a purely mathematical perspective, this model is interesting
as it is known to support a rich variety of nontrivial equilibria [21]. The existence of such solutions
on bounded domains has been established by several authors [31, 34] through variational methods.

The present work concerns large anti-plane shear fronts, by which we mean static equilibria where
the displacement has distinct limits as x → −∞ and x → +∞. While investigations of fronts are
ubiquitous in the literature of reaction-diffusion equations and mathematical biology, for instance,
they are largely unexamined in the context of elastostatics. Recently, the existence of local curves
of fronts lying in a neighborhood of the undisturbed state was proved via center manifold reduction
techniques [3]. We now use analytic global bifurcation theory to extend these families into the
non-perturbative regime. Ultimately, this furnishes equilibria exhibiting deformation gradients of
arbitrary magnitude, sometimes referred to as “solutions in the large” [14].

Global bifurcation has proven to be successful in treating a host of elasticity problems posed on
bounded domains [15, 18, 19, 17, 16, 14]. In order to study fronts, though, one must naturally take
Ω to be unbounded in the x-direction. Classical bifurcation theory is ill-adapted to this setting. For
example, standard hypotheses for degree theoretic global bifurcation are that the nonlinear operator
is Fredholm index 0 and locally proper [29]. However, the linearized anti-plane shear equation at
the undisturbed state in fact fails to be Fredholm. Conditions guaranteeing local properness for
quasilinear equations set on the whole space have been obtained by several authors [28, 11, 12].
However, these impose hypotheses on the limiting problems at infinity that can be difficult to verify
in practice, and their functional analytic framework does not allow for fronts. With that in mind,
the authors developed a new, general global bifurcation theoretic approach [2, 4] specifically to
analyze (fully nonlinear) PDEs set on non-compact domains without imposing global compactness
assumptions. This machinery was then used to construct large-amplitude solitary water waves and
hydrodynamics bores. In part, our objective here is to demonstrate that these results have the
potential to address questions of physical relevance in nonlinear elasticity.
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A static equilibrium then corresponds to a solution of the quasilinear PDE
{

∇ ·
(

W ′(|∇u|2)∇u
)

− b(u, λ) = 0 in Ω,

u = 0 on ∂Ω.
(1.5)

Here the homogeneous Dirichlet boundary condition simply means that the cylinder is clamped
along its boundary. Condition (1.1) ensures that the PDE (1.5) is elliptic. The case where (1.4)
fails is quite interesting, particularly as it relates crack formation (see [21, Section 6] and the
references therein), but is beyond the scope of the present paper.

1.2. Structural assumptions. We are motivated by the example of a quadratic neo-Hookean
material subjected to simple harmonic forcing:

W(q) = q + w1q
2, b(κ, λ) = −(1 + λ)κ, (1.6)

where here the constant w1 > 0 and the parameter value λ = 0 is “critical” in a sense which will
be made precise later. Our results, however, apply to a much wider class of materials and forcings
which satisfy the following structural conditions.

First we make the symmetry assumption that

b( · , λ) is odd, (1.7)

and hence that (1.5) is invariant under the reflection u 7→ −u. This greatly simplifies the analysis
as we are then able to restrict attention to solutions u which are odd in the unbounded variable x.

Next, we assume that both W and b are analytic in their arguments. This allows us to use
analytic global bifurcation theory, and also to make an expansion near the reference configuration
at λ = 0. We require this expansion to have the form

W(q) = q + w1q
2 +O(|q|3),

b(κ, λ) = −(1 + λ)κ + b2κ
3 +O((|κ|+ |λ|1/2)4),

(1.8)

where the constants w1 and b2 satisfy the strict inequality

b2 + 2w1 > 0. (1.9)

This allows us to use the existence theory in [3, Section 3] for small solutions with 0 < λ� 1. An
expanded version of that result is given below in Section 4.

Finally, we require several global sign conditions. For the strain energy density, we impose the
“enhanced” ellipticity condition

3W ′′(q) + 2W ′′′(q)q =
(

W ′(q) + 2W ′′(q)q
)′
> 0 for q > 0, (1.10)

which implies (1.4) since W ′(0) = 1 > 0 by (1.8). For the body force, we suppose that










for all λ ≥ 0, b( · , λ) is a strictly decreasing convex function on (0,∞),

for all κ > 0, b(κ, · ) is strictly decreasing and unbounded on [0,∞),

bκ(0, λ) < −1 for λ > 0.

(1.11)

The first two of these conditions encode the physically intuitive assumption that the magnitude
of the body forcing increases as either the displacement or loading parameter is increased. To-
gether with the previous hypotheses, the inequalities (1.10) and (1.11) guarantee that the set of
x-independent solutions of (1.5) has a particularly simple structure, and (1.10) is further used to
establish an important a priori bound. The conditions in (1.11) only concern λ ≥ 0 because, as we
will see, the solutions we construct will all satisfy this inequality. Finally, let us reiterate that the
motivational choice of strain energy and body force (1.6) satisfy all of the above requirements.
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1.3. Main results. Our main result is the following.

Theorem 1.1 (Global bifurcation of anti-plane shear fronts). Suppose that the body force and
strain energy satisfy the structural conditions (1.7)–(1.11). There exists a continuous curve C of
solutions to (1.5) admitting the C0 parameterization

C = {(u(s), λ(s)) : 0 < s <∞} ⊂ C3+α
b (Ω)× (0,∞)

with (u(s), λ(s)) → (0, 0) as s→ 0+, and satisfying the following.

(a) (Symmetry and monotonicity) Each (u(s), λ(s)) ∈ C is a strictly increasing monotone front
with

∂xu(s) > 0 in Ω,

∂yu(s) < 0 for x, y > 0.
(1.12)

Moreover, u(s) is odd in x and even in y.
(b) (Unboundedness) In the limit s→ ∞ we have blowup in that

‖∂yu(s)‖C0 , λ(s) −→ ∞ as s→ ∞. (1.13)

(c) (Analyticity) The curve C is locally real-analytic.

Figure 1 shows a sketch of a front satisfying the symmetry and monotonicity conditions in (a).

Remark 1.2. Since (1.5) is invariant under reflections in x, one can reflect each of the solutions in
C to obtain a curve of strictly decreasing monotone fronts with the inequalities in (1.12) reversed.

Remark 1.3. Compared to other global bifurcation results in nonlinear elasticity, the definitiveness
in (1.13) is quite unusual. More typical is that one has several alternatives, such as reconnection
to the reference configuration. On the other hand, our results are limited to the case of anti-plane
shear.

Remark 1.4. One can relax many of these hypotheses at the cost of additional ambiguity regarding
the limiting behavior along C . For example, the assumption that b(κ, · ) is unbounded on [0,∞)
is used only in Lemma 6.5. Without it, we would still have that λ(s) → ∞, but not necessarily the
blowup of ∂yu(s). On the other hand, if (1.10) does not hold globally, then it may happen that the
system loses ellipticity in the limit. This scenario is of particular interest to crack formation but
unfortunately is difficult to treat through our methodology. In particular, it could coincide with
any of the alternatives in Section 6.1. We also rely on (1.10) in our study of the conjugate flow
problem in Section 3. If it does not hold, then there may exist multiple x-independent solutions
of (1.5) that are conjugate in the sense of (3.3). Were this to occur, then we must allow for the
possibility that a heteroclinic degeneracy develops in the limit along C ; see Theorem 6.1(A2).

Under the opposite sign conditions on the coefficients in (1.9), there exist spatially localized anti-
plane shear equilibria for which u(x, · ) vanishes in the limits x → ±∞. Curves of small solutions
of this form were also obtained in [3]. In a forthcoming paper, Hogancamp [20] continues these
families globally by means of the general theory in [2]. Unlike (1.13), he finds that the solutions
broaden while remaining uniformly bounded in Ck+α, for all k ≥ 0.

Remark 1.5. Observe that while (1.13) implies the existence of a monotone front solution for all
λ > 0, it does not give uniqueness. Indeed, there may be many turning points along the global
bifurcation curve. There can also be secondary bifurcations resulting in branches of solutions not
captured by Theorem 1.1. On the other hand, C is maximal among all locally analytic curves
of increasing monotone front solutions containing the reference state (u, λ) = (0, 0). Moreover,
the curve comprises all such solutions in a neighborhood of (u, λ) = (0, 0) in the sense that every
sufficiently small front is an element of C up to translation and reflection.
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Remark 1.6. Here we are taking the regularity of u to be slightly better than the classical one. This
choice simplifies the maximum principle arguments used to establish (1.12). In fact, since W and

b are real analytic, a simple bootstrapping argument using elliptic theory shows that u is Ck+α
b for

any k ≥ 0 as soon as it is C2
b.

The rest of the paper is organized as follows. In Section 2, we define the function spaces suited
for the study of front-type solutions and the limiting linearized operators. In Section 3, we consider
the so-called conjugate flow problem for the system. This is crucial to the global continuation
argument as it will allow us to characterize (and then rule out) the loss of compactness. Next,
in Section 4, we briefly recapitulate the small-amplitude existence result from [3, Section 3] and
prove some additional facts. Section 5 is then devoted to establishing that certain monotonicity
properties are preserved along closed sets of solutions extending these local curves. Finally, these
components are assembled in Section 6 to give the proof of Theorem 1.1.

2. Preliminaries

2.1. Function spaces. We begin by setting down a functional analytic framework. First, define

X :=
{

u ∈ C3+α(Ω) : u|∂Ω = 0
}

, Y := C1+α(Ω).

Note that the elements of X and Y are only locally Hölder continuous; we denote the corresponding
space of uniformly Hölder continuous functions by Xb and Yb, respectively. We also will append a
subscript of “o” to indicate the subspace of functions that are odd in x and even in y. Finally we
denote X ′ be the subspace of X consisting of functions independent of x, and likewise Y ′. The
PDE (1.5) can then be recast as the abstract operator equation

F (u, λ) = 0,

where F is a real-analytic mapping Xb × R → Yb and Xb,o × R → Yb,o.
To study fronts, we follow the strategy of [4] and conduct most of the work in the spaces

X∞ :=
{

u ∈ Xb,o : lim
x→±∞

∂βu exists for all |β| ≤ 3
}

,

Y∞ :=
{

f ∈ Yb,o : lim
x→±∞

∂βf exists for all |β| ≤ 1
}

,
(2.1)

with all the above limits are uniform in y. Intuitively, X∞ is the largest closed subspace of Xb

containing all front-type solutions with the desired symmetry properties (see, [4, Lemma 2.3]).
Since the solutions we construct will all have λ > 0, it is convenient to introduce the open set

U∞ := X∞ × (0,∞). (2.2)

One can easily confirm that F : U∞ → Y∞ is real analytic.

2.2. Limiting operators and their principal eigenvalues. If (u, λ) ∈ X∞ × R is a front-type
solution of (1.5), then the Fréchet derivative Fu(u, λ) is a linear elliptic operator whose coefficients
have well-defined point-wise limits as x → ±∞. Taking those limits and restricting the domain
to x-independent functions yields the so-called transversal linearized operators at x = −∞ and
x = +∞:

L
′
±(u, λ) : X

′ → Y
′ v 7→ lim

x→±∞
Fu(u, λ)v.

In our setting, these will be Sturm–Liouville-type ODE operators posed on the interval Ω′ :=
(−π

2 ,
π
2 ), and hence they possess principal eigenvalues that we denote by σ±0 (u, λ). Recall that the

principal eigenvalues bound the remainder of the spectrum from above and are characterized by
the corresponding eigenfunction being strictly positive on Ω′. The problem here is self-adjoint, so
the entirety of the spectrum lies on the real axis. It is also worth noting that, if u is odd in x, then
the structure of the equation (1.5) implies that σ−0 (u, λ) = σ+0 (u, λ).
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3. Conjugate flows

If (u, λ) is a front, then its limiting states limx→±∞ u(x, · ) are themselves x-independent solutions
of the PDE (1.5). This leads us to study the ODE

{

∂y
(

W ′(U2
y )Uy

)

− b(U, λ) = 0 in Ω′ = (−π
2 ,

π
2 ),

U = 0 on ∂Ω′ =
{

y = ±π
2

}

.
(3.1)

Given two solutions to the above ODE, a natural question is whether they can be connected by a
front solution of the full anti-plane shear system. In this section we give a partial answer to this
question, which will be needed at several key points in the global bifurcation theoretic argument
leading to Theorem 1.1.

Our main tool is a conserved quantity of the full system. Naturally, the anti-plane shear model
(1.5) carries a variational structure in that it is formally given by

δ

∫

Ω
L(u,∇u, λ) dx dy = 0 (3.2)

with suitable boundary conditions on the admissible variations, and where the Lagrangian density

L(u,∇u, λ) := 1

2
W(|∇u|2) + B(u, λ).

Here,

B(κ, λ) :=
∫

κ

0
b(κ̃, λ) dκ̃

is the primitive of b. Note that (1.7) then implies that B( · , λ) is even.
Now, for (u, λ) ∈ Xb × R, define the functional

H (u, λ;x) :=

∫ π

2

−π

2

(

L(u,∇u, λ)− Lξ(u,∇u, λ)ux
)

dy

=

∫ π

2

−π

2

(

1

2
W(|∇u|2)− u2xW ′(|∇u|2) + B(u, λ)

)

dy.

By [4, Lemma 3.1], H (u, λ;x) is independent of x provided (u, λ) is a solution to (1.5). This can
of course also be verified by a direct calculation, and should be understood as a consequence of the
variational structure (3.2) and the equation’s translation invariance in x. Following [4, Definition
3.3], we call two distinct functions U± ∈ C2(Ω′) conjugate flows if

F (U−, λ) = F (U+, λ) = 0, and H (U+, λ) = H (U−, λ). (3.3)

That is, (U±, λ) both solve (3.1) and are on the same level set of the conserved quantity H .
Naturally, being conjugate flows is a necessary condition for U+ and U− to represent the limiting
states of a front solution to (1.5).

Proposition 3.1 (Conjugate flows). Assume that (1.7), (1.10), and (1.11) hold.

(a) If λ > 0, there are exactly three solutions of the ODE (3.1) which do not change sign:
the unique positive solution U =: U+(λ), its reflection U−(λ) := −U+(λ), and the trivial
solution U ≡ 0.

(b) U+(λ) and U−(λ) are conjugate in the sense of (3.3), but neither of them is conjugate to
U ≡ 0.

(c) If λ = 0, then the unique solution of (3.1) is the trivial solution U ≡ 0.

In (a) there will also exist many other solutions which change sign, but these do not play a major
role in our analysis. Before giving the proof of this result, let us state and prove a corollary for the
original problem of finding monotone front solutions to the PDE (1.5).
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Corollary 3.2 (Limiting states of monotone symmetric fronts). Suppose that (u, λ) ∈ X∞× [0,∞)
is a front solution of (1.5) which is strictly monotone in that ∂xu > 0 in Ω. Then necessarily λ > 0
and lim

x→±∞
u(x, · ) = U±(λ).

Proof. Since u is odd in x, u(0, y) = 0 for |y| ≤ π
2 . The monotonicity of u in x therefore implies

that its limiting states U± := limx→±∞ u(x, · ) satisfy U− < 0 < U+ for |y| < π
2 . In particular,

U± are distinct and hence conjugate by the above discussion. If λ = 0, then Proposition 3.1(c)
forces U− = U+ = 0, which is a contradiction. If λ > 0, then Proposition 3.1(a)–(b) imply that
U± = U±(λ) as desired. �

Proof of Proposition 3.1. First we rewrite the interior equation of (3.1) as a planar system






Uy = V,

Vy =
b(U, λ)

W ′(V 2) + 2W ′′(V 2)V 2
.

(3.4)

Here the denominator is strictly positive thanks to (1.4), which follows in turn from the stronger
condition (1.10). Fix λ > 0. It is easy to confirm from (1.8) and (1.11) that the origin is the only
rest point for this system, and the quantity

H(U, V, λ) := W ′(V 2)V 2 − 1

2
W(V 2)− B(U, λ) (3.5)

is conserved. Note that B ≤ 0 and from (1.4) we have

2qW ′(q)−W(q) =

∫ q

0

(

W ′(s) + 2W ′′(s)s
)

ds > 0 for q > 0.

Hence H(U, V, λ) ≥ 0 and thus all orbits are periodic and centered on (U, V ) = (0, 0).
Consider the level set

H(U, V, λ) = c,

for a fixed c > 0. It will intersect the V -axis at (0,±V0(c)) for some unique V0(c) > 0. To find a
positive solution to the boundary value problem (3.1), we look for a value of c such that the orbit
through (0, V0(c)) arrives at (0,−V0(c)) in time π = |∂Ω′|.

It is convenient to switch to polar coordinates for the dependent variables:

(U, V ) 7−→ (R,Θ), U = R cosΘ, V = R sinΘ.

This transforms the planar system (3.4) to














Ry =
1

2
R sin (2Θ) +

b(R cosΘ, λ) sinΘ

f(R,Θ)
,

Θy = − sin2 (Θ) +
b(R cosΘ, λ) cosΘ

Rf(R,Θ)
,

(3.6)

where, thanks to (1.4),

f(R,Θ) := W ′(R2 sin2Θ) + 2W ′′(R2 sin2Θ)R2 sin2Θ > 0.

From (3.6) and the symmetry of the equation, we compute that the time required for the orbit to
travel from (0, V0(c)) to (0,−V0(c)) is

P (c, λ) := 2

∫ 0

π

2

dθ

Θy(r(θ, c, λ) sin θ)

= 2

∫ π

2

0

r(θ, c, λ)f(r(θ, c, λ), θ)

r(θ, c, λ)f(r(θ, c, λ), θ) sin2 θ − b(r(θ, c, λ) cos θ, λ) cos θ
dθ,

(3.7)
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where r = r(θ, c, λ) > 0 is defined to be the unique positive solution to

H(r cos θ, r sin θ, λ) = c. (3.8)

We will often suppress the arguments of r in the interest of readability.
Differentiating (3.8) in c, we see that

1 =
rc
r

(

q(W ′(q) + 2qW ′′(q))− b(κ, λ)κ
)

∣

∣

∣

q=r2 sin2 θ
κ=r cos θ

and hence rc > 0 by (1.4) and (1.11). Likewise, differentiating the period map P gives

Pc(c, λ) = 2

∫ π

2

0

∂c[Θy(r sin θ)]

Θ2
y

dθ.

A direct computation shows that

∂c[Θy(r sin θ)] = − rc cos θ

r2f2(r, θ)

(

f(r, θ)(b− κbκ) + 2bq(3W ′′ + 2qW ′′′)
)

∣

∣

∣

q=r2 sin2 θ
κ=r cos θ

> 0

for θ ∈ (0, π2 ) by (1.10) and (1.11). Therefore, we conclude that

Pc(c, λ) > 0 for λ > 0, (3.9)

which confirms that P is strictly increasing in c.
On the other hand, sending c↘ 0 in (3.7) we have for each λ > 0,

lim
c↘0

P (c, λ) = lim
c↘0

2

∫ π

2

0

f(r, θ)

f(r, θ) sin2 θ − b(r cos θ,λ) cos2 θ
r cos θ

dθ

= 2

∫ π

2

0

dθ

sin2 θ − bκ(0, λ) cos2 θ
=

π
√

−bκ(0, λ)
< π,

where we used (1.11) in the last inequality. A solution to (3.1) will correspond to the energy levels
c with

P (c, λ) =
π

k
, k = 1, 2, . . . . (3.10)

Simply by the implicit function theorem there is, for each k ≥ 1, a curve c = ck(λ) in the (c, λ)-plane
satisfying (3.10). Since Pc > 0, it follows that

c1(λ) < c2(λ) < · · · .
We are only interested in the first of these, which gives rise to the unique positive solution U+(λ)
of (3.1) corresponding to P (c, λ) = π. Repeating the above calculation at λ = 0 we find that the
period map is still monotone in c but since bκ(0, 0) = −1,

lim
c↘0

P (c, 0) = π.

Thus, in this case the only solution to (3.1) is the trivial one U = 0. Since bκλ(0, 0) = 1 by (1.8),
this result extends to −1 � λ < 0.

It remains to show (b). That U+ and U− are conjugate is clear from the symmetry of the
equations, and by the above arguments, the only other solution of (3.1) which does not change
sign is the trivial one U = U±(0) ≡ 0. Since H (0, λ) = 0, it therefore suffices to show that

H (U±(λ), λ) 6= 0 for λ > 0. To that end, denoting U̇± := ∂λU±, we compute that

d

dλ
H (U±(λ), λ) =

d

dλ

∫ π

2

−π

2

(

1

2
W(U2

±y) + B(U±, λ)

)

dy

=

∫ π

2

−π

2

(

W ′(U2
±y)U±yU̇±y + b(U±, λ)U̇± + Bλ(U±, λ)

)

dy
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=

∫ π

2

−π

2

Bλ(U±, λ) dy,

where the last line follows from integrating by parts and the equation (3.1) satisfied by U , and we
have suppressed some λ dependencies for readability. By the sign condition (1.11), it then follows
that λ 7→ H (U±(λ), λ) is strictly decreasing. This completes the proof. �

Remark 3.3. The above proof gives us additional information about U+(λ). In particular, it is even
and strictly decreasing for y > 0.

4. Small-amplitude theory

In this section, we recall the existence theory for anti-plane shear fronts in a neighborhood of
the undisturbed state. This was first obtained in [3, Section 3], but we will establish some further
properties in preparation for the global continuation. Without loss of generality we only consider
increasing fronts, as the analogous local curve of decreasing fronts can be obtained by simply
reflecting in x (cf. Remark 1.2).

Theorem 4.1 (Small-amplitude fronts). Let conditions (1.7)–(1.11) hold. There exists ε0 > 0 and
a local C0 curve

Cloc =
{

(uε, ε2) : 0 < ε < ε0
}

⊂ X∞ × (0,∞)

of solutions to (1.5) with the following properties.

(a) (Asymptotics) The solutions on Cloc have the leading-order form

uε(x, y) = a1ε tanh

(

εx√
2

)

cos (y) +O(ε2) in C3+α
b (Ω), (4.1)

with a1 = 2/
√

3(b2 + 2w1). In particular, Cloc bifurcates from the trivial solution (u, λ) =
(0, 0).

(b) (Uniqueness) In a neighborhood of (0, 0), all front solutions of (1.5) are, up to reflection
and translation in x, contained in Cloc.

(c) (Kernel) The kernel of the linearized problem at (uε, ε2) is generated by ∂xu
ε.

Proof. The existence of Cloc, as well as the asymptotic information in (4.1), is proved in [3, Theorem
3.1] using a center manifold reduction approach. This theory constructs a sufficiently smooth
coordinate map2

Ψ: R3 → C3+α(Ω1), where Ω1 := (−1, 1)× Ω′,

with the following properties. First, any solution along Cloc can be recovered from its trace v :=
u( · , 0) via

u(x, y) = v(x)ϕ0(y) + Ψ(v(x), v′(x), ε)(0, y), (4.2)

where here

ϕ0(y) := cos y

is an element of the kernel of L ′(0, 0). Second, the trace v of any sufficiently small solution solves
the second order ODE

v′′ = f(v, v′, ε), where f(A,B, ε) :=
d2

dx2

∣

∣

∣

x=0
Ψ(A,B, ε)(x, 0). (4.3)

By its construction and because of the symmetries of the problem, Ψ satisfies

Ψ(0, 0, ε) = 0 for all ε, Ψ(−A,B, ε) = −Ψ(A,B, ε),

ΨA(0, 0, 0) = ΨB(0, 0, 0) = 0, Ψ(A,−B, ε)(−x, y) = Ψ(A,B, ε)(x, y).
(4.4)

2The function Ψ in [3] in fact takes values in a certain weighted Hölder space on Ω, but for our present purposes
it is sufficient to restrict its output to the truncated domain Ω1.
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for X � −1. Since V → V ε
+ > 0 as X → +∞, there must be some X0 where VX(X0) =W (X0) = 0.

ShiftingX0 to the origin, reversibility implies that (V (X),W (X)) = (V (−X),−W (−X)). But then
(V,W ) is a homoclinic orbit with (V,W ) → (V ε

−, 0) as |X| → ∞, which is a contradiction.
Combining this uniqueness with the symmetry of (1.5) under reflections in x, y, and u, we

immediately obtain that solutions along Cloc are odd in x and even in y. Thus Cloc ⊂ X∞× (0,∞).
To prove (c) we adopt the idea of [3, Theorem 1.6] which, in our setting, says that u̇ is in the

kernel of the linearized operator at (u, λ) only if v̇ := u̇( · , 0) solves the linearized reduced equation

v̇′′ = ∇(A,B)f(v, v
′, λ) · (v̇, v̇′).

Equivalently, the corresponding rescaled quantities (V̇, Ẇ ) solve a nonautonomous planar system
(

V̇X
ẆX

)

=

(

0 1
−1 + 3a−2

1 V 2 +RV (V,W, ε) RW (V,W, ε)

)(

V̇

Ẇ

)

=: M(X)

(

V̇

Ẇ

)

.

Taking limits, we find that

lim
X→±∞

M(X) =

(

0 1
−1 + 3a−2

1 V 2
± +RV (V±, 0, ε) RW (V±, 0, ε)

)

=

(

0 1
2 +O(ε) O(ε)

)

,

and hence that M(X) is strictly hyperbolic for |X| � 1 with one negative and one positive
eigenvalue. A standard dynamical systems argument implies that there cannot be two linearly
independent solutions of the reduced linearized problem that are uniformly bounded. We may then
conclude that the kernel of the linearized operator is indeed generated by ∂xu

ε. �

Let us next consider the principal eigenvalues for the transversal linearized problems at infinity
along Cloc.

Lemma 4.2 (Local spectral non-degeneracy). In the setting of Theorem 4.1, every solution (u, λ) ∈
Cloc with 0 < λ� 1 is spectrally non-degenerate in that

σ−0 (u, λ) = σ+0 (u, λ) < 0. (4.8)

Proof. Note that σ±0 (0, 0) = 0. Therefore, we must show that the principal eigenvalues perturb to
the left as λ moves away from 0 along Cloc. As observed before, we need only consider σ+0 as the
spectrum at x = −∞ is the same.

For simplicity we will drop the ± and further write the limiting transversal linearized operator
as

L
′(u, λ)ψ = ∂y

((

W ′(U2
y ) + 2U2

yW ′′(U2
y )
)

∂yψ
)

− bκ(U, λ)ψ,

where recall that (U, λ) solves the problem

F
′(U, λ) := ∂y

(

W ′(U2
y )Uy

)

− b(U, λ) = 0. (4.9)

Clearly F ′
U (U, λ) = L ′(u, λ). The proof of Theorem 4.1 (or indeed the arguments in [3]) shows

that the solution U of (4.9) depends smoothly on ε =
√
λ. Moreover, sending x→ ∞ in (4.1) yields

the expansion

U(ε)(y) = lim
x→∞

uε(x, y) = a1ε cos y +O(ε2) in C3+α([−π
2 ,

π
2 ]).

Using dots to denote derivatives in ε, we therefore have

U̇(0)(y) = a1ϕ0 = a1 cos y. (4.10)

Note that we are abusing notation somewhat by writing U as a function of ε rather than λ.
With the asymptotics for U in hand, we now turn to the eigenvalue problem, which in our

notation is
(

L
′(U(ε), ε2)− σ0

)

ϕ = 0. (4.11)
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We know that (ϕ, σ0, ε) = (ϕ0, 0, 0) solves (4.9)–(4.11). By a familiar implicit function theorem
argument, we deduce that there is a unique curve of nearby solutions, with ϕ and σ0 depending
smoothly on ε.

Differentiating (4.11) in ε, we find

L
′(U, ε2)ϕ̇+ L̇

′(U, ε2)ϕ = σ̇0ϕ+ σ0ϕ̇, (4.12)

where

L̇
′(U, ε2)ψ := ∂y

(

(

6W ′′ + 4U2
yW ′′′

)

UyU̇y∂yψ
)

−
(

bκκU̇ + 2εbλκ

)

ψ

and we are suppressing the arguments of W(U2
y ) and b(U, λ) for readability. In particular, at ε = 0

where U = 0 and σ0 = 0, this becomes

L̇
′(0, 0)ψ = −bκκ(0, 0)U̇(0)ψ = 0

in light of (1.8). Therefore multiplying (4.12) by ϕ, evaluating at ε = 0, and then integrating, we
obtain

σ̇0(0) = 0,

which forces us to proceed to higher order derivatives.
Differentiating (4.12) with respect to ε we find that

L
′(U, ε2)ϕ̈+ 2L̇ ′(U, ε2)ϕ̇+ L̈

′(U, ε2)ϕ = σ̈0ϕ+ 2σ̇0ϕ̇+ σ0ϕ̈, (4.13)

where

L̈
′(U, ε2)ψ := ∂y

[(

(

6W ′′ + 4qW ′′′
)(

U̇2
y + UyÜy

)

+
(

20W ′′′ + 8qW(4)
)

U2
y U̇

2
y

)

∂yψ
]

−
(

bκκκU̇
2 + bκκÜ + 4εbλκκU̇ + 4ε2bλλκ + 2bλκ

)

ψ.

At ε = 0, then,

L̈
′(0, 0)ψ = 12w1∂y

(

U̇2
y ∂yψ

)

−
(

6b2U̇
2 − 2

)

ψ.

Multiplying (4.13) by ϕ and integrating, we find that, at ε = 0,

σ̈0(0)‖ϕ0‖2L2 = −12w1

∫ π

2

−π

2

U̇2
y (∂yϕ0)

2 dy −
∫ π

2

−π

2

(

6b2U̇
2 − 2

)

ϕ2
0 dy

= −12a21w1

∫ π

2

−π

2

(∂yϕ0)
2 dy − 6a21b2

∫ π

2

−π

2

ϕ4
0 dy + 2‖ϕ0‖2L2 ,

where here we have made use of (4.10) and the fact that ϕ|ε=0 = ϕ0 = cos y. Calculating the
explicit integrals yields

σ̈0(0) = −2,

which in turn proves that (4.8) holds for 0 < ε� 1. �

The final task of this section is to verify that the solutions on Cloc exhibit the monotonicity
properties claimed in (1.12). For that purpose, we first state an elementary (but very useful)
lemma.

Lemma 4.3 (Nodal cone). Let W and Z be Banach spaces, and suppose that N ⊂ Z is an open
cone (that is, invariant under multiplication by strictly positive scalars). If G : R × W → Z is
continuous and

G(s, w)

s
→ ψ ∈ N as (s, w) → (0, 0), s 6= 0, (4.14)

then, for all sufficiently small (s, w) with ±s > 0, we have ±G(s, w) ∈ N .

Proof. Since N is open, (4.14) implies that G(s, w)/s ∈ N for all (s, w) sufficiently small and s 6= 0.
But then |s|G(s, w)/s is also in N , and so the result holds. �
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Using this result, the desired monotonicity properties follow quickly from the reduction formula
(4.2) and our understanding of the behavior of v = uε( · , 0) obtained in the proof of Theorem 4.1.

Lemma 4.4 (Local monotonicity). Each (u, λ) ∈ Cloc is a strictly increasing monotone front that
exhibits the nodal properties:

ux > 0 in Ω, (4.15a)

uy < 0 in (0,∞)× (0, π2 ]. (4.15b)

Proof. Consider the x-directional monotonicity (4.15a). In view of the center manifold reduction
(4.2) and scalings in (4.6), we have that

∂xu
ε(x, y) = v′(x)ϕ0(y) + ΨA(v(x), v

′(x), ε)(0, y)v′(x) + ΨB(v(x), v
′(x), ε)(0, y)v′′(x), (4.16)

where recall that ϕ0(y) = cos y, v = εV ε(εx), and (V ε,W ε) solves the rescaled ODE (4.7). From
the phase portrait, we have seen that v is strictly increasing (as W ε > 0) and odd with v(x) > 0
for x > 0.

Having (4.16) in mind, set

W := R
3,

Z :=
{

z ∈ C1([−π
2 ,

π
2 ]) : z(−π

2 ) = z(π2 ) = 0
}

,

N :=
{

z ∈ Z : z > 0 on (−π
2 ,

π
2 ), ∓z′(±π

2 ) > 0
}

,

and consider the mapping G : R× W → Z defined by

G(B;A,C, ε) := Bϕ0 +ΨA(A,B, ε)(0, · )B +ΨB(A,B, ε)(0, · )C.
Due to (4.4), B 7→ ΨB(A,B, ε)(0, · ) is odd. Since ΨB is smooth, there must therefore exist a
continuous mapping Ξ: R3 → Z satisfying

ΨB(A,B, ε)(0, · ) = Ξ(A,B, ε)B.

Thus,
G(B;A,C, ε)

B
= ϕ0 +ΨA(A,B, ε)(0, · ) + Ξ(A,B, ε)C.

Sending (B,A,C, ε) → 0, we find that the left-hand side limits to ϕ0 ∈ N . Applying Lemma 4.3,
we conclude that ±G(B;A,C, ε) ∈ N for ±B > 0 and (B,A,C, ε) sufficiently small. Comparing
this to the asymptotics for ∂xu

ε in (4.16), we must then have that (4.15a) holds for 0 < ε� 1.
The argument for the y-directional monotonicity is very similar. Again from the representation

formula (4.2) one can compute that

∂yu
ε(x, y) = v(x)ϕ′

0(y) + Ψy(v(x), v
′(x), ε)(0, y).

Let us redefine

W := R
2,

Z :=
{

z ∈ C1([−π
2 ,

π
2 ]) : z odd

}

,

N :=
{

z ∈ Z : z < 0 on (0, π2 ], z
′(0) < 0

}

,

and consider the map G : R× W → Z given by

G(A;B, ε) := Aϕ′
0 +Ψy(A,B, ε)(0, · ).

By (4.4), A 7→ Ψy(A,B, ε)(0, · ) is odd, so we can find a smooth map Υ: R3 → Z such that

Ψy(A,B, ε)(0, · ) = Υ(A,B, ε)A.

Proceeding as before, one can then easily check that G satisfies the hypothesis (4.14) of Lemma 4.3,
and hence (4.15b) holds for all 0 < ε� 1. �
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5. Nodal pattern

While Lemma 4.4 ensures that the small anti-plane shear fronts obtained in [3] are strictly
increasing, it is not obvious that this property should persist beyond the perturbative regime. In
[4], it is nevertheless shown that ∂xu has a fixed sign on any connected set of solutions that are
spectrally non-degenerate in the sense of (4.8), provided it has a fixed sign at a single solution in
this set. In particular, this implies that the solutions obtained via global continuation will also
be monotone in x. The argument relies on repeated use of the maximum principle, and it applies
to a broad class of elliptic PDE that includes the anti-plane shear model (1.5). Our equation
enjoys an additional symmetry: invariance under reflection in y. This will allow us to infer that
y-directional monotonicity (4.15b) is likewise preserved on the global bifurcation curve. Consider
the fundamental half-strip

R+ := (0,∞)× (0, π2 ),

whose boundary components we denote

B+ := [0,∞)× {0}, T+ := [0,∞)× {π
2 }, L+ := {0} × [0, π2 ].

The main result of this section is the following, where we recall that a front (u, λ) is called strictly
increasing if ∂xu > 0 in Ω.

Theorem 5.1 (Nodal properties). Suppose that K ⊂ U∞ is a connected set of strictly increasing
monotone fronts and the spectral nondegeneracy condition (4.8) holds along it. If some (u, λ) ∈ K
exhibits the nodal properties

uy < 0 in R+ \ (L+ ∪B+), (5.1a)

uyy < 0 on B+ \ {(0, 0)}, (5.1b)

uxy < 0 on L+ \ {(0, 0)}, (5.1c)

uxyy(0, 0) < 0, (5.1d)

then every element of K satisfies (5.1).

We start in the next lemma by establishing some basic information about the boundary behavior
of u and its derivatives on R+.

Lemma 5.2 (Boundary behavior). Let (u, λ) ∈ U∞ be a strictly increasing monotone front solution
of (1.5). Then

u, uyy = 0 on T+, (5.2a)

uxy < 0 on T+, (5.2b)

u, uxx = 0 on L+, (5.2c)

uy = 0 on B+. (5.2d)

Proof. Most of these are immediate consequences of the boundary conditions or symmetry. Indeed,
T+ ⊂ ∂Ω, hence u vanishes identically there. This implies further that ∂kxu = 0 on T+ for all k ≥ 0,
so evaluating the PDE (1.5) along the top yields

[

W ′(u2y) + 2u2yW ′′(u2y)
]

uyy = 0 on T+.

From (1.4), this gives uyy = 0 on T+, proving (5.2a). The argument for (5.2c) is similar: u (and

hence ∂kyu) vanishes identically along L+ by oddness. Using this and the equation (1.5) gives
[

W ′(u2x) + 2u2xW ′′(u2x)
]

uxx = 0 on L+.

That uy vanishes on B is likewise a consequence the evenness of u in y. Finally, to obtain (5.2b),
we observe that ux is in the kernel of the linearized operator at (u, λ). That is, v := ux satisfies

∇ ·
(

W ′(|∇u|2)∇v + 2W ′′(|∇u|2)(∇u⊗∇u)∇v
)

− bκ(u, λ)v = 0 in R+. (5.3)
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By assumption, ux = v > 0, and thus it attains its minimum along T+. Recalling (1.4) and (1.11),
the sign of uxy in (5.2b) then follows from the Hopf lemma (for positive solutions). �

Using the above identities and the maximum principle, we can show that the full set of nodal
properties (5.1) can be collapsed to just transversal monotonicity (5.1a).

Lemma 5.3 (Simplified nodal properties). Suppose that (u, λ) ∈ U∞ is a strictly monotone in-
creasing front solution of (1.5) that satisfies (5.1a). Then u also satisfies (5.1b)–(5.1d).

Proof. Differentiating the PDE (1.5) in y, we see that v = uy satisfies the linear elliptic equation
(5.3). Moreover, uy < 0 in R+ according to (5.1a), so uy attains its supremum on R+ at (0, 0)
thanks to (5.2d). Combining (5.2c) and (5.2d), we infer that

uyx, uyy, uyxx, uyyy = 0 at (0, 0). (5.4)

But this is in violation of the Serrin edge-point lemma as ∇uy and D2uy cannot simultaneously
vanish at a maximum; see, for example, [10, Theorem E.9]. Having arrived at a contradiction, we
must have that (5.1d) holds. Likewise, since uy vanishes identically along L+ ∪B+ and is negative
in R+, we obtain (5.1b) directly from the Hopf boundary-point lemma. The same argument shows
that uxy < 0 on L+ except at the lower corner (0, 0) and possibly at the upper corner (0, π2 ). But
notice that uy attains its minimum at (0, π2 ), and moreover (5.2a) and (5.2c) give

uyy, uyxx, uyyx, uyyy = 0 at (0, π2 ). (5.5)

Thus the Serrin edge-point lemma ensures that uyx(0,
π
2 ) < 0, proving (5.1c). �

For later use, we observe that the above lemma together with Lemmas 4.2 and 4.4 has the
following immediate corollary.

Corollary 5.4 (Local nodal pattern). Each (u, λ) ∈ Cloc is a strictly increasing monotone front
that exhibits the full set of nodal properties (5.1).

The next two lemmas show that these nodal properties are (relatively) open and closed in a
suitable topology. The main tools are [4, Lemmas 2.7 and 2.8], which require the spectral nonde-
generacy condition (4.8).

Lemma 5.5 (Open property). Suppose that (ū, λ̄) ∈ U∞ is a strictly increase monotone front
solution of (1.5) that satisfies (4.8) and (5.1). There exists δ = δ(ū, λ̄) > 0 such that, if (u, λ) ∈ U∞

is a solution with

‖u− ū‖C3(R+) + |λ− λ̄| < δ, lim
x→∞

u = U+(λ), (5.6)

then u is a strictly increasing monotone front and satisfies (5.1).

Proof. By Corollary 3.2, the limiting state as x → +∞ corresponding to (ū, λ̄) is Ū+ := U+(λ̄).
Now by Remark 3.3, for any λ̄ ≥ λ0 > 0, we have

Ū+y < 0 on (0, π2 ], Ū+y(
π
2 ) < −δ1, Ū+yy(0) < −δ2,

for some δ1, δ2 > 0 depending only on λ0. It follows from this, (5.1a), and (5.1b) that, for any
ε > 0, there exists δ = δ(λ0, ε) so that

uy < 0 on (ε,∞)× [0, π/2],

for all (u, λ) satisfying (5.6). Note that the principal eigenvalues depend continuously on the coeffi-
cients of the operator (see, for example, [4, Lemma A.2]), hence σ±0 (ū, λ̄) < 0 implies σ±0 (u, λ) < 0
for δ small enough. Perhaps shrinking it even further, we can then ensure that (u, λ) is a strictly
monotone front by applying [4, Lemma 2.7].
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Consider next the sign of uy in a neighborhood of L+. As in the proof of Lemma 5.3, we see that
(5.2c) and (5.2d) imply that its derivatives at (0, 0) satisfy (5.4). Expanding uy at the origin gives

uy(x, y) =
1

2
uyyx(0, 0)xy +O(|x|3 + |y|3) in R+.

But ūxyy(0, 0) < 0 according to (5.1d), and so by perhaps further shrinking δ, we can ensure that
uy < 0 on O ∩R+, for some open ball O 3 (0, 0). Let us now fix ε to be half the radius of O.

Similarly, choosing any point (0, y0) ∈ L+ \ O, we have

uy(x, y) = uxy(0, y0)x+O(x2 + (y − y0)
2) in R+.

In view of (5.1c), we may then shrink δ further so that

uy < 0 on ((0, ε)× [0, π/2]) \ O.
At last, then, we have shown that u satisfies (5.1a). Applying Lemma 5.3, we conclude that u
exhibits all of the nodal properties (5.1). �

Lemma 5.6 (Closed property). Suppose that {(un, λn)} ⊂ U∞ is a sequence of strictly monotone
increasing front solutions to (1.5) that are each spectrally non-degenerate (4.8) and (un, λn) → (u, λ)
in Xb×R for some (u, λ) ∈ U∞ also satisfying (4.8). If each un exhibits the nodal properties (5.1),
then so does u.

Proof. Since (4.8) holds by assumption, [4, Lemma 2.8] ensures that (u, λ) is also a strictly increasing
monotone front. In view of Lemma 5.3, it therefore suffices to show that u satisfies (5.1a). By

continuity, we have that uy ≤ 0 in R+. We have already seen that uy satisfies the linear elliptic
PDE (5.3), and since supR+ uy = 0, we may apply the maximum principle to conclude that uy < 0
in R+.

Fix a point (x0,
π
2 ) with x0 > 0. By monotonicity, u is a positive solution of the elliptic PDE

(1.5), which can be viewed as linear. Since u attains its minimum value at (x0,
π
2 ), we have by the

Hopf boundary-point lemma that uy < 0 there. Together with the previous paragraph, this proves
that u satisfies (5.1a) and hence (5.1). �

Combining these lemmas, the proof of Theorem 5.1 is now immediate.

6. Global continuation

6.1. Abstract global bifurcation theory. For the convenience of the reader, we record here the
main tool for the proof of Theorem 1.1, which is the following general theorem on global bifurcation
of monotone front solutions to elliptic PDE. To simplify the presentation, we will only discuss its
application to the specific problem (1.5).

Suppose that we have a local curve Kloc of strictly monotone front solutions to (1.5). Due to
translation invariance, for any (u, λ) ∈ Kloc, the linearized operator Fu(u, λ) will have at least one
kernel direction. As the first assumption, we require that the kernel is exactly one dimensional:

kerFu(u, λ) = span{∂xu}. (H1)

We also impose a requirement on the spectrum of the transversal linearized operator:

σ±0 (u, λ) < 0. (H2)

Note that, as observed before, the spectrum of the transversal limiting problems at x = −∞ and
x = +∞ are identical, so there is no ambiguity above. Lastly, assume that the local curve bifurcates
from a singular point where the above spectral condition is violated. That is, suppose Kloc admits
the C0 parameterization

Kloc = {(u(ε), λ(ε)) : 0 < ε < ε0} ⊂ U ,
where

(u(ε), λ(ε)) → (u0, λ0) ∈ U as ε→ 0+, and σ±0 (u0, λ0) = 0. (H4)



GLOBAL BIFURCATION OF ANTI-PLANE SHEAR FRONTS 17

Under the above hypotheses, we have the following global continuation result. It corresponds to
[4, Theorem 1.2] combined with [4, Lemma 3.4].

Theorem 6.1. Let Kloc be a curve of strictly monotone front solutions to (1.5) bifurcating from a
singular point as in (H4). Assume that at each (u, λ) ∈ Kloc, the nondegeneracy (H1) and spectral
(H2) conditions hold.

Then, possibly after translation, Kloc is contained in a global curve of strictly monotone front
solutions K ⊂ U∞, parameterized as

K := {(u(s), λ(s)) : 0 < s <∞} ⊂ F
−1(0)

for some continuous R+ 3 s 7−→ (u(s), λ(s)) ∈ U∞ with the properties enumerated below.

(a) (Alternatives) As s→ ∞, one of three alternatives must occur:
(A1) (Blowup) The quantity

N(s) := ‖u(s)‖C3+α + |λ(s)|+ 1

|λ(s)| −→ ∞. (6.1)

(A2) (Heteroclinic degeneracy) There exist sequences sn → ∞ and xn → ±∞ with

(u(sn)( · + xn, · ), λ(sn)) −→ (u∗, λ∗) in C
3
loc(Ω)× R

2

for some monotone front solution (u∗, λ∗) ∈ U∞, but the three limiting states

lim
x→∓∞

u∗(x, · ), lim
n→∞

lim
x→+∞

u(sn)(x, · ), lim
n→∞

lim
x→−∞

u(sn)(x, · ),

are all distinct and pairwise conjugate in the sense of (3.3).
(A3) (Spectral degeneracy) There exists a sequence sn → ∞ with supnN(sn) <∞ so that

σ±0 (u(sn), λ(sn)) → 0.

(b) For all s sufficiently large, (u(s), λ(s)) 6∈ Kloc. In particular, K is not a closed loop.
(c) At each parameter value s ∈ (0,∞), K admits a local real-analytic reparameterization.

The above result is based on the foundational work of Dancer [8, 7] on analytic global bifurcation
and its later refinement by Buffoni–Toland [1]. Because we wish to treat problems on unbounded
domains, however, Theorem 6.1 is deliberately formulated so that no compactness hypotheses are
imposed on F beyond the local curve. In particular, we do not ask that it is locally proper nor
Fredholm index 0. Instead, the loss of compactness is viewed as an alternative. From this perspec-
tive, the novelty of Theorem 6.1 is that it completely characterizes how a failure of compactness
can manifest in terms of the qualitative behavior of the solutions along the curve. Indeed, (A1),
(A2), and (A3) each have analogues in global bifurcation of second-order ODEs. A discussion of
these ideas can found in the recent announcement [5, Section 2].

Several authors [28, 11, 12] have developed degree theoretic global bifurcation machinery for
quasilinear elliptic problems on unbounded domains. Their approach is more closely aligned to
the classical results for bounded domains in that they make hypotheses implying that F is locally
proper and Fredholm. Note that the local curve here bifurcates from a singular point where the
latter assumption is violated. This hints at the fact that verifying these compactness criteria is
actually quite subtle for our problem. Another barrier to applying [28, 11, 12] is that they are
formulated in Sobolev spaces, whereas for fronts u is not integrable. While some adaptation of this
theory may be possible, as we will see in this section, Theorem 6.1 offers a more elegant means of
overcoming both difficulties.

It is also worth mentioning that the degree theoretic approach furnishes the entire connected
component of F−1(0) containing the trivial solution. In principle, this will be larger than K , as
it is possible that secondary bifurcations occur that result in additional solution branches. On the
other hand, K is globally C0 and locally real analytic, whereas with degree theory, the continuum
one obtains is merely a closed set.
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6.2. Spectral non-degeneracy. The next result will allow us to confirm that the spectral non-
degeneracy persists not just for perturbative solutions, but globally.

Lemma 6.2 (Global non-degeneracy). Suppose that (u, λ) ∈ U∞ is a strictly increasing monotone
front. Then, kerL ′

±(u, λ) is trivial.

Proof. As the following argument does not involve the parameter λ, for simplicity of the presen-
tation, we will suppress all dependence on it. Also, as noted before, the transversal linearized
problems at x = ±∞ are identical, so there is no need to append subscripts of ±. In particular, we
simply write U for the limiting state limx→±∞ u(x, · ) = U±(λ).

From (3.5) we know that U satisfies

H(U,Uy) = W ′(U2
y )U

2
y − 1

2
W(U2

y )− B(U) = constant. (6.2)

Moreover by (1.11) and (1.10) we have

V HV (U, V ) > 0 for V 6= 0. (6.3)

Let Φ = Φ(y;µ) be the unique solution to the initial value problem
{

∂y
(

W ′(Φ2
y)Φy

)

− b(Φ) = 0 in Ω′,

Φ(−π
2 ;µ) = 0, Φy(−π

2 ;µ) = µ.
(6.4)

Clearly Φ(y;Uy(−π
2 )) = U(y). Differentiating (6.4) with respect to the parameter µ yields






∂y

[

(

W ′(U2
y ) + 2U2

yW ′′(U2
y )
)

Φ̇y

]

− bκ(U)Φ̇ = 0 in Ω′,

Φ̇(−π
2 ) = 0, Φ̇y(−π

2 ) = 1,
(6.5)

where Φ̇(y) := Φµ(y;Uy(−π
2 )). If Φ̇(π2 ) = 0, then (6.5) is precisely the statement that Φ̇ ∈

kerL ′(u, λ). Since we are dealing with a boundary value problem for a linear second-order ODE,

one can easily check that, conversely, kerL ′(u, λ) is trivial whenever Φ̇(π2 ) 6= 0.
Recalling the definition of the period map P in Section 3, from (6.4) it follows that

Φ(P (0, µ);µ) = 0.

Differentiating the above identity with respect to µ then gives

Φy

(

P (H(0, µ);µ)
)

Pc(H(0, µ))HV (0, µ) + Φµ

(

P (H(0, µ));µ
)

= 0,

which at y = π
2 and µ = Uy(−π

2 ) becomes

Uy(
π
2 )Pc

(

H(0, Uy(−π
2 ))

)

HV (0, Uy(−π
2 )) + Φ̇(π2 ) = 0.

By (6.3) and (3.9), the first term above is negative. Thus, Φ̇(π2 ) < 0, which proves that kerL ′(u, λ)
is trivial. �

6.3. Uniform regularity. The purpose of this section is to derive a priori estimates on front solu-
tions to the anti-plane shear equation that will eventually allow us to conclude that λ is unbounded
along the global curve. Following [32, Chapter 7], we first show that the divergence structure of (1.5)
and the uniform ellipticity condition (1.4) imply that there is an auxiliary function P(u, |∇u|2, λ)
that obeys a maximum principle. By exploiting certain coercivity properties of P, this will allow
us to control u in terms of λ.

More precisely, define

P(κ, q, λ) := 2qW ′(q)−W(q)− 2B(κ, λ). (6.6)

An application of [32, Theorem 7.1] gives
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Lemma 6.3 (Maximum principle for P). Assume that (1.4) holds and let (u, λ) ∈ Xb × R be a
solution to (1.5). Then P(u, |∇u|2, λ) cannot achieve an interior maximum or minimum except at
critical points of u.

Now, from (1.10) we see that

2qW ′′(q) +W ′(q) >W ′(0) = 1 for q > 0.

Integrating this leads to

2qW ′(q)−W(q) > q for q > 0.

From the definition of P (6.6) and negativity of B (1.11), we may then infer the bound

P(u, |∇u|2, λ) ≥ |∇u|2. (6.7)

Supposing now that (u, λ) is a strictly monotone front, Lemma 6.3 implies that P(u, |∇u|2, λ) is
maximized at infinity. Combining this with the above inequality and a bootstrapping argument,
we obtain the following.

Theorem 6.4 (Uniform regularity). Every monotone front solution (u, λ) ∈ U∞ to (1.5) with
|λ| < Λ obeys the a priori bound

‖u‖C3+α(Ω) < C

where the constant C = C(Λ) > 0.

Proof. Throughout the course of the proof, let C denote a generic positive constant depending only
on Λ. First, notice that because u is a strictly monotone front, it is maximized and minimized only
at infinity. Thus, by Corollary 3.2,

‖u‖C0(Ω) = sup
Ω′

|U±(λ)| ≤ C. (6.8)

On the other hand, thanks to Lemma 6.3 and (6.7), we have

‖∇u‖C0(Ω) ≤ ‖P(u, |∇u|2, λ)‖C0(Ω) = sup
Ω′

P(U±(λ), |∂yU±(λ)|2, λ) ≤ C.

Together with (6.8), this gives control of ‖u‖C1 .
To upgrade this to the full C3+α norm, we make use of a familiar elliptic regularity argument.

Observe that ∂xu can be thought of asW 2,∞(Ω) strong solution of (5.3). By the previous paragraph,
the coefficients of this PDE are bounded uniformly in L∞(Ω) in terms of Λ. Using the De Giorgi–
Nash-type estimate [13, Corollary 9.29], we find that

‖∂xu‖Cα(Ωm) ≤ C‖∂xu‖C0(Ω) < C,

for any m ∈ Z, where Ωm := (m,m+ 1)× Ω′. Note that the constant above is independent of m,
and so this implies further that ‖∂xu‖Cα(Ω) < C. The same reasoning gives an equivalent bound
for ∂yu, and hence ‖u‖C1+α < C.

Now, we can simply apply linear Schauder theory to (1.5) to see that

‖u‖C2+α(Ω) ≤ C.

Bootstrapping the above argument once more leads to the desired C3+α bound, completing the
proof. �

Lemma 6.5 (Deformation gradient blowup). It holds that

‖∂yU±(λ)‖C0 −→ ∞ as λ→ ∞.
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Proof. First, we observe that λ 7→ U+(λ)|y=0 is strictly increasing. This simply follows from the

fact that U̇+ := ∂λU+(λ) solves

L
′(U+(λ), λ)U̇+ = −bλ(U+(λ), λ)

and vanishes on ∂Ω′. In view of (1.11), the right-hand side above is strictly positive. On the other
hand, Lemma 4.2 and Lemma 6.2 ensure that the principal eigenvalue of L ′(U+(λ), λ) is strictly

negative for all λ > 0. We may therefore apply the maximum principle to conclude that U̇+ > 0.
Next, we recall that the equation satisfied by U+ can be rewritten as the planar system (3.4)

which has the first integral H given by (3.5). Since U+(λ) is odd, writing V+(λ) := Uy+(λ), we
have that

c(λ) = H(U+(λ), V+(λ)) = −B(U+(λ), λ)|y=0 > −B(U+(λ̄), λ)|y=0

for 0 < λ̄ < λ by (1.11). Fixing a λ̄ > 0, the unboundedness of b(κ, · ) implies that c(λ) → ∞ as
λ→ ∞. On the other hand, evaluating H at the top of the domain reveals that

c(λ) =

(

W ′(V+(λ)
2)V+(λ)

2 − 1

2
W(V+(λ)

2)

)

∣

∣

∣

y=π

2

.

Thus, ‖∂yU+(λ)‖C0 → ∞ as λ→ ∞, which completes the proof. �

6.4. Proof of the main result. Finally, we turn to Theorem 1.1. Recall that we have constructed
a local curve Cloc of small-amplitude strictly increasing fronts in Section 4.

Proof of Theorem 1.1. We have already verified in Theorem 4.1(c) that the kernel condition (H1)
holds along Cloc. Lemma 4.2, moreover, implies that it satisfies the spectral assumption (H2). By
construction, Cloc bifurcates from (0, 0), and hence (H4) holds. Lastly, in view of Corollary 5.4, the
solutions on Cloc are strictly monotone increasing and exhibit the nodal properties (5.1).

We are therefore justified in applying Theorem 6.1 with Kloc = Cloc, furnishing a global bifur-
cation curve C . The symmetry properties claimed in part (a) are encoded in the definition of the
spaces (2.1), while the monotonicity (1.12) follows from the fact that the fronts in Cloc are strictly
increasing and Theorem 5.1. The local real analyticity of C asserted in part (c) is likewise a direct
consequence of Theorem 6.1(c).

Consider now the limiting behavior along C . Suppose for the sake of contradiction that (A2)
occurs, and without loss of generality assume that the sequence xn → +∞. By the monotonicity
properties in (1.12), the limiting front (u∗, λ∗) has u∗ ≥ 0 in Ω. Thus its limiting states

lim
x→±∞

u∗(x, · ) ≥ 0.

By Proposition 3.1(a), these states must therefore be either U+(λ∗) or 0. However, the three
limiting states

lim
x→−∞

u∗(x, · ) and lim
n→∞

lim
x→±∞

u(sn)(x, · ) = U±(λ∗),

are distinct and pairwise conjugate, and so this is impossible in view of Proposition 3.1(b).
Reconnection to the trivial solution (0, 0) is ruled out by Theorem 4.1(b) and Theorem 6.1(b).

We claim further that the spectral degeneracy alternative (A3) can only happen in conjunction
with blowup of λ as in (1.13). To see this, note that because the curve does not reconnect, if λ
is uniformly bounded along it, then spectral degeneracy would imply there exists 0 < λ∗ < ∞ for
which the kernel of F ′

U (U+(λ∗), λ∗) is nontrivial. But this is impossible due to Lemma 6.2.
Thus we are left only with blowup as in (6.1). On the other hand, lim infs→∞ λ(s) > 0 by the

previous paragraph, and so Theorem 6.4 ensures that λ(s) → ∞. Finally, Lemma 6.5 implies that
this also leads to blowup in the deformation gradient:

‖∂yu(s)‖C0(Ω) ≥ sup |Uy±(λ(s))| −→ ∞ as s→ ∞,

completing the proof of part (b). �
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