
Title: Climate explains geographic and temporal variation in mosquito-borne disease 1 

dynamics on two continents 2 

 3 

Jamie M. Caldwell1, A. Desiree LaBeaud2, Eric F. Lambin3,4, Anna M. Stewart-Ibarra5,6, 4 

Bryson A. Ndenga7, Francis M. Mutuku8, Amy R. Krystosik2, Efraín Beltrán Ayala9, 5 

Assaf Anyamba10, Mercy J. Borbor-Cordova11, Richard Damoah12, Elysse N. Grossi-6 

Soyster2, Froilán Heras Heras13, Harun N. Ngugi14,15, Sadie J. Ryan16-18, Melisa M. 7 

Shah19, Rachel Sippy13,20,21, Erin A. Mordecai1 8 

 9 

1 Department of Biology, Stanford University, 371 Serra Mall, Stanford, California, USA 10 

2 Department of Pediatrics, Division of Infectious Diseases, Stanford University, 300 11 

Pasteur Drive, Stanford, California, USA 12 

3 School of Earth, Energy & Environmental Sciences, and Woods Institute for the 13 

Environment, Stanford University, Stanford, California 94305, USA. 14 

4 Georges Lemaître Earth and Climate Research Centre, Earth and Life Institute, 15 

Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. 16 

5 Department of Medicine and Department of Public Health and Preventative Medicine, 17 

SUNY Upstate Medical University, Syracuse, NY, USA 18 

6 InterAmerican Institute for Global Change Research (IAI), Montevideo, Uruguay 19 

7 Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya 20 

8 Department of environment and health sciences, technical university of Mombasa, 21 

Mombasa, Kenya 22 
9 Technical University of Machala, Machala, Ecuador 23 



10 Universities Space Research Association and NASA Goddard Space Flight Center, 24 

Greenbelt, MD, USA. 25 

11 Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del 26 

Litoral, ESPOL, Guayaquil, Ecuador 27 

12 Morgan State University and NASA Goddard Space Flight Center, Greenbelt, MD, 28 

USA. 29 

13 Center for Research SUNY-Upstate-Teófilo Dávila Hospital, Machala, Ecuador 30 

14 Department of Biological Sciences, Chuka University, Chuka, Kenya 31 

15 Department of Zoology, School of Biological Sciences University of Nairobi, Nairobi, 32 

Kenya 33 

16 Emerging Pathogens Institute, University of Florida, Gainesville, Florida 34 

17 Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of 35 

Geography, University of Florida, Gainesville, Florida;  36 

18 School of Life Sciences, University of KwaZulu, Natal, South Africa 37 

19 Department of Medicine, Division of Infectious Diseases, Stanford University, 300 38 

Pasteur Drive, Stanford, California, USA 39 

20 Institute for Global Health and Translational Science, SUNY-Upstate Medical 40 

University, Syracuse, NY, USA 41 

21 Department of Medical Geography, University of Florida, Gainesville, FL, USA 42 

 43 

 44 

 45 

 46 



Abstract: 47 

Climate drives population dynamics, but when the underlying mechanisms are 48 

unresolved, studies can lead to seemingly context-dependent effects of climate on natural 49 

populations. For climate-sensitive vector-borne diseases such as dengue, chikungunya, 50 

and Zika, climate appears to have opposing effects in different contexts. In this study, our 51 

objective was to test the extent to which a mathematical model, parameterized with 52 

climate-driven mosquito physiology measured in laboratory studies, predicts observed 53 

vector and disease dynamics in the field across ecologically and culturally distinct 54 

settings in Ecuador and Kenya. The model incorporates different rainfall functions and 55 

time lags. We show that the climate-driven model captures three key epidemic 56 

characteristics across settings: the number, timing, and duration of outbreaks. In addition, 57 

the model generates a range of disease dynamics consistent with observations of Aedes 58 

aegypti abundances and laboratory-confirmed arboviral incidence with varying levels of 59 

accuracy (28 – 85% for vector dynamics, 36 – 88% for human disease dynamics). 60 

Further, we find that the model predicted vector dynamics better in sites with a smaller 61 

proportion of young children in the population, lower mean temperature, and a larger 62 

proportion of homes without window screens and made of cement. A mechanistic model 63 

with limited calibration to local data that robustly captures the influence of climate on 64 

viruses transmitted by Aedes aegypti provides critical information to help guide future 65 

intervention efforts and improve climate change predictions.   66 

 67 

 68 

 69 



Introduction: 70 

Climate is a major driver of species interactions and population dynamics, but the 71 

mechanisms underlying the ecological effects of climate are often poorly understood and 72 

rarely tested in the field [1]. One of the primary ways that climate impacts populations is 73 

through its effects on species’ vital rates [2]. However, the effects of climate on 74 

population dynamics may appear context dependent in the field because multiple climate 75 

variables can act synergistically, with each climate variable potentially affecting multiple 76 

vital rates, and their impacts may be nonlinear, changing direction and relative 77 

importance across a gradient of conditions [3,4]. Therefore, paradoxically, while climate 78 

is thought to be one of the most pervasive drivers of ecological processes, its directional 79 

and dynamical effects on systems are often poorly understood and difficult to predict. 80 

Vector-borne diseases provide an interesting case study to test whether climate sensitive 81 

traits measured in controlled, laboratory settings can reproduce the wide range of 82 

dynamics observed in the field. For example, transmission of mosquito-borne viral 83 

(arboviral) diseases such as dengue, chikungunya, and Zika occur along a spectrum from 84 

low levels of year-round endemic transmission [5] to large seasonal or interannual 85 

outbreaks [6]. We hypothesize that important features of these differing dynamics arise 86 

due to regional or seasonal differences in climate, where the magnitude and direction of 87 

the effects of climate on vector and disease dynamics differ [7–12].  88 

 89 

Understanding the mechanisms that drive disease dynamics can help address two 90 

critically important research priorities for arboviruses like dengue, chikungunya, and 91 

Zika: assessing intervention strategies and projecting climate change impacts on disease 92 



dynamics. While phenomenological models often replicate arboviral disease dynamics 93 

remarkably well [13], mechanistic models that do not rely on local data for calibration 94 

and capture mosquito population dynamics and interactions between mosquitoes and 95 

humans will provide more realistic predictions for epidemic dynamics across a broad 96 

range of transmission settings. With no widely available vaccine, vector control (e.g., 97 

larvicides, Wolbachia-infected mosquito releases) remains the primary method for 98 

preventing arboviral disease transmission, and, like other vector-borne diseases with 99 

complex transmission dynamics, model simulations can help guide effective intervention 100 

efforts [14,15]. Further, mechanistic models are better suited to predict how climate 101 

change will impact future disease burden and distribution, as projected climate conditions 102 

are outside the current arboviral climate niche space [16]. Despite the potential usefulness 103 

of mechanistic approaches, validation with vector and disease data are limited, raising an 104 

important question about which epidemic characteristics, if any, we should expect a 105 

model to capture when the model was parameterized with data that is on different scales 106 

(e.g., individuals versus populations) and independent from the transmission system we 107 

wish to predict. Thus, because we cannot study epidemic dynamics in every possible 108 

transmission setting, it becomes important to understand the extent to which models 109 

derived from fundamental and laboratory-measured traits explain disease dynamics 110 

across diverse settings. 111 

 112 

We hypothesize that a climate-driven mechanistic model with limited calibration should 113 

capture many important characteristics of disease dynamics for dengue, chikungunya, and 114 

Zika because of the ecology of Aedes aegypti, the primary disease vector. Ae. aegypti are 115 



anthropophilic, globally distributed mosquitoes that breed in artificial containers with 116 

standing water [17,18]. All mosquito and parasite traits that are important for 117 

transmission and linked to metabolism, such as reproduction, development, survival, 118 

biting rate, and extrinsic incubation period, are temperature dependent with an 119 

intermediate thermal optimum [19–21]. Humidity is positively associated with mosquito 120 

survival because the high surface area to volume ratio of mosquitoes exposes them to 121 

desiccation [22,23]. Standing water from rainfall provides essential larval and pupal 122 

habitat for mosquitoes, but the relationship is complex because heavy rainfall can flush 123 

away breeding habitats [24–26] and water storage practices during drought can increase 124 

water availability, mosquito abundance, and contact between mosquitoes and people [27–125 

29]. A previous simulation study predicted that in settings with suitable climate for 126 

transmission throughout the year (e.g., mean temperature = 25°C; range = 20 – 30°C), 127 

temperature drives the timing and duration of outbreaks, but not the maximum number of 128 

infections or final epidemic size [30]. This finding suggests that a model that incorporates 129 

temperature-dependent vector traits should capture some important epidemic 130 

characteristics.  131 

 132 

In this study, our goal was to test the extent to which climate-driven mosquito traits drive 133 

disease dynamics across two geographically distinct regions and to characterize 134 

additional climatological, ecological, and social factors that may mediate the effects of 135 

climate on disease dynamics. We built on previous mechanistic and semi-mechanistic 136 

models that incorporate the Aedes mosquito life cycle and human disease dynamics [30–137 

35] by combining a suite of temperature, humidity, and rainfall dependent trait functions 138 



into one epidemiological model. We validated the model with Ae. aegypti abundances 139 

and laboratory-confirmed dengue, chikungunya, and Zika cases from two equatorial 140 

countries with distinct socioeconomic, geographic, cultural, and disease transmission 141 

settings: Ecuador and Kenya (Fig. 1, Table 1). The study sites within each country were 142 

distributed across a gradient of temperature, humidity, and rainfall. Previous studies have 143 

found that Ae. aegypti and dengue were positively associated with warm and wet 144 

conditions in Ecuador and Kenya [6,36–38], although other Ae. aegpyti-vectored 145 

arboviruses in Kenya such as chikungunya have been associated with warm and dry 146 

conditions [39]. Both countries have all four dengue serotypes circulating and have 147 

recently experienced outbreaks of chikungunya; yet, arboviral transmission dynamics 148 

differ in each country. In Ecuador, dengue is a re-emerging disease with large seasonal 149 

epidemics that frequently result in severe dengue [6]; by contrast, in Kenya, dengue is 150 

transmitted at low levels year-round [5] and intermittent self-limiting outbreaks often go 151 

undetected [40]. Further, compared with South America, severe dengue is rare in sub-152 

Saharan Africa, perhaps because African strains of Ae. aegpyti have lower susceptibility 153 

to all four dengue serotypes [41], and/or because people of African ancestry are less 154 

susceptible to severe dengue [42].  155 

 156 



 157 

Figure 1: Study sites within two equatorial countries: (a) Ecuador in South America 158 

and (b) Kenya in East Africa. 159 

 160 

Table 1: Study sites differ geographically, climatologically, and socioeconomically. 161 

1Mean annual normalized difference vegetation index (NDVI) is a proxy for 162 

photosynthesis and measured as a difference in spectral reflectance in the visible and 163 

near-infrared regions from NASA/NOAA MODIS (MOD13A1) [43]. 2Dominant land 164 

cover type is measured and classified from spectral and temporal features from 165 

NASA/NOAA MODIS (MCD12Q1) [44]. Land cover types include (9) Tree cover 10 - 166 

30%, (10) Dominated by herbaceous annuals, (13) >30% impervious surface area, and 167 

(14) 40 - 60% mosaics of small-scale cultivation. Bed net use represents availability of 168 

and/or willingness to adopt intervention strategies for preventing infection rather than a 169 

direct adaptive response to preventing infection by day-biting Ae. aegpyti mosquitoes. 170 

 171 
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Site characteristics 
Elevation (m) 15 6 645 1,155 1,328 1,100 4 8 
Location Coastal Coastal Inland Inland Inland Inland Coastal Coastal 
Mean annual NDVI1 0.22 0.12 0.61 0.57 0.63 0.35 0.33 0.52 
Dominant land cover type2 13 13 9 10 14 13 13 10 
Climate 
Mean temperature (°C) 26 26 25 22 24 26 28 28 
Mean relative humidity (%) 81 84 81 86 69 50 76 78 
Mean annual rainfall (mm) 317 669 500 1115 1125 810 1048 922 
Demographics 
Human population size 57,366 279,887 13,673 25,615 7,304 491,893 15,371 80,193 
Population <5 years (%) 10 9 9 8 12 12 13 14 
Population of African 
ancestry (%) 

5.1 6.0 3.3 2.9 100.0 100.0 100.0 100.0 

Housing quality (% houses) 
Piped water inside home  90 91 100 96 2 4 3 11 
No screens on windows  7 60 91 99 74 78 43 21 
House materials 
(cement/mud/wood) 

87/5/0 87/8/5 95/0/5 93/1/1 29/70/0 77/17/0 38/62/0 51/47/0 

Exposure, vulnerability, and adaptive capacity 
Arboviruses present dengue, chikungunya, Zika >200 documented including dengue, 

chikungunya, Yellow fever, Rift Valley 
fever, West Nile fever, O’nyong-nyong 

Insecticide use (% houses) 19 28 46 37 0 0 11 55 
Bednet use (% houses) 77 55 15 21 93 92 0 96 
Other vector control 
strategies used 

Ultra-low volume fumigation with 
malathion (organophosphate) and 
community mobilization to eliminate 
larval habitats 

Mosquito coils 

Annual gross domestic 
product by country (2018) 

$177 billion USD $85.98 billion USD 
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Results:  173 

Capturing key epidemic characteristics  174 

The dynamic susceptible, exposed, infectious – susceptible, exposed, infectious, removed 175 

(SEI-SEIR) compartmental model parameterized with temperature-, humidity-, and 176 

rainfall-dependent mosquito life history traits (Fig. 2) reproduced three key 177 

characteristics of epidemics: number of outbreaks, timing of outbreak peak, and duration 178 



of outbreaks. We defined an outbreak as a continuous time period with peak cases 179 

exceeding the median number of cases (predicted or observed) plus one standard 180 

deviation within a site. Across all sites, the number of outbreaks predicted by the model 181 

closely matched the number of outbreaks observed (R2 = 0.79, p < 0.01; Fig. 3a). 182 

Supporting our a priori expectations based on a previous simulation study [30], we found 183 

that the climate-driven model predicted peak timing of outbreaks (R2 = 0.71, p < 0.01; 184 

Fig. 3b) and outbreak duration (R2 = 0.51, p < 0.01; Fig. 3c) well but did not predict the 185 

final outbreak size (Fig. 3d) or maximum number of infections (Fig. 3e) across sites. 186 

Overall, it was more slightly common for the model to predict outbreaks that were not 187 

observed (N = 4) than to predict no outbreak when one occurred (N = 3). The model may 188 

miss an outbreak (i.e., false negatives) when, for example, suitable climate occurs but the 189 

pathogen is not introduced or the susceptible population is depleted from previous 190 

outbreaks.  191 

 192 

 193 



Figure 2: SEI-SEIR epidemiological model framework. The mosquito population is 194 

split among susceptible (Sm), exposed (Em), and infectious (Im) compartments (squares) 195 

and the human population is split among susceptible (Sh), exposed (Eh), infectious (Ih), 196 

and recovered (Rh) compartments. Solid arrows indicate the direction individuals can 197 

move between classes and dashed arrows indicate the direction of transmission. 198 

Transitions among compartments are labeled by the appropriate processes and 199 

corresponding rate parameters (see Methods for parameter definitions and more detail). 200 

Rate parameters with a T, H, and R are temperature-, humidity-, and rainfall-dependent, 201 

respectively. The total adult mosquito population (Sm, Em, and Im compartments; dotted 202 

rectangle) is maintained at an abundance less than or equal to the mosquito carrying 203 

capacity. 204 

 205 

 206 

Figure 3: Model predictions for the number, timing, and duration of arboviral 207 

outbreaks closely matched field observations. Scatterplots show model predictions 208 



versus observations for different epidemic characteristics. (a) Number of outbreaks 209 

indicates the total number of predicted and observed outbreaks in a site over the study 210 

period. (b) Timing of outbreak peak, (c) outbreak duration, (d) outbreak size, and (e) 211 

maximum infections (e.g., max Ih during an outbreak) correspond to individual outbreaks 212 

where model predictions and observations overlapped in time (including offset outbreaks 213 

if discernable), therefore, some plots show multiple data points per site. Outbreaks are 214 

colored by site with different symbols for Ecuador (circles) and Kenya (triangles). We 215 

show regression lines and associated statistics for statistically significant relationships. 216 

For visualization purposes, we jittered the data points to show overlapping data and we 217 

excluded data from Machala in plots (d) outbreak size and (e) maximum infections 218 

because the magnitude differed substantially from all other sites.  219 

 220 

Capturing spatio-temporal disease dynamics across sites 221 

The SEI-SEIR model generated mosquito and disease dynamics that better reflected 222 

observed dynamics in some sites than others (Fig. 4, Table 2). Model-predicted mosquito 223 

abundances were significantly correlated with field-collected observations of mosquito 224 

abundances in all eight study sites, explaining 28 – 85% of site-level variation through 225 

time based on pairwise correlations with an adjusted p-value for time series data 226 

(following [45]). Based on surveys conducted across all vector life stages in Kenya (only 227 

adult mosquitoes were collected in the Ecuador surveys), the SEI-SEIR model explained 228 

variation in the abundance of adult mosquitoes (28 – 63%) better than pupae (25 – 32%), 229 

late instars (30 – 33%), early instars (20 – 36%), and eggs (33 – 55%), likely because the 230 

model did not explicitly incorporate other mosquito life history stages. Model-predicted 231 



disease cases were significantly correlated with laboratory-confirmed arboviral incidence 232 

in seven of the eight study sites, explaining 44 – 88% of site-level variation through time 233 

(within sites with statistically significant pairwise correlations). We confirmed that the 234 

predicted dynamics were stable with sensitivity analyses to initial conditions (see 235 

Methods), as emerging diseases can display chaotic dynamics due to a high sensitivity to 236 

initial conditions. Overall, the model reproduced disease dynamics slightly better for sites 237 

in Ecuador compared with Kenya.  238 

 239 

 240 

Figure 4: Model predicts vector and human disease dynamics better in some settings 241 

than others. Each plot shows the time series of SEI-SEIR model predictions (grey dots 242 

connected by grey lines) and field observations (black dots connected by black lines) for 243 



vector (top two rows) and human disease (bottom two rows) dynamics for each study site 244 

with the pairwise correlation (r) and adjusted p-value (p). We calculated observed 245 

mosquito abundances as the mean number of adult Ae. aegypti per house, month, year, 246 

and site. We calculated observed arboviral cases as the total number of laboratory-247 

confirmed dengue (any serotype), chikungunya, and Zika cases per month, year, and site; 248 

six of the eight study sites only included dengue cases (see Methods). The first and third 249 

rows show sites in Ecuador and the second and fourth rows show sites in Kenya. We 250 

show uncertainty in model predictions in Figs. S1-2. 251 

 252 

Table 2: Model predictions reflect a range of observed transmission dynamics when 253 

incorporating different rainfall functions and time lags across sites. For each study 254 

site, we calculated pairwise correlations between time series of field observations (Ae. 255 

aegypti abundances or arboviral cases) and time series of model predictions for the SEI-256 

SEIR model with one of three rain functions for mosquito carrying capacity (Brière, 257 

Inverse, or Quadratic) and six time lags (0-5 months). This table shows specifications for 258 

the model (e.g., rain function and time lag) with the highest pairwise correlation value, r, 259 

for each study site and observation type (vectors or human disease cases), as well as the 260 

statistical significance of the correlation value (adjusted p-value) based on the Modified 261 

Chelton method [45] to account for temporal autocorrelation.  262 

 Vector dynamics Human disease dynamics 

Site Rainfall 
function r Adjusted 

p-value 
Lag 

(months) 
Rainfall 
function r Adjusted 

p-value 
Lag 

(months) 
Huaquillas, 
Ecuador Quadratic 0.63 0.01 1 Inverse 0.60 0.00 2 

Machala, 
Ecuador Quadratic 0.63 0.01 0 Brière 0.64 0.00 4 



Portovelo, 
Ecuador Brière 0.66 0.01 1 Brière 0.88 0.00 3 

Zaruma, 
Ecuador Inverse 0.85 0.00 1 Inverse 0.33 0.12 0 

Chulaimbo, 
Kenya Inverse 0.45 0.00 1 Quadratic 0.36 0.02 4 

Kisumu, 
Kenya Brière 0.48 0.00 0 Quadratic 0.51 0.00 4 

Msambweni, 
Kenya Inverse 0.28 0.04 0 Inverse 0.57 0.00 3 

Ukunda, 
Kenya Inverse 0.37 0.03 1 Inverse 0.78 0.00 5 

 263 

We found evidence that rainfall affects transmission through multiple mechanisms and at 264 

different time lags (Table 2). Since the effect of rainfall on mosquito abundances is not 265 

well understood, we simulated disease dynamics for each site three times, using one of 266 

three hypothesized rainfall relationships (Brière, inverse, and quadratic; Fig. S3). We 267 

determined the best rainfall function and time lag for each site based on the highest 268 

pairwise correlation value between model predictions and observations. The model with 269 

the exponentially decreasing inverse rain function (Fig. S3c), which indicates that 270 

mosquito abundances peak when there is no or low rainfall (likely as a result of water 271 

storage practices and/or unreliable water sources) described observed mosquito and 272 

disease dynamics most often, especially in the Kenya sites (Table 2), where household 273 

access to piped water is very low (Table 1). The left-skewed unimodal Brière rainfall 274 

function (Fig. S3a), which indicates that mosquito abundances increase with increasing 275 

rainfall until some threshold where flushing occurs, described disease dynamics in some 276 

settings, particularly in the Ecuador sites. The symmetric unimodal quadratic rainfall 277 

function (Fig. S3b), which indicates that mosquito abundances peak with intermediate 278 

amounts of rainfall and are reduced with low and high rainfall values, also described 279 



disease dynamics in some settings. Interestingly, we did not find a single rainfall function 280 

that consistently described dynamics for mosquitoes or arboviral cases across study sites, 281 

or for both mosquitoes and arboviral cases within individual study sites (Table 2). In 282 

contrast, we did find some consistency with time lags. The model best predicted 283 

mosquito abundances in the same month or one month in the future. In more than half of 284 

the sites, the model best predicted human disease cases three to four months in the future, 285 

and in almost all sites at least two months in the future (the exception is Zaruma, where 286 

very few arbovirus cases were reported during the study period and were likely due to 287 

importation rather than local transmission). Given that multiple rainfall functions and 288 

time lags are supported by field data (even within the same study site), we propose a 289 

conceptual model that incorporates multiple pathways for rainfall to affect disease 290 

dynamics along a continuum of rainfall (Fig. 5), in contrast to distinct functional 291 

relationships for a given setting, which motivated the approach used in this study. 292 

 293 



 294 

Figure 5: Conceptual model for nonlinear functional relationships between rainfall 295 

and vector abundance and arboviral outbreak risk. Dashed lines show multiple 296 

potential pathways for rainfall to affect transmission dynamics and include the functional 297 

relationships supported in this study. Labels indicate the hypothesized mechanisms along 298 

a gradient of rainfall. Adapted from [46]. 299 

 300 

Factors that mediate disease dynamics predictability 301 

The ability of the model to generate similar dynamics to those found in the field varied 302 

with demography, housing quality, and climate. Although the sample size is small (N = 8 303 

sites), we found that the SEI-SEIR model generally predicted vector dynamics better in 304 

sites with a smaller proportion of young children in the population (R2 = 0.89, p < 0.01; 305 

Fig. 6a), lower mean temperature (R2 = 0.63, p < 0.05; Fig. 6c), and a larger proportion of 306 

homes with piped water (R2 = 0.76, p < 0.01; Fig. 6b) and made of cement (R2 = 0.69, p 307 



< 0.05; Fig. 6d; list of all factors we assessed are provided in Table 1). Based on the 308 

range of mean temperatures at our study sites (22 – 28°C), our findings indicate that 309 

vector dynamics become less predictable as temperatures near the optimal temperature 310 

for transmission (derived in previous studies as 29°C) following the shape and slope in 311 

the R0 curve (Fig. 7). This complements phenomenological models that have found 312 

minimal effects of temperature near the empirically derived thermal optima (Fig. 7). 313 

None of the socio-economic factors that we examined in this study (Table 1) explained 314 

variability in the pairwise correlations for human disease cases among sites.  315 

 316 

Figure 6: Demography, housing construction, and climate affect model predictive 317 

capacity for vectors. Factors that influence the predictability of vector dynamics include 318 

(a) proportion of the population under five years of age, (b) proportion of houses without 319 

screens, (c) mean temperature, and (d) proportion of houses made with cement (walls 320 



and/or floors). Points indicate the pairwise correlation value for a single site (colors) with 321 

different symbols for Ecuador (circles) and Kenya (triangles). Each plot also shows the 322 

linear regression lines and associated statistics. 323 

 324 

 325 

Figure 7: Independently predicted relative R0 from a model derived from 326 

laboratory studies explains differences in the magnitude and direction of the effects 327 

of temperature on dengue transmission in the field across varied settings from 328 

previous studies. The black line shows the relative basic reproductive number (R0, 329 

normalized to a 0-1 scale) plotted against temperature based on all temperature-330 

dependent traits from [19] used in the SEI-SEIR model presented here. Points indicate 331 

mean temperature values from previous field-based statistical analyses that related 332 

dengue cases with minimum, maximum, or mean ambient temperature; arrows 333 

correspond to the direction (up = positive, down = negative) and relative effect size of the 334 

temperature – dengue relationship based on coefficient values from the following studies: 335 

[47,48,57,58,49–56]. See Methods and Table S1 for more detail. As expected, the largest 336 



observed positive effects of temperature occurred in the rapidly increasing portion of the 337 

R0 curve (~22-25°C; consistent with findings in this study) and the largest observed 338 

negative effects occurred well above the predicted optimum, near the upper thermal limit 339 

(~33-35°C).  340 

 341 

Discussion: 342 

Directly observing the influence of climate on species interactions and population 343 

dynamics is often challenging because of interacting and nonlinear relationships. Here, 344 

we directly and quantitatively connect laboratory-based climate relationships to observed 345 

mosquito and disease dynamics in the field, supporting the mechanistic role of climate in 346 

these disease systems. The trait-based modeling approach captured several key epidemic 347 

characteristics and generated a range of disease dynamics along a spectrum of settings 348 

with low levels of transmission to seasonal outbreaks, helping to reconcile seemingly 349 

context dependent effects (i.e., opposite conclusions about the magnitude and direction of 350 

effects; Fig. 7) of climate on arboviral transmission dynamics from the literature [7–351 

12,47].  352 

 353 

The results of this study shed some light on the influence of climate in driving endemic 354 

versus epidemic dengue transmission. Although Ecuador typically experiences seasonal 355 

epidemics [6] and Kenya typically experiences low levels of year-round transmission [5], 356 

the sites within this study suggest that epidemic transmission is more common in settings 357 

with clear seasonality (e.g., coastal sites) whereas endemic transmission is more common 358 

in settings with more climate variability (e.g., inland sites), regardless of country. Coastal 359 



sites experienced more regular seasonal climate cycles, likely because oceans buffer 360 

climate variability, and this seasonality corresponded with seasonal epidemics. In 361 

contrast, the inland sites experienced more day-to-day climate variability, which resulted 362 

in more fluctuations in disease cases. As a result, the occurrence and persistence of 363 

suitable temperature, rainfall, and humidity conditions enabling outbreaks were less 364 

regular in sites with more climate variability. The ability of the model to detect key 365 

epidemic characteristics across endemic and epidemic settings indicates that climate 366 

plays a major role in driving when outbreaks occur and how long they last. 367 

 368 

Using field data on mosquitoes and disease cases from diverse settings and a model 369 

parameterized with data from other studies, we identified several key epidemic 370 

characteristics that we should (and should not) expect to capture in new settings. While 371 

we would never expect a perfect correlation between model predictions and observations, 372 

even if the model perfectly captured climate-host-vector dynamics because of the many 373 

additional factors that affect transmission in nature, our results indicate that a model with 374 

limited calibration can determine the number of outbreaks across settings remarkably 375 

well (Fig. 3a). This finding could be particularly useful for prioritizing surveillance or 376 

intervention activities across a range of a potential sites that would otherwise appear 377 

equal in their propensity for outbreaks (e.g., similar climate conditions). We also show 378 

that the model captures the peak timing of outbreaks (Fig. 3b) and outbreak duration (Fig. 379 

3c) but not the final outbreak size (Fig. 3d) or maximum number of infections (Fig. 3e), 380 

supporting the hypothesis that the magnitude of disease cases during an outbreak in 381 

settings with year-round climate suitability for disease transmission are invariant to 382 



temperature, as proposed by [30], likely because the magnitude of disease cases is 383 

probably more strongly driven by the availability of susceptible hosts.  384 

 385 

Given that the model generally did not predict the magnitude of outbreaks, we asked how 386 

well the model reproduced vector and human disease dynamics (i.e., variation over time) 387 

across sites and whether this relationship varied systematically with different socio-388 

economic factors. The range across sites of temporal correlations between model 389 

predictions and observations (N = 8; Fig. 4, Table 2) provides an informative metric for 390 

the proportion of true disease dynamics that we might expect to capture in new settings, 391 

ranging from 28 – 88%. The correlations varied with demography, housing construction, 392 

and climate (Fig. 6). The model may have better explained vector dynamics in locations 393 

with a lower proportion of children under five years old for a variety of reasons, 394 

including because bottom-heavy demographic pyramids are often associated with lower 395 

socioeconomic status and higher mobility throughout the day. In addition to the 396 

demographic makeup of sites, housing construction within sites also seems to modify 397 

transmission dynamics: vector dynamics were less predictable in sites with more houses 398 

with piped water and made of cement (Fig. 6b,d). These results suggest that piped water 399 

may prevent additional contact between humans and mosquitoes associated with stored 400 

water around the home. In addition, housing materials like cement that lower indoor 401 

temperature could artificially decrease climate suitability for mosquitoes, thereby 402 

decreasing the probability that mosquitoes will enter and bite people inside their homes. 403 

Despite incorporating all known temperature-dependent mosquito traits into the SEI-404 

SEIR model, we still found vector dynamics became less predictable near the empirically 405 



derived thermal optima for arboviral transmission (Figs. 6c, 7). This finding may be 406 

associated with physiological or behavioral responses of mosquitoes to temperatures near 407 

their thermal safety margin [59,60] and/or humans modifying their environment (as 408 

described above) in locations optimal for transmission.  409 

 410 

Across the study sites, we found support for three hypothesized relationships between 411 

rainfall and mosquito carrying capacity as well as several time lags between model 412 

predictions and disease observations. Support for multiple rainfall functions could  413 

indicate that the effects of rainfall on immature habitat is highly heterogenous, which has 414 

been found in previous research in Ecuador [27] and Kenya [61]. Alternatively, the 415 

combination of multiple rainfall relationships and time lags could arise from nonlinear 416 

and delayed effects of extreme climate such as droughts and floods. More specifically, 417 

we hypothesize that there may be multiple mechanistic relationships for the effects of 418 

rainfall on mosquito abundance and arboviral disease dynamics (Fig. 5), and they may act 419 

on different time scales. For example, previous research indicated that dengue outbreaks 420 

were more likely to occur four to five months after a drought and one month after 421 

excessive rainfall and a statistical model that incorporated these duel exposure-lag-422 

response functions was highly effective at predicting dengue outbreaks in Barbados [62]. 423 

Further, if multiple rainfall relationships act in concert across varying time lags, this 424 

would help to explain why many different time lags have been observed between rainfall 425 

and arboviral dynamics in previous studies [6,27,51,63–65]. 426 

 427 



Future research can build on this study to improve our understanding of arboviral 428 

dynamics across settings. There were several factors that we did not include in this study, 429 

such as existing vector control programs, infrastructure, and preexisting immunity in the 430 

population. For instance, in Ecuador, factors such as distance to abandoned properties, 431 

interruptions in access to piped water, shaded patios, and use of vector control are 432 

documented to influence arbovirus transmission [66], whereas in the study sites in Kenya, 433 

factors associated with arboviral transmission are less well studied and there are currently 434 

no widely used vector control or local arboviral surveillance programs employed. Future 435 

studies could further improve the model by incorporating human immune dynamics 436 

associated with interactions among different dengue serotypes [67] or cross-reactivity 437 

among viral antibodies [68], differential susceptibility across human age classes [69], and 438 

heterogeneity in contact rates between mosquitoes and people based on human behavior 439 

and movement [70,71]. Further, as experimental data becomes available for trait 440 

estimates specific to chikungunya and Zika, this model could be partitioned to model 441 

each arboviral disease individually. This is likely to be an important addition as the 442 

different arboviruses tend to peak in different years, possibility due to differences in viral 443 

development rates and extrinsic incubation periods among arboviruses. Therefore, 444 

validating the model with all three arboviruses combined may oversimplify the complex 445 

interannual dynamics that arise due to competition among arboviruses in mosquitoes and 446 

humans. There were not enough data for chikungunya and Zika cases in this study to 447 

formally test such patterns. This study provides strong evidence that a trait-based model, 448 

parameterized independently from field data, can reproduce key epidemic characteristics 449 

and a range of spatiotemporal arboviral disease dynamics. Such mechanistic, climate-450 



driven models will become increasingly important to support public health efforts in the 451 

face of novel climate regimes emerging due to climate change.  452 

 453 

Materials and Methods: 454 

Climate data 455 

We collected in situ measurements of daily mean temperature, relative humidity, and 456 

rainfall at each study site and interpolated missing data where necessary. We used 457 

temperature and humidity measurements from HOBO loggers and rainfall measurements 458 

from rain gauges for sites in Kenya. We used temperature, humidity, and rainfall 459 

measurements from automatic weather stations operated by the National Institute of 460 

Meteorology and Hydrology in Ecuador. For Kenya, we interpolated missing temperature 461 

data from NOAA Global Surface Summary of the Day (Table S2, Fig. S4) and 462 

interpolated missing rainfall data from NOAA Climate Prediction Center Africa Rainfall 463 

Climatology dataset (Table S2, Fig. S5). For Ecuador, we interpolated missing 464 

temperature (Table S2, Fig. S4) and rainfall (Table S2, Fig. S5) data using the nearest 465 

study site where possible and otherwise based on long term mean values for the 466 

corresponding Julian day. To interpolate missing data, we linearly regressed all 467 

measurements taken on the same day in two datasets and then used the linear model to 468 

interpolate temperature for the site with missing data based on the climate measurement 469 

from the secondary source for the date when the data was missing (Figs. S4-5). For 470 

rainfall, we first calculated a moving window of 14-day accumulated rainfall (which is 471 

short enough to capture variability and seasonality in rainfall patterns and follows [72]) 472 

for each day before interpolation because modeled daily rainfall values are less reliable 473 



than accumulated rainfall over a two week period. We interpolated 14-day cumulative 474 

rainfall for any day with a missing rainfall value in the prior 14 days. For both Kenya and 475 

Ecuador, we interpolated missing relative humidity data based on long term mean values 476 

for the corresponding Julian day (Table S2). We then calculated the saturation vapor 477 

pressure deficit (SVPD) from temperature and humidity to use in the humidity function 478 

because previous research suggests SVPD is a more informative measure of the effect of 479 

humidity on mosquito survival compared with relative humidity [73]. To calculate 480 

SVPD, we first calculated the saturation vapor pressure as:  481 

𝑆𝑆𝑆𝑆𝑆𝑆 =  610.7 ∗  107.5∗𝑇𝑇/(273.3+𝑇𝑇) (1) 

where (𝑇𝑇) is temperature in degrees Celsius. We then calculated SVPD (in kilopascals) as  482 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  1 −
𝑅𝑅𝑅𝑅
100

∗ 𝑆𝑆𝑆𝑆𝑆𝑆 (2) 

where RH is relative humidity. The final dataset had no missing values for temperature 483 

(Fig. S6), rainfall (Fig. S7), and humidity (Fig. S8).  484 

 485 

Vector surveys 486 

We collected, counted, sexed, and classified mosquitoes by species, and aggregated the 487 

data to mean number of Aedes aegypti per house, month, year, and site to account for 488 

differences in survey effort across months and sites. We collected adult mosquitoes using 489 

Prokopack aspirators [74]. In Ecuador, we collected mosquitoes from approximately 27 490 

houses per site (range = 3-57 houses across four sites) every one-to-two weeks during 491 

three, four-month sampling periods between July 2016 and August 2018 (≈ 37 sampling 492 

weeks per site) to capture different parts of the transmission season. We aggregated the 493 

Ecuador vector data to monthly values (≈ 15 sampling months per site) to correspond 494 



with the temporal resolution of surveys in Kenya. In Kenya, we collected mosquitoes 495 

from approximately 20 houses per site (range = 1-47 houses across four sites) every 496 

month between January 2014 and October 2018 (≈ 54 sampling months per site). In 497 

Kenya, we also collected pupae, late instars, and early instars from containers with 498 

standing water around the home and collected eggs by setting ovitraps for an average of 499 

four days in and around each house monthly. We brought pupae, late and early instars, 500 

and eggs to the insectary and reared them to adulthood to classify individuals by sex and 501 

species. All mosquito traps capture a small portion of the true mosquito population; 502 

therefore, using consistent trapping methods at the same locations through time allows us 503 

to compare relative mosquito population dynamics across study sites rather than the 504 

absolute magnitude of mosquito abundances.  505 

 506 

Arboviral surveys 507 

For Ecuador, we analyzed laboratory-confirmed dengue, chikungunya, and Zika cases 508 

provided by the Ministry of Health (MoH) of Ecuador. The MoH collects serum samples 509 

from a subset of people with suspected arbovirus infections, and samples are tested at the 510 

National Public Health Research Institute by molecular diagnostics (RT-PCR) or 511 

antibody tests (IgM ELISA for dengue), depending on the number of days of illness. 512 

Results are sent to the MoH Epidemiological Surveillance and Control National 513 

Directorate (SIVE Alerta system). Laboratory-confirmed dengue cases were available for 514 

all four sites from 2014 to 2018. Laboratory-confirmed chikungunya cases were available 515 

for Machala and Huaquillas from 2015 to 2018. Laboratory-confirmed Zika cases were 516 

available for Machala from 2016 to 2018.  517 



 518 

For Kenya, we used laboratory-confirmed dengue cases aggregated by site and month 519 

between 2014 and 2018 collected in a passive surveillance study on childhood febrile 520 

illness in Kenya (NIH R01AI102918, PI: ADL). The study population consisted of 7,653 521 

children less than 18 years of age with undifferentiated febrile illness. Children with fever 522 

enrolled in the study when attending outpatient care in one of the four study sites (Mbaka 523 

Oromo Health Centre in Chulaimbo, Obama Children’s Hospital in Kisumu, Msambweni 524 

District Hospital in Msambweni, and Ukunda/Diani Health Center in Ukunda). Local 525 

health officers collected comprehensive clinical and demographic data and phlebotomy at 526 

the initial visit. We tested each child’s blood for dengue viremia by molecular diagnostics 527 

(conventional PCR [75] or targeted multiplexed real-time PCR when available [76]), or 528 

serologic conversion between an initial and a follow up visit (IgG ELISA [77]). 529 

 530 

SEI-SEIR model 531 

We adapted an SEI-SEIR model parameterized for dengue transmission in Ae. aegypti 532 

mosquitoes [30] to simulate mosquito abundance and arboviral cases through time based 533 

on daily weather conditions in eight study locations. The model (equations 3-9; Fig. 2), 534 

created independently from the observed data described above, allows mosquito life 535 

history traits and viral development rate to vary with temperature (𝑇𝑇) following [30], 536 

mosquito carrying capacity to vary with accumulated 14-day rainfall (𝑅𝑅) following [72], 537 

and mosquito mortality to vary with humidity (i.e., saturation vapor pressure deficit) (𝐻𝐻) 538 

following [73]. 539 

 540 



𝑑𝑑𝑆𝑆𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝜑𝜑(𝑇𝑇,𝐻𝐻) ∗
1

𝜇𝜇(𝑇𝑇,𝐻𝐻) ∗ 𝑁𝑁𝑚𝑚 ∗ �1 −
𝑁𝑁𝑚𝑚

𝐾𝐾(𝑇𝑇,𝑅𝑅,𝐻𝐻) � –�𝑎𝑎(𝑇𝑇) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) ∗
𝐼𝐼ℎ
𝑁𝑁ℎ

+ 𝜇𝜇(𝑇𝑇,𝐻𝐻)� ∗ 𝑆𝑆𝑚𝑚 (3) 

𝑑𝑑𝐸𝐸𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑇𝑇) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) ∗
𝐼𝐼ℎ
𝑁𝑁ℎ

∗ 𝑆𝑆𝑚𝑚 − �𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇) + 𝜇𝜇(𝑇𝑇,𝐻𝐻)� ∗ 𝐸𝐸𝑚𝑚 (4) 

𝑑𝑑𝐼𝐼𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇) ∗ 𝐸𝐸𝑚𝑚 − 𝜇𝜇(𝑇𝑇,𝐻𝐻) ∗ 𝐼𝐼𝑚𝑚 (5) 

𝑑𝑑𝑆𝑆ℎ
𝑑𝑑𝑑𝑑

= −𝑎𝑎(𝑇𝑇) ∗ 𝑏𝑏(𝑇𝑇) ∗
𝐼𝐼𝑚𝑚
𝑁𝑁ℎ

∗ 𝑆𝑆ℎ + 𝐵𝐵𝐵𝐵 ∗ 𝑆𝑆ℎ − 𝐷𝐷𝐷𝐷 ∗ 𝑆𝑆ℎ + 𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁ℎ −  𝑖𝑖𝑖𝑖 ∗ 𝑆𝑆ℎ  (6) 

𝑑𝑑𝐸𝐸ℎ
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑇𝑇) ∗ 𝑏𝑏(𝑇𝑇) ∗
𝐼𝐼𝑚𝑚
𝑁𝑁ℎ

∗ 𝑆𝑆ℎ − 𝛿𝛿 ∗ 𝐸𝐸ℎ − 𝐷𝐷𝐷𝐷 ∗ 𝐸𝐸ℎ −  𝑖𝑖𝑖𝑖 ∗ 𝐸𝐸ℎ  (7) 

𝑑𝑑𝐼𝐼ℎ
𝑑𝑑𝑑𝑑

= 𝛿𝛿 ∗ 𝐸𝐸ℎ − 𝜂𝜂 ∗ 𝐼𝐼ℎ − 𝐷𝐷𝐷𝐷 ∗ 𝐼𝐼ℎ −  𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼ℎ  (8) 

𝑑𝑑𝑅𝑅ℎ
𝑑𝑑𝑑𝑑

= 𝜂𝜂 ∗ 𝐼𝐼ℎ − 𝐷𝐷𝐷𝐷 ∗ 𝑅𝑅ℎ −  𝑖𝑖𝑖𝑖 ∗ 𝑅𝑅ℎ  (9) 

 541 

where 542 

𝜑𝜑(𝑇𝑇,𝐻𝐻) = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇) (10) 

The adult mosquito population (Nm) is separated into susceptible (Sm), exposed (Em), and 543 

infectious (Im) compartments and the human population (Nh) is separated into susceptible 544 

(Sh), exposed (Eh), infectious (Ih), and recovered (Rh) compartments (Fig. 2). Climate-545 

independent model parameters (Table 3) include the intrinsic incubation period (𝛿𝛿), 546 

human infectivity period (𝜂𝜂), birth rate (𝐵𝐵𝐵𝐵), death rate (𝐷𝐷𝐷𝐷), and immigration/emigration 547 

rate (𝑖𝑖𝑖𝑖). The temperature-dependent SEI-SEIR model was developed by Huber et al. [30] 548 

and allows mosquito life history traits and viral development rate to vary according to 549 

thermal response curves fit from data derived in laboratory experiments conducted at 550 

constant temperatures (Table 3). Although laboratory experiments do not reflect real-551 

world conditions, the physiological responses measured are biologically meaningful. The 552 

temperature-dependent traits include eggs laid per female per day (𝐸𝐸𝐸𝐸𝐸𝐸), the probability of 553 

egg-to-adult survival (𝑝𝑝𝑝𝑝𝑝𝑝), mosquito development rate (𝑀𝑀𝑀𝑀𝑀𝑀), mosquito mortality rate 554 

(lifespan-1; 𝜇𝜇), biting rate (𝑎𝑎), probability of mosquito infection per bite on an infectious 555 



host (𝑝𝑝𝑝𝑝𝑝𝑝), parasite development rate (𝑃𝑃𝑃𝑃𝑃𝑃), and probability of mosquito infectiousness 556 

given an infectious bite (𝑏𝑏). We modified the mosquito mortality rate equation to vary as 557 

a function of temperature and humidity by fitting a spline model based on a pooled 558 

survival analysis of Ae. aegypti [73] (Fig. S9): 559 

𝜇𝜇(𝑇𝑇,𝐻𝐻) =  
1

𝑐𝑐 ∗ (𝑇𝑇 − 𝑇𝑇0) ∗ (𝑇𝑇 − 𝑇𝑇𝑚𝑚)
+ (1 − (0.01 + 2.01 ∗ 𝐻𝐻)) ∗ 𝑦𝑦 𝐻𝐻 < 1 (11) 

𝜇𝜇(𝑇𝑇,𝐻𝐻) =  
1

𝑐𝑐 ∗ (𝑇𝑇 − 𝑇𝑇0) ∗ (𝑇𝑇 − 𝑇𝑇𝑚𝑚)
+ (1 − (1.22 + 0.27 ∗ 𝐻𝐻)) ∗ 𝑦𝑦 𝐻𝐻 ≥ 1 (12) 

where the rate constant (𝑐𝑐), minimum temperature (𝑇𝑇0), and maximum temperature (𝑇𝑇𝑚𝑚) 560 

equal -1.24, 16.63, and 31.85 respectively (Table 4), humidity (𝐻𝐻) is the saturation vapor 561 

pressure deficit, and 𝑦𝑦 is a scaling factor that we set to 0.005 and 0.01, respectively, to 562 

restrict mosquito mortality rates within the range of mortality rates estimated by other 563 

studies [19,73]. The linear humidity function has a steeper slope at lower humidity values 564 

(equation 11) compared with higher humidity values (equation 12) based on previous 565 

research [73] (Fig. S9).  566 

 567 

We modeled adult mosquito carrying capacity, 𝐾𝐾, as a modified Arrhenius equation 568 

following [30,78]:  569 

𝐾𝐾(𝑇𝑇,𝐻𝐻,𝑅𝑅) =
𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇0) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇0) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇0) ∗ 𝜇𝜇(𝑇𝑇0,𝐻𝐻0)−1 − 𝜇𝜇(𝑇𝑇0,𝐻𝐻0)

𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇0) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇0) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇0) ∗ 𝜇𝜇(𝑇𝑇0,𝐻𝐻0)−1
∗ 𝑁𝑁𝑚𝑚.𝑚𝑚𝑚𝑚𝑚𝑚

∗ 𝑒𝑒
−𝐸𝐸𝐴𝐴∗(𝑇𝑇−𝑇𝑇0)2

𝜅𝜅𝐵𝐵∗(𝑇𝑇+273)∗(𝑇𝑇0+273) ∗ 𝑓𝑓(𝑅𝑅) 

(13) 

with 𝑇𝑇0 and 𝐻𝐻0 set to the temperature and humidity where carrying capacity is greatest (i.e., 570 

physiological optimal conditions from laboratory experiments; 29°C and 6 kPA), 𝑁𝑁𝑚𝑚.𝑚𝑚𝑚𝑚𝑚𝑚 571 

set to the maximum possible mosquito abundance in a population (twice the human 572 

population size following [30]), and the Boltzmann constant, (𝐾𝐾𝐵𝐵), is 8.617 x 10-5 eV/K. 573 



We set the activation energy, 𝐸𝐸𝐴𝐴, as 0.05 based on [30]. Since there were no experimental 574 

data from which to derive the functional response of mosquito carrying capacity across a 575 

gradient of rainfall values, we tested several functional relationships based on 576 

hypothesized biological relationships between freshwater availability and immature 577 

mosquito breeding habitat, modeling the effect of rainfall on carrying capacity, f(R), as 578 

either: 579 

𝑓𝑓(𝑅𝑅Brière) =  𝑐𝑐 ∗ 𝑅𝑅 ∗ (𝑅𝑅 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) ∗  �(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅) ∗ 𝑧𝑧 (14) 

𝑓𝑓�𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄� = 𝑐𝑐 ∗ (𝑅𝑅 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) ∗ (𝑅𝑅 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) ∗ 𝑧𝑧 (15) 

𝑓𝑓(𝑅𝑅Inverse) =  
1

𝑅𝑅
∗ 𝑧𝑧 

(16) 

where minimum rainfall (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) equaled 1 mm and maximum rainfall (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) equaled 123 580 

mm based on the high probability of flushing [26]. The quadratic function is similar to 581 

the rainfall function found in [26] and the inverse function is based on the rainfall 582 

function used in [72]. We used rate constants (𝑐𝑐) of 7.86e-5 and -5.99e-3 for the Brière and 583 

quadratic functions respectively, based on rate constants for other parameters with similar 584 

functional forms (Table 4). We also included a scaling factor, 𝑧𝑧 (0. 28, 0.025, and 0.60 585 

respectively), to restrict the maximum carrying capacity to produce model outputs based 586 

on a subsample of the total population for comparison with observations. Since the rate 587 

constant, 𝑐𝑐, is multiplied by 𝑧𝑧, inferring the exact value of 𝑐𝑐 is not necessary because it is 588 

scaled by 𝑧𝑧. The scaling factor could be removed from the model to simulate dynamics in 589 

the total population. 590 

 591 



Table 3: Values of temperature-invariant parameters used in the model. We derived 592 

daily birth and death rates in the model by dividing the per capita birth and death rates by 593 

360 days. The World Bank Open Data can be found at https://data.worldbank.org/. 594 

Parameter Definition Value Source 
𝛿𝛿−1 Intrinsic incubation period (days) 

 
5.9 [30] 

𝜂𝜂−1 Human infectivity period (days) 
 

5.0 [30] 

𝐵𝐵𝐵𝐵 Annual birth rate (per 1000 people) 
 
 

31.782 (Ecuador) 
20.175 (Kenya) 

The World Bank 
Open Data  

𝐷𝐷𝐷𝐷 Annual death rate (per 1000 people) 
 
 

5.284 (Ecuador) 
5.121 (Kenya) 

The World Bank 
Open Data 

𝑖𝑖𝑖𝑖 Immigration/emigration rate 0.01 Expert opinion 
 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 
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Table 4: Fitted thermal responses for Ae. aegypti life history traits. Traits were fit to a 608 

Brière [𝑐𝑐𝑐𝑐(𝑇𝑇 − 𝑇𝑇0)(𝑇𝑇𝑚𝑚 − 𝑇𝑇)
1
2] or a quadratic [𝑐𝑐(𝑇𝑇 − 𝑇𝑇𝑚𝑚)(𝑇𝑇 − 𝑇𝑇0)] function where T 609 

represents temperature. T0 and Tm are the critical thermal minimum and maximum, 610 

respectively, and c is the rate constant. Thermal responses were fit by [19] and also used 611 

in [30]. Parasite development rate was measured as the virus extrinsic incubation rate. 612 

Trait Definition Function c T0 Tm 
a Biting rate (day-1) 

 
Brière 2.71x10-04 14.67 41.00 

EFD Eggs laid per female per day 
 

Brière 2.08x10-02 14.06 32.03 

pEA Probability of mosquito egg-to-adult 
survival 
 

Quadratic -3.36x10-03 7.68 38.31 

MDR Mosquito egg-to-adult development 
rate (day-1) 
 

Brière 1.49x10-04 15.12 37.67 

Lf Adult mosquito lifespan (days) 
 

Quadratic -1.24 16.63 31.85 

b Probability of mosquito 
infectiousness 
 

Brière 9.86x10-04 12.05 32.79 

pMI Probability of mosquito infection 
 

Brière 5.23x10-04 1.51 34.74 

PDR Parasite development rate (day-1) Brière 1.04x10-04 11.50 38.97 
 613 

To initiate the model, we used site-specific values for human population size and 614 

randomly selected one set of values for all sites for the proportion of mosquitoes and 615 

humans in each compartment. For Ecuador, we used population estimates from official 616 

population projections produced by Proyección de la Población Ecuatoriana, por años 617 

calendario, según cantones 2010-2020 618 

(https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/) with population sizes 619 

of 57,366, 279,887, 13,673, and 25,615 for Huaquillas, Machala, Portovelo, and Zaruma, 620 

respectively, based on 2017 projections. For Kenya, we estimated the population sizes 621 

https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/


served by each outpatient care facility by creating a polygon around all the geolocations 622 

of study participants’ homes enrolled at each outpatient care facility and summed 623 

population count data from NASA’s Socioeconomic Data and Applications Center 624 

Gridded Population of the World v4 (https://doi.org/10.7927/H4JW8BX5) within each 625 

polygon using ArcGIS v 10.4.1. We estimated population sizes of 7,304, 547,557, 626 

240,698, and 154,048 for Chulaimbo, Kisumu, Msambweni, and Ukunda, respectively. 627 

We set the ratio of mosquitoes to humans to two, following [30]. We used the following 628 

values as the initial proportion of mosquitoes and humans in each model compartment: 629 

Sm = 0.22, Em = 0.29, Im = 0.49, Sh = 0.58, Eh = 0.22, Ih = 0.00, and Rh = 0.20. We 630 

determined that the model was invariant to initial proportion values after a short burn-in 631 

period (90 days) based on a sensitivity analysis (Fig. S10); therefore, we randomly 632 

selected one set of initial proportion values from the sensitivity analysis for all the model 633 

simulations. We also determined that the temporal trajectories of model dynamics did not 634 

change when we varied the critical thermal minimum, maximum, and rate constants 635 

(Table 4) for Aedes aegypti life history traits (Fig. S1-2). 636 

 637 

We ran all model simulations using the deSolve package in R statistical software v 3.5.3 638 

[79]. Model codes are available at https://github.com/jms5151/SEI-SEIR_Arboviruses.  639 

 640 

Model validation 641 

To validate the SEI-SEIR model, we calculated pairwise correlations with an adjusted p-642 

value to account for autocorrelation for each site. For the pairwise correlations, we used 643 

the ccf function in base R [79] to calculate correlations between the two times series of 644 

https://doi.org/10.7927/H4JW8BX5
https://github.com/jms5151/SEI-SEIR_Arboviruses


model predictions and observations with 0, 1, 2, 3, and 4-month lags. We then calculated 645 

an adjusted p-value using the Modified Chelton method [45] to adjust the null hypothesis 646 

test of sample correlation between autocorrelated time series. To assess predictions and 647 

observations for vector dynamics for each site, we compared monthly time series of the 648 

total predicted mosquito population from the SEI-SEIR model with the monthly time 649 

series of mean number of Aedes aegypti (per house). We followed the same procedure to 650 

compare model predictions with other mosquito life stages for sites in Kenya. Similarly, 651 

to compare predictions and observations for human disease dynamics for each site, we 652 

compared monthly times series of predicted infected individuals from the SEI-SEIR 653 

model with the monthly time series of total laboratory-confirmed arboviral cases. For 654 

subsequent analyses, we used model predictions from the model (e.g., SEI-SEIR model 655 

with a specific rainfall function and time lag) with the highest pairwise correlation value.  656 

 657 

To compare key epidemic characteristics between model predictions and observations 658 

and to compare site-specific correlations with socio-economic factors, we used linear 659 

regression models using the lm function in that stats package in R [79]. We defined 660 

outbreaks as a continuous time period where the peak cases exceeded the median number 661 

of cases (predicted or observed) plus one standard deviation within a site. We then used 662 

those outbreak periods to count the total number of outbreaks within each site, and, for 663 

predicted and observed outbreaks that overlapped in time (or were slightly offset), the 664 

duration, peak timing, maximum number of infections, and total outbreak size. We 665 

compared predictions and observations for each of these metrics with linear regression. 666 

Since we were interested in whether model predictions matched observations for each 667 



independent outbreak period, we did not allow varying intercepts or slopes by site. 668 

Similarly, we compared the pairwise correlation values (described above) across all sites 669 

with each socio-economic factor listed in Table 1 separately using linear regressions.  670 

 671 

Comparison of R0 with prior studies 672 

We collected effect sizes of temperature on dengue incidence from 12 peer-reviewed 673 

studies from the literature (Table S1). We selected studies with mean temperatures across 674 

the predicted temperature range where arboviral transmission can occur. We scaled the 675 

coefficient values to visualize the relative effect of temperature across studies given that 676 

the original analyses were conducted with different temperature metrics and across 677 

different temperature ranges. We provide additional information and sources in Table S1. 678 
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