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Abstract

Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distri-
bution where few individuals or events are responsible for the majority of transmission can result in ex-
plosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or
late in epidemics. Anticipating and preventing superspreading events can produce large reductions in
overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework
for estimating transmission parameters from multiple imperfectly observed data streams, including re-
ported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in
transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for
COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the im-
pact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct
settings—Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta
(Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find the effective
reproduction number R dropped below 1 rapidly following social distancing orders in mid-March, 2020
and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los
Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model,
we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic
dynamics and control? We find interventions that truncate the transmission rate distribution while partially
relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest
population-wide social distancing observed in April, 2020. Given that social distancing interventions will
be needed to maintain epidemic control until a vaccine becomes widely available, “chopping off the tail”
to reduce the probability of superspreading events presents a promising option to alleviate the need for
extreme general social distancing.
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Introduction

In the face of emerging epidemics with limited pharmaceutical options for treatment and prevention of
infection, non-pharmaceutical interventions such as social distancing are critical for slowing epidemic
growth. Shelter-in-place and other social distancing orders have helped to slow the pace of the COVID-19
pandemic, reducing the effective reproduction number Rg—or the number of secondary infections pro-
duced by each infected person—to one or below in most places. In doing so, social distancing has effec-
tively kept most regional healthcare systems operating under maximum capacity. However, after only a
few weeks of declining numbers of daily cases due to an Rg at or below one, most state and county gov-
ernments in the United States have begun relaxing social distancing orders, citing their major economic
impacts. In order to avoid epidemic resurgence, it is vitally important that governments employ long-term
strategies that maintain epidemic control as economic reopening commences.

One obstacle to designing effective long-term strategies is a notoriously heterogeneous transmission
process. It is now widely recognized that the minority of infections generate the majority of secondary cases,
leading to the so-called 20-80 rule in epidemiology (the rule-of-thumb that 20% of people generate 80% of
cases)!. Work on SARS-CoV-1, measles, and other respiratory viruses suggests that this skew in secondary
cases is even larger?. This heterogeneity gives rise to events in which a single infected person transmits a
disease to dozens or hundreds of people—called superspreading events—which have played an important
role in the COVID-19 pandemic®*>%7. Indeed, the frequency of asymptomatic and presymptomatic trans-
mission, potential disconnect between infection and clinical presentation®, and potential transmission via
direct contact, aerosols, and surfaces”!? are all features of SARS-CoV-2 that tend to promote superspread-
ing. As local and national governments search for viable exit strategies from shelter-in-place, a critical
question is how effective curtailing superspreading events could be in controlling epidemic spread.

Practically, one strategy to help prevent superspreading is to prohibit medium to large indoor gatherings
such as exercise classes, sporting events, concerts, and weddings for an extended period after allowing
smaller and lower-risk activities to resume. From a modeling standpoint, predicting the effects of this
straightforward intervention is difficult for two reasons: 1) local epidemiological dynamics are changing
with evolving intervention strategies; and 2) information may not be available to parameterize detailed
models of disease spread through heterogeneous populations. Despite these difficulties, it is important to
consider some individual-level heterogeneity in transmission because model analyses of mean transmission
rates alone may over-estimate the effectiveness of interventions, overlook potentially effective interventions
that act on the heterogeneity within populations, overlook potentially explosive resurgences, and poorly

predict the final epidemic size?”’.
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Studies of superspreading often empirically estimate secondary case distributions from recorded trans-
mission chains and/or using branching process models>>*!!. These studies estimate a dispersion param-
eter, k, that describes the variance in secondary cases based on a Negative Binomial distribution, where
smaller values indicate more heterogeneity and skew and large values approach a Poisson distribution. Es-

3671112 gimilar

timated k values for SARS-CoV-2 remain uncertain, but are thought to range from 0.04 - 0.
to the estimate of 0.16 for SARS-CoV-12, which we use for this analysis. These empirical and branching
process approaches are ideal for characterizing heterogeneity in secondary cases, but not for projecting epi-
demic trajectories through time, without being further embedded in a compartmental or network modeling
framework.

Here, we present a mechanistic susceptible, exposed, infectious, removed (SEIR) model that uses data
on cases, deaths, and mobility for parameter estimation, incorporates heterogeneity in transmission rates,
and is realistic enough to be useful for scenario exploration but simple enough to be adapted to a wide
range of settings. The key innovation in our model is in using the average of Gamma-distributed individ-
ual transmission rates at each time step, as supported by previous work on secondary case distributions,
to generate the distribution of population-average transmission rates. This formulation allows us to both
generate more realistic variation in trajectories than SEIR models that assume a single average transmis-
sion rate, and explore and quantify the impact of altering individual-level transmission distributions on
population-level dynamics without more detailed information on contact networks, age structure, or other
social information.

The model, with accompanying open-access code, can be used to fit to any county in the U.S. using
publicly available data; here we focus on five contrasting epidemiological settings—Seattle (King County),
Washington; Los Angeles (Los Angeles County), California; Santa Clara County, California; Atlanta (Dekalb
and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. For each location we estimate a
time-varying effective reproduction number, Rz, which represents the average number of secondary infec-
tions produced by each infected person, and is an important (though imperfect”) metric of epidemic control.
Using each fitted model, we truncate the individual-level transmission rate distribution and stochastically
simulate epidemic dynamics into the future, representing a scenario where high-risk events are eliminated
but smaller and lower-risk activities are allowed to resume. We investigate the absolute impact of this su-
perspreading prevention strategy on epidemic control, and compare its impact on epidemic dynamics (and
RE) to test-and-isolate and shelter-in-place interventions. Using this comparison we highlight exit strate-
gies from shelter-in-place that are expected to reduce both epidemic growth (i.e., keep Ry below one) and

the probability of explosive resurgence.
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Methods

Model Structure

We developed a compartmental model using an SEIR (Susceptible, Exposed, Infectious, Recovered) frame-
work to model COVID-19 transmission, which was first described in Childs et al.’®. Our model divides
the population into the following classes: susceptible (S); exposed but not yet infectious (E); infectious
and presymptomatic (Ip), asymptomatic (1), mildly symptomatic (Im), or severely symptomatic (Is); hos-
pitalized cases that will recover (Hg) or die (Hp); recovered and immune (R); and dead (D). We assume
an underlying, unobserved process model of SARS-CoV-2 transmission described by equations 1-10 and
shown in Figure S1, where each term dx y denotes the transition from compartment X to Y. Transitions
between compartments are simulated as binomial (B) or multinomial (M) processes. We use an Euler ap-
proximation of the continuous time process with a time step of 4 hours. To produce more realistic latent and
infectious periods we divide each infectious class and the exposed period into multiple sub-stages, which
results in Erlang distributed periods within stages !>, Specifically, we use three sub-stages for the exposed
class, seven sub-stages for the asymptomatic infectious class, two sub-stages for the presymptomatic infec-
tious class, five sub-stages for the mildly symptomatic infectious class, and five sub-stages for the severely
symptomatic class. We translate durations into rates for our model with sub-classes and a Euler approx-
imation using the method described in He et al.!®. Equations 11-18 describe in detail the stochastic rates

used to approximate the transition terms in equations 1-10. Parameters are defined in Tables 1, 2, and 3.
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By including asymptomatic and presymptomatic individuals, we are able to track “silent spreaders”
of the disease, which have been shown to contribute to COVID-19 transmission '”18. Mildly symptomatic
cases are defined as those people that show symptoms but do not require hospitalization. We assume that
all severely symptomatic cases will eventually require hospitalization and that no onward transmission

occurs from hospitalized individuals.
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Table 1: Parameter point estimates.

Parameter Value Description Estimates and Sources
Kp, KM, KS 1 Relative infectiousness of presymptomatic, mild symp- | Assumed
tomatic, and severe symptomatic

vy 3.5 days Preinfectious period One meta-analysis!'® found a mean incubation pe-
riod of 5.8 days, another found a median of 5.1
days?’. We use a shortened duration because we
assume 2 days of presymptomatic transmission

Ap 2 days Presymptomatic duration Range of 1-3 days?!, mean of 3.8 days?®*, viral shed-
ding estimated to begin 2.3 days prior to symptom
onset®, many articles find presymptomatic infec-
tion is likely but do not estimate duration 252627

A4 7 days Infectious period for asymptomatic infections Mean seroconversion after 7 days?®

As 5 days Time from symptom onset to hospitalizations (severe | Mean of 5.5 days?’, median of 4 days®, mean of 5.6

cases) days?3!

AM 5.0 days Time from symptom onset to recovery (mild cases) Infectiousness based on viral shedding estimated
to decline substantially within 7 days*?® *Note,?
takes samples from hospitalized patients; we as-
sume similar viral shedding in mild infections

PR 13.3 days Time from hospitalization to recovery Mean of 13.3%2, mean of 20.513!, highly variable by
region?

Table 2: Parameter range estimates that are not location specific
Parameter | Lower Bound | Upper Bound | Description Estimates and Sources
KS 0.4 0.8 Relative infectiousness of asymptomatic in- | 0.6°*, few direct estimates, but many examples of
fections asymptomatic transmission potential less than, but
potentially close to that of, symptomatic infected in-
dividuals %2637
o 0.3 0.5 Proportion of infections that are asymp- | Mean of 43.3%%, 44%%
tomatic

0 0.1 0.3 Fatality rate among hospitalizations Demographic weighted average that will vary by lo-
cation, see Verity et al.?!, 5%*%°

pD 13 days 20 days Time from hospitalization to death Mean of 16 days*!, mean of 17.8 days®!, highly vari-
able by region®?

1—p 0.025 0.075 Proportion of symptomatic infections that re- | Demographic weighted average that will vary by lo-

quire hospitalization cation, see Verity et al.>!




88

89

920

91

92

93

94

95

96

97

98

29

100

101

102

103

104

105

106

107

108

109

Table 3: Location-specific parameter range estimates. Population sizes obtained from the US Census
Bereau*?

Parameter Santa Clara | Los Angeles | Miami-Dade King County, WA | Fulton+DeKalb,
County, CA County, CA County, FL GA

Epidemic 01-Jan - 05-Feb 01-Jan - 31-Jan 01-Jan - 16-Mar 01-Jan - 04-Mar 01-Jan - Mar-07

Start Date

Population 1,927,852 10,039,107 2,716,940 2,252,782 1,755,830

Size

The time-varying transmission parameter, 3;, describes the average per capita rate of contact between sus-
ceptible and infectious people at time ¢, multiplied by the per-contact transmission probability. We modeled

Bt as a function of human movement using the scaling function:

B = Bofs,, (19)

which treats 3; as an exponentially decreasing function of physical distancing (¢; on a scale of 0-1 where 0
is no physical distancing, and 1 is maximum physical distancing). Here, 8y0,, is the estimated minimum
possible transmission rate given minimal human movement (i.e., maximal physical distancing) and thus

743 which measures

contact rate. To model human movement we use SafeGraph’s “Shelter in Place Index
the proportion of cell phone devices that are staying home.

To model individual heterogeneity in SARS-CoV-2 transmission rate, we allow individuals to vary over
time by modeling an individual’s transmission rate in each time step as a Gamma distributed random vari-
able with a dispersion such that the sum of an individual’s transmission rates over the duration of their
infection approximates a Gamma distributed random variable with dispersion equal to previous Negative
Binomial parameterizations for reproductive number SARS-CoV-1 (k = 0.16)*, which closely approxi-
mates estimates of overdispersion for SARS-CoV-2124>. Because we model the transmission rates as the
multiplication of contact rate and infection probability, this heterogeneity implicitly considers both varia-
tion among individuals in infectiousness and contact rate, and can be thought of as modeling superspread-
ing periods or events—windows in time when an infected individual has a particularly high transmission
rate. To incorporate this variation into an average time step ;, we model 3, as the average of the transmis-
sion of all infected individuals at time ¢. To do so we apply the property of Gamma distributions that the
mean and variance of NV samples from a Gamma distribution with defined rate and scale is itself a Gamma
distribution with mean equal to that of the original Gamma distribution and variance equal to the variance

of the original Gamma divided by V. A full derivation of the equivalence between the individual time step
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transmission rate distributions (which we will hereafter refer to with ), the individual infectious period
transmission rate distributions, and the population-level transmission rate distribution is available in the
Appendix.

We assume that observed deaths are a Negative Binomial random variable with a mean equal to to-
tal new deaths accumulated over the observation period (i.e., one day for this analysis), and a dispersion
parameter that we estimate. We also assume that daily observed cases are a Negative Binomial random
variable, but have a mean equal to the daily number of new symptomatic infections multiplied by a daily
detection probability that we estimate from the data. We model daily detection probability as a monotoni-

cally increasing logistic function:

w

T emt=a" 20

where w is the maximum fraction of symptomatic cases detected, m is the logistic growth rate, and ¢ gives
the location of the inflection point (where the probability of detection equals one half of the maximum de-
tection probability, w). Because ¢ can be estimated to be in the future, the probability of detection of an
infected case in the present can be any value between 0 and w. We estimate newly observed cases to be
a fraction of all new symptomatic infections at time ¢. Though this ignores testing asymptomatic infec-
tions, any detection of asymptomatic infections will be captured as a higher estimated detection fraction of

symptomatic infections.

Fitting the Model

We use COVID-19 death and case data from The New York Times, based on reports from state and lo-
cal health agencies (available at ht tps://github.com/nytimes/covid-19-data). Using these data,
which are available for all counties in the US, and any form of human movement data that can be scaled to
0-1, our model can be used to fit infection dynamics in any county.

For computational efficiency, we assumed point estimates for some parameters (Table 1) and sampled
over uncertainty in others (Tables 2, 3) by drawing 600 sobol sequences, an efficient method for sampling
input parameters“, across a range of plausible values for each in order to form 600 plausible parameter
sets. For each parameter set we used the package pomp*’ in the statistical programming language R*® to
estimate the following parameters: fy: transmission rate over an entire infection in the absence of social
distancing; f,,,: estimated transmission given zero human movement; Ey: number of exposed individuals

that initiate the epidemic; w, m, and ¢: maximum, slope, and inflection point day of the sigmoidal case
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detection function; ¢;: Negative Binomial dispersion parameter for deaths; and 6.: Negative Binomial
dispersion parameter for cases. We fit all parameters to daily deaths, cases, and mobility in two steps. First,
for each of the 600 parameter sets we used the mi £2 function in pomp with random starting conditions, 120
iterations and 2000 particles. We then continued to fit the 60 parameter sets with the highest log likelihoods
for an additional 200 iterations using 2000 particles. Each county took approximately nine hours to fit using
twenty cores.

We calculated R at each time ¢ as estimated 3; times the median proportion of the population remain-
ing susceptible on each day across 300 simulated epidemics, with simulated epidemics that did not reach at
least a total of 100 infected discarded, times the average infectiousness over an infection (as defined by our
model structure) using the 10 parameter sets with the largest negative log likelihoods as determined by the

second fitting step.

Simulating epidemics under interventions

Any intervention type, intensity, or duration can be modeled using this framework and open-source code
(available at https://github.com/morgankain/COVID_interventions) given that it can be writ-
ten as a function that modifies either human movement or j; (e.g., social distancing or a pharmaceutical
intervention that reduces the probability of infection). Previously we considered the impacts of various
social distancing initiatives on epidemic dynamics using a similar model formulation '*. Here we consider
interventions that reduce the skew of the individual time step transmission rate distribution (), and thus
the average time-varying transmission rate (;; this is our mathematical representation of reducing highly
infectious contact periods or events, which for COVID-19 tend to occur in crowded enclosed environments
(e.g., church choirs and exercise classes). Specifically, we model truncation of the 7 distribution by assum-
ing that all samples within the top X% of the 7 distribution are resampled. To visualize the dynamics of
interventions, for each location we simulate 300 epidemics from the maximum likelihood estimate across
the 600 parameter sets. The uncertainty band we plot represents the central 95% range of outcomes seen
across all stochastic realizations that resulted in epidemics for this parameter set, and thus should not be

taken as representation of uncertainty in parameter values or model structure.
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Results

Epidemic trajectories

The model produced realistic fits to five contrasting epidemiological settings—King County, Washington;
Los Angeles County, California; Santa Clara County, California; Fulton and Dekalb Counties, Georgia; and
Miami-Dade County, Florida (hereafter, Seattle, Los Angeles, Santa Clara County, Atlanta, and Miami).
Among these locations, we estimated that prior to interventions, Ry ranged between approximately 2 and 4
(Figure 1). We also estimated that Rz dropped below one following shelter-in-place orders in all counties,
though only briefly in some locations. In particular, in Miami, Los Angeles, and Atlanta R climbed above
1 by mid-May and daily cases and deaths have plateaued or continue to grow into June. Though Rg
remained below 1 into at least early June in Seattle and Santa Clara County, as of June 18 Rg is ~1 and

cases are rising again.

11
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Figure 1: Model estimated daily cases and deaths (A), and reproduction number (B, C) for five locations:
Atlanta (red), Seattle (green), Miami (gold), Santa Clara County (blue), and Los Angeles (purple). Los
Angeles is displayed on a different y-axis due to differences in magnitude of reported deaths and cases.
For each county, we show the 10 model fits with the best log likelihoods. Panel C show the same results
pictured in B, but are zoomed in to April 15 - June 18 to better show the dynamics around Rg = 1. Black
points are observed daily deaths and reported cases in each county. Solid lines display mean of model
simulated trajectories (A) and mean R, (B, C). Ribbons show the range of estimated R, (B, C) or 95% Cls
over stochastic simulation from each model fit (A). Vertical axes in panel A are square root transformed for
visibility.

Interventions

As a basis for comparison, focusing on just two locations—Los Angeles and Seattle—if shelter-in-place
were simply lifted, a second peak would be inevitable in the absence of any non-pharmaceutical interven-
tions (Figure 2, blue). However, non-pharmaceutical interventions, including continuing shelter-in-place,
infected isolation with intermediate levels of shelter-in-place, or averting superspreading with intermedi-
ate levels of shelter-in-place are capable of limiting epidemic growth (Figure 2) and keeping Rg near or
under 1. Here, we consider intermediate levels of shelter-in-place that correspond to mobility levels that
are an average of baseline mobility prior to social distancing and final mobility levels observed in the last

week of data. Either an infected isolation strategy that reduces to intermediate levels of shelter-in-place and

12
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catches 90% of all mild and severe cases of COVID-19 before they are able to transmit (Figure 2, green), or a
truncation strategy that similarly reduces to intermediate levels of shelter-in-place but removes the top 1%
of the individual time step transmission rate distribution () with 75% efficiency (Figure 2, purple) are able

to suppress epidemic growth (and reduce R to below one) in Los Angeles, CA and Seattle, WA.
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2 1000 distribution removed with 75% effectiveness)
(u l
(@] . .
= % I
3 100 :
10
1
. l
1000
£
w 100
o}
[m]
=
‘©
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Figure 2: Maintaining shelter-in-place (SIP; orange), test-and-isolate (green), or superspreading aversion
(purple) strategies over long periods is necessary to prevent a major epidemic resurgence (blue) in each
location where we fit our model (shown here for Los Angeles, CA [A, C] and Seattle, WA [B, D]). However,
continuing SIP at current levels (orange) will lead to an increase in daily cases in both Los Angeles (A) and
Seattle (B). Daily reported cases are shown in (A) and (B) and daily deaths in (C) and (D). For both shelter-
in-place and truncation interventions we assume an intermediate level of mobility (an average of baseline
mobility prior to social distancing and final mobility levels observed in the last week of data). Bands show
95% CI on stochastic simulations of daily cases and deaths for the single maximum likelihood parameter
set. Dates range from February through September of 2020. Vertical axes are log transformed for visibility.

Curtailing superspreading

Limiting opportunities for superspreading by “chopping off the tail” of the contact rate or infectiousness
distributions can be highly effective at epidemic control (Figure 2), driving epidemic growth to be negative

and bringing the average number of secondary cases (Rg) below 1. An example truncation intervention is
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illustrated in Figure 3: because the individual transmission rate distribution, 7, over a 4-hour time period
is so skewed (Figure 3A; see appendix for derivation), truncating the upper 0.1% yields a large reduction
in the mean and a moderate reduction in the variance of the population-level average transmission rate
(Figure 3B, shifting from red to blue distribution). A variety of possible truncation strategies exist, including
eliminating varying proportions of 7 (e.g., upper 0.5%, upper 1%) with varying levels of efficiency (ranging
from 50-100%) (Figure S2).

An alternative measure of the impact of averting superspreading (i.e., truncation interventions) is how
much general social distancing can be avoided by instead truncating the transmission rate distribution.
Prior to social distancing orders, the estimated proportion sheltering in place (SIP, for short) ranged from
~20-22% across our focal locations (Figure 3C, triangles), indicating the baseline level of mobility. If we
combine SIP with truncation interventions, a variety of combinations are predicted to provide epidemic
control (for example, by reducing transmission rates such that R g in a fully susceptible population would be
1; Figure 3). If the truncation intervention is 100% effective, truncating only approximately the upper 0.15%
of individual transmission rates, =, (Figure 3A) is effective enough to maintain transmission rates such
that R would be 1 in a fully susceptible population, while allowing mobility levels to return to baseline
(Figure 3C). Alternatively, if truncation interventions are only half as effective, the same 0.15% truncation
intervention would require moderate-strong social distancing (SIP from ~30-45%; Figure 3C). The nonlinear
effects of social distancing and truncation on transmission make the combination of interventions needed

to maintain epidemic control sensitive to the efficiency and strength of each intervention mechanism.
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Figure 3: Example of how truncating the individual-level transmission rate distribution, 7, (A) affects
the population-average transmission rate (B), and combinations of sheltering-in-place (SIP) and trunca-
tion strategies that reduce Rg to one in a fully susceptible population (C). The three panels in C show the
combinations of truncation and SIP that produce an Ry of one for three levels of truncation efficiency. (A)
Truncation at the upper 0.1% of 7 (sampled over a 4-hour time step), in which truncation occurs for all val-
ues above the dashed line. (B) Resulting effect on the population-level average infection rate when there are
1000 infected people currently in the population, where the original distribution is in red and the truncated
distribution is in blue. The distribution is shown over 10,000 simulations for a population characterized by
an individual reproduction number distribution with mean of 2.5 and overdispersion parameter, k¥ = 0.16.
Horizontal and vertical axes in A and B are square root transformed for visibility. In C, the triangles show
baseline SIP in each location and circles show max SIP reached during social distancing. Solid lines indicate
the mean over the ten best fits, and the ribbon is the full range of estimates from these fits.

Superspreading and epidemic resurgence

Even if the epidemic is brought almost entirely under control (e.g., to within 1-5 infected individuals re-
maining in the population), epidemic resurgence remains a possibility if interventions wane, allowing Rg
to increase above one. As we show in (Figure 3), many different combinations of SIP and truncation can be
used to produce the same R (in Figure 3, an R of 1); however, epidemic dynamics will vary by combi-
nation because of the variation in individual time-step transmission rates, 7. If R rises above one because
interventions are relaxed, the specific combination of SIP and truncation that remains in place will deter-
mine the resulting dynamics. Here we examine how different truncation interventions will affect epidemic
extinction probability and the size of epidemic resurgence when it does not go extinct. We compare the full
effect of truncation interventions (which influence both the mean of the transmission rate distribution and
its shape) to the effects of truncation when Rg is held constant by scaling SIP, reflecting only truncation

effects on the transmission rate distribution shape (variance, skew, etc.).
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With few infected individuals and Rg > 1, stochasticity and heterogeneity in §; can either lead to ex-
tinction, moderate resurgence, or explosive resurgence. Keeping interventions in place that remove even
a tiny percent of the largest 8; values can help to avoid the more explosive events (Figure 4). Truncation
markedly reduces the probability of explosive epidemic resurgence (Figure 4A) both by increasing the ex-
tinction probability (Figure 4B) and by reducing the magnitude of resurgent epidemics when they do occur
(Figure 4C). While epidemic size was less sensitive to the number initially infected when resurgences do oc-
cur (Figure 4C), the stochastic extinction probability was extremely sensitive to the difference between even
one, three, or five remaining infections (Figure 4B). Much, but not all, of the benefit of truncation comes
from changing the mean transmission rate (and therefore Rg). When R is held constant by adjusting SIP,
effects of truncation are more moderate. An increase in efficiency at truncating the top 0.1% of the /3, dis-
tribution noticeably decreases the number of infected 42 days after interventions are relaxed (Figure 4D,F).
However, because of the need to slightly reduce SIP to hold Rg constant under truncation, truncation of
m marginally decreases the extinction probability of the epidemic, which remains much more sensitive to
the number initially infected (Figure 4E). The highly stochastic nature of epidemic growth when cases are
rare, combined with the fact that each truncation leaves behind highly skewed distributions regardless of
the truncation parameters, results in even 10,000 epidemic simulations producing noisy patterns across

intervention scenarios. Similar patterns are seen as more of the 7 distribution is truncated (Figure 54).
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Figure 4: Effects of transmission rate truncation on epidemic die-out and explosive resurgence. With
skewed individual variation in transmission rate, relaxing social distancing interventions when infections
become rare (allowing Ry to increase above one) may lead to explosive stochastic epidemic resurgence.
Top panels (A-C) show the overall effect of truncation interventions, including effects on both the mean
and shape of the transmission rate distribution, and resulting Rg. Bottom panels (D-F) show the effect
of truncation when R is held constant by rescaling shelter-in-place at the time of intervention relaxation.
Specifically, for a 0% truncation efficiency we simulate epidemic resurgence assuming R, = 2, which results
inan Rg = 2- S/N at the time of resurgence, which will vary by simulation (where S is the number of sus-
ceptible individuals and N is the total population size). In panels (A-C) as truncation efficiency increases
R g decreases; in panels (D-E) we scale shelter-in-place to retain an average Rg = 2-S/N across truncations.
Simulations are performed with varying efficiencies of truncation of the top 0.1% of the 7 distribution. En-
velopes in (A) and (D) show the central 98% of resurgent simulations (across 10,000 total simulations) for
three efficiencies of truncation (0% in orange, 60% in green, 100% in blue). The proportion of epidemic
simulations that go extinct within 42 days of intervention relaxation for thresholds of 1 (red), 3 (gold), and
5 (blue) infected individuals is shown in (B) and (E). The upper 99th percentile of concurrent infections 42
days after intervention relaxation in resurgent simulations for the same thresholds is shown in (C) and (F).

Discussion

Understanding local epidemiological dynamics of COVID-19—and the impact of heterogeneity on those

dynamics—remains a challenge due to both limited and imperfect data in most regions and ever evolving
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interventions and adherence. Reported cases are only a small fraction of all infections, and the propor-
tion of symptomatic cases that are detected remains highly uncertain and variable over space and time.
Our approach takes an important step toward capturing locally-specific epidemic dynamics and the im-
pact of heterogeneity across settings by providing a platform (including a mathematical model and open
access code) for estimating time-varying transmission rates (5;) from death, mobility, and imperfectly ob-
served case report data, all of which are publicly available. The model can estimate epidemic dynamics and
transmission rates over time across epidemiological settings that vary in population size, demography, and
control. By incorporating individual variation in contact rates (or, equivalently, infectiousness) into time
step transmission rate distributions, we incorporate some of the known effects of heterogeneity without re-
quiring detailed information on population mixing, structure, social networks, or movement patterns. We
find that control measures in March of 2020 rapidly brought the average reproduction number—XR p—from
~2-4 to below 1 in all locations we considered in early April. However, as of June 18, Rg has once again
drifted above one in all of these locations except possibly in Seattle, WA and Santa Clara County, CA, where
it remains unclear if it is greater or less than one.

Non-pharmaceutical interventions will be necessary to control COVID-19 in all settings until better
pharmaceutical options (in particular, effective vaccines) are widely available. Social distancing in the gen-
eral population is effective but costly: it is a blunt and imprecise tool. The social and economic necessity of
relaxing social distancing demands safe exit strategies based on more precise, targeted interventions to re-
duce transmission. Testing and isolating symptomatic people, combined with contact tracing, remains the
gold standard intervention for limiting onward transmission as social distancing is lifted, but it is expensive
and capacity remains limited in many settings. Our model shows that it is possible to target interventions
even without precise information on specific population mobility, mixing, and infectiousness patterns, by
limiting just the most high-risk activities, such as large gatherings and indoor events that have many close
contacts. How much can be gained from these common sense interventions that reduce or eliminate oppor-
tunities for superspreading while allowing smaller and safer activities to resume? We find that these trun-
cation interventions, which eliminate the upper percentiles of contact rates in the population, and thereby
transmission rates, can be highly effective at maintaining epidemic control (Figure 2), particularly when
combined with mild to moderate social distancing (Figure 3). Importantly, even after epidemic control is
achieved and case numbers drop very low, “chopping off the tail” can provide powerful insurance against
explosive resurgence after social distancing interventions are otherwise lifted (Figure 4).

What does “chopping off the tail” mean in practical terms? Five types of factors tend to promote su-
perspreading: (1) high rates or intensity of contact between people or with surfaces; (2) large aggregations

of people; (3) poorly ventilated physical environments, especially indoors*; (4) highly infectious individ-
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uals; (5) highly susceptible recipient population Many settings where SARS-CoV-2 superspreading

26 exercise classes, bars and restaurants?’, funerals, churches®,

has occurred—including nursing homes
meat-packing plants>>—combine multiple risk factors. For example, choir practices combine high densities
of people, a high-risk activity (singing)>*, and potentially poorly ventilated indoor spaces; long-term care
facilities combine mobile, high-contact caregivers with highly vulnerable residents, often in high-density
indoor spaces. Some superspreading events may be easier to eliminate than others. Clearly, healthcare
and long-term care facilities serve critical functions despite their high-risk nature, and taking all possible
steps for decontamination and personal protection in these facilities is critical to mitigate this risk®”. On
the other end of the spectrum, voluntary, large, indoor events that are mainly for entertainment and could
be postponed—gyms, clubs, sporting events, concerts, large lectures—may be the most viable option to
reduce superspreading and “chop off the tail” of the contact rate distribution>*. While these common sense
interventions are not novel suggestions®, and are already part of reopening plans in almost all locations,
our work allows a direct comparison of how much general social distancing is avoided by eliminating a
fraction of these high-risk events (Figure 3). Truncation strategies are even more desirable in light of their
effectiveness at preventing explosive resurgence after controls are otherwise lifted (Figure 4). Mapping ac-
tual event types onto the contact rate distribution to determine how particular superspreading reduction
policies would affect control remains an important next step. Importantly, associating superspreading with
events and locations, rather than specific people, can avoid the stigma sometimes associated with being
identified as a superspreader®.

The impact of truncation interventions is two-fold. First, removing the upper tail of the individual
transmission rate distribution reduces the population-level mean, often dramatically (Figure 3A,B). If the
mean transmission rate already placed Rg near 1 (for example, due to other interventions), then additional
truncation could be enough to cross this critical threshold. However, most intervention strategies that bring
RE to 1 already include prohibiting large gatherings, especially indoors, so additional truncation may not
be possible within the context of first-wave interventions. However, truncation also acts on the variance
and skew of the transmission rate distribution, though these effects are smaller than the effect on the mean
(Figure 4D-F compared to A-C). Given that super-spreading events are particularly dangerous when cases
are few (in the early or late phases of the epidemic)?, sustained truncation interventions could be extremely
important for preventing explosive stochastic re-emergence when low case numbers allow general social
distancing to be lifted (Figure 4). In this scenario, resurgence remains rare (Figure 4B) but possible because
individual variation in transmission rates is large; most of the time infectious people transmit to few others,
but occasionally someone infects dozens (Figure 4A), quickly overwhelming testing, contact tracing, and

isolation efforts. Sustained truncation dramatically reduces the probability of explosive resurgence, and
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constrains incipient transmission chains to be smaller and more manageable.

One limitation on understanding the effect of heterogeneity in transmission in particular locations is
the challenge of estimating epidemiological parameters from noisy and imperfect data: necessarily a bal-
ancing act between model simplicity and complexity. Here, we rely on metrics of heterogeneity previously
estimated for SARS-CoV-1 and SARS-CoV-2%!24 instead of estimating them directly from data; we focus
our parameter estimation on the mean of the transmission rate distribution. Heterogeneity in contact rates
or infectiousness, and the resulting distributional variance and skew, may vary based on local patterns of
movement, contact, behavior, and population demography. This heterogeneity can have important conse-
quences: in some cases epidemics with low mean R, can actually infect a larger proportion of the popula-
tion than epidemics with higher mean Ry—as was the case for the 1918 influenza pandemic as compared to
the 2014 Ebola outbreak—due to the heterogeneity in transmission rates, as described by higher moments of
the secondary case distribution”. The true epidemiological parameters in any given location, and the extent
of our uncertainty in these parameters, also remain unknown because of the computational challenges of
parameter estimation given the limited information contained in noisy case, death, and mobility data. For
example, depending on how a particular candidate parameter combination weights the noisiness of cases
and deaths and estimates initial conditions, transmission rate estimates can vary substantially (Figure 1).
Fully characterizing uncertainty in model structure and parameter values in this context is difficult. Future
work that directly estimates case ascertainment rates (e.g., through metrics of percentage of tests that are
positive, age distributions of positive tests, epidemiological contact information on cases, and analysis of

%), as well as more detailed mobility and contact network information 7 could help

viral genome sequences
to improve the model fit to the full shape of the transmission rate distribution.

First-wave interventions that eliminated large social gatherings and indoor activities and mandated
mask-wearing and physical distancing have likely already affected the heterogeneity in transmission rates,
by eliminating many of the high-risk events likely to fall into the upper tail of the distribution. It is impor-
tant to recognize that as social distancing interventions relax, sustaining such truncation interventions may
be critical for keeping transmission down to levels manageable through testing, contact tracing, and isola-
tion. This truncation strategy can potentially reduce the social and economic costs of non-pharmaceutical
interventions on the general populace, and facilitate sustained adherence by allowing lower-risk activities
to resume while insuring against a resurgence. Ultimately, an unmitigated epidemic, whether as a first
or second wave, would kill thousands to tens of thousands of people in each of the locations we studied,
reinforcing the point that aiming for population herd immunity through naturally acquired infections is

not a viable public health strategy. Instead, exit strategies that can sustain epidemic control after shelter-in-

place orders end, including truncating the transmission rate distribution, will be necessary until an effective
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sz vaccine can be developed and widely distributed.
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Data and Code Availability

Data used in this study are available at: https://github.com/nytimes/covid-19-data.
Code used to produce the results in this study are available at: https://github.com/morgankain/
COVID_interventions.
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Appendix

Derivation of the population-level 3; distribution

In heterogeneous populations, the expected number of secondary infections caused by a particular indi-
vidual (or the individual reproductive number, v) can be modeled as a negative binomial random variable
with mean Ry and overdispersion parameter k%, i.e. v ~ NB(k, ﬁ) This is equivalent to modeling v
as a Poisson random variable whose mean is itself a random gamma variable with shape k and scale R, /k,

v ~ Poisson(6)
Ry
0~TI(k,—
( ’ k: )

Now let d be the duration of infection for an individual and 7 be a time step. Using the fact that k£ =
> k/M, we have

Thus for a constant duration of infection d, we have the individual infection rate over a time step

kt RO
7TNF<7,7)

When there are N infected individuals, the average infection rate 3; over a time step is
LN
By = N ; ™
1 o (* R
N — d’ k
T Nkt RO
d 'Nk)’

which will have mean Ry7/d and variance %. Notably, this behaves well with scalings on Ry as a function
of interventions: Let 6 be the amount of physical distancing occurring in the population on a scale of 0-1
where 0 is no physical distancing, and 1 is maximum physical distancing, and f be a function mapping

6 to a scaling on Ry. Now 5, ~ f(6)I' (N;”, %) =T (%, %), which means that properties of the

distribution are preserved with f(6)Ry. Specified as a gamma white noise process 'y (o, 1) which has
mean y and variance o2y, this is equivalently

RO RQT
~T Ve, 2
B ”N< Nk’ d)

There are two main differences between the above derivation and our model formulation (note that for the
following we assume f(6) = 1):
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1. above, the number of new infections in a time step should be

N
Z Poisson(;),
i=1

where each 7; is iid. as T (£, £2). In our model the number of new infections in a time step is
B(S,1 —exp(—p(Coly/N + Cpl, /N + Cpi I /N + CIs/N))),

where §; is the average transmission rate over all individuals infectious during that time step and B is
a binomial process. For large S and small I, + I, + 1, + I, this approximates a Poisson distribution for
the number of secondary cases from each infected individual in each time step and the total secondary
infections caused by an individual over their infectious period.

2. above, we assume a constant duration of infection. In our model periods are Erlang distributed given

our division of stages (e.g. I,) into n sub stages, each with the same period'#!°. This marginally
increases the variance in the per-infectious period d istribution as we show in Figure S5.
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sz Derivation of the relationship between R, Gamma truncation, and the fraction of individuals sheltering
as  in place

s Let d be the average duration of infection, 7 be a time step, 6 be the proportion of the population sheltering
s in place, and X, , be a random variable X with right truncation, where truncation occurs at the p-th per-
s centile, with probability 1. Suppose that in a given time step we truncate the individual infection rate ()
2 over a time step at the p-th percentile with probability 5. Then the reproduction number is

o[t

N
d
R=E N Z Tpm €xp (10g(Bmin)0)
0 d
R="min"giL
- [Tp,n]

0
R— Bm;nd (Elmpa] + (1 — 7)E[r1.1))

Bt = = (Blmy1] + (1~ Bl )

—01og(Bmin) = log(d) —log(R) — log(7) + log (nE[mp1] + (1 — n)E[m 1])

log(d) —log(R) —log(7) + log (nE[mp,1] + (1 — n)E[r1,1])
—log(Bmin)

For a truncated gamma distribution with shape a and scale b with upper truncation at u, the expected value
is

9:

b[I'(a+1,0) —T'(a+1,u/b)]
I'(a,0) — T'(a,u/b) ’
s where T is the upper incomplete gamma function. See Okasha and Alganoo (2014) [eq.29]°7 for the full

ss4 derivation.
Letting - be the lower incomplete gamma function, it follows that

E[l'(a,b,u)] =

Ro/k [D(kr/d+1,0) — T(kr/d + 1, uk/Ry)]
[(kr/d,0) — T'(k7/d,uk/Rg)

_ Ro/k[y(kT/d +1,uk/Ro)]

N ~v(k7/d,uk/Ro)

E[rp1] =

where u is the p-th percentile of 7. Then

log(d) — log(R) — log(7) + log (77 Ro/kw[zlglj%flﬁl/’;ﬁ)/l%oﬂ + (1 - n)%)

0=
—log(Bmin)
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Figure S1: Epidemiological model box diagram
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Figure S2: Many other truncation interventions are viable alternatives to the top 0.5% with 75% efficiency presented
in the main text including: truncating the top 1% with 50% efficiency (purple) and top 0.3% with 100% efficiency (red).
Bands show 95% CI on stochastic simulations of daily cases and deaths for the single maximum likelihood estimate.
Dates range from February 2020 to October 2020.
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Figure 53: Expanded view of truncating the upper 0.1% of the individual level time step transmission rate distribution
(m) at a four-hour time step (A). This truncation leads to a reduction of the mean and variance for an individual’s
infectious period reproduction potential (B). As the number of infected individuals in the population increases from
10 (C, D) to 1000 (E, F), the variance in decreases in both the population-level average transmission rate during each
4-hour period (C, E) and over the lifetime of those infected (D, F).
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Figure S4: The proportion of epidemic simulations that went extinct (A) and the upper 99th percentile of the number
concurrent infected after 42 days (B) for the resurgent simulations among 5000 total simulations for increasing trun-
cation proportions of 7. Shelter-in-place is scaled so that transmission rate at the time of intervention relaxation is
identical across intervention scenarios and would result in R = 2 in a fully susceptible population.



A. entire infection Gamma(0.16, 2.5/0.16) B. 1 geometrically distributed infection period C. 7 geometrically distributed infection periods

mean = 2.4976151333693 mean = 2.49934607713935 mean = 2.49979625539393
variance = 38.9865899518523 9 variance = 45.1225146962595 variance = 39.796778824919
.

w0 w0
g < 2 2 A
o 2 2
i i i

39 ~ N

0e+00
L

0e+00
L

0e+00
L

T T T T 1 T T T 1 T T T 1
0 50 100 150 200 0 50 100 150 0 50 100 150

Figure S5: The distribution of individual lifetime reproduction (R) when modeled as a Gamma distribution with
a mean of 2.5 and a scale of 0.16 (A). This distribution implicitly assumes a constant infectious duration. Using a
geometrically distributed infectious period with only one period (“box”), and a time period of 4 hours result in an in-
crease in the variance of the individual reproductive distribution relative to assuming a constant infectious period (B).
Breaking the infectious period into 7 sub-stages (boxes) reduces the variance, though the variance remains marginally
higher than when assuming a constant infectious period (C).
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