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Abstract  43 

Experiments and models suggest that climate affects mosquito-borne disease 44 

transmission. However, disease transmission involves complex nonlinear 45 

interactions between climate and population dynamics, which makes detecting 46 

climate drivers at the population level challenging. By analyzing incidence data, 47 

estimated susceptible population size, and climate data with methods based on 48 

nonlinear time series analysis (collectively referred to as empirical dynamic 49 

modeling), we identified drivers and their interactive effects on dengue dynamics in 50 

San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was 51 

high: temperature and rainfall had net positive and negative effects, respectively. By 52 

capturing mechanistic, nonlinear, and context-dependent effects of population 53 

susceptibility, temperature, and rainfall on dengue transmission empirically, our 54 

model improves forecast skill over recent, state-of-the-art models for dengue 55 

incidence. Together, these results provide empirical evidence that the 56 

interdependence of host population susceptibility and climate drive dengue 57 

dynamics in a nonlinear and complex, yet predictable way.  58 
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INTRODUCTION 59 

In concert with globalization and climate change, mosquito-borne diseases, and 60 

dengue in particular, are (re)emerging globally and spreading to higher latitudes  61 

(Kilpatrick & Randolph 2012; Ryan et al. 2019). Dengue virus—vectored primarily 62 

by urban Aedes aegypti (Kraemer et al. 2015)—places half of the global human 63 

population in 128 countries at risk of infection (Brady et al. 2012; Kraemer et al. 64 

2019). In the absence of effective vaccines or treatments (Katzelnick et al. 2017a; 65 

Sridhar et al. 2018), public health agencies rely on vector control to reduce dengue 66 

transmission (Erlanger et al. 2008). Effective vector control interventions require 67 

understanding the mechanisms linking climate, vector ecology, disease 68 

transmission, and host population susceptibility to better predict disease 69 

outbreaks—a major challenge.  70 

Since Aedes spp. mosquitoes are sensitive to climate, including temperature 71 

and rainfall (Stewart Ibarra et al. 2013; Mordecai et al. 2019), we expect 72 

temperature and rainfall to be important drivers of dengue outbreaks. Although 73 

temperature affects mosquito and viral traits in laboratory experiments  (Watts et al. 74 

1987; Lambrechts et al. 2011; Mordecai et al. 2017), the relationship between 75 

temperature and dengue incidence in the field has been ambiguous (Caldwell et al. 76 

2020). Thus, temperature-dependent models have had mixed success predicting the 77 

timing and magnitudes of epidemics (Hii et al. 2012; Johansson et al. 2016; Johnson 78 

et al. 2018). The rainfall–dengue relationship is also complex. Rainfall can fill 79 

container-breeding habitats for mosquitoes, increasing mosquito abundance and 80 
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dengue incidence (Stewart Ibarra et al. 2013). Low rainfall can also facilitate dengue 81 

transmission by promoting water storage that serves as standing-water habitat for 82 

mosquitoes (Oliveira-lima et al. 2000), and heavy rainfall can reduce mosquito 83 

abundance by flushing out larvae (Koenraadt & Harrington 2008). The net effect of 84 

climate on dengue depends on many different mechanisms and is highly context-85 

dependent. 86 

Disease incidence also depends nonlinearly on susceptible availability, 87 

because epidemic growth slows as the population of susceptible individuals is 88 

exhausted (Anderson & May 1979; Dushoff et al. 2004; Mina et al. 2015; Pitzer et al. 89 

2015; Rypdal & Sugihara 2019). Further, susceptible availability may influence the 90 

effects of climate on dengue dynamics. However, such interactive effects are difficult 91 

to detect since susceptibility is difficult to observe, especially in endemic settings 92 

where multiple serotypes circulate and create a complex landscape of time-93 

dependent and serotype-dependent immunity (Katzelnick et al. 2017b). Specifically, 94 

four serotypes of dengue regularly circulate in many regions: each provides long-95 

term serotype-specific (homologous) immunity and short-term (heterologous) 96 

cross-protection against other serotypes (dos Santos et al. 2017; Jiménez-Silva et al. 97 

2018; Hamel et al. 2019). Following a brief period of cross-protection, antibodies at 98 

a mid-range of titers can cause antibody-dependent enhancement of disease 99 

following heterologous, secondary infection, until titers decay to the point of nearly 100 

full heterologous susceptibility (Katzelnick et al. 2017b). Given this complex and 101 

dynamic immune landscape, directly detecting population susceptibility to 102 

circulating dengue virus at any point in time is difficult without longitudinal 103 
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serology studies, which are not widely available (Gordon et al. 2013; Katzelnick et 104 

al. 2017b).  105 

Previous prediction models of dengue outbreaks used phenomenological 106 

(Johansson et al. 2009b; Hii et al. 2012; Johnson et al. 2018) and mechanistic 107 

equation-based approaches (Tran et al. 2013; Liu-Helmersson et al. 2014; Morin et 108 

al. 2015; Mordecai et al. 2017), which may not fully capture interdependence 109 

between climate and susceptible availability. Phenomenological models may 110 

underperform when extrapolating past observed contexts, and equation-based 111 

mechanistic models rely on parameter estimates from laboratory studies 112 

engineered to isolate single mechanisms producing separate relationships between 113 

drivers and outcome, eliminating the complex interdependence at the population 114 

level. While laboratory studies provide robust validation of mechanisms  115 

(Lambrechts et al. 2011), the fixed relationships obtained from them do not 116 

necessarily translate into robust causal understanding for the complexity of field 117 

systems (Sugihara et al. 2012). Even if causality exists between two variables in such 118 

a system, their correlation can switch signs during different time periods, resulting 119 

in a net correlation of zero (Deyle et al. 2016b). This temporal variation in the 120 

direction of correlation results from the nonlinear, state-dependent relationship 121 

between the variables. Conversely, even if two variables are consistently correlated, 122 

the association could be spurious due to a confounder.  123 

To overcome these challenges, we used empirical dynamic modeling (EDM)  124 

(Sugihara et al. 2012)—a mechanistic, equation-free, data-driven approach that 125 
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accounts for the context-dependence of ecological drivers to identify and model 126 

mechanisms driving dengue epidemics. EDM is based on reconstructing system 127 

dynamics evident in time series, without assuming fixed relationships. Relationships 128 

among variables can change through time if interactions among variables are 129 

context-dependent. EDM does not require assumptions about the functional form of 130 

the model, but instead derives dynamic relationships empirically by constructing an 131 

attractor—a geometric object (i.e., curve or manifold) that embodies the rules for 132 

how relationships among variables change with respect to each other through time 133 

depending on system state (location on the attractor)—from time-series 134 

observations. Like a set of equations, the attractor encompasses the dynamics of a 135 

system, and thus can provide a mechanistic understanding of the system that is 136 

derived empirically, without requiring an a priori assumed set of equations. 137 

Here, we used EDM and a proxy for susceptible population size (Rypdal & 138 

Sugihara 2019) to answer three questions: (1) Do temperature, rainfall, and/or 139 

inferred susceptible availability drive population-level dengue incidence? (2) Can 140 

we predict dengue dynamics using temperature and rainfall data and inferred 141 

susceptible availability? (3) What is the functional form of each climate–dengue 142 

relationship at the population level, and how is this relationship influenced by 143 

susceptible availability?  144 
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METHODS 145 

Time series data 146 

We obtained time series of weekly observations of dengue incidence (total number 147 

of new cases of all serotypes), average temperature (℃), and total rainfall (mm) in 148 

San Juan, Puerto Rico, for 19 seasons (1990/1991–2008/2009) spanning calendar 149 

week 18, 1990 to week 17, 2009 (Figure 1a–c) from the National Oceanic and 150 

Atmospheric Administration in November 2016 151 

(http://dengueforecasting.noaa.gov/). We obtained data for four additional seasons 152 

(2009/2010–2012/2013) from Johnson et al. (2018) in April 2020 153 

(https://github.com/lrjohnson0/vbdcast). Although dengue incidence data were 154 

also available for Iquitos, Peru (Johansson et al. 2019), we chose to focus on San 155 

Juan because the time series was longer, and therefore more amenable to EDM 156 

analyses (Munch et al. 2020). 157 

Direct measurements of susceptible availability are not available, so from 158 

weekly incidence data 𝐼(𝑡), we estimated time-dependent growth rates: 𝜆 = 159 

𝐼(𝑡 + Δ𝑡)/ 𝐼(𝑡). The growth rate, 𝜆, is proportional to the effective reproduction 160 

number, 𝑅 , and equivalent to 𝑅  if Δ𝑡 equals the average time between primary 161 

and secondary host infections. Vector-borne disease models show that 𝑅  is 162 

proportional to the geometric mean of the susceptible host population and the 163 

susceptible vector population: 𝑅 = 𝑆 𝑆  𝑅 , where 𝑅  is the basic reproduction 164 

number (Zhao et al. 2020). Hence, 𝜆 ∝ 𝑆 𝑆  and 𝜆 can be used as a proxy for the 165 
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susceptible population size at least during inter-outbreak periods where the 166 

transmission rate and 𝑅  can be assumed to vary very little (Rypdal & Sugihara 167 

2019). 168 

We estimated 𝜆 by linear regression using the model 𝐼(𝑡 + Δ𝑡) =  𝜆 𝐼(𝑡) for 169 

12 time points in a 12-week running window (∆𝑡 = 1 week). The model is robust to 170 

the window size (Rypdal & Sugihara 2019). In the discrete case, when 𝜆 < 1 the 171 

system is stable (inter-outbreak period) and when 𝜆 ≥ 1 then the system is unstable 172 

(outbreak period) (Supporting Information). We treated the resulting time series of 173 

𝜆, hereafter “susceptibles index” (Figure 1d), as a proxy for the susceptible 174 

population size when 𝜆 < 1, and a proxy for the combined effects of susceptible 175 

availability and 𝑅  when 𝜆 ≥ 1.  176 

Empirical dynamic modeling (EDM) 177 

EDM infers a system’s mechanistic underpinnings and predicts its dynamics using 178 

time series data of one or more variables to construct an attractor in state space 179 

(Figure S1). This procedure is called univariate (using lagged versions of a single 180 

variable time series) or multivariate state-space reconstruction (SSR). Properties of 181 

the attractor are assessed to examine characteristics of the system  (Deyle & 182 

Sugihara 2011). We normalized each time series to zero mean and unit variance to 183 

remove measurement unit bias, ensuring the variables would be comparable and 184 

the attractor would not be distorted. All analyses were conducted in R version 3.5.1 185 
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(R Development Core Team 2018) and all EDM analyses were performed using 186 

package rEDM (Park et al. 2020). 187 

To infer mechanisms, EDM should be applied in systems where there is 188 

evidence of underlying low-dimensional deterministic dynamics (Cummins et al. 189 

2015). EDM assumptions are met when stochasticity is present (e.g., due to 190 

measurement noise, stochastic drivers, or unexplained variability) (Cenci et al. 191 

2019; Munch et al. 2020), but the system cannot be entirely stochastic. To test for 192 

low-dimensional deterministic dynamics we performed univariate SSR for each 193 

variable, and used simplex projection (Sugihara & May 1990)—a type of nearest 194 

neighbor regression performed on an attractor—to check whether the system is 195 

forecastable beyond the skill of an autoregressive model—an indicator of 196 

underlying deterministic dynamics (Figures S2a and S4; Supporting Information). 197 

To test for nonlinear state dependence of a variable—the motivation behind EDM—198 

we used the S-map test for nonlinearity (Sugihara 1994) (Figures S2b, c and S5; 199 

Supporting Information). 200 

EDM—Convergent cross-mapping 201 

We used an EDM approach called convergent cross-mapping (CCM) (Sugihara et al. 202 

2012) to identify drivers of dengue incidence. If two variables are causally related, 203 

then a multivariate attractor—where each variable in the system represents a 204 

dimension that traces the dynamics of the system—can be reconstructed (up to a 205 

practical limit) using lagged versions of just one of the variables (Figure S1). Based 206 
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on Takens’ Theorem, this univariate “shadow attractor” preserves the structural and 207 

dynamic properties of the original multivariate attractor (Takens 1981; Sugihara et 208 

al. 2012). The concept behind CCM is that if temperature causes dengue incidence, 209 

then information about past temperature will be embedded in the dynamics of 210 

dengue, such that the shadow attractor produced using only incidence data allows 211 

us to accurately reconstruct temperature in the past. However, the converse 212 

scenario would not be true: since dengue does not cause temperature, the shadow 213 

attractor constructed using temperature data should not contain information to 214 

accurately reconstruct past dengue incidence (Supporting Information).  215 

The critical criterion for estimating causal (directional) associations between 216 

two variables using CCM is checking that the cross-mapping skill (i.e., Pearson’s 217 

correlation coefficient, ρ,  between predicted driver values using the univariate SSR 218 

of the response variable, and the observed driver values) monotonically increases 219 

and plateaus (i.e., converges) with the length of the response variable time series 220 

used in cross-mapping. We used the Kendall’s 𝜏 test as a significance test for 221 

convergence of cross-mapping skill using the Kendall package (McLeod 2011). If 222 

𝜏 > 0 then there is convergence (Grziwotz et al. 2018). 223 

We performed pairwise cross-correlations on the time series to investigate 224 

time-lagged relationships between potential drivers (i.e., temperature, rainfall, and 225 

susceptibles index) and dengue incidence using the tseries package (Trapletti & 226 

Hornik 2018). Based on these analyses (Figure S6), we applied a 9-week time lag 227 

between temperature and incidence, an averaged lag of 3–9 weeks for rainfall (i.e., 228 
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the average rainfall over the preceding 3–9 weeks) to resemble standing water as 229 

mosquito breeding habitat over a longer time period, and a 5-week lag for the 230 

susceptibles index. These lags are proxies for the time delays of potential cause-and-231 

effects and are consistent with results from field studies (Chen et al. 2010; Stewart 232 

Ibarra et al. 2013). 233 

We assessed the strength of evidence for effects of potential drivers on 234 

dengue by comparing the CCM performance using the data with the performance of 235 

two null models that control for the seasonal trend (i.e., interannual mean) observed 236 

in all variables (Figure 2). These null models address the sensitivity of CCM to 237 

periodic fluctuations (i.e., seasonality), which can make two variables appear to be 238 

causally linked when instead they are simply synchronized by a seasonal 239 

confounder (Cobey & Baskerville 2016; Deyle et al. 2016a). In the first “seasonal” 240 

null model, we preserved the seasonal signal, but randomized the interannual 241 

anomalies (Deyle et al. 2016a). In the second, more conservative “Ebisuzaki” null 242 

model, we conserved any periodicity (beyond seasonal) and randomized the phases 243 

of Fourier-transformed time series (Ebisuzaki 1997). We tested for statistically 244 

significant differences in cross-mapping skill between the model that used the data 245 

versus the null models by performing Kolmogorov-Smirnov (K-S) tests after 246 

convergence.  247 

We also repeated CCM in the nonsensical, reverse-causal direction (e.g., to 248 

test whether incidence drives climate) as a control for potential spurious 249 

relationships generated by non-causal covariation (e.g., due to seasonality). This 250 
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addresses the issue of synchrony, in which CCM can indicate bidirectional causality 251 

when one direction is false or nonsensical (Baskerville & Cobey 2017; Sugihara et al. 252 

2017).  253 

EDM—Forecast improvement 254 

We examined the predictive power of the drivers on dengue incidence by assessing 255 

how well we can predict dengue dynamics using temperature, rainfall, susceptibles 256 

index, and their combined effects. We used a combination of univariate SSR (i.e., 257 

with incidence data) and multivariate SSR to build forecasting models and to 258 

determine the improvement of forecasting using simplex projection when including 259 

different combinations of drivers (Dixon et al. 1999; Deyle et al. 2013, 2016a) 260 

(Supporting Information). We built the SSR forecasting models/attractors using the 261 

1990/1991–2008/2009 season data (Figure 1) and made forecasts 8 weeks ahead. 262 

We assessed model forecasting performance using leave-one-out cross-validation.  263 

Next, we evaluated out-of-sample forecasting performance of these models 264 

using testing data from four additional seasons (2009/2010–2012/2013). 265 

Predictions made on week zero for the first forecast of the 2009/2010–2012/2013 266 

period (8 weeks ahead) came only from SSR using the 1990/1991–2008/2009 data. 267 

All subsequent weekly forecasts (8 weeks ahead) were made from updated SSR 268 

using all previous data, including past observations from the testing dataset. 269 
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Forecast uncertainty was evaluated by taking the density and morphology of 270 

the attractor into account. The more compact a simplex was and the less its starting 271 

position on the attractor mattered for the simplex projection, the more certain we 272 

were about our point estimate. Forecast variance was obtained from a distribution 273 

of weighted nearest neighbor regression from edges of simplexes constructed at 274 

various starting positions in the past.  275 

Finally, we compared our top model performance with performance of 276 

previous models from 16 teams that participated in a dengue forecasting challenge  277 

(Johansson et al. 2019) and had access to the same data. To make a fair comparison, 278 

we followed the procedure as directed in the challenge (Supporting Information). 279 

EDM—Scenario exploration 280 

In nonlinear systems, drivers generally have an effect that is state-dependent: the 281 

strength and direction of the effect depends on the current state of the system. 282 

Scenario exploration with multivariate EDM allowed us to assess the effect of a 283 

small change in temperature or rainfall on dengue incidence, across different states 284 

of the system. The outcome of these small changes allowed us to deduce the 285 

relationship between each climate driver and dengue incidence and how they 286 

depend on the system state. For each time step t we used S-maps (Sugihara 1994; 287 

Deyle et al. 2016a) to predict dengue incidence using a small increase (+ΔX) and a 288 

small decrease (–ΔX) of the observed value of driver 𝑋(𝑡) (temperature or rainfall). 289 

For each putative climate driver, the difference in dengue predictions between these 290 
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small changes is Δ𝑌 = 𝑌(𝑡 + 1) 𝑋(𝑡) +
( )

− 𝑌(𝑡 + 1) 𝑋(𝑡) −
( )

, where 𝑌(𝑡 +291 

1) is a function of X and all other state variables, and we used ΔY/ΔX to approximate 292 

the effect of driver X at time t. We repeated this over all time steps in our time series 293 

for both temperature and rainfall to recover their approximate relationships with 294 

dengue incidence at different states of the system. Scenario exploration analyses 295 

were repeated across several model parameterizations to address potential 296 

sensitivity to parameter settings (Supporting Information). 297 

RESULTS 298 

Drivers of dengue dynamics 299 

EDM showed that temperature, rainfall, and the susceptibles index drive dengue 300 

incidence since the convergence criterion was met (Kendall’s 𝜏 > 0, P < 0.01) in all 301 

three cases (Figure 3a–c). Rainfall and susceptibles index were significant drivers of 302 

dengue incidence beyond seasonality, as their effects were distinguishable from 303 

seasonal and Ebisuzaki null models (Figures 3b–c and S8b–c; K-S P < 0.0001). This 304 

implies statistically significant effects of both rainfall and the susceptibles index on 305 

dengue, which are not obscured by a periodic confounder. However, temperature 306 

was not a significant driver beyond seasonality (Figures 3a and S8a; K-S P = 0.90). 307 

We cannot rule out the possibility that the apparent forcing of temperature on 308 

dengue is due to a seasonal confounder. However, if no such confounder exists, then 309 

the seasonal trend in temperature, which accounts for most temperature variation 310 

in San Juan, drives the seasonal trend observed in dengue incidence. Compared to 311 
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the other drivers, the converging cross-mapping skill of the temperature null 312 

models were relatively high (Figures 3 and S8), suggesting that temperature 313 

seasonality in each null model was a strong driver. Thus, seasonal temperature may 314 

be driving dengue dynamics, a result consistent with other studies (Huber et al. 315 

2018; Robert et al. 2019). 316 

As expected, EDM tests for putative causality in the nonsensical directions—317 

incidence driving temperature or rainfall—were not significant (i.e., no 318 

convergence; Figure S7, black lines). This result further supports the finding that 319 

temperature and rainfall drive dengue incidence, because their causal relationships 320 

were not confounded by spurious bidirectionality. The null models for the 321 

nonsensical directions of causality (Figure S7, grey lines) also displayed no 322 

convergence (completely flat), as expected (i.e., seasonality of dengue incidence 323 

does not drive seasonality of temperature or rainfall). However, seasonality (or any 324 

periodicity) of temperature, rainfall and susceptibles index drive dengue dynamics, 325 

shown by convergence of the seasonal and Ebisuzaki null models (grey lines in 326 

Figures 3 and S8). 327 

Predictive power of drivers 328 

The multivariate SSR model using only temperature and rainfall data did not predict 329 

dengue incidence very well (𝜌 = 0.3839, RMSE = 47.72) although it captured the 330 

seasonality of the epidemics (Figure 4a). Forecasting skill doubled when the 331 

susceptibles index was included along with rainfall and temperature (𝜌 = 0.7547, 332 
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RMSE = 37.40; Figure 4c), where timing and magnitude of epidemics were captured 333 

reasonably well. Dengue incidence prediction improved even further when 334 

incidence was added into the model with all drivers (𝜌 = 0.7662, RMSE = 37.14; 335 

Figure 4e). Dengue incidence was somewhat predictable using univariate SSR of 336 

incidence data alone (𝜌 = 0.4459, RMSE = 46.75; Figure 4g), suggesting that the 337 

dengue incidence time series contains information about its drivers, although 338 

limited. This points to some additional value of including the driver variables. 339 

We also evaluated the performance of the SSR models (Figure 4a, c, e, g) 340 

constructed using data from seasons 1990/1991–2008/2009 on external, testing 341 

data from 2009/2010–2012/2013 that were not used in SSR (Figure 4b, d, f, h). The 342 

average out-of-sample forecasting skill for each model for the testing seasons was 343 

higher than that of the 1990/1991–2008/2009 forecasts, although the errors were 344 

larger. The model using only temperature and rainfall displayed predictability (𝜌 = 345 

0.8989, RMSE = 52.30; Figure 4b), the model that also included the susceptibles 346 

index improved predictions (𝜌 = 0.9475, RMSE = 52.12; Figure 4d), and the model 347 

that also included past incidence made highly accurate predictions (𝜌 = 0.9697, 348 

RMSE = 46.75; Figure 4f). The model that only included dengue incidence without 349 

the drivers was also predictive, although more error-prone (𝜌 = 0.9044, RMSE = 350 

57.34; Figure 4h). All SSR models (Figure 4a–h) had significant forecasting skill (𝜌) 351 

values (Fisher’s z-transformation P < 0.001).  352 

The model with the highest prediction skill for the testing seasons 353 

(2009/2010–2012/2013), which included past climate, susceptibles index, and 354 
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incidence data as predictors (Figure 4f), also outperformed models from the dengue 355 

forecasting challenge, including the ensemble model (Johansson et al. 2019) for 356 

predicting peak incidence, peak week, and seasonal incidence for all seasons on 357 

average (Tables S1–S2, Figures S9–S12). This demonstrates the benefit of the EDM 358 

approach for capturing the mechanistic, nonlinear, interdependent relationships 359 

among drivers over both equation-based mechanistic models and phenomenological 360 

models. 361 

State-dependent functional responses  362 

As expected, we find state-dependent effects of temperature and rainfall with non-363 

zero median effects. We found that temperature had a small positive median effect 364 

(2.88 cases/°C, Wilcox P < 0.001) on dengue incidence (Figure 5a). A positive effect 365 

is expected for the temperature range in Puerto Rico (Mordecai et al. 2017) (Figure 366 

6e, black dashed lines), although the effect was occasionally much stronger, both 367 

positive and negative (Figure 5a, b). The large negative effects occurred only at the 368 

highest temperature values (as predicted by mechanistic models of temperature-369 

dependent transmission), reinforced by a lower quantile regression with a strongly 370 

negative slope (Figure 5b, bottom dashed red line). However, positive effects 371 

occurred across the whole temperature range, which is limited to temperatures 372 

below the 29°C optimal temperature for transmission estimated from mathematical 373 

models and laboratory data (Mordecai et al. 2017).  374 
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Rainfall had a small negative median effect (–0.12 cases/mm, Wilcox P < 375 

0.001), but occasionally had very large negative effects (Figure 5a, c). These large, 376 

negative effects of rainfall on dengue occurred when there was less than 100 mm of 377 

rain per week (Figure 5c), consistent with expectations that drought could lead to a 378 

high number of dengue cases due to water storage, which can provide mosquito 379 

breeding habitat (Oliveira-lima et al. 2000). There are also small positive effects of 380 

rainfall on dengue (Figure 5c), suggesting that overall the results showed competing 381 

effects of low to moderate rain providing standing water for mosquito breeding and 382 

humans storing water where mosquitoes can breed when there is drought or low 383 

rainfall. 384 

These results suggest the strength and direction of the effects of climate on 385 

dengue dynamics depend on the state of the system. In addition to the nonlinear 386 

effects of climate drivers themselves on dengue incidence, another potential cause 387 

of state-dependent climate effects on dengue dynamics is the variation in the 388 

susceptible population size over time (Figure 6a, b). Outbreaks do not occur when 389 

there are too few susceptible people in the population. As expected, when the 390 

susceptibles index was small (𝜆 < 0.85) incidence was insensitive to climate (Figure 391 

6c, f). By contrast, when the susceptibles index was large (𝜆 > 0.85), temperature 392 

and rainfall effects on dengue incidence appeared (Figure 6d, g). The gradual 393 

increase and decrease of the rate of change of dengue as a function of temperature 394 

(Figure 6d, red solid lines) aligned well with the changes in slope over the 395 

increasing part (Figure 6e, black dashed lines representing the temperature range in 396 

our study) of the unimodal temperature response curve for dengue transmission by 397 
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Ae. aegypti developed previously (Mordecai et al. 2017). This is an important 398 

finding, since evidence of climate functional responses for disease dynamics is rare 399 

due to the difficulty of obtaining appropriately informative field data. It is possible 400 

that if we had temperature data ranging across a larger spectrum—possibly by 401 

assembling data across multiple climates—that the empirical functional response 402 

derived from EDM would also look unimodal. Further, when the susceptibles index 403 

was high, the slope of the relationship between rainfall and dengue incidence 404 

became more negative as rainfall increased, suggesting a concave-down effect of 405 

rainfall on incidence (Figure 6g, h). This relationship has been difficult to 406 

characterize in the field because of multiple, possibly context-dependent and lagged, 407 

mechanisms linking rainfall to dengue.  408 

DISCUSSION 409 

High host susceptibility allows seasonal climate suitability to fuel large dengue 410 

epidemics in San Juan, Puerto Rico. The effects of climate and susceptibility are 411 

nonlinear, interdependent, and state-dependent, which makes inference from 412 

controlled experiments, equation-based mechanistic models, or phenomenological 413 

models difficult. EDM provides methods for identifying these drivers, quantifying 414 

their predictive power, and approximating their functional responses. In Puerto 415 

Rico, the causes of extensive interannual variability in dengue incidence have 416 

remained a mystery, despite hypotheses that climate and host susceptibility were 417 
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involved. Here, we used EDM and a proxy for susceptible availability to disentangle 418 

nonlinear and interactive mechanisms driving disease dynamics.  419 

We found that rainfall, susceptible availability, and plausibly temperature 420 

(via its seasonality) interact to drive dengue incidence. Combined, these three 421 

drivers predicted dengue incidence with high accuracy (Figure 4c). The EDM-based 422 

forecasting model outperformed 16 models and an ensemble model in a recently 423 

published dengue forecasting challenge (Johansson et al. 2019), suggesting that it 424 

could enhance dengue control efforts if surveillance efforts continue to report 425 

weekly case data. Finally, as expected from epidemiological theory, climate effects 426 

on dengue only appeared when susceptible availability exceeded a threshold (𝜆 >427 

0.85; Figure 6).  428 

The fact that climate effects are first observed when 𝜆 ≈ 0.85 (before the 429 

onset of an outbreak, 𝜆 = 1), suggests that rainfall, and possibly temperature, have 430 

an effect on the timing of an impending epidemic. Climate could drive the 431 

transmission rate, thus influencing 𝜆 (which is proportional to both susceptible 432 

population size and 𝑅  when 𝜆 is close to 1), and therefore the timing of an outbreak 433 

could be attributed to the changes in transmission caused by seasonal climatic 434 

drivers (Rypdal & Sugihara 2019). The seasonality of temperature and rainfall had 435 

higher predictive skill than seasonality of susceptibles index (Figures 3 and S8, grey 436 

lines), further supporting that seasonality of incidence was associated with climate. 437 

However, the susceptibles index was critical for predicting dengue epidemic 438 

magnitudes (Figure 4c–f). Using the same data, Johnson et al. (2018) found that 439 
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mechanistic models could predict the timing of seasonal epidemics, but that a 440 

phenomenological machine learning component was needed to capture interannual 441 

variation in epidemic magnitude. Our work suggests that the unobserved size of the 442 

susceptible population was a key missing link for predicting magnitude variation 443 

across years. 444 

Previous studies have built models accounting for both susceptible 445 

availability and climate on dengue by reconstructing time series of susceptibles 446 

from a compartmental modeling framework (Metcalf et al. 2017). However, no 447 

previous studies on dengue have explored the interdependence between climate 448 

and susceptible population size. We showed that susceptible availability modifies 449 

climate effects on dengue: climate has negligible effects unless the susceptible 450 

population size is large enough (Figure 6). The interdependence of climate and 451 

population susceptibility has also been studied in diseases where the opposite effect 452 

was found. For example, climate effects on SARS-CoV-2 are expected to be negligible 453 

when susceptible availability is high in the early stage of the emerging pandemic  454 

(Baker et al. 2020). For influenza dynamics, population density in cities—potentially 455 

a proxy for susceptible availability—also modulated climate effects on disease 456 

transmission: climate effects were negligible in cities with high population densities  457 

(Dalziel et al. 2018).  458 

Because dengue susceptibility is so complex—due to the serotype dynamics 459 

and time- and antibody titer-dependent cross-protection and enhancement 460 

(Katzelnick et al. 2017b)—total population density or size may not be a reasonable 461 
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proxy for susceptible availability in dengue dynamics, and a direct mechanistic 462 

estimate of population susceptibility will likely never be widely available for most 463 

populations. Accordingly, it has been difficult for previous mechanistic models to 464 

capture susceptible dynamics for dengue and their interactions with climate. 465 

However, our approach provides a useful proxy that captures the susceptible 466 

population dynamics even in the absence of more detailed immunological 467 

information. By inferring the susceptibles index from incidence data, we were able 468 

to capture the strong influence of the susceptible availability on dengue dynamics, 469 

which in turn moderated the effect of climate on dengue dynamics. This result is 470 

expected from theory (Kermack & McKendrick 1927; Xu et al. 2017), but 471 

demonstrating it empirically is a unique contribution of this study. 472 

Even when accounting for susceptible availability, the effects of temperature 473 

and rainfall on dengue were strongly state-dependent (Figure 6d, g). This result is 474 

potentially due to nonlinear effects of each climate driver (Figure 6e, h), interactions 475 

and correlations between temperature and rainfall, microclimate variation over 476 

space and time that is not captured by weekly averages, and complex lagged effects 477 

that are not captured by a single fixed lag (e.g., 9 weeks). In Puerto Rico, mosquitoes 478 

also breed in septic tanks year-round, allowing transmission to occur independently 479 

from rainfall (Mackay et al. 2009), thus weakening the rainfall–dengue negative 480 

relationship (Figure 6g). Some of this additional variation may be captured in the 481 

dengue incidence time series itself, which may explain why including it improves 482 

forecast skill over climate and susceptibility alone (Figure 4e, f). Despite this 483 

additional variation, our results are consistent with previous studies suggesting that 484 
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dengue dynamics in Puerto Rico are positively associated with temperature 485 

(Johansson et al. 2009b; Barrera et al. 2011; Morin et al. 2015), and possibly 486 

negatively associated with rainfall (Johansson et al. 2009a; Morin et al. 2015), since 487 

most Ae. aegypti pupae in Puerto Rico are produced in human-made containers 488 

during periods of drought (Barrera et al. 2011).  489 

The climate and incidence data used here have been used in multiple 490 

forecasting efforts, where ensemble approaches and approaches that incorporated 491 

mechanisms outperformed purely statistical approaches  (Johansson et al. 2019). 492 

However, even the high-performing forecasting methods using the same dataset, 493 

and including (experimentally-derived) assumed mechanisms for the joint influence 494 

of climate and susceptibility on dengue dynamics, are still error-prone to the timing 495 

(on the order of weeks) and the magnitude (on the order of 50 cases) of intra-496 

annual epidemics (Morin et al. 2015; Johansson et al. 2019). Mechanisms isolated 497 

independently in controlled experiments do not necessarily scale up to the 498 

population level, and susceptible dynamics derived from compartmental models 499 

may be too simple to properly capture true susceptibility at the population level for 500 

dengue (Katzelnick et al. 2017b). EDM allowed us to infer mechanisms empirically 501 

from population-level data, and accounted for the population-level interdependence 502 

between climate and susceptible availability for forecasting, which probably 503 

contributed to our model outperforming previous forecasting models and 504 

ensembles (Table S1).  505 
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Connecting climate and dengue at the population level is challenging, 506 

because relationships are likely nonlinear and state-dependent. Rigorous methods 507 

for testing hypotheses, deriving mechanisms, and making predictions is essential for 508 

understanding disease dynamics. Our approach, using EDM and an inferred proxy 509 

for the susceptible population size, confirmed that climate has nonlinear, seasonal 510 

effects on dengue epidemics in San Juan, Puerto Rico, but only above a certain 511 

threshold of susceptible availability. EDM-derived mechanisms could be applied to 512 

predict ecological responses to changing environments in a world undergoing rapid 513 

environmental change. 514 
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FIGURES 714 

 715 

Figure 1. Dengue incidence, climate, and susceptibles index data. Time series 716 

(seasons 1990/1991–2008/2009) of (a) weekly dengue incidence (i.e., total number 717 

of cases per week), (b) weekly average temperature, (c) total weekly rainfall, and 718 

(d) a proxy for susceptible population size (see Supporting Information for details) 719 

in San Juan, Puerto Rico. 720 
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 721 

Figure 2. Seasonal trends and lags of dengue incidence and its drivers. The 722 

strong seasonal signal of dengue cases and other variables suggests potential causal 723 

lags between dengue incidence and temperature, rainfall, or the proxy for the 724 

susceptible population size. The lines represent interannual averages for each week 725 

of the year (i.e., calendar week) of dengue incidence (black), temperature shifted 9 726 

weeks forward in time (red), average rainfall over the preceding 3–9 weeks and 727 

shifted 3 weeks forward in time (blue), and susceptibles index shifted 5 weeks 728 

forward in time (purple). 729 
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 730 

Figure 3. Climate and susceptibles index drive dengue incidence. Cross-731 

mapping between dengue incidence and temperature (a; red), rainfall (b; blue), or 732 

susceptibles index (c; purple) display significant (Kendall’s 𝜏 > 0; P < 0.01) 733 

convergence in cross-mapping skill (i.e., 𝜌 increases and reaches an asymptote) as 734 

the length of the time series increases (a signal of putative causality). Red, blue and 735 

purple shaded regions represent the 0.025 and 0.975 quantiles of bootstrapped 736 

time series segments. Grey shaded regions represent the 0.025 and 0.975 quantiles 737 

of the seasonal null distributions obtained from 500 runs of randomized time series 738 

with conserved seasonal trends (Deyle et al. 2016a). Solid lines represent medians 739 

of distributions. Rainfall and susceptibles index showed significant forcing above 740 

and beyond seasonal signal (K-S P < 0.0001), because cross-mapping of the true 741 

time series (blue and purple) are distinguishable from their respective null models 742 

(grey), whereas temperature forcing was not distinguishable from the null (K-S P = 743 

0.90).   744 
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 745 

Figure 4. Predictive power of climate and susceptibles index (𝝀) on in-sample 746 

(left) and out-of-sample (right) dengue incidence. Forecasting results of 747 

incidence (8 weeks ahead) are shown in turquoise (solid lines represent the mean; 748 

shaded regions represent 90% confidence intervals) and observed incidence in 749 

black. (a, c, e, g) Time series for seasons 1990/1991–2008/2009 were used to 750 

construct SSR models for forecasts using leave-one-out cross-validation. (b, d, f, h) 751 

Data for seasons 2009/2010–2012/2013 were used to evaluate the SSR models 752 

constructed in a, c, e, and g, respectively, for out-of-sample forecasts. All SSR models 753 

(a–h) had significant forecasting skill (𝜌) values (Fisher’s z-transformation P < 754 

0.001).755 
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 756 

Figure 5. Temperature and rainfall show mixed effects on dengue incidence. 757 

Scenario exploration quantified the variable effect of changes in drivers on dengue. 758 

Boxplots show that the median effects of rainfall (Rain) and temperature (Temp) are 759 

small (close to zero), but drivers occasionally have strong impacts (a). To investigate 760 

climate driver functional responses, we plotted the rate of change of dengue 761 

incidence as a function of temperature (b) and rainfall (c). Red and blue lines 762 

represent regression on the median for temperature and rainfall, respectively, in a 763 

quantile regression. The dashed red and blue lines represent regression on the 0.05 764 

and 0.95 quantiles of temperature and rainfall, respectively. Temperature has an 765 

overall positive effect on dengue incidence (median regression line of the rate of 766 

change is positive), but can also have large negative and positive effects (a, b). 767 

Rainfall has an overall negative effect (median regression line of the rate of change 768 

is negative), but can also have small positive and large negative effects (a, c).  769 
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 770 

Figure 6.  Temperature and rainfall effects on dengue incidence vary 771 

depending on the susceptible population size (𝝀). The effect of changes in 772 

temperature (a) and rainfall (b) against 𝜆 shows that driver effects are split around 773 

the threshold 𝜆 ≈ 0.85 (purple dashed line). The red and blue lines represent the 774 

median regression of temperature and rainfall effects, respectively, in a quantile 775 

regression (a–d, f, g). The dashed red and blue lines represent the 0.05 and 0.95 776 

quantile regressions of temperature and rainfall effects, respectively (a–d, f, g). 777 

Neither driver has an effect on dengue incidence when susceptible availability is low 778 
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(𝜆 < 0.85; c, f). However, when 𝜆 > 0.85 climate effects are observed: temperature 779 

has mostly a positive effect (d), possibly sigmoidal in that temperature range (e), 780 

and rainfall has a negative effect (g), and conceptually a concave down functional 781 

response (h; black lines represent tangents, where the slope of the tangent is the 782 

rate of change). The effect of temperature on relative 𝑅  of dengue assuming 783 

transmission via Aedes aegypti mosquitoes is unimodal (Mordecai et al. 2017) over a 784 

large temperature range (e; dashed lines indicate the minimum and maximum 785 

temperature values in the data of our study, black lines represent tangents, where 786 

the slope of the tangent is the rate of change of relative 𝑅  of dengue as a function of 787 

temperature). Assuming that relative 𝑅  is proportional to dengue incidence, our 788 

results suggest that the rate of change of dengue incidence is increasing until 789 

reaching a maximum and then decreasing (d; red median regression lines). 790 

However, even when driver effects are split at the evident threshold of 𝜆 = 0.85 (c, 791 

d, f, g), there are still many occurrences when the susceptible population size is 792 

sufficient large (𝜆 > 0.85) but temperature and rainfall have no effect. In certain 793 

cases, temperature has even a negative effect on dengue (d).  794 


