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Abstract

1.

The densities of highly competent plant hosts (i.e., those that are susceptible to and
successfully transmit a pathogen) may shape pathogen community composition and
disease severity, altering disease risk and impacts. Life history and evolutionary history
influence host competence: longer-lived species tend to be better defended than shorter-
lived species and pathogens adapt to infect species with which they have longer
evolutionary histories. It is unclear, however, how the densities of species that differ in
competence due to life and evolutionary histories affect plant pathogen community
composition and disease severity.

We examined foliar fungal pathogens of two host groups in a California grassland: native
perennial and non-native annual grasses. We first characterized pathogen community
composition and disease severity of the two host groups to approximate differences in
competence. We then used observational and manipulated gradients of native perennial
and non-native annual grass densities to assess the effects of each host group on pathogen
community composition and disease severity in 1-m? plots.

Native perennial and non-native annual grasses hosted distinct pathogen communities but
shared generalist pathogens. Native perennial grasses experienced 26% higher disease
severity than non-native annuals. Only the observational gradient of native perennial
grass density affected disease severity; there were no other significant relationships
between host group density and either disease severity or pathogen community
composition.

Synthesis. The life and evolutionary histories of grasses likely influence their competence

for different pathogen species, exemplified by distinct pathogen communities and
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differences in disease severity. However, there was limited evidence that the density of
either host group affected pathogen community composition or disease severity.
Therefore, competence for different pathogens likely shapes pathogen community
composition and disease severity but may not interact with host density to alter disease
risk and impacts at small scales.

KEYWORDS

plant-pathogen interactions, disease severity, pathogen community, host competence, life

history, non-native species, grassland, fungi

1| INTRODUCTION

Plant community composition can affect infectious disease risk and impacts (Mundt,
2002; Rohr et al., 2020). The competence (i.e., susceptibility to and ability to transmit a
pathogen; Stewart Merrill & Johnson, 2020) and density of hosts can affect pathogen persistence
and incidence (Burdon & Chilvers, 1982; Fenton, Streicker, Petchey, & Pedersen, 2015).
Therefore, communities with higher densities of competent hosts are expected to experience
greater disease risk (Joseph, Mihaljevic, Orlofske, & Paull, 2013; Young, Parker, Gilbert, Sofia
Guerra, & Nunn, 2017). Because the relationship between community composition and disease
can inform biodiversity conservation (Rohr et al., 2020), empirical studies of natural
communities tend to focus on species richness more than host density (i.e., hosts per unit area;
Wojdak, Edman, Wyderko, Zemmer, & Belden, 2014) or abundance (e.g., percent cover of plant
hosts; Mitchell, Tilman, & Groth, 2002; Parker et al., 2015; Schmidt et al., 2020). It is therefore

unclear how the densities of hosts that differ in competence drive disease risk.
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Disease incidence (i.e., the proportion of hosts with symptoms in a given sampling
period; Nutter, Esker, & Netto, 2006) and severity (i.e., the intensity of symptoms per sampling
unit, such as a leaf or individual; Nutter et al., 2006) are indicators of disease risk (Rohr et al.,
2020). Typically, multiple pathogens circulate within host communities, driving disease
incidence and severity (Halliday, Umbanhowar, & Mitchell, 2017; Vasco, Wearing, & Rohani,
2007). Variation among hosts in competence for different pathogens, which can arise through
variation in traits and evolutionary histories with pathogens (Barrett, Kniskern, Bodenhausen,
Zhang, & Bergelson, 2009; Joseph et al., 2013; Parker & Gilbert, 2004), can promote diversity in
pathogen communities (Johnson et al., 2016). Therefore, variation in life history and
evolutionary history may alter disease risk through pathogen community composition.

Shorter-lived species, such as annual plants, are expected to be less well-defended against
pathogens and experience greater disease severity than longer-lived species because they allocate
more resources to reproduction than survival (Cronin, Welsh, Dekkers, Abercrombie, &
Mitchell, 2010; Joseph et al., 2013; Miller, White, & Boots, 2007). Plant species with longer
evolutionary histories with pathogens in a given location may be more susceptible to attack by
specialists that have overcome specific plant defenses (Parker & Gilbert, 2004; Telfer & Bown,
2012). In addition, species introduced to a new geographic area are likely to leave their specialist
pathogens behind, as predicted by the enemy release hypothesis (Keane & Crawley, 2002).
However, non-native plants tend to be annual species (Sutherland, 2004) and can accumulate
pathogens and disease symptoms comparable to native congeners within centuries (Hawkes,
2007; Mitchell, Blumenthal, Jarosik, Puckett, & Pysek, 2010), suggesting that long-established

non-native plants may have overlapping pathogen communities with native species.
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In general, higher densities of plant assemblages result in more contacts between
susceptible host tissue and pathogen propagules (Burdon & Chilvers, 1982) and increase the
negative effects of infection (Lively, Johnson, Delph, & Clay, 1995). Changes in the density of a
single host type are more likely to affect specialist pathogens than generalist pathogens
(Alexander & Holt, 1998), but specific plant traits may interact with plant density to mediate
infection by generalist pathogens. For example, non-native annual grasses in California
grasslands may increase pathogen transmission by filling in gaps between native perennial
bunchgrasses (Parker, Seabloom, & Schimel, 2012) and native perennial grasses may grow later
into the growing season than non-native annuals (Chiariello, 1989), providing additional
opportunities for transmission (Thrall, Biere, & Antonovics, 1993). Thus, pathogen communities
may shift, and disease severity may increase with increasing density of either non-native annuals
or native perennials, but to a greater extent with increasing density of the more competent group.

Here we assess how the densities of native perennial and non-native annual grasses affect
foliar fungal pathogen community composition and disease severity in a California grassland.
California grasslands are dominated by non-native annual grasses, which differ in life history and
local residence time from native perennial bunchgrasses (Heady, 1977). Non-native annual
grasses have been established in California for more than a century (Heady, 1977) and, with
native perennials, serve as hosts for a diversity of foliar fungal pathogens (Spear & Mordecai,
2018) that are transmitted through density-dependent mechanisms (McCartney, Fitt, & West,
2006). We collected data from ten studies within the grassland to answer the question: 1. How do
(a) pathogen community composition and (b) disease severity differ between native perennial
and non-native annual grass hosts? Pathogen community composition and disease severity

depend on, among other factors, host competence and can indicate propensity for transmission
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(Barrett et al., 2009). We hypothesized that native perennials would host more specialized
pathogens due to longer evolutionary history with local pathogens, that non-native annuals
would experience higher disease severity due to lower allocation to defenses, and that the two
groups would host overlapping pathogen communities due to the long residence time of non-
native annuals (>100 generations). We then evaluated the effects of host density on disease risk
in an observational study and a manipulated experiment, answering the question: 2. How do
native perennial and non-native annual grass densities affect (a) pathogen community
composition and (b) disease severity? We hypothesized that increasing densities of either native
perennials or non-native annuals would shift pathogen communities and increase disease
severity, and that the density of the more competent group (suggested by the results of Question
1) would have a larger effect. We hypothesized that the relationship between host density and
disease risk would be stronger in the manipulated experiment, where plots contained more

extreme values of host density and had fewer plant species than the observational study.

2| MATERIALS AND METHODS
2.1 | Study system

We evaluated the pathogen community composition and disease severity of native
perennial and non-native annual grasses at Stanford University’s Jasper Ridge Biological
Preserve (JRBP) in San Mateo County, California, USA. California grasslands are dominated by
non-native Mediterranean annual grasses that rapidly established during European settlement,
replacing dominant perennial bunchgrass species, such as Stipa pulchra (Heady, 1977).
Grasslands at JRBP occur on sedimentary-derived soil, which we focus on in this study, and

serpentine soil (McNaughton, 1968). Plant growth at JRBP begins with the onset of precipitation
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in late fall, progresses through cool, wet winters into spring, and ends in warm, dry summers
(Chiariello, 1989). The cumulative precipitation in San Mateo county between September and
April was 579 mm (2014-2015), 728 mm (2015-2016), and 1139 mm (2016-2017), ranging on
both sides of the 100-year average of 683 mm (NOAA, 2020). Such temporal variation in
precipitation is typical of California grasslands, can impact plant community composition
(Fernandez-Going, Anacker, & Harrison, 2012), and may also affect plant-pathogen interactions
(Thompson, Levin, & Rodriguez-Iturbe, 2013).

A study at JRBP in 2015 demonstrated that unique pathogen communities were
associated with several grass species, but that generalist pathogens were shared among them
(Spear & Mordecai, 2018). The data from that study are included here, along with data collected
in the next two years. We assessed foliar fungal disease associated with four non-native annual
grass species (4Avena barbata, Bromus diandrus, Bromus hordeaceus, and in some cases, Avena
fatua, Table 1) and two native perennial grass species (S. pulchra and Elymus glaucus). While
other non-native annual grasses, including Brachypodium distachyon, Bromus sterilis, Festuca
myuros, and Gastridium phleoides, were locally common (Table S1), we focused on the four
Avena and Bromus species because they are widespread at JRBP, have spatially variable
densities, and are the primary competitors of native grasses (McNaughton, 1968; Uricchio,
Daws, Spear, & Mordecai, 2019). All of the non-native species except B. sterilis and G.
phleoides are considered invasive in California (Cal-IPC, 2020).

2.2 | JRBP compilation

To evaluate the differences between foliar fungal pathogen communities (Question 1a)

and disease severity (Question 1b) of native perennial and non-native annual grasses, we used

plantstoecatedwithintencompiled data from two previous sampling efforts studies-at JRBP_in
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2015 and 2016 and collected additional data in 2017 (i.e., JRBP compilation, Fig. S1). The

sampling effortsse-studies were established-conducted to characterize variation in the host ranges

and fitness impacts of pathogens (observational study and additional sampling across JRBP in

2015; Spear & Mordecai, 2018) and tofermultiple purpesesbeyond-the-questions-addressed

hereinelading measureing plant demographic responses to competition and pathogen infection

2049 (obervational study, manipulated experiment, and germinant study in 2016; Uricchio et al.,

2019).; In 2017, we repeated sampling in the observational and germinant studies and collected

samples from plants grown in pots and growing medium and placed in areas around JRBP (i.e.,

ssentinel plants™ e, S1). characterizing natural variation in discase severity and pathogen

factors-ongrasslands{Shaw-etal5;2002)-The oFwoe-efthe-studies{ebservational study and

manipulated experiment (described below) contained gradients of native perennial to non-native

annual grasses and were therefore used to answer Questions 2a and 2b (sections 2.3 and 2.4).

invelvement-The plants sampled received no experimental treatment besides, in some cases,

manipulation of plant community composition.

To characterize the pathogen community composition of native perennial and non-native
annual grasses (Question 1a), we collected one leaf with disease symptoms per plant from
grasses i-ten-studies-at JRBP between March and June in 2645, 2046,and 2047each year (Table
1). We isolated fungi from the lesions, assigned each an operational taxonomic unit (OTU), and

estimated the species identity (section 2.5). We defined a community as the fungal isolates
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associated with a grass species in a particular year and omitted communities with fewer than four
isolates, leading to six communities associated with native perennials and ten communities
associated with non-native annuals (Table S2).

To characterize the disease severity of native perennial and non-native annual grasses
(Question 1b), we selected plants without a priori knowledge of their infection status. Disease

severity was assessed in a subset of the JRBP compilation locationsfremthree-studies-atJRBP

Fable): four transects (T11-T14, Fig. S1) in March and April 2015, the observational study in
March and April 2015 and May 2016, and the manipulated experiment in May 2016 (Table 1).
The assessments in March and April of 2015 used many of the same plants, so we analyzed these
data separately. For each plant, we haphazardly selected up to six leaves, based on availability,
and visually approximated the proportion of leaf surface area with lesions. Disease severity was
measured as the proportion of leaf surface area with lesions, including of leaves lacking lesions,
which, when averaged over all leaves of a plant, combines the proportion of leaves with lesions
and the proportion of leaf surface area with lesions.
2.3 | Observational study

Together with the manipulated experiment (section 2.4), the observational study was
designed to measure plant demographic responses to eempetition-and-pathogen infection (Spear
& Mordecai, 2018; Uricchio et al., 2019). Both studies contained gradients of native perennial
and non-native annual grass densities. Five plant species were included in both studies: seedlings
of A. barbata, B. diandrus, B. hordeaceus, E. glaucus, and S. pulchra and adults of E. glaucus
and S. pulchra. We included both seedlings and adults of perennial species because the
demographic responses of both life stages contributed to the original study goals (Uricchio et al.,

2019). In spring 2015, we established ten transects across visually-assessed gradients of
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perennial grass—dominated to annual grass—dominated areas. Transects consisted of four to five
1-m? plots (Fig. S1) and were sampled over two years. Following the first year, we supplemented
transects lacking the five plant species to allow for better comparison with the manipulated
experiment by adding approximately 20 seeds of each species and one adult of each perennial
species into every other plot (i.e., plots 1, 3, and 5 of a transect with 5 plots). To characterize the
density of native perennial and non-native annual grasses, we counted the number of individuals
per species within subplots of 47 and 18 plots during April 2015 and late June/early July 2016,
respectively, and scaled the counts up to 1-m? (Table S1). We did not include forb density in our
analyses even though forbs were present in the plots because foliar fungal pathogens often
exhibit a phylogenetic signal (Gilbert & Webb, 2007; Parker et al., 2015), so forbs are less likely
to share pathogens with the sampled grasses than are other grass species.

To evaluate the effects of native perennial and non-native annual grass densities on
pathogen community composition (Question 2a), we collected one leaf with disease symptoms
per plant from grasses in 31 plots in 2015 and six plots in 2016 (Table 1). We isolated and
identified fungi from the lesions (section 2.5) and evaluated changes in isolation frequencies of
the most common OTUs over the host group density gradients (section 2.6.3).

To evaluate the effects of native perennial and non-native annual grass densities on
disease severity (Question 2b), we conducted disease severity assessments of grasses in 46 plots
in March 2015, 25 plots in April 2015, and 18 plots in 2016 following the methods described for
the JRBP compilation (section 2.2). We evaluated changes in disease severity over the host
group density gradients (section 2.6.4).

2.4 | Manipulated experiment

10
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In fall 2015, we established 210 1-m? plots in a 35 m x 35 m area of JRBP where weed
matting had been placed in the preceding spring to suppress background plant recruitment (Fig.
S2; Uricchio et al., 2019). Within the 1-m? plots, we manipulated the densities of the five plant
species described in section 2.3 to 10%, 20%, 40%, 80%, or 100% of the density of each in
monoculture by sowing seeds of each species or transplanting adult perennial species. In
addition, 30 2 x 2 m plots were cleared and planted with one seed of each species and one adult
of each perennial species. In January 2016, we added “focal” individuals to the 1-m? plots by
planting ten seeds of each species and one adult of each perennial species. We also reseeded 18
plots with 75%—100% of their original added seed weight to account for low germination. Two-
thirds of the plots received either fungicide application or liquid fungal inoculum and one-third
received an equivalent volume of water (ambient). However, we only used the ambient plots in
this analysis (70 1-m? plots and 10 4-m? plots, Fig. S2). During June 2016, we counted up to 50
individual grasses in each plot, identified them to species, and scaled the densities to 1-m? (Table
S1). We weeded non-planted species throughout the growing season, but some survived and we
included their densities in our analyses.

To evaluate the effects native perennial and non-native annual grass densities on
pathogen community composition (Question 2a), we collected one leaf with disease symptoms
per plant from grasses in 28 plots (Table 1). Because destructive sampling could interfere with

assessing plant competition in low density plots (one of the goals of the experiment; Uricchio et

densities, we only sampled from plots planted at 80% and 100% density. These two planting

treatments still produced a range of realized native perennial and non-native annual densities

(Fig. S3B, D) because of variation in survival of intentional and unintentional plants. We isolated

11
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and identified fungi from the lesions (section 2.5) and evaluated changes in isolation frequencies
of the most common OTUs over the host group density gradients (section 2.6.3).

To evaluate the effects of native perennial and non-native annual grass densities on
disease severity (Question 2b), we assessed grasses across all of the ambient plots (Table 1)
following the methods described for the JRBP compilation (section 2.2). We evaluated changes
in disease severity on native perennial and non-native annual grasses over the host group density
gradients (section 2.6.4).

2.5 | Identifying foliar fungi

We isolated fungi associated with foliar lesions and estimated the species identity to
address questions pertaining to pathogen community composition (Questions la and 2a). As
described by Spear and Mordecai (2018), we excised 2 mm x 2 mm segments of symptomatic
tissue from the edge of foliar lesions and surface-sterilized (sequential immersion for 60 s each
in 70% ethanol and 10% household bleach) and plated each tissue piece on 2% malt extract agar
(MEA) with the antibacterial agent chloramphenicol. For each tissue piece, morphologically
distinct hyphae (i.e., morphotypes) were isolated into pure culture on 2% MEA plates. The
Mordecai lab maintains reference strains (California Department of Food and Agriculture permit
3160). For each fungal isolate, we extracted genomic DNA and amplified the internal transcribed
spacer (ITS) regions 1 and 2, the 5.8S rRNA gene, and part of the rRNA LSU as detailed in
Spear and Mordecai (2018). However, in 2017, we modified our protocol to produce longer
consensus reads. Specifically, we paired the forward primer ITS1-F (Gardes & Bruns, 1993) with
the reverse primer LR3 (Vilgalys & Hester, 1990), rather than ITS4-B (Gardes & Bruns, 1993).

We processed the Sanger sequencing reads from MCLAB (San Francisco, California,

USA) with Geneious 7.1.9 (Kearse et al., 2012). We trimmed and automatically assembled reads

12
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when possible; when not possible, we manually assembled reads or selected the longest trimmed
individual read over 100 bp. We clustered all consensus sequences into OTUs based on 97%
sequence similarity using USEARCH 10.0.240 (Edgar, 2010). If different morphotypes from the
same tissue piece were clustered into the same OTU, we assumed they represented the same
isolate. We estimated the taxonomic placement of the ITS OTUs with the UNITE database
01.12.2017 (Nilsson et al., 2019) and assigned taxonomy in mothur 1.40.5 (Schloss et al., 2009)
using the naive Bayesian classifier (Wang, Garrity, Tiedje, & Cole, 2007) with a bootstrapping
confidence score of at least 80% for species name and at least 60% for any other taxonomic rank.
2.6 | Statistical analyses

Statistical analyses were completed in R version 3.5.2 (R Core Team, 2018) using vegan
(Oksanen et al., 2019), rusda (Krah et al., 2018), glmmTMB (Brooks et al., 2017), MuMIN
(Barton, 2019), and tidyverse (Wickham, 2017) packages.
2.6.1 | Question la: Pathogen community differences between host groups

We evaluated dissimilarities among pathogen communities (section 2.2) with a
permutational multivariate analysis of variance (PERMANOVA) using the Chao method, which
accounts for unobserved species and is robust to differences in sample sizes (Chao, Chazdon, &
Shen, 2005). We used a community matrix (each community as a row, each OTU as a column,

2 <e

isolate abundances as entries) as the response variable and the ‘“grass species”, “year”, and “host

group” as predictor variables. We visualized results with non-metric multidimensional scaling
(NMDS), also using the Chao method.
We estimated the host ranges of pathogens associated with each host group to evaluate

whether escape of non-native annual grasses from specialist pathogens could explain differences

in pathogen community composition (Keane & Crawley, 2002). We used two methods to
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estimate host range: (1) we searched the U.S. National Fungus Collections Database (hereafter,
“database”; Farr & Rossman, 2019) for host species associated with the estimated fungal species
(Schmidt et al., 2020) and (2) we compiled the host species from which each OTU was isolated
across ten studies at JRBP (section 2.2). Host species sampled (sample sizes in parentheses)
included A4. barbata (210), A. fatua (12), B. diandrus (120), B. distachyon (4), B. hordeaceus
(85), E. glaucus (242), Festuca perennis (a non-native perennial, 21), Phalaris aquatica (a non-
native perennial, 19), and S. pulchra (436). To test whether pathogens associated with native
perennial and non-native annuals differed in their host ranges, we performed Welch two sample
t-tests for each of the two host range sources. By using each fungal isolate as a replicate, species
or OTUs that were isolated more frequently contributed more to the average host range. Note
that the database may provide more information, and potentially larger host range estimates, for
fungi of crops and economically important plants, fungi intercepted at ports of entry, common
fungi, and invasive or emerging fungal pathogens (Farr & Rossman, 2019).
2.6.2 | Question 1b: Disease severity differences between host groups

To evaluate the differences in disease severity between native perennial and non-native
annual grasses, we fit a generalized linear mixed effect model with a logit-link beta error
distribution to the proportion of leaf surface area with lesions (section 2.2). Because our data
contained many zeros, which cannot be included in a beta regression, we transformed disease
severity using the equation t = (s x (n — 1) + 0.5) / n, where ¢ is the transformed value, s is the
original value, and 7 is the size of the dataset (Douma & Weedon, 2019). The predictor variable
was “the-host group” and the random effect intercepts were “plant ID” nested within “plot”

nested within “study” and crossed with “year”. We removed study from the random effects
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(variance < 2x1072?) for model convergence; the random effect “plot” still accounted for spatial
heterogeneity.
2.6.3 | Question 2a: Effects of host density on pathogen communities

To evaluate the effects of native perennial and non-native annual density on pathogen
community composition, we analyzed the isolation frequencies of the most common OTUs. To
select the most common OTUs, we ranked all of the OTUs from ten-the JRBP studies
compilation (section 2.2) by the number of isolates obtained in each year (i.e., abundance). We
evaluated the differences in abundance between consecutive ranks and found relatively large
differences between the fifth and sixth most common OTUs in 2015 and 2016 and between the
fourth and fifth most common OTUs in 2017 (Fig. S43). Therefore, we selected the top five,
five, and four most common OTUs in 2015, 2016, and 2017, respectively, which resulted in
seven focal OTUs. The fungal species associated with these OTUs were Alternaria infectoria,
Parastagonospora avenae, Pyrenophora chaetomioides, Pyrenophora lolii, Pyrenophora tritici-

repentis, a nunidentitied-Pyrenophora species_identified only to genus level (““Pyrenophora

sp.”), and Ramularia proteae. Note that we refer to the OTUs by their estimated species names
in the results, but these same species names may be associated with less common OTUs as well.
We fit generalized linear mixed effect models with logit-link binomial error distributions
to the presence/absence of each focal OTU for each isolate collected from the observational
study and manipulated experiment. The predictor variables were-the “host group” (from which

” “‘non-native

b J—

the isolate was collected) and plot-level densities of “‘native perennial grasses

annual grasses”, and, when present, grasses that were either unidentified or not included in either
host group (“other grasses”, Table S1). The fixed effects also included interactions between

“host group” and each of the grass density measurements. Random effect intercepts were “plot”
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crossed with “year” for the observational study and “plot” for the manipulated experiment
(which had only one year of data). Exceptions to the general model formulation were made to aid
in model convergence (Methods S1). We performed model selection by fitting models with all
subsets of the fixed effects. The Akaike information criterion with a correction for small sample
sizes (AICc) was calculated for each model and we extracted the subset of the models for which
the cumulative sum of the normalized model likelihoods was greater than or equal to 0.95 (i.e.,
the 95% confidence set of models). We report coefficient estimates from the average of the 95%
confidence set.
2.6.4 | Question 2b: Effects of host density on disease severity

To evaluate the effects of native perennial and non-native annual grass densities on the
disease severity of each host group, we fit generalized linear mixed effect models with logit-link
beta error distributions to the scaled proportion of leaf surface area with lesions (section 2.6.2).
The fixed effects were the same as those described for the pathogen isolate models (section
2.6.3). The random effect intercepts were “plant ID” nested within “plot” and crossed with
“year” for the observational study and “plant ID” nested within “plot” for the manipulated
experiment. We did not perform model selection as sub-models could not converge during model

averaging.

3| RESULTS
3.1 | Question 1a: Pathogen community differences between host groups

We identified 83 unique OTUs from the 961 foliar fungal isolates collected from six
grass species across JRBP (Fig. 1A). Forty-one OTUs were isolated from only native perennial

grasses, 18 were isolated from only non-native annual grasses, and 24 were isolated from both
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host groups. The host groups explained 25% of the variance in pathogen community composition
(Table 2) and the pathogen communities associated with the two groups were distinct (Fig. 1B).
However, the 24 OTUs isolated from both host groups made up 78% and 96% of the isolates
from native perennial grasses and non-native annual grasses, respectively, leading to overlap
between the pathogen communities associated with the two host groups (Fig. 1A). Fungal
species names (29 total) were estimated for 282 native perennial grass isolates (53%) and 266
non-native annual grass isolates (62%). Based on the database, the estimated fungal species
isolated from non-native annual grasses had, on average, smaller host ranges than those isolated
from native perennial grasses (Fig. 1C, t=4.53, df =480, P <0.001). However, within JRBP,
the OTUs isolated from non-native annual grasses had, on average, larger host ranges than those
isolated from native perennial grasses (Fig. 1C, t=-7.97, df =944, P <0.001).
3.2 | Question 1b: Disease severity differences between host groups

Based on assessments collected from three studies at JRBP, native perennial grasses had
26% higher disease severity than non-native annual grasses (P < 0.001, Table S3). However,
disease severity was generally low: an average of 1.5% and 1.1% of leaf surface area was
covered with lesions for native perennials and non-native annuals, respectively. These patterns
were maintained when data collected in April 2015 from the observational study were substituted
for data collected in March 2015 (Table S3).
3.3 | Question 2a: Effects of host density on pathogen communities

The seven most common OTUs from the foliar fungal isolates collected at JRBP (i.e., the
focal OTUs) comprised 66% and 77% of the isolates from native perennial and non-native
annual grasses, respectively, across the density gradients (Table 3). In both the observational

study and manipulated experiment, the grass communities included either high densities of one
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host group and low densities of the other or low densities of both (Eig—S4Fig. S3A-B). The
densities in the manipulated experiment exceeded those in the observational study. The majority
of the plots had more non-native annuals than native perennial grasses (Fig—S4Fig. S3C-D).

None of the focal OTUs significantly increased in relative abundance with native
perennial or non-native annual grass density (Tables S4-S5). We calculated the predicted change
in relative abundance of each pathogen on each host group with the addition of 50 native
perennial grasses m™ (Fig. 2A—B) or 5000 non-native annual grasses m~ (Fig. 2C-D) to bare
plots—reflecting the difference in naturally occurring densities of these species groups. Such
increases in density exceed those recorded in the observational study (Eig—S4Fig. S3A), but they
still had small predicted impacts on the relative abundances of most pathogens (Fig. 2). Although
not statistically significant, P. lolii relative abundance decreased with 50 additional native
perennial grasses (Fig. 2A—B), the relative abundance of theunidentified-Pyrenophora species
sp. increased with 5000 additional non-native annual grasses (Fig. 2C-D, Fig. S5), and P.
chaetomioides relative abundance on non-native annuals decreased with 5000 additional non-
native annual grasses in the manipulated experiment (Fig. 2D).
3.4 | Question 2b: Effects of host density on disease severity

Disease severity was generally low across both host groups and grass density ranges (Fig.
3) and did not significantly change with non-native annual grass density (Tables S6—S7). Native
perennial grass density significantly increased disease severity in the observational study (Table
S6), particularly on native perennial hosts (Fig. 3A), but this effect was lost later in the season
(Fig. S6A). Disease severity was higher on native perennials than non-native annuals across

grass densities (Tables S6-S7).
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4 | DISCUSSION

To evaluate the effects of host competence and density on disease risk, we characterized
pathogen communities and disease severity of native perennial and non-native annual grasses in
a California grassland. Consistent with two of our hypotheses, the host groups shared generalist
pathogens and native perennials hosted more specialized pathogens based on data collected from
JRBP (Question 1a). However, non-native annuals hosted more specialized pathogens based on
the U.S. National Fungus Collections Database (Question 1a). Both host groups experienced low
disease severity, but native perennials had higher disease severity than non-native annuals—the
opposite of what we had expected (Question 1b). Despite distinct pathogen community
compositions between the host groups and differences in disease severity, we did not find
substantial effects of host group density on pathogen community composition (Question 2a) or
disease severity (Question 2b). Our findings suggest that native perennial and non-native annual
grasses differ in competence, shaping their own pathogen communities, but that their densities
do not amplify their pathogen communities, or foliar fungal disease in general, at least at the 1-
m? plot scale and over the time span of our study.
4.1 | Question 1a: Pathogen community differences between host groups

Plant species vary in susceptibility to different pathogens (Barrett et al., 2009), in part
due to life history (Cronin et al., 2010) and evolutionary history (Parker & Gilbert, 2004).
Accordingly, native perennial and non-native annual grasses had distinct foliar fungal pathogen
communities. Plant—pathogen interactions can also depend on environmental conditions (Barrett
et al., 2009). Sampling year explained 42% of variation in pathogen community composition,
suggesting the influence of temporally variable factors such as precipitation (Thompson et al.,

2013) and temperature (Liu et al., 2019). Our study included two (Questions 1b, 2a, 2b) to three
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(Question 1a) years of data from a single grassland, but longer time series could help link
climate variation to pathogen community composition.

Hosts are frequently infected by multiple pathogens and many pathogens can circulate
among different hosts within the same community (Halliday et al., 2017; Schmidt et al., 2020).
Our study is unique, however, in seeking to understand how hosts that differ in life and
evolutionary histories shape aboveground pathogen community composition (but see Seabloom,
Borer, Lacroix, Mitchell, & Power, 2013). A pathogen community perspective demonstrated that
high relative susceptibility of one group to one pathogen (e.g., native perennial grasses to P.
tritici-repentis) can be balanced by high relative susceptibility of another group to another
pathogen (e.g., non-native annual grasses to P. chaetomioides). This insight is likely to be
general given that variation in evolutionary history also shapes soil microbial community
composition (Kourtev, Ehrenfeld, & Haggblom, 2002; Wolfe, Rodgers, Stinson, & Pringle,
2008) and cautions against conclusions about disease risk that focus on a single pathogen (Lloyd-
Smith, 2013).

The enemy release hypothesis posits that native plants will experience greater disease
pressure than non-native plants because the latter will lose specialist enemies during transport to
a new region and resident specialist enemies will be slow to attack non-native plants (Keane &
Crawley, 2002). We isolated more unique OTUs from native perennials than non-native annuals,
which supports this hypothesis, but the average host range of pathogens associated with non-
native annuals was more specialized than that of pathogens associated with native perennials
based on the database. The latter result should be interpreted with caution, however, because
many pathogens did not have host range information available in the database, some estimates of

host range were smaller than those characterized at JRBP (e.g., R. proteae), and we found the
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opposite relationship from nine host species at JRBP. Nonetheless, non-native annual grasses
may host more specialized pathogens because the grass species have been in JRBP or nearby
counties since 1893 or earlier (JRBP, 2020), allowing more than 120 annual plant generations for
resident pathogens to adapt to the novel hosts (Carroll et al., 2005; Hawkes, 2007) and for
repeated introductions of pathogens from their native geographic ranges to occur (Dutech et al.,
2012). Some of the identified pathogens are globally-distributed (Aboukhaddour, Cloutier,
Lamari, & Strelkov, 2011; Stukenbrock, Banke, & McDonald, 2006), suggesting that repeated
introductions may be plausible.
4.2 | Question 1b: Disease severity differences between host groups

Native perennial grasses experienced higher disease severity than non-native annual
grasses. While this finding contradicts our expectation that non-native annuals would have
higher disease severity because of life history, it is consistent with multiple studies
demonstrating higher disease severity on native than non-native plants (Chun, van Kleunen, &
Dawson, 2010; Han, Dendy, Garrett, Fang, & Smith, 2008; Hawkes, Douglas, & Fitter, 2010; but
see Parker & Gilbert, 2007). Native perennials may be more exposed to transmission and/or
more susceptible to infection than non-native annuals. Exposure may be partially explained by
the long-lived life-history of native perennials and their role as long-term pathogen reservoirs
(Thrall et al., 1993). Indeed, the difference in disease severity between native perennials and
non-native annuals was greater in the observational study than in the manipulated experiment,
where plant communities had been recently assembled. In addition, non-native annual grasses
may shed leaves with fungal lesions more frequently than native perennials, creating the

appearance of lower disease severity (Vloutoglou & Kalogerakis, 2000). In general, disease
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severity was low, suggesting that both host groups have low competence for foliar fungal
pathogens.
4.3 | Question 2a: Effects of host density on pathogen communities

Changes in density of native perennial and non-native annual grasses had limited effects
on the relative abundance of foliar fungal pathogens. Therefore, even though the two host groups
had different pathogen communities (Question 1a), they may not amplify the transmission of
pathogens with which they are frequently infected. For example, P. chaetomioides was isolated
frequently from the two Avena species in the non-native annual group but was predicted to
decrease in relative abundance on non-native annuals with increasing density of non-native
annuals. Changes in plant community composition within the host group, such as an increase in
Bromus spp. and a decrease in Avena spp., along the density gradient or generally low disease
severity and limited capacity for transmission may have contributed to this pattern.

Our results indicate that shifts in the densities of hosts that have similar life history
strategies and local residence times do not necessarily shape the assembly of pathogen
communities. While interpretations of biodiversity—disease risk relationships often invoke a
strong role for host density (e.g., Young et al., 2017), plant pathogen communities may be more
influenced by other factors, such as microbial interactions. For example, priority effects can
influence the assembly of yeast communities in flower nectar (Peay, Belisle, & Fukami, 2012)
and foliar fungal communities on grasses (Halliday et al., 2017). One limitation to evaluating
disease risk by particular pathogens in our study is that we lack data on the absence of infection.
In addition, transmission events may occur at a scale greater than study plots, causing the plot-
level density of grasses to be an inaccurate estimate of transmission pressure.

4.4 | Question 2b: Effects of host density on disease severity
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Disease severity increased with increasing native perennial grass density in the
observational study, but not with increasing non-native annual grass density or in the
manipulated experiment. Not only was the manipulated experiment more recently established,
but the experimental designed differed in multiple ways that could affect pathogen transmission:
the total area of the experiment was smaller, there were open corridors between the plots instead
of continuous grassland, and plant community composition varied randomly in space instead of
gradually shifting between the two host groups. Deviations of our results from strong positive
relationships between plant abundance and disease severity (Mitchell et al., 2002; Parker et al.,
2015) may be explained by low average disease severity and high plant diversity. High host
diversity can hinder foliar fungal pathogen adaptation to specific host defenses (Mundt, 2002) or
otherwise prevent specialized pathogens from becoming common (i.e., the dilution effect; Rohr
et al., 2020), making pathogens less capable of exploiting locally-abundant hosts, and in turn less
sensitive to changes in the density of any particular host group. Indeed, host abundance in
diverse old fields did not affect disease severity caused by aboveground pathogens (Schmidt et
al., 2020). In addition, density effects may be transient, as exemplified by dampened density—

disease severity relationships later in the growing season.

5| CONCLUSIONS

This study of foliar fungal pathogen communities and disease severity on native perennial
and non-native annual grasses suggests that differences in life history or local residence time
may contribute to disease risk through differences in competence, but not through changes in
density. We could not parse out the independent effects of life history and local residence time,

but previous studies of plant diseases suggest that both life history (Cronin et al., 2010) and
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512 evolutionary history (Parker & Gilbert, 2004) are strong drivers of competence. Our results are
513  likely to be generally relevant, however, because non-native plants are likely to be annuals

514  (Sutherland, 2004). These findings have implications for understanding the impacts of invasive
515  species. For example, when species initially invade a community, they can affect total host
516  density, altering the proportion of hosts infected (Searle et al., 2016). The invasive species we
517  evaluated, however, are well-established, suggesting that the expected impacts of invasive

518  species on disease risk may be greater earlier in invasions. Our study demonstrates that host
519  community composition can affect pathogen community composition and disease severity

520  through variation in competence among hosts.
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Tables

Table 1. Data types, sources, years, and sample sizes used to address each question. All data

sources included two native perennial species (E. glaucus and S. pulchra) and three non-native

annual species (4. barbata, B. diandrus, and B. hordeaceus). Some also included the non-native

annual species 4. fatua (indicated with T). Sample sizes in parentheses represent an additional

sampling period in the same year (analyzed separately).

Data Native Non-native
Question type Data source Year  perennials annuals
la isolates JRBP comptationobs. and
additional -10-studies) 2015 91 75
obs., man., and additional 2016 261 242
obs. and additional 2017 182 110
1b severity JRBP-ecempHation{(3-studies)obs.
and additional 2015 101 (71) 292 (129)
obs. and man. 2016 338 172
2a isolates ebservational-studyobs.| 2015 69 55
obs. 2016 22 17
maniptlated-experimentman. 2016 135 76
2b severity e R 2015 101 (56) 292 (79)
obs. 2016 69 11
maniptlated-experimentman. 2016 269 161

Notes: obs. = observational study, man. = manipulated experiment, additional = additional

sampling (see Fig. S1 for details)
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769  Table 2. PERMANOVA describing the effects of host group (native perennial versus non-native

770  annual), grass species, and sampling year on pathogen community composition (n = 961

771  1isolates).

Variable df Sums ofsqgs. Mean sgs. F R? P
Host group 1 0.516 0.516 23.506 0.250 0.001
Grass species 4 0.510 0.127 5.801 0.247 0.004
Year 2 0.862 0.431 19.606 0.417 0.001
Residuals 8 0.176 0.022 NA 0.085 NA
Total 15 2.064 NA NA 1 NA

772  df=degrees of freedom, sqs. = squares, NA = not applicable; P-values indicating statistical

773  significance (P < 0.05) are in bold.
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Table 3. Pathogen species assigned to the focal OTUs, their host ranges based on the number of

host species found in the database and identified at JRBP (out of nine species), and their

abundances (the number of isolates, and proportion in parentheses) from each host group

collected across the observational and manipulated density gradients.

Database JRBP host Native perennial

Non-native

Pathogen host range  range abundance annual abundance
Alternaria infectoria 50 8 27(0.12) 35(0.24)
Parastagonospora avenae 54 5 32 (0.14) 4(0.03)
Pyrenophora chaetomioides 7 7 0 (0) 19 (0.13)
Pyrenophora lolii 11 7 12 (0.05) 19 (0.13)
Pyrenophora tritici-repentis 63 2 23 (0.1) 0(0)
Pyrenophora sp. NA 6 44 (0.19) 31(0.21)
Ramularia proteae 1 7 11 (0.05) 6 (0.04)
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Figure legends
Figure 1. Pathogen communities associated with native perennial and non-native annual grasses.
(A) Composition of fungal pathogen isolates for each grass species. Each OTU is represented by
a different color (including varying shades of brown) and the legend is provided for the seven
focal OTUs: Alternaria infectoria (A. inf.), Parastagonospora avenae (P. ave.), Pyrenophora
chaetomioides (P. cha.), Pyrenophora lolii (P. lol.), Pyrenophora tritici-repentis (P. tri.),
Pyrenophora sp. (Pyr. sp.), and Ramularia proteae (R. pro.). The number of isolates per grass
species is to the right of the bars. (B) Non-metric multidimensional scaling (NMDS) plot of
pathogen communities associated with the two host groups. A community is defined as all of the
foliar fungal isolates from one grass species in a year. Ellipses represent 95% confidence regions
for the host group centroids (means). (C) The average number of host species in the database
(top panel) and the JRBP compilation (bottom panel) for fungal pathogens isolated from each
host group (mean £+ 1SE). Averages comprise all fungal isolates with estimated species names
and available data (n = 548, top panel) or all OTUs (n = 961, bottom panel).
Figure 2. The average predicted effect (£ 1SE) of adding (A—B) 50 native perennial grass
individuals m™ or (C—D) 5000 non-native annual grass individuals m™ to bare plots on the
relative abundance of each of the seven focal OTUs on each host group (x-axes) based on
regressions fit to the (A and C) observational (n = 163 isolates) and (B and D) manipulated (n =
211 isolates) studies (Tables S4—S5). Pathogen abbreviations are in Fig. 1.
Figure 3. The effect of (A—B) native perennial and (C—D) non-native annual grass density on
scaled disease severity of native perennial and non-native annual hosts in the (A and C)

observational study (n = 1847 leaves) and (B and D) manipulated experiment (n = 1177 leaves).
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The average scaled disease severity is plotted at each density value (points). Lines and shaded

regions represent linear regression fits (mean £+ 1SE, Tables S6-S7).
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