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ABSTRACT 14

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every
year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and
ecological changes. In the United States of America, the vast majority of Aedes-borne infections is imported from endemic
regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is
susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the
susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the
presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health
sector. We present a next-generation monitoring and forecasting system for Aedes-borne diseases’ environmental suitability
(AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological
models, climate models and temperature observations. After showing that the seasonal predictive (discrimination) skill of
AeDES is ∼1.4-1.8 times larger than the baseline, we illustrate how a combination of tailored deterministic and probabilistic
forecasts can inform key prevention and control strategies.

15

We live in an increasingly interconnected world. The rapidly increasing movement of people, pathogens, vectors, livestock, 16

food, goods, and capital across borders creates both economic opportunities and health risks1. Epidemics, just like climate, do 17

not respect national borders and can threaten human health and social stability. Since the Millennium, the appearance of the 18

SARS coronavirus in 2003, the avian influenza (H1N1) in 2009, the Ebola virus in West Africa (2014-2016), the Zika virus in 19

the Americas (2015) and the novel coronavirus identified in late December 2019 in Wuhan, China and still ongoing (2020), 20

amongst others, has demonstrated the speed at which emerging infectious diseases can spread with devastating effects2. 21

Many infectious diseases are climate-sensitive; climate acting as an important driver of spatial and seasonal patterns of 22

infections, year-to-year variations in incidence (including epidemics), and longer-term shifts in populations at risk3. Climate 23

impacts both the virus and the vector. Evidence to date shows that arboviruses of global public health importance, including 24

Zika, dengue, yellow fever, chikungunya, and Rift Valley Fever, have mosquitoes as part of their epidemiological cycles. 25

Some Aedes-borne diseases have experienced an overall increase of 30-fold in the last 50 years, causing more than 50 26

million infections worldwide every year4. In the United States of America, the vast majority of Aedes-borne infections is 27

imported from endemic and often neighboring regions -like the Caribbean, Central and South America- by travelers who 28

become potential new sources of transmission. Autochthonous transmission in the continental USA has been already observed 29

for chikugunya virus (2013) and Zika (2017), and risks are likely to increase with anthropogenic global warming. 30

For authocthonous transmission to occur, the population needs to be susceptible to the disease, but there must also be 31

suitable environmental conditions (e.g., suitable temperatures) for both the mosquitoes and the virus. Since the susceptibility 32

can be periodically monitored via targeted campaigns, the environmental suitability for presence of mosquitoes and viruses is 33

one of the most important pieces of information for decision makers in the health sector. Moreover, the transmission rates or 34

the number of cases are generally more difficult to forecast than environmental suitability, due to their link to a larger number 35

of (often entangled and more complex) predictors, involving human behavior and socio-economic conditions. 36



A generalized approach to model Aedes-borne pathogens is needed because multiple Aedes can serve as vectors of dengue,37

Zika and chikungunya. Although Aedes aegypti is the most common vector, Aedes albopictus (otherwise known as the38

Asian tiger mosquito) has been identified as another important additional vector because of its vector competence for several39

arboviruses and recent rapid spread5. Both vectors pose a potent threat to global health security given their ability to transmit a40

wide variety of emerging and re-emerging arboviruses for which there are no vaccines. Aedes aegypti and Aedes albopictus are41

ubiquitous in large regions of the Americas and the Caribbean.42

Historical, current and forecast climate information can be combined with disease models to improve climate-sensitive43

health planning and targeting of resources. For infectious disease models, the goal has frequently been to explore different44

interventions scenarios in order to help set priorities for policy makers6. However, in recent years there is increasing interest in45

using models for real-time forecasting7–9, although there remains a significant gap in the operational readiness of the numerous46

forecasting systems presented in the literature10. Stochastic models possess inherent randomness and are widely used in climate47

science as well as in disease modelling to build probabilistic forecasts11, as they provide a more reliable assessment of the48

range of likely outcomes. However, probabilistic models are sometimes harder for decision-makers to interpret, and tend to49

be rejected in favour of simpler, deterministic, but over-confident, models. An approach that takes full advantage of both50

deterministic and probabilistic forecasts is presented and discussed in the following pages.51

Although the historical (average) seasonal behavior –and similar statistics– of these diseases is useful12, we consider it not52

enough for decision-making, as inter-annual variability (e.g., related to El Niño-Southern Oscillation) tends to play an important53

role in the actual observed variations of Aedes-borne diseases, enhancing or reducing the associated risk8, 13–16. Hence, a formal54

forecast system and its associated skill assessment is required and –to the best of our knowledge— is still nonexistent for the55

continental United States and its transboundary regions.56

Here, we describe the AeDES (Aedes-borne diseases’ environmental suitability) system, a new pattern-based calibrated,57

multi-model ensemble of climate-driven Aedes-borne disease models for North America, Central America, northern south58

America and the Caribbean, based on prior work undertaken in collaboration with the Pan American Health Organization59

(PAHO)/World Health Organization (WHO)8, 16, 17. We built AeDES using the same general approach for both the monitoring60

and forecasting sub-systems, which in addition to supporting surveillance operations, simplifies the forecast verification process.61

We discuss the use of AeDES to inform concrete prevention and control strategies, using the recent Zika epidemic as an62

example.63

Results64

AeDES uses multiple ento-epidemiological models to produce estimations of environmental suitability for transmission of65

Aedes-borne diseases, quantified via the basic reproduction number, R0 (red box in Figure 1). We used the basic reproduction66

number to assess the environmental suitability of transmission of Aedes-borne diseases because (a) it is one of the operational67

outbreak indices used by WHO and several other decision-making institutes and health practitioners18, 19, and (b) it has an68

intuitive interpretation in terms of the number of secondary human cases one case generates on average over the course of its69

infectious period (assuming a completely susceptible population)20; hence, values smaller than one indicate that environmental70

conditions are not suitable for disease propagation.71

Formally speaking, R0 is an environmental suitability (or potential) for transmission, and not a transmission risk index72

itself; the latter depends on more complex interactions and the definition of the involved vulnerability. R0 works both as a73

suitability monitoring index –when computed using observed variables, or when estimated by an authoritative organization74

such as PAHO or the Center for Disease Control (CDC)—, and as a forecast index –when using actual climate forecasts of the75

variables required for its computation.76

R0 models require a set of ento-epidemiological parameters (green box, in Figure 1) and environmental information, either77

actual observations if we focus on the monitoring sub-system, or forecasts if we focus on the prediction sub-system (see blue78

box in Figure 1). Typically, R0 models require near-surface (2 meter) temperatures, but other environmental variables are also79

involved, like rainfall or even humidity. Here, we use four R0 models already described in the literature: the Caminade et al21,80

Wesolowski et al22, Liu-Helmersson et al23 and Mordecai et al24 models. For details see the Methods section. We use multiple81

R0 models to be able to better assess uncertainties, and we calibrate each of the models independently before creating the82

multi-model ensemble to minimize systematic errors.83

Monitoring sub-system84

The AeDES monitoring sub-system offers maps showing the spatial distribution of environmental suitability over the region85

of study for the 1948-present period, at a monthly timescale. It also includes additional information to provide context to86

the user (Figure 2). These fields were included in the AeDES Maproom (https://aedes.iri.columbia.edu) after87

consultation with decision-makers at PAHO.88
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Figure 1. Monitoring and forecast system schematics. Ento-epidemiological and environmental information (obs: climate
observations, fcsts: climate forecasts) are used to force four R0 models. Each model is independently calibrated using a
pattern-based post-processing approach before being combined.

To produce the environmental suitability maps (e.g., Figure 2a), each one of the four R0 models was run from 1948 to 89

present, forced by GHCN-CAMS temperature data25 (∼56 km resolution) and ento-epidemiological parameters (see Methods), 90

and then combined. The monitor sub-system is automatically updated in the AeDES Maproom around the 8th day of each 91

month. These maps are useful to know the recent behavior of environmental suitability, or to conduct comparisons with respect 92

to particular years. Trends and variability analysis, or the extension of the northern border of environmental suitability can be 93

easily too computed with this new dataset. 94

The additional information, such as population density (Figure 2b), and social vulnerability (Figure 2c) is offered to the 95

user to assess potential risk of transmission. Once a location is selected, the seasonality of R0, accumulated rainfall, minimum, 96

average and maximum temperatures, and frequency of rainy days (Figures 2d-g) is provided. Our team is working on adding 97

fields such as human mobility and connectivity, which local experts in the northeast of the US have suggested as also useful to 98

analyze potential disease transmission. 99

Forecast sub-system calibration and evaluation 100

As indicated earlier, the forecast sub-system employs the output of state-of-the-art climate models and the same R0 models 101

used by the monitoring system. Models, nonetheless, require statistical post-processing to help correct for biases with respect 102

to the monitored R0 values. Following Muñoz et al8, a pattern-based Model Output Statistics (MOS) approach approach using 103

principal component regression (PCR) was applied to the raw R0 models output. Since the R0 models are the same (using the 104

same ento-epidemiological parameters) the calibration takes care of climate-related model biases only. 105

A skill assessment was conducted for each calibrated R0 model and the final multi-R0 model ensemble (i.e., the AeDES 106

model), focusing on discrimination as an actual measure of the value of a forecast system26. Although correlations between 107

forecasts and observation are often used to assess skill, they only provide information of how in phase or not the forecasts 108
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Figure 2. Example of fields available in the AeDES monitor system: (a) Basic reproduction number for July 2019 (only
locations with R0>1, suitable for transmission, are plotted); (b) population density (persons per square kilometer; estimated for
2020); (c) infant mortality (infant deaths per 10,000 live births); and seasonality of (d) R0, (e) accumulated rainfall, (f)
maximum, average and minimum temperature and (g) frequency of rainy days for Miami, FL (any other location in the map
can be plotted). Only values corresponding to suitable conditions for transmission (R0 > 1) are plotted.

are with respect to observations. The metric selected for skill assessment was the two-alternative forced choice, or 2AFC,109

which "measures the proportion of all available pairs of observations of differing category whose probability forecasts are110

discriminated in the correct direction"26. In other words, when terciles (above-normal, normal, below normal conditions) are111

used, the 2AFC measures how well the system distinguishes between the different categories; a system with poor discrimination112

is of no practical and economical value for decision-makers. Furthermore, 2AFC has an intuitive interpretation as an indication113

of how often the forecasts are correct26.114

AeDES’s predictive skill (as measured by 2AFC) is well above that of the reference long-term average (corresponding to115

2AFC=50%), with values ∼1.4-1.8 times larger than that baseline basically everywhere in the region under study. Skillful116

regions extend farther north during the boreal summer (Jun-Aug, or JJA) due to more suitable areas for the vectors because of117

higher seasonal temperatures (see Figures 3a,c). Also, as expected, AeDES exhibits skill improvement compared to any of the118

models involved in its ensemble (Figure 3), which show comparable skill distributions among themselves, both in space and119

time. AeDES tends to outperform the individual models everyhere, but especially in the Caribbean (e.g., Cuba, Jamaica, Haiti120

and Dominican Republic) and in a lower degree in the United States Great Plains, southern Mexico, Colombia’s Orinoquia121

and the northern Amazon in Brazil (Figure 3); it also outperforms its predecessor model for Latin America and the Caribbean,122

described by Muñoz et al.8, especially in summer in western Colombia, and in winter in most of Central America and the123

Yucatan Peninsula (cfr. Figure 4 in Muñoz et al.8).124

4/12



2AFC

W
in

te
r (

D
JF

)

b

Single modelAeDES
Su

m
m

er
 (J

JA
)

c

a

d

Figure 3. Cross-validated skill assessment (using 2AFC) between the AeDES multi-R0 model system (panels a,c) and the
Caminade et al21 R0 model, for the boreal winter (a,b; DJF: Dec-Feb) and summer (c,d; JJA: Jun-Aug) seasons. Values above
(below) 50% indicate better (worse) discrimination than long-term averages; only values corresponding to suitable conditions
for transmission (R0>1) are plotted. Skill of the other involved models is similar to the Caminade et al21 one (see Data and
Codes Availability).

Predictive skill of the AeDES system is especially high (2AFC ∼70%-90%) in most locations of Central America, the 125

Caribbean and northern South America in boreal winter (Dec-Feb, or DJF), with "skill hotspots" in both boreal summer and 126

winter in Guatemala, Honduras, El Salvador, Cuba, Haiti and Dominican Republic, Jamaica, Puerto Rico and some island 127

nations in the Lesser Antilles (unfortunately the observational dataset used for calibration does not cover all of these island 128

nations). 129

Regarding North America, the Yucatan Peninsula is one of the locations with highest skill, especially in DJF, a peak season 130

for tourism, and thus increased human mobility. In summer, almost the entire Pacific coast of Mexico exhibits 2AFC values 131

above 65%. Overall, predictive skill over the United States in summer tends to be higher in the eastern half of the country than 132

in the western half (where orographic temperatures naturally tends to control vector proliferation in large regions), and ranges 133

between 50% and 90% along the United States-Mexico border and the states along the Gulf of Mexico’s shoreline. Forecast 134

discrimination skill for southern Florida is also high in summer (values ∼90%, see Figure 3c). In northern South America, the 135

Caribbean coast of Colombia, and northern regions of Venezuela, Guyana, Suriname, French Guyana and northeastern Brazil 136

exhibit very high skill both in summer and winter. 137

Hence, predictive discrimination skill of AeDES is in general high, and decision makers geographically interested in the 138

hotspots mentioned above can take special advantage of the enhanced skill of the system in these regions to improve their 139

response times on key prevention and control strategies, at least a month ahead of the target season. 140
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Discussion141

The risk of Aedes-borne disease transmission is in general very difficult to estimate, in part due to the complexities of accurately142

assessing the actual risk in terms of hazards and vulnerabilities impacting the target population. The general approach should143

successfully integrate the interactions between humans, virus, vectors and the environment, making it a very complex system144

to forecast, not to mention the fact that a lot of those interactions are not yet well understood. An alternative is to identify a145

predictand (variable to monitor and predict) that (a) enables decision-makers to take timely, "no-regrets" actions, (b) is verifiable146

(can be easily obtained from the information available or the health surveillance systems in place), and (c) can be skillfully147

predicted for the region and timescales of interest. The information provided to decision-makers does not need to be perfect, it148

needs to be reliable enough to make the best decisions.149

Typical choices of predictands in the case of interest are number of positive cases and incidence. Although these options150

generally satisfy the criteria (a) and (b) mentioned above, skill tends to be a barrier to make the best decisions in a timely151

manner. Low predictive capacity for these predictands is related to different reasons, but often can be traced back to the fact152

that they depend on a variety of complex factors -e.g., socio-economic conditions, human behavior, human mobility, etc.-, some153

of which are (still) largely unpredictable. Previous work have argued8 that a potential alternative is to focus on environmental154

suitability for transmission, since variables like temperature, relative humidity, vegetation cover and, depending on where,155

rainfall, are skillfully predictable at timescales decision-makers are interested in. In this sense, climate imparts predictability to156

the Aedes-borne diseases transmission problem if a predictand like R0 is used as a proxy for transmission risk, even when157

clearly it is not representing the complete risk picture: additional information on the presence of the vector(s), the population158

exposed to the disease, and circulation of the virus is also needed. Recent work by Monaghan et al.27 is using a similar approach159

to the one presented here to address the vector presence/absence component of the problem, and certainly both systems could160

be combined to provide additional information for decision makers in the health sector.161

AeDES, uncertainties and decision-making162

A large amount of work in the related scientific literature has been focused on developing or improving different R0 models163

(see Van den Driessche28 and references therein), but few efforts have addressed real-time R0 seasonal forecasts, and no such164

operational system -to the best of our knowledge- existed until now for Aedes spp. in North America, Central America, northern165

South America and the Caribbean basin. Furthermore, to better assess uncertainty in AeDES, the approach followed here166

involves the use of not one but multiple ento-epidemiological models, forced by state-of-the-art seasonal climate models from167

the National Oceanic and Atmospheric Administration (NOAA) North American Multi-Model Ensemble project (Kirtman et168

al., 2014).169

There is consensus on the need of including uncertainty information on any forecast that is produced29. One way of170

providing that information is to add confidence limits if the forecasts are deterministic (actual values of R0 in our case). For an171

example, see Figure 4, sketching the expected value for the summer of 2016 (Figure 4a), and the expected standard deviation (or172

uncertainty, Figure 4b); for reference, the monitored (or "observed") values for the same summer are presented in Figure 4c).173

Another way to provide information about the forecast uncertainty is via the use of probabilities to indicate how confident174

(or not) the system is that a certain outcome –say, above normal R0 values– will occur during the next season. An example of a175

tercile-based R0 probabilistic seasonal prediction, again for the summer of 2016, is presented in Figure 5a, where probabilities176

of below-normal, normal or above-normal R0 values correspond to red, green and blue color shades, respectively. Although177

this is a very useful approach, and tercile-based probabilistic forecasts have been used for more than two decades now, decision178

makers often require information beyond the usual three categories described above. Using the entire probability density179

function (see Methods), AeDES also provides probabilities of exceeding particular thresholds of interest (Figure 5b).180

To illustrate the use of both deterministic and probabilistic forecasts, consider the recent Zika epidemic in the Americas30.181

Official CDC numbers31 for Zika cases in the US indicate that both Miami, FL, and New York City (NYC), NY, reported182

slightly more than 1,000 cases in 2016, around 40% of the total number of cases in the US. Most of these cases were reported183

after the summer of 2016, a period of increased environmental suitability and human mobility (e.g., tourism to the Caribbean).184

We will focus on these two cities in the following example.185

By the beginning of May 2016, decision makers using AeDES would have expected enhanced suitability conditions for186

Zika during JJA in basically all of the southeastern US states, but also the Caribbean, most of Central America and northern187

South America (Figures 4a,b and 5a), where several Zika cases had been already reported. Although it was highly probable that188

both Miami and NYC exhibited above-normal suitability conditions (Figure 5a), only Miami was expected to exceed R0 = 3189

(Figure 5b). In fact, the decision makers could have used AeDES to determine that most probably Miami would not exceed190

R0 = 3.4 (Figure 5c), while NYC most probably would not exceed R0 = 2 (Figure 4d). These probabilistic forecasts were191

consistent with the deterministic ones for both cities (Figures 4a,b), and by early September 2016 –once the actual summer R0192

values were available in the monitor sub-system–, the decision makers would have discovered that the forecasts were actually193

very skillful (Figure 4c). But coming back to May 2016, what those particular R0 forecasts meant?194
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Given an original number of 40 Zika cases and a generation time of 20 days (15.6-25.6 days; standard deviation of 7.4 195

days)32, an R0 = 2 means that after four generations –each spaced ∼ 20 days–, or in about 3 months, there would be a total of 196

600 local transmission cases related to the original 40. Since R0 is proportional to the duration of infectivity, an ideal action 197

would be to reduce the infective period of cases, such that the effective reproduction number, R, is reduced. For example, in 198

NYC, with an expected R0 < 2 for JJA 2016, any combination of strategies to reduce the effective duration of infectivity by 199

over 50% would mean an average R < 1, which should stop the spread of Zika over time. Beyond the obvious vector control 200

strategies (for which knowing in advance when it is not going to rain could be useful), increasing traveler health surveillance, 201

reducing the symptom-onset-to-isolation times, and the mosquito bite rates via specialized clothing and personal protective 202

items can all help decrease the reproduction number. Economic costs for fighting the Zika epidemic would be most probably 203

higher for Miami, given the higher R0 value forecast for the summer. 204

a b

c

Figure 4. Example of deterministic forecasts for JJA 2016, initialized in May 2016. (a) AeDES seasonal forecast of the
expected value of R0, along with the (b) forecast standard deviation (σ ), presented to provide decision-makers information
about the forecast uncertainty. (c) Actual seasonal values of R0, provided by the AeDES monitor sub-system.

A NextGen climate-and-health service for multiple timescales 205

AeDES is a “next generation" system because (1) it successfully tailors global climate information to be used at regional scales, 206

(2) pattern-based calibration targeting mean, amplitude and spatial biases is performed using a monitoring system based on the 207

same variable that is being predicted, and (3) it produces tailored deterministic and probabilistic forecasts for user-selected 208

thresholds of interest, including the use of the entire probability density function (also known as "forecasts in flexible format"29) 209

to better assess uncertainties. 210

Previous research8, 11, 16 has underscored the importance of analyzing climate signals at multiple timescales to improve 211

decision-making processes in the health sector. In particular, Muñoz et al16 and Thomson et al11 have shown that the seasonal- 212
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Figure 5. As in Figure 4 but for probabilistic forecasts. (a) Tercile-based forecast; with uncertainty presented in terms of
probabilities for each category: below-normal (in red), normal (green) and above-normal (in blue). (b) Spatial forecast of
probabilities of exceeding R0 = 3. In the bottom panels, the entire "observed" (blue) and forecast (red) probability of
exceedance distributions for (c) Miami, FL, and (d) New York City, NY, are also presented for comparison; the black curves are
the empirical "observed" probability of exceedance distributions, before fitting a Gaussian function.

to-interannual timescale tends to explain most of the total variance observed in climate variables impacting vector-borne disease213

transmission, like temperature and rainfall. Hence, although the long-term climate change and natural decadal variability signals214

also are considered, AeDES pays special attention to continuously providing actionable information at seasonal-to-interannual215

timescales, which along with the weather and sub-seasonal33 scales are the most often used for health early warning systems.216

Due to large uncertainties in long-term climate projections, the present approach should in general not be used in combination217

with climate change scenarios. Nonetheless, the same approach is adequate for shorter-term timescales, like the sub-seasonal218

(roughly 2-6 weeks33) or weather (0-2 weeks) ones. Providing actionable information at multiple timescales (e.g., via he IRI’s219

Ready-Set-Go approach29). The team is presently exploring when and where predictive skill at these timescales is high enough220

to guide decision-making processes in the health sector, taking advantage of windows of opportunities in forecasts at those221

timescales34.222

Methods223

Data224

All analyses are conducted for the geographical domain defined by the coordinates 126◦W-40◦W and 1◦S-50◦N (Figure 1).225

Rather than focusing on particular diseases, here we considered common environmental thresholds and ento-epidemiological226

parameters for Aedes-borne diseases as a whole. If the parameters are well known for diseases of interests, then the same227

approach can be used to have tailored information for those cases. For consistency with previous studies and model validations,228

we used the same ento-epidemiological parameters reported by Liu-Helmersson et al23, Wesolowski et al22, Caminade et al.21
229
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and Mordecai et al.24. The equations and parameter choice can be found in those references, and in our scripts used to build 230

AeDES (see Data and Codes Availability below). 231

Two types of near-surface (2 meter) temperature datasets were used: observations and forecasts. Observations consist 232

of gridded fields from NCEP’s GHCN-CAMS25 project, at 0.5 degree resolution. When designing the monitoring system, 233

additional observation datasets were used to compare between different spatial resolutions; these products are CRUv435, at 0.5 234

degree resolution, and PRISM36, at 0.042 degrees. All products were interpolated to the lower resolution (0.5 degree), and 235

spatial correlations were computed for the 1982-2010 period. No statistically significant differences were observed between the 236

products at p=0.05, using a simple t-Student test (not shown). 237

Given that the GHCN-CAMS dataset is freely updated every month and covers not only North America but also the 238

boundary regions of interest (the Caribbean, Central America and northern South America), this product was selected to force 239

the multi-R0 model for the monitoring sub-system, in the same way the AeDES hindcasts (described below) were computed, 240

except that only one "realization" (the observed climate) was used. Although R0 is not a direct observable, for simplicity in 241

this paper we refer to this set of environmental suitability maps as the "observed" (or actual) R0. The approach is general and 242

does not require GHCN-CAMS to work; if a different reliable observed temperature dataset is available (for example at higher 243

spatial resolution), the system can use it. 244

The other temperature dataset consists of seasonal predictions from all models operationally available in the North American 245

Multi-Model Ensemble (NMME) project37, as in Muñoz et al.8, consisting of a total of 96 ensemble members. AeDES presently 246

uses the latest version of the Canadian climate model (CanSIPv2), after the older Canadian models were discontinued in August 247

2019. 248

In addition, the monitoring sub-system also presents infant mortality data from the Socioeconomic Data and Applica- 249

tions Center (SEDAC; https://sedac.ciesin.columbia.edu/data/collection/povmap), and the Gridded 250

Population of the World, Version 4 (GPWv4), Revision 1138, 39. 251

R0 Models and Design of the Next Generation Forecast Sub-System 252

As indicated, we used four previously-validated R0 models, described in detail by Liu-Helmersson et al23, Wesolowski et al22, 253

Caminade et al.21 and Mordecai et al.24. These models were selected from a set analyzed by Mordecai et al.24, being the ones 254

that better represent the dependence of R0 with temperature. 255

To build the R0 hindcasts, all four R0 models were forced independently using each one of the 96 NMME climate 256

realizations (i.e., a total of 384 realizations) in hindcast –or retrospective forecast– mode for each season and year in the 257

1982-2010 period (29 years). For example, all May initializations in the 1982-2010 period were used to obtain the 29 NMME 258

temperature hindcasts JJA seasons, which were then used to force each one of the R0 models to produce the 1982-2010 259

environmental suitability hindcasts. Hence, a total of 4,608 (4 R0 models times 12 initializations times 96 climate model 260

members) 29-yr long seasonal hindcasts were produced. 261

We then performed a pattern-based calibration for each season and model independently, to avoid mixing models with 262

different characteristics when correcting for mean, amplitude and spatial biases. Following the approach of Muñoz et al.8, the 263

calibration method selected was principal component regression40. The PCR-based calibration approach builds a regression 264

model for each gridbox of the "observed" R0 field, using a linear combination of the hindcast R0’s Empirical Orthogonal 265

Functions (EOFs). The best cross-validated models were identified using a leave-five-out cross-validation window and the 266

Kendall’s τ coefficient; these final models are built based on a maximum of 5 EOFs, depending on the season. 267

The AeDES multi-R0 calibrated ensemble mean was computed using each calibrated model, providing deterministic 268

outcomes, and the entire probability density function (PDF) for R0, computing in that case the average of the Gaussian 269

distribution parameters for each grid box (i.e., an ensemble built in the "probability space"). The PDF is used to offer uncertainty 270

information for decision-makers in the health sector and to compute the forecast probability of exceeding thresholds selected by 271

the user. Tailored probabilistic forecasts produced using the entire PDF are often called "forecasts in flexible format"29. These 272

products are available in the AeDES Maproom (https://aedes.iri.columbia.edu). 273

The forecast skill assessment was conducted for each calibrated R0 model and the AeDES ensemble system for the 274

1982-2010 period, using the actual R0 available from monitoring sub-system as reference. Two contrasting seasons were 275

selected for analysis in this study, boreal winter and summer. 276

The calibration and skill assessment processes were computed using the International Research Institute for Climate 277

and Society’s (IRI) Climate Predictability Tool (CPT) version 16.3.241, and its Python interface42 (PyCPTv1.6; https: 278

//github.com/agmunozs/PyCPT) to facilitate the mass production of the different hindcasts, skill assessment maps and 279

forecasts. The resulting files were migrated to the IRI Data Library for public archiving and plotting. 280

Data and Codes Availability 281

All input and produced data is freely available at the International Research Institute for Climate and Society’s Data Library: 282
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https://sedac.ciesin.columbia.edu/data/collection/povmap
https://aedes.iri.columbia.edu
https://github.com/agmunozs/PyCPT
https://github.com/agmunozs/PyCPT
https://github.com/agmunozs/PyCPT


http://iridl.ldeo.columbia.edu/home/.agmunoz/.Aedes/#info283

Codes are available at Muñoz’s GitHub account:284

https://github.com/agmunozs/Vectorbornediseases285
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