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ABSTRACT

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every
year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and
ecological changes. In the United States of America, the vast majority of Aedes-borne infections is imported from endemic
regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is
susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the
susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the
presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health
sector. We present a next-generation monitoring and forecasting system for Aedes-borne diseases’ environmental suitability
(AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological
models, climate models and temperature observations. After showing that the seasonal predictive (discrimination) skill of
AeDES is ~1.4-1.8 times larger than the baseline, we illustrate how a combination of tailored deterministic and probabilistic
forecasts can inform key prevention and control strategies.

We live in an increasingly interconnected world. The rapidly increasing movement of people, pathogens, vectors, livestock,
food, goods, and capital across borders creates both economic opportunities and health risks'. Epidemics, just like climate, do
not respect national borders and can threaten human health and social stability. Since the Millennium, the appearance of the
SARS coronavirus in 2003, the avian influenza (HIN1) in 2009, the Ebola virus in West Africa (2014-2016), the Zika virus in
the Americas (2015) and the novel coronavirus identified in late December 2019 in Wuhan, China and still ongoing (2020),
amongst others, has demonstrated the speed at which emerging infectious diseases can spread with devastating effects’.

Many infectious diseases are climate-sensitive; climate acting as an important driver of spatial and seasonal patterns of
infections, year-to-year variations in incidence (including epidemics), and longer-term shifts in populations at risk?. Climate
impacts both the virus and the vector. Evidence to date shows that arboviruses of global public health importance, including
Zika, dengue, yellow fever, chikungunya, and Rift Valley Fever, have mosquitoes as part of their epidemiological cycles.

Some Aedes-borne diseases have experienced an overall increase of 30-fold in the last 50 years, causing more than 50
million infections worldwide every year*. In the United States of America, the vast majority of Aedes-borne infections is
imported from endemic and often neighboring regions -like the Caribbean, Central and South America- by travelers who
become potential new sources of transmission. Autochthonous transmission in the continental USA has been already observed
for chikugunya virus (2013) and Zika (2017), and risks are likely to increase with anthropogenic global warming.

For authocthonous transmission to occur, the population needs to be susceptible to the disease, but there must also be
suitable environmental conditions (e.g., suitable temperatures) for both the mosquitoes and the virus. Since the susceptibility
can be periodically monitored via targeted campaigns, the environmental suitability for presence of mosquitoes and viruses is
one of the most important pieces of information for decision makers in the health sector. Moreover, the transmission rates or
the number of cases are generally more difficult to forecast than environmental suitability, due to their link to a larger number
of (often entangled and more complex) predictors, involving human behavior and socio-economic conditions.
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A generalized approach to model Aedes-borne pathogens is needed because multiple Aedes can serve as vectors of dengue,
Zika and chikungunya. Although Aedes aegypti is the most common vector, Aedes albopictus (otherwise known as the
Asian tiger mosquito) has been identified as another important additional vector because of its vector competence for several
arboviruses and recent rapid spread®. Both vectors pose a potent threat to global health security given their ability to transmit a
wide variety of emerging and re-emerging arboviruses for which there are no vaccines. Aedes aegypti and Aedes albopictus are
ubiquitous in large regions of the Americas and the Caribbean.

Historical, current and forecast climate information can be combined with disease models to improve climate-sensitive
health planning and targeting of resources. For infectious disease models, the goal has frequently been to explore different
interventions scenarios in order to help set priorities for policy makers®. However, in recent years there is increasing interest in
using models for real-time forecasting’~", although there remains a significant gap in the operational readiness of the numerous
forecasting systems presented in the literature'?. Stochastic models possess inherent randomness and are widely used in climate
science as well as in disease modelling to build probabilistic forecasts!!, as they provide a more reliable assessment of the
range of likely outcomes. However, probabilistic models are sometimes harder for decision-makers to interpret, and tend to
be rejected in favour of simpler, deterministic, but over-confident, models. An approach that takes full advantage of both
deterministic and probabilistic forecasts is presented and discussed in the following pages.

Although the historical (average) seasonal behavior —and similar statistics— of these diseases is useful <, we consider it not
enough for decision-making, as inter-annual variability (e.g., related to El Nifio-Southern Oscillation) tends to play an important
role in the actual observed variations of Aedes-borne diseases, enhancing or reducing the associated risk3 13716 Hence, a formal
forecast system and its associated skill assessment is required and —to the best of our knowledge— is still nonexistent for the
continental United States and its transboundary regions.

Here, we describe the AeDES (Aedes-borne diseases’ environmental suitability) system, a new pattern-based calibrated,
multi-model ensemble of climate-driven Aedes-borne disease models for North America, Central America, northern south
America and the Caribbean, based on prior work undertaken in collaboration with the Pan American Health Organization
(PAHO)/World Health Organization (WHO)® %17 We built AeDES using the same general approach for both the monitoring
and forecasting sub-systems, which in addition to supporting surveillance operations, simplifies the forecast verification process.
We discuss the use of AeDES to inform concrete prevention and control strategies, using the recent Zika epidemic as an
example.
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Results

AeDES uses multiple ento-epidemiological models to produce estimations of environmental suitability for transmission of
Aedes-borne diseases, quantified via the basic reproduction number, % (red box in Figure 1). We used the basic reproduction
number to assess the environmental suitability of transmission of Aedes-borne diseases because (a) it is one of the operational
outbreak indices used by WHO and several other decision-making institutes and health practitioners'®!?, and (b) it has an
intuitive interpretation in terms of the number of secondary human cases one case generates on average over the course of its
infectious period (assuming a completely susceptible population)?’; hence, values smaller than one indicate that environmental
conditions are not suitable for disease propagation.

Formally speaking, % is an environmental suitability (or potential) for transmission, and not a transmission risk index
itself; the latter depends on more complex interactions and the definition of the involved vulnerability. %, works both as a
suitability monitoring index —when computed using observed variables, or when estimated by an authoritative organization
such as PAHO or the Center for Disease Control (CDC)—, and as a forecast index —when using actual climate forecasts of the
variables required for its computation.

o models require a set of ento-epidemiological parameters (green box, in Figure 1) and environmental information, either
actual observations if we focus on the monitoring sub-system, or forecasts if we focus on the prediction sub-system (see blue
box in Figure 1). Typically, %y models require near-surface (2 meter) temperatures, but other environmental variables are also
involved, like rainfall or even humidity. Here, we use four %) models already described in the literature: the Caminade et al?!,
Wesolowski et al?2, Liu-Helmersson et al?3 and Mordecai et al** models. For details see the Methods section. We use multiple
Zy models to be able to better assess uncertainties, and we calibrate each of the models independently before creating the
multi-model ensemble to minimize systematic errors.

Monitoring sub-system

The AeDES monitoring sub-system offers maps showing the spatial distribution of environmental suitability over the region
of study for the 1948-present period, at a monthly timescale. It also includes additional information to provide context to
the user (Figure 2). These fields were included in the AeDES Maproom (https://aedes.iri.columbia.edu) after
consultation with decision-makers at PAHO.
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Figure 1. Monitoring and forecast system schematics. Ento-epidemiological and environmental information (obs: climate
observations, fcsts: climate forecasts) are used to force four %y models. Each model is independently calibrated using a
pattern-based post-processing approach before being combined.

To produce the environmental suitability maps (e.g., Figure 2a), each one of the four %, models was run from 1948 to
present, forced by GHCN-CAMS temperature data®> (~56 km resolution) and ento-epidemiological parameters (see Methods),
and then combined. The monitor sub-system is automatically updated in the AeDES Maproom around the 8th day of each
month. These maps are useful to know the recent behavior of environmental suitability, or to conduct comparisons with respect
to particular years. Trends and variability analysis, or the extension of the northern border of environmental suitability can be
easily too computed with this new dataset.

The additional information, such as population density (Figure 2b), and social vulnerability (Figure 2c) is offered to the
user to assess potential risk of transmission. Once a location is selected, the seasonality of %, accumulated rainfall, minimum,
average and maximum temperatures, and frequency of rainy days (Figures 2d-g) is provided. Our team is working on adding
fields such as human mobility and connectivity, which local experts in the northeast of the US have suggested as also useful to
analyze potential disease transmission.

Forecast sub-system calibration and evaluation
As indicated earlier, the forecast sub-system employs the output of state-of-the-art climate models and the same %) models
used by the monitoring system. Models, nonetheless, require statistical post-processing to help correct for biases with respect
to the monitored %, values. Following Mufioz et al®, a pattern-based Model Output Statistics (MOS) approach approach using
principal component regression (PCR) was applied to the raw %, models output. Since the %y models are the same (using the
same ento-epidemiological parameters) the calibration takes care of climate-related model biases only.

A skill assessment was conducted for each calibrated %) model and the final multi-%; model ensemble (i.e., the AeDES
model), focusing on discrimination as an actual measure of the value of a forecast system?®. Although correlations between
forecasts and observation are often used to assess skill, they only provide information of how in phase or not the forecasts
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Figure 2. Example of fields available in the AeDES monitor system: (a) Basic reproduction number for July 2019 (only
locations with Zy>1, suitable for transmission, are plotted); (b) population density (persons per square kilometer; estimated for
2020); (c) infant mortality (infant deaths per 10,000 live births); and seasonality of (d) %y, (¢) accumulated rainfall, (f)

maximum, average and minimum temperature and (g) frequency of rainy days for Miami, FL (any other location in the map
can be plotted). Only values corresponding to suitable conditions for transmission (%o > 1) are plotted.

are with respect to observations. The metric selected for skill assessment was the two-alternative forced choice, or 2AFC,
which "measures the proportion of all available pairs of observations of differing category whose probability forecasts are
discriminated in the correct direction"2°. In other words, when terciles (above-normal, normal, below normal conditions) are
used, the 2AFC measures how well the system distinguishes between the different categories; a system with poor discrimination
is of no practical and economical value for decision-makers. Furthermore, 2AFC has an intuitive interpretation as an indication
of how often the forecasts are correct®®.

AeDES’s predictive skill (as measured by 2AFC) is well above that of the reference long-term average (corresponding to
2AFC=50%), with values ~1.4-1.8 times larger than that baseline basically everywhere in the region under study. Skillful
regions extend farther north during the boreal summer (Jun-Aug, or JJA) due to more suitable areas for the vectors because of
higher seasonal temperatures (see Figures 3a,c). Also, as expected, AeDES exhibits skill improvement compared to any of the
models involved in its ensemble (Figure 3), which show comparable skill distributions among themselves, both in space and
time. AeDES tends to outperform the individual models everyhere, but especially in the Caribbean (e.g., Cuba, Jamaica, Haiti
and Dominican Republic) and in a lower degree in the United States Great Plains, southern Mexico, Colombia’s Orinoquia
and the northern Amazon in Brazil (Figure 3); it also outperforms its predecessor model for Latin America and the Caribbean,
described by Muiioz et al.3, especially in summer in western Colombia, and in winter in most of Central America and the
Yucatan Peninsula (cfr. Figure 4 in Mufioz et al.®).
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Figure 3. Cross-validated skill assessment (using 2AFC) between the AeDES multi-Z, model system (panels a,c) and the
Caminade et al?! %, model, for the boreal winter (a,b; DJF: Dec-Feb) and summer (c,d; JJA: Jun-Aug) seasons. Values above
(below) 50% indicate better (worse) discrimination than long-term averages; only values corresponding to suitable conditions
for transmission (%,>1) are plotted. Skill of the other involved models is similar to the Caminade et al’! one (see Data and
Codes Availability).

Predictive skill of the AeDES system is especially high (2AFC ~70%-90%) in most locations of Central America, the
Caribbean and northern South America in boreal winter (Dec-Feb, or DJF), with "skill hotspots" in both boreal summer and
winter in Guatemala, Honduras, El Salvador, Cuba, Haiti and Dominican Republic, Jamaica, Puerto Rico and some island
nations in the Lesser Antilles (unfortunately the observational dataset used for calibration does not cover all of these island
nations).

Regarding North America, the Yucatan Peninsula is one of the locations with highest skill, especially in DJF, a peak season
for tourism, and thus increased human mobility. In summer, almost the entire Pacific coast of Mexico exhibits 2AFC values
above 65%. Overall, predictive skill over the United States in summer tends to be higher in the eastern half of the country than
in the western half (where orographic temperatures naturally tends to control vector proliferation in large regions), and ranges
between 50% and 90% along the United States-Mexico border and the states along the Gulf of Mexico’s shoreline. Forecast
discrimination skill for southern Florida is also high in summer (values ~90%, see Figure 3c). In northern South America, the
Caribbean coast of Colombia, and northern regions of Venezuela, Guyana, Suriname, French Guyana and northeastern Brazil
exhibit very high skill both in summer and winter.

Hence, predictive discrimination skill of AeDES is in general high, and decision makers geographically interested in the
hotspots mentioned above can take special advantage of the enhanced skill of the system in these regions to improve their
response times on key prevention and control strategies, at least a month ahead of the target season.
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Discussion

The risk of Aedes-borne disease transmission is in general very difficult to estimate, in part due to the complexities of accurately
assessing the actual risk in terms of hazards and vulnerabilities impacting the target population. The general approach should
successfully integrate the interactions between humans, virus, vectors and the environment, making it a very complex system
to forecast, not to mention the fact that a lot of those interactions are not yet well understood. An alternative is to identify a
predictand (variable to monitor and predict) that (a) enables decision-makers to take timely, "no-regrets" actions, (b) is verifiable
(can be easily obtained from the information available or the health surveillance systems in place), and (c) can be skillfully
predicted for the region and timescales of interest. The information provided to decision-makers does not need to be perfect, it
needs to be reliable enough to make the best decisions.

Typical choices of predictands in the case of interest are number of positive cases and incidence. Although these options
generally satisfy the criteria (a) and (b) mentioned above, skill tends to be a barrier to make the best decisions in a timely
manner. Low predictive capacity for these predictands is related to different reasons, but often can be traced back to the fact
that they depend on a variety of complex factors -e.g., socio-economic conditions, human behavior, human mobility, etc.-, some
of which are (still) largely unpredictable. Previous work have argued® that a potential alternative is to focus on environmental
suitability for transmission, since variables like temperature, relative humidity, vegetation cover and, depending on where,
rainfall, are skillfully predictable at timescales decision-makers are interested in. In this sense, climate imparts predictability to
the Aedes-borne diseases transmission problem if a predictand like % is used as a proxy for transmission risk, even when
clearly it is not representing the complete risk picture: additional information on the presence of the vector(s), the population
exposed to the disease, and circulation of the virus is also needed. Recent work by Monaghan et al.?’ is using a similar approach
to the one presented here to address the vector presence/absence component of the problem, and certainly both systems could
be combined to provide additional information for decision makers in the health sector.

AeDES, uncertainties and decision-making

A large amount of work in the related scientific literature has been focused on developing or improving different % models
(see Van den Driessche?® and references therein), but few efforts have addressed real-time %, seasonal forecasts, and no such
operational system -to the best of our knowledge- existed until now for Aedes spp. in North America, Central America, northern
South America and the Caribbean basin. Furthermore, to better assess uncertainty in AeDES, the approach followed here
involves the use of not one but multiple ento-epidemiological models, forced by state-of-the-art seasonal climate models from
the National Oceanic and Atmospheric Administration (NOAA) North American Multi-Model Ensemble project (Kirtman et
al., 2014).

There is consensus on the need of including uncertainty information on any forecast that is produced®’. One way of
providing that information is to add confidence limits if the forecasts are deterministic (actual values of % in our case). For an
example, see Figure 4, sketching the expected value for the summer of 2016 (Figure 4a), and the expected standard deviation (or
uncertainty, Figure 4b); for reference, the monitored (or "observed") values for the same summer are presented in Figure 4c).

Another way to provide information about the forecast uncertainty is via the use of probabilities to indicate how confident
(or not) the system is that a certain outcome —say, above normal 2, values— will occur during the next season. An example of a
tercile-based % probabilistic seasonal prediction, again for the summer of 2016, is presented in Figure 5a, where probabilities
of below-normal, normal or above-normal % values correspond to red, green and blue color shades, respectively. Although
this is a very useful approach, and tercile-based probabilistic forecasts have been used for more than two decades now, decision
makers often require information beyond the usual three categories described above. Using the entire probability density
function (see Methods), AeDES also provides probabilities of exceeding particular thresholds of interest (Figure 5b).

To illustrate the use of both deterministic and probabilistic forecasts, consider the recent Zika epidemic in the Americas
Official CDC numbers3! for Zika cases in the US indicate that both Miami, FL, and New York City (NYC), NY, reported
slightly more than 1,000 cases in 2016, around 40% of the total number of cases in the US. Most of these cases were reported
after the summer of 2016, a period of increased environmental suitability and human mobility (e.g., tourism to the Caribbean).
We will focus on these two cities in the following example.

By the beginning of May 2016, decision makers using AeDES would have expected enhanced suitability conditions for
Zika during JJA in basically all of the southeastern US states, but also the Caribbean, most of Central America and northern
South America (Figures 4a,b and 5a), where several Zika cases had been already reported. Although it was highly probable that
both Miami and NYC exhibited above-normal suitability conditions (Figure 5a), only Miami was expected to exceed % = 3
(Figure 5b). In fact, the decision makers could have used AeDES to determine that most probably Miami would not exceed
Py = 3.4 (Figure 5¢), while NYC most probably would not exceed %y = 2 (Figure 4d). These probabilistic forecasts were
consistent with the deterministic ones for both cities (Figures 4a,b), and by early September 2016 —once the actual summer %
values were available in the monitor sub-system—, the decision makers would have discovered that the forecasts were actually
very skillful (Figure 4c). But coming back to May 2016, what those particular %, forecasts meant?
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Given an original number of 40 Zika cases and a generation time of 20 days (15.6-25.6 days; standard deviation of 7.4
days)2, an %, = 2 means that after four generations —each spaced ~ 20 days—, or in about 3 months, there would be a total of
600 local transmission cases related to the original 40. Since %, is proportional to the duration of infectivity, an ideal action
would be to reduce the infective period of cases, such that the effective reproduction number, %, is reduced. For example, in
NYC, with an expected Z < 2 for JJA 2016, any combination of strategies to reduce the effective duration of infectivity by
over 50% would mean an average & < 1, which should stop the spread of Zika over time. Beyond the obvious vector control
strategies (for which knowing in advance when it is not going to rain could be useful), increasing traveler health surveillance,
reducing the symptom-onset-to-isolation times, and the mosquito bite rates via specialized clothing and personal protective
items can all help decrease the reproduction number. Economic costs for fighting the Zika epidemic would be most probably
higher for Miami, given the higher %, value forecast for the summer.
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Figure 4. Example of deterministic forecasts for JJA 2016, initialized in May 2016. (a) AeDES seasonal forecast of the
expected value of %, along with the (b) forecast standard deviation (o), presented to provide decision-makers information
about the forecast uncertainty. (c) Actual seasonal values of %y, provided by the AeDES monitor sub-system.

A NextGen climate-and-health service for multiple timescales
AeDES is a “next generation" system because (1) it successfully tailors global climate information to be used at regional scales,
(2) pattern-based calibration targeting mean, amplitude and spatial biases is performed using a monitoring system based on the
same variable that is being predicted, and (3) it produces tailored deterministic and probabilistic forecasts for user-selected
thresholds of interest, including the use of the entire probability density function (also known as "forecasts in flexible format">”)
to better assess uncertainties.

Previous research® !!-1 has underscored the importance of analyzing climate signals at multiple timescales to improve
decision-making processes in the health sector. In particular, Muiioz et al'® and Thomson et al'! have shown that the seasonal-

712

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

212



213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Latitude

20°N

40°N

30N

10°N

40°N

Latitude
30°N

20'N

10°N

120'W

110'W

100'W

90'W

120°W 0w 100°W ao"w aow TOW B0W S0°W L . 80w
Longitude ongitude
40% 60% 80% 40% 60% 80% 40% 60%  80% 0% 25% 50% 75% 100%
Below Normal Above Probability of Exceedance
Probapbilities
Cc d

100

80

——
forecast

obs

00

T
forecas

AN

obs parameterized

N

80
74
A

60
=
| —

60

40
—
L1
—

40

20

/
/

1.6 2.4

Ho

Figure 5. As in Figure 4 but for probabilistic forecasts. (a) Tercile-based forecast; with uncertainty presented in terms of
probabilities for each category: below-normal (in red), normal (green) and above-normal (in blue). (b) Spatial forecast of
probabilities of exceeding %y = 3. In the bottom panels, the entire "observed" (blue) and forecast (red) probability of
exceedance distributions for (c) Miami, FL, and (d) New York City, NY, are also presented for comparison; the black curves are
the empirical "observed" probability of exceedance distributions, before fitting a Gaussian function.

to-interannual timescale tends to explain most of the total variance observed in climate variables impacting vector-borne disease
transmission, like temperature and rainfall. Hence, although the long-term climate change and natural decadal variability signals
also are considered, AeDES pays special attention to continuously providing actionable information at seasonal-to-interannual
timescales, which along with the weather and sub-seasonal? scales are the most often used for health early warning systems.

Due to large uncertainties in long-term climate projections, the present approach should in general not be used in combination
with climate change scenarios. Nonetheless, the same approach is adequate for shorter-term timescales, like the sub-seasonal
(roughly 2-6 weeks>?) or weather (0-2 weeks) ones. Providing actionable information at multiple timescales (e.g., via he IRI’s
Ready-Set-Go approach?®). The team is presently exploring when and where predictive skill at these timescales is high enough
to guide decision-making processes in the health sector, taking advantage of windows of opportunities in forecasts at those
timescales™.

Methods

Data

All analyses are conducted for the geographical domain defined by the coordinates 126°W-40°W and 1°S-50°N (Figure 1).
Rather than focusing on particular diseases, here we considered common environmental thresholds and ento-epidemiological

parameters for Aedes-borne diseases as a whole. If the parameters are well known for diseases of interests, then the same

approach can be used to have tailored information for those cases. For consistency with previous studies and model validations,

we used the same ento-epidemiological parameters reported by Liu-Helmersson et al>}, Wesolowski et al*?, Caminade et al.?!
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and Mordecai et al.>*. The equations and parameter choice can be found in those references, and in our scripts used to build
AeDES (see Data and Codes Availability below).

Two types of near-surface (2 meter) temperature datasets were used: observations and forecasts. Observations consist
of gridded fields from NCEP’s GHCN-CAMS? project, at 0.5 degree resolution. When designing the monitoring system,
additional observation datasets were used to compare between different spatial resolutions; these products are CRUv4?>, at 0.5
degree resolution, and PRISM>®, at 0.042 degrees. All products were interpolated to the lower resolution (0.5 degree), and
spatial correlations were computed for the 1982-2010 period. No statistically significant differences were observed between the
products at p=0.05, using a simple t-Student test (not shown).

Given that the GHCN-CAMS dataset is freely updated every month and covers not only North America but also the
boundary regions of interest (the Caribbean, Central America and northern South America), this product was selected to force
the multi-Z; model for the monitoring sub-system, in the same way the AeDES hindcasts (described below) were computed,
except that only one "realization" (the observed climate) was used. Although %, is not a direct observable, for simplicity in
this paper we refer to this set of environmental suitability maps as the "observed" (or actual) %Zy. The approach is general and
does not require GHCN-CAMS to work; if a different reliable observed temperature dataset is available (for example at higher
spatial resolution), the system can use it.

The other temperature dataset consists of seasonal predictions from all models operationally available in the North American
Multi-Model Ensemble (NMME) project®’, as in Mufioz et al.®, consisting of a total of 96 ensemble members. AeDES presently
uses the latest version of the Canadian climate model (CanSIPv2), after the older Canadian models were discontinued in August
2019.

In addition, the monitoring sub-system also presents infant mortality data from the Socioeconomic Data and Applica-
tions Center (SEDAC; https://sedac.ciesin.columbia.edu/data/collection/povmap), and the Gridded
Population of the World, Version 4 (GPWv4), Revision 113839,

%, Models and Design of the Next Generation Forecast Sub-System

As indicated, we used four previously-validated %, models, described in detail by Liu-Helmersson et al>}, Wesolowski et al*?,
Caminade et al.”! and Mordecai et al.>*. These models were selected from a set analyzed by Mordecai et al.?*, being the ones
that better represent the dependence of % with temperature.

To build the % hindcasts, all four Zy models were forced independently using each one of the 96 NMME climate
realizations (i.e., a total of 384 realizations) in hindcast —or retrospective forecast— mode for each season and year in the
1982-2010 period (29 years). For example, all May initializations in the 1982-2010 period were used to obtain the 29 NMME
temperature hindcasts JJA seasons, which were then used to force each one of the %, models to produce the 1982-2010
environmental suitability hindcasts. Hence, a total of 4,608 (4 %, models times 12 initializations times 96 climate model
members) 29-yr long seasonal hindcasts were produced.

We then performed a pattern-based calibration for each season and model independently, to avoid mixing models with
different characteristics when correcting for mean, amplitude and spatial biases. Following the approach of Muiioz et al.?, the
calibration method selected was principal component regression*’. The PCR-based calibration approach builds a regression
model for each gridbox of the "observed" % field, using a linear combination of the hindcast %y’s Empirical Orthogonal
Functions (EOFs). The best cross-validated models were identified using a leave-five-out cross-validation window and the
Kendall’s 7 coefficient; these final models are built based on a maximum of 5 EOFs, depending on the season.

The AeDES multi-%, calibrated ensemble mean was computed using each calibrated model, providing deterministic
outcomes, and the entire probability density function (PDF) for %, computing in that case the average of the Gaussian
distribution parameters for each grid box (i.e., an ensemble built in the "probability space"). The PDF is used to offer uncertainty
information for decision-makers in the health sector and to compute the forecast probability of exceeding thresholds selected by
the user. Tailored probabilistic forecasts produced using the entire PDF are often called "forecasts in flexible format"??. These
products are available in the AeDES Maproom (https://aedes.iri.columbia.edu).

The forecast skill assessment was conducted for each calibrated %y model and the AeDES ensemble system for the
1982-2010 period, using the actual %, available from monitoring sub-system as reference. Two contrasting seasons were
selected for analysis in this study, boreal winter and summer.

The calibration and skill assessment processes were computed using the International Research Institute for Climate
and Society’s (IRT) Climate Predictability Tool (CPT) version 16.3.2*!, and its Python interface*> (PyCPTv1.6; https:
//github.com/agmunozs/PyCPT) to facilitate the mass production of the different hindcasts, skill assessment maps and
forecasts. The resulting files were migrated to the IRI Data Library for public archiving and plotting.

Data and Codes Availability
All input and produced data is freely available at the International Research Institute for Climate and Society’s Data Library:
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References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Cilingiroglu, N. Health, globalization and developing countries. Saudi medical journal 26, 191-200 (2005).

Bloom, D. E., Black, S. & Rappuoli, R. Emerging infectious diseases: A proactive approach, DOI: 10.1073/pnas.
1701410114 (2017).

. Kelly-Hope, L. & Thomson, M. C. Climate and infectious diseases. In Advances in Global Change Research, vol. 30,

31-70, DOI: 10.1007/978-1-4020-6877-5_3 (Springer Netherlands, Dordrecht, 2008).

. World Health Organization [WHO]. WHO | Global Strategy for dengue prevention and control, 2012-2020. Tech. Rep.

(2015).

. Messina, J. P. et al. Mapping global environmental suitability for Zika virus. eLife 5, e15272, DOI: 10.7554/eLife.15272

(2016).

. Heesterbeek, H. er al. Modeling infectious disease dynamics in the complex landscape of global health, DOI: 10.1126/

science.aaa4339 (2015).

. Yang, W., Karspeck, A. & Shaman, J. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of

Influenza Epidemics. PLoS Comput. Biol. 10, 1003583, DOI: 10.1371/journal.pcbi. 1003583 (2014).

. Mufioz, A. G. et al. Could the Recent Zika Epidemic Have Been Predicted? Front. Microbiol. 8, 1291, DOI: 10.3389/

fmicb.2017.01291 (2017).

. Lowe, R. et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine

15, 1002613, DOI: 10.1371/journal.pmed.1002613 (2018).

Corley, C. D. et al. Disease prediction models and operational readiness. PLoS ONE 9, 91989, DOI: 10.1371/journal.
pone.0091989 (2014).

Thomson, M. C., Muiioz, A. G., Cousin, R. & Shumake-Guillemot, J. Climate drivers of vector-borne diseases in Africa
and their relevance to control programmes. Infect. Dis. Poverty 7, 81, DOI: 10.1186/s40249-018-0460-1 (2018).

Monaghan, A. J. et al. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the
Contiguous United States. PLoS currents 8, 1-31, DOI: 10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76
(2016).

Hales, S., Weinstein, P. & Woodward, A. Dengue fever epidemics in the South Pacific: Driven by El Nino Southern
Oscillation? [14], DOI: 10.1016/S0140-6736(05)65737-6 (1996).

Tipayamongkholgul, M., Fang, C. T., Klinchan, S., Liu, C. M. & King, C. C. Effects of the El Nio-Southern Oscillation on
dengue epidemics in Thailand, 1996-2005. BMC Public Heal. 9, DOI: 10.1186/1471-2458-9-422 (2009).

Stewart-Ibarra, A. M. & Lowe, R. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am.
J. Trop. Medicine Hyg. 88, 971-981, DOI: 10.4269/ajtmh.12-0478 (2013).

Mufioz, A. G., Thomson, M. C., Goddard, L. M. & Aldighieri, S. The Latin American and Caribbean Climate Landscape
for ZIKV Transmission. Tech. Rep., International Research Institute for Climate and Society (IRI). Columbia University.,
New York (2016). DOI: 10.7916/D8X34XHV.

Muiioz, A. G., Thomson, M. C., Goddard, L. & Aldighieri, S. Analyzing climate variations at multiple timescales can
guide Zika virus response measures. GigaScience 5,41, DOI: 10.1186/s13742-016-0146-1 (2016).

WHO. WHO Guidance for Surveillance during an Influenza Pandemic (2018).

Chiew, M. et al. Estimation du taux de reproduction efficace de la rougeole en Australie a partir de données de notification
de routine. Bull. World Heal. Organ. 92, 171-177, DOI: 10.2471/BLT.13.125724 (2014).

Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2, 23—41, DOL:
10.1177/096228029300200103 (1993).

Caminade, C. et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Nifio 2015. Proc.
Natl. Acad. Sci. 114, 119-124, DOI: 10.1073/pnas.1614303114 (2017).

10/12


http://iridl.ldeo.columbia.edu/home/.agmunoz/.Aedes/#info
https://github.com/agmunozs/Vectorbornediseases
10.1073/pnas.1701410114
10.1073/pnas.1701410114
10.1073/pnas.1701410114
10.1007/978-1-4020-6877-5_3
10.7554/eLife.15272
10.1126/science.aaa4339
10.1126/science.aaa4339
10.1126/science.aaa4339
10.1371/journal.pcbi.1003583
10.3389/fmicb.2017.01291
10.3389/fmicb.2017.01291
10.3389/fmicb.2017.01291
10.1371/journal.pmed.1002613
10.1371/journal.pone.0091989
10.1371/journal.pone.0091989
10.1371/journal.pone.0091989
10.1186/s40249-018-0460-1
10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76
10.1016/S0140-6736(05)65737-6
10.1186/1471-2458-9-422
10.4269/ajtmh.12-0478
10.7916/D8X34XHV
10.1186/s13742-016-0146-1
10.2471/BLT.13.125724
10.1177/096228029300200103
10.1073/pnas.1614303114

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl. Acad. Sci.
112, 11887-11892, DOI: 10.1073/pnas.1504964112 (2015).

Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklov, J. Vectorial capacity of Aedes aegypti: Effects of

temperature and implications for global dengue epidemic potential. PLoS ONE 9, e§9783, DOI: 10.1371/journal.pone.

0089783 (2014).

Mordecai, E. A. ef al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using
mechanistic models. PLoS Neglected Trop. Dis. 11, e0005568, DOI: 10.1371/journal.pntd.0005568 (2017).

Fan, Y. & van den Dool, H. A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res.
Atmospheres 113, D01103, DOI: 10.1029/2007JD008470 (2008).

Mason, S. J. & Weigel, A. P. A Generic Forecast Verification Framework for Administrative Purposes. Mon. Weather. Rev.
137, 331-349, DOI: 10.1175/2008MWR2553.1 (2009).

Monaghan, A. J. et al. Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in
the contiguous United States: Multi-model assessment and synthesis. PLoS computational biology 15, e1007369, DOI:
10.1371/journal.pcbi. 1007369 (2019).

van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2, 288-303, DOI:
10.1016/5.idm.2017.06.002 (2017).

Goddard, L., Baethgen, W. E., Bhojwani, H. & Robertson, A. W. The International Research Institute for Climate &
Society: why, what and how. Earth Perspectives 1, 10, DOIL: 10.1186/2194-6434-1-10 (2014).

Zhang, Q. et al. Spread of Zika virus in the Americas. Proc. Natl. Acad. Sci. United States Am. 114, E4334-E4343, DOI:
10.1073/pnas.1620161114 (2017).

CDC. Case Counts in the US | Zika Virus | CDC (2016).
Ferguson, N. M. et al. Countering the Zika epidemic in Latin America, DOI: 10.1126/science.aag0219 (2016).

Vitart, F. et al. The subseasonal to seasonal (S2S) prediction project database. Bull. Am. Meteorol. Soc. 98, 163—173, DOI:
10.1175/BAMS-D-16-0017.1 (2017).

Mariotti, A. et al. Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. Bull. Am. Meteorol.
Soc. BAMS-D-18-0326.1, DOI: 10.1175/BAMS-D-18-0326.1 (2020).

Harris, L., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations - the CRU
TS3.10 Dataset. Int. J. Climatol. 34, 623—-642, DOI: 10.1002/joc.3711 (2014).

Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K. & Arnold, J. G. Constructing retrospective gridded daily
precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475-497, DOLI:
10.1175/2007JAMC1356.1 (2008).

Kirtman, B. P. ef al. The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2
toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95, 585-601, DOI: 10.1175/BAMS-D-12-00050.1
(2014).

Doxsey-Whitfield, E. et al. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded
Population of the World, Version 4. Pap. Appl. Geogr. 1,226-234, DOI: 10.1080/23754931.2015.1014272 (2015).

Center for International Earth Science Information Network (CIESIN) Columbia University. Gridded Population of
the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates, Revision 11., DOI:
10.7927/H45QA4TSF (2019).

Tippett, M. K., DelSole, T., Mason, S. J. & Barnston, A. G. Regression-based methods for finding coupled patterns. J.
Clim. 21, 4384-4398, DOI: 10.1175/2008JCLI2150.1 (2008).

Mason, S. J. and Tippett, M. K. and Song, L. and Muiioz, A. G. Climate Predictability Tool version 16.3.2, DOI:
10.7916/D8-86DY-WQ10 (2020).

Muiloz, A.G. and Robertson, A.W. and Turkington, T. and Mason, S.J. PyCPT: a Python interface and enhancement for
IRI’s Climate Predictability Tool, DOI: 10.5281/ZENODQ.3551936 (2019).

1112

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373


10.1073/pnas.1504964112
10.1371/journal.pone.0089783
10.1371/journal.pone.0089783
10.1371/journal.pone.0089783
10.1371/journal.pntd.0005568
10.1029/2007JD008470
10.1175/2008MWR2553.1
10.1371/journal.pcbi.1007369
10.1016/j.idm.2017.06.002
10.1186/2194-6434-1-10
10.1073/pnas.1620161114
10.1126/science.aag0219
10.1175/BAMS-D-16-0017.1
10.1175/BAMS-D-18-0326.1
10.1002/joc.3711
10.1175/2007JAMC1356.1
10.1175/BAMS-D-12-00050.1
10.1080/23754931.2015.1014272
10.7927/H45Q4T5F
10.1175/2008JCLI2150.1
10.7916/D8-86DY-WQ10
10.5281/ZENODO.3551936

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

Acknowledgements

The authors acknowledge the NMME project and its data dissemination supported by NOAA, NSF, NASA and DOE, and
acknowledge the help of NCEP, IRI and NCAR personnel in creating, updating and maintaining the NMME archive. A.G.M.
was supported by the NOAA grant NA180OAR4310339 and the ARBOPREVENT project (Swedish Research Council Formas
grant 2018-01754). X.C. was supported by the NOAA grant NA180OAR4310339. This publication was supported by the
Cooperative Agreement Number U01CKO000509-01, funded by the Centers for Disease Control and Prevention. Its contents are
solely the responsibility of the authors and do not necessarily represent the official views of NOAA and the Centers for Disease
Control and Prevention or the Department of Health and Human Services. The authors are grateful to Dr. Simon Mason, Rémi
Cousin and Laurel DiSera for insightful discussions regarding methodological aspects of the study.

Author contributions statement

A.G.M. designed the monitoring and forecast system, and performed all calculations; X.C. created the public Maproom (web
platform) that hosts the monitoring and forecasting sub-systems, and automated the production of operational forecasts; A.R.C.
led the decision-making component of the study; P.K. performed part of the literature review and preliminary sensitivity
analysis; E.M. contributed with model codes in R language, and analysis; A.G.M. and M.C.T. wrote the first version of the
manuscript; all authors analyzed the results and contributed to the final version.

Additional information

Competing interests The author(s) declare no competing interests.

12/12



