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Abstract: We consider a demand management problem in an energy community, in which several
users obtain energy from an external organization such as an energy company and pay for the
energy according to pre-specified prices that consist of a time-dependent price per unit of energy
as well as a separate price for peak demand. Since users’ utilities are their private information,
which they may not be willing to share, a mediator, known as the planner, is introduced to help
optimize the overall satisfaction of the community (total utility minus total payments) by mechanism
design. A mechanism consists of a message space, a tax/subsidy, and an allocation function for
each user. Each user reports a message chosen from her own message space, then receives some
amount of energy determined by the allocation function, and pays the tax specified by the tax function.
A desirable mechanism induces a game, the Nash equilibria (NE), of which results in an allocation that
coincides with the optimal allocation for the community. As a starting point, we design a mechanism
for the energy community with desirable properties such as full implementation, strong budget
balance and individual rationality for both users and the planner. We then modify this baseline
mechanism for communities where message exchanges are allowed only within neighborhoods,
and consequently, the tax/subsidy and allocation functions of each user are only determined by
the messages from their neighbors. All of the desirable properties of the baseline mechanism are
preserved in the distributed mechanism. Finally, we present a learning algorithm for the baseline
mechanism, based on projected gradient descent, that is guaranteed to converge to the NE of the
induced game.

Keywords: mechanism design; Nash equilibrium; demand management; energy networks; learning
in games

1. Introduction

Resource allocation is an essential task in networked systems such as communication
networks, energy/power networks, etc. [1–3]. In such systems, there is usually one or
multiple kinds of limited and divisible resources allocated among several agents. When full
information regarding agents’ interests is available, solving the optimal resource allocation
problem reduces to a standard optimization problem. However, in many interesting
scenarios, strategic agents may choose to conceal or misreport their interests in order to
obtain more resources. In such cases, it is possible that appropriate incentives are designed
so that selfish agents are incentivized to truly report their private information, thus enabling
optimal resource allocation [4].

In existing works related to resource allocation problems, mechanism design [5,6]
is frequently used to address the agents’ strategic behavior mentioned above. In the
framework of mechanism design, the participants reach an agreement regarding how they
exchange messages, how they share the resources, and how much they pay (or get paid).
Such agreements are designed to incentivize the agents to provide the information needed
to solve the optimization problem.
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Contemporary energy systems have witnessed an explosion of emerging techniques,
such as smart meters and advanced metering infrastructure (AMI) in the last decade. These
smart devices and systems facilitate the transmission of users’ data via communication
networks and enable dynamic pricing and demand response programs [7], making it
possible to implement mechanism design techniques on energy communities for improved
efficiency. In this paper, we develop mechanisms to solve a demand management problem
in energy communities. In an energy community, users obtain energy from an energy
company and pay for it. The pre-specified prices dictated by the energy company consist
of a time-dependent price per unit of energy as well as a separate price for peak demand.
Users’ demand is subject to constraints related to equipment capacity and minimum
comfort level. Each user possesses a utility as a function of their own demand. Utilities
are private information for users. The welfare of the community is the sum of utilities
minus energy cost. If users were willing to truthfully report their utilities, one could easily
optimize energy allocations to maximize social welfare. However, since users are strategic
and might not be willing to report utilities directly, to maximize the welfare, we need to find
an appropriate mechanism that incentivizes them to reveal some information about their
utilities, so that optimal allocation is reached even in the presence of strategic behaviors.
These mechanisms are usually required to possess several interesting properties, among
which are full implementation in Nash equilibria (NE), individual rationality, and budget
balance [6,8,9]. Moreover, in environments with communication constraints, it is desirable
to have “distributed” mechanisms, whereby energy allocation and tax/subsidies for each
user can be evaluated using only local messages in the user’s neighborhood. Finally, for
actual deployment of practical mechanisms, we hope that the designed mechanism has
convergence properties that guarantee that NE is reached by the agents by means of a
provably convergent learning algorithm.

1.1. Contributions

This paper proposes a method of designing a mechanism for implementing the optimal
allocation of the demand management problem in an energy community, where there are
strategic users communicating over a pre-specified message exchange network. The main
contributions of our work are as follows:

(a) We design a baseline, “centralized” mechanism for an environment with concave
utilities and convex constraints. A “centralized” mechanism allows for messages
from all users to be communicated to the planner [6,8,9]. To avoid excessive com-
munication cost brought about by direct mechanisms (due to messages being entire
utility functions), the mechanisms proposed in this paper are indirect, non-VCG
type [10–12], with messages being real vectors with finite (and small) dimensionality.
Unlike related previous works [13–16], a simple form of allocation function is adopted,
namely, allocation equals demand. The mechanism possesses the properties of full
implementation, budget balance, and individual rationality [6,8,9]. Although we
develop the mechanism for demand management in energy communities, the under-
lying ideas can be easily adapted to other problems and more general environments.
Specifically, environments with non-monotonic utilities, external fixed unit prices,
and the requirement of peak shaving are tractable with the proposed mechanism.

(b) Inspired by the vast literature on distributed non-strategic optimization [17–21],
as well as our recent work on distributed mechanism design (DMD) [22,23], we
modify the baseline mechanism and design a “distributed” version of it. A distributed
mechanism can be deployed in environments with communication constraints, where
users’ messages cannot be communicated to the central planner; consequently the
allocation and tax/subsidy functions for each user should only depend on messages
from direct neighbors. The focus of our methodology is to show how a centralized
mechanism can be modified into a decentralized one in a systematic way by means
of introducing extra message components that act as proxies of the messages not
available to a user due to communication constraints. An added benefit of this
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systematic design is that the new mechanism preserves all of the desirable properties
of the centralized mechanism.

(c) Since mechanism design (centralized or distributed) deals with equilibrium properties,
one relevant question is how equilibrium is reached when agents enter the mechanism.
Our final contribution in this paper is to provide “learning” algorithms [24–28] that
address this question for both cases of the proposed centralized and decentralized
mechanisms. The algorithm is based on the projected gradient descent method in
optimization theory ([29] Chapter 7). Learning proceeds through price adjustments
and demand announcements according to the prices. During this process, users do
not need to reveal their entire utility functions. Convergence of the message profile
toward one NE is conclusively proven, and since the mechanism is designed to fully
implement the optimal allocation in NE, this implies that the allocation corresponding
to the limiting message profile is the social welfare maximizing solution.

1.2. Related Literature

The model for demand management in energy communities investigated in this
paper originates from network utility maximization (NUM) problems, which is one typical
category of resource allocation problems in networks (see [30], Chapter 2, for a detailed
approach to models and algorithms for solving NUM problems). There are two distinct
research directions that have emanated from the standard centralized formulations of
optimization problems.

The first direction addresses the problem of communication constraints when solving
an optimization problem in a centralized fashion. Taking into account these communication
constraints, several researchers have proposed distributed optimization methods [17–21]
whereby an optimization problem is solved by means of message-passing algorithms
between neighbors in a communication network. The works have been further refined
to account for possible users’ privacy concerns during the optimization processes [31–34].
Nevertheless, the users are assumed to be non-strategic in this line of works.

The second research direction, namely mechanism design, addresses the presence of
strategic agents in optimization problems in a direct way. The past several decades have
witnessed applications of this approach in various areas of interest, such as market al-
locations [14,35,36], spectrum sharing [37–39], data security [40–42], smart grid [43–45],
etc. The well-known VCG mechanism [10–12] has been utilized extensively in this line of
research. In VCG, users have to communicate utilities (i.e., entire functions), which leads
to a high cost of information transmission. To ease the burden of communication, Kelly’s
mechanism [13] (and extensions to multiple divisible resources [46]) has been proposed as a
solution, which uses logarithmic functions as surrogates of utilities. The users need to only
report a real number and thus the communication cost reduces dramatically, at the expense
of efficiency loss [47] and/or the assumption of price-taking agents. A number of works
extend Kelly’s idea to reduce message dimensionality in strategic settings [48–50]. Other
indirect mechanisms guaranteeing full implementation in environments with allocative
constraints have been proposed in [51,52] using penalty functions to incentivize feasibility
and in [13–15] using proportional allocation or its generalization, radial allocation [16,53].
All aforementioned works on mechanism design can be categorized as “centralized” mech-
anisms, which means that agents’ messages are broadcasted to a central planner who
evaluates allocation and taxation for all users.

The first contribution of this paper (contribution (a)) relates to the existing research
detailed above in the following way. Instead of adopting the classic VCG framework as
in [10–12], the proposed centralized mechanism is indirect with finite message dimen-
sionality. In line with previous works [14–16,53], our centralized mechanism guarantees
full implementation in contrast to some other indirect mechanisms (e.g., Kelly’s mecha-
nism [13,46,47]). Additionally, compared to the works in [13–16,53], the form of allocation
functions in our centralized mechanism is simpler, while at the same time, it enables the
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use of the mechanism in more general environments (e.g., environments allowing negative
demands, non-monotonic utilities, extra prices, etc.).

The first attempts in designing decentralized mechanisms were reported in [22,23],
where mechanisms are designed with the additional property that the allocation and tax
functions for each agent depend only on the messages emitted by neighboring agents.
As such, allocation and taxation can be evaluated locally.

Similar to the works in [22,23], the centralized mechanism in our work can be modified
into a decentralized version (contribution (b)). Unlike the previous two works, however, the
distributed mechanism in this paper has a straightforward form for the allocation function,
making the proofs much less involved. In addition and partially due to this simplification,
these decentralized mechanisms can be applied to a broader range of environments.

Recently, there has also been a line of research designing mechanisms over networks.
The works of [54,55] present mechanisms for applications such as prize allocation and peer
ranking, where agents are aware of their neighbors’ private characteristic (e.g., suitability,
ability, or need). We caution the reader not to confuse the networks in the context of [54,55]
with the message exchange networks introduced in our work in the context of contribution
(b). Indeed, the networks in the two works listed above reveal how much of the private
information of other agents is available to each agent, but it does not put restrictions on
allocation/tax functions. On the other hand, the message exchange networks in our work
treat utilities as each agent’s strictly private information and puts restrictions on the form
of allocation/tax functions.

Finally, learning in games is motivated by the fact that NE is, theoretically, a complete
information solution concept. However, since users do not know each-others’ utilities, they
cannot evaluate the designed NE offline. Instead, there is a need for a process (learning),
during which the NE is learnt by the community. The classic works [24–26] adopted
fictitious play, while in [27], a connection between supermodularity and convergence of
learning dynamics within an adaptive dynamics class was made and was further specialized
in [56] to the Lindahl allocation problem. A general class of learning dynamics named
adaptive best response was discussed in [57] in connection with contractive games. Learning in
monotone games [28,58] was investigated in [59–64], with further applications in network
optimization [65,66]. Recently, learning NE by utilizing reinforcement learning has been
reported in [67–71].

In the last contribution of this paper (contribution (c)), we develop a learning algo-
rithm for the proposed mechanisms. Most of the learning algorithms mentioned above
require a strong property for induced games. For example, the learning algorithm of [27]
requires supermodularity and the adaptive best response class of dynamics in [57] only
applies to contractive games. Unfortunately, guaranteeing such strong properties limits the
applicability of the mechanism. We overcome this difficulty with the proposed learning
algorithm based on a PGD of the dual problem, thus guaranteeing convergence to NE with
more general settings than the ones described in [27,57].

2. Model and Preliminaries
2.1. Demand Management in Energy Communities

Consider an energy community consisting of N users and a given time horizon T,
where T can be viewed as the number of days during one billing period. Each user i in
the user set N has their own prediction of their usage across one billing period denoted
by xi = (xi

1, . . . , xi
T), where xi

t is the predicted usage of user i on the tth time slot of the
billing period. Regarding notation, throughout the paper we use superscripts to denote
users and constraints, and subscripts to denote time slots. Note that xi

t can be a negative
number due to the potential possibility that users in the electrical grid can generate power
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through renewable technologies (e.g., photovoltaic) and can return the surplus back to the
grid. The users are characterized by their utility functions as

vi(xi) =
T

∑
t=1

vi
t(xi

t), ∀i ∈ N .

The energy community, as a whole, pays for the energy. The unit prices are given
separately for every time slot t, denoted by pt. These prices are considered given and fixed
(e.g., by the local utility company). In addition, the local utility company imposes a unit
peak price p0 in order to incentivize load balancing and to lessen the burden of peaks in
demand. To conclude, the cost of energy to the community is as follows:

J(x) =
T

∑
t=1

pt

(
N

∑
i=1

xi
t

)
+ p0 · max

1≤t≤T

N

∑
i=1

xi
t, (1)

where x is a concatenation of demand vectors x1, . . . , xN .
The centralized demand management problem for the energy community can be

formulated as

maximize
x∈X

N

∑
i=1

vi(xi)− J(x). (2)

The meaning of the feasible set X is to incorporate possible lower bounds on each
user’s demand (e.g., minimal indoor heating or AC) and/or upper bounds due to the
capacities of the facilities as well as transmission line capacities.

In order to solve the optimization problem (2) using convex optimization methods,
the following assumptions are made.

Assumption 1. All of the utility functions vi
t(·)s are twice differentiable and strictly concave.

Assumption 2. The feasible set X is a polytope formed by several linear inequality constraints,
and X is coordinate convex, i.e., if x ∈ X , then setting any of the components of x to 0 does not let
it fall outside of set X .

By Assumption 2, X can be written as {x|Ax ≤ b} for some A ∈ RL×NT and b ∈ RL
+,

where L is the number of linear constraints in X , and

A =
[

a1 . . . aL
]T

,

al =
[

a1,l
1 . . . a1,l

T . . . aN,l
1 . . . aN,l

T

]T
, l = 1, . . . , L,

b =
[
b1, . . . , bL

]T
.

The coordinate convexity in Assumption 2 is mainly used for the outside option
required by the individual rationality. Under this assumption, for a feasible allocation
x, if any user i changes their mind and chooses not to participate in the mechanism,
the mechanism yields a feasible allocation with xi = 0 fixed.

With Assumptions 1 and 2, the energy community faces an optimization problem
with a strictly concave and continuous objective function over a nonempty compact convex
feasible set. Therefore, from convex optimization theory, the optimal solution for this
problem always exists and should be unique [29].
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Substituting the max function in (1) with a new variable w, the optimization problem
in (2) can be equivalently restated as

maximize
x,w

N

∑
i=1

vi(xi)−
T

∑
t=1

pt

N

∑
i=1

xi
t − p0w (3a)

subject to Ax ≤ b, (3b)
N

∑
i=1

xi
t ≤ w, ∀t ∈ {1, . . . , T}. (3c)

The proof of this equivalency can be found in Appendix A. The new optimization prob-
lem has a differentiable concave objective function with a convex feasible set, which means
that it is still a convex optimization, and therefore, KKT conditions are sufficient and neces-
sary conditions for a solution (x, λ, µ) to be the optimal solution, where λ = [λ1, . . . , λL]T

are the Lagrange multipliers for each linear constraint alTx ≤ bl in constraint x ∈ X and
µ = [µ1, . . . , µT ]

T are the Lagrange multipliers for (3c). The KKT conditions are listed
as follows:

1. Primal Feasibility:

x ∈ X , (4a)
N

∑
i=1

xi
t ≤ w. (4b)

2. Dual Feasibility:
λl ≥ 0, l = 1, . . . , L; µt ≥ 0, t = 1, . . . , T. (4c)

3. Complementary Slackness:

λl(alTx− bl) = 0, l = 1, . . . , L, (4d)

µt(
N

∑
i=1

xi
t − w) = 0, t = 1, . . . , T. (4e)

4. Stationarity:

p0 = ∑
t

µt, (4f)

v̇i
t(xi

t) = pt + ∑
l

λlai,l
t + µt, t = 1, . . . , T, i ∈ N . (4g)

where v̇i
t(·) is the first order derivative of vi

t(·).
We conclude this section by pointing out once more that our objective is not to solve

(3a)–(3c) or (4a)–(4g) in a centralized or decentralized fashion. Such a methodology is well
established and falls under the research area of centralized or decentralized (non-strategic)
optimization. Furthermore, such a task can be accomplished only under the assumption
that users report their utilities (or related quantities, such as derivatives of utilities at
specific points) truthfully, i.e., they do not act strategically. Instead, our objective is to
design a mechanism (i.e., messages and incentives) so that strategic users are presented
with a game, the NE of which is designed so that it corresponds to the optimal solution of
(3a)–(3c) or (4a)–(4g).

2.2. Mechanism Design Preliminaries

In an energy community, utilities are users’ private information. Due to privacy
and strategic concerns, users might not be willing to report their utilities. As a result,
(3a)–(3c) or (4a)–(4g) cannot be solved directly. In order to solve (3a)–(3c) and (4a)–(4g)
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under the settings stated above, we introduce a planner as an intermediary between the
community and the energy company. To incentivize users to provide necessary information
for optimization, the planner signs a contract with users, which prespecifies the messages
needed from users and rules for determining the allocation and taxes/subsidies from/to
the users. The planner commits to the contract. Informally speaking, the design of such
contract is referred to as mechanism design.

More formally, a mechanism is a collection of message sets and an outcome func-
tion [8]. Specifically, in resource allocation problems, a mechanism can be defined as a tuple
(M, x̂(·), t̂(·)), whereM =M1 × . . .×MN is the space of message profile; x̂ :M 7→ X
is an allocation function determining the allocation x according to the received message
profile m ∈ M; and t̂ :M 7→ RN is a tax function that defines the payments (or subsidies)
of users based on m (specifically, t̂ = {t̂i}i∈N with t̂i : M 7→ R defining the tax/subsidy
function for user i). Once defined, the mechanism induces a game (N ,M, {ui}i∈N ). In this
game, each user i chooses her message mi from the message spaceMi, with the objective
to maximize her payoff ui(m) = vi(x̂i(m))− t̂i(m). The planner charges taxes and pays for
the energy cost to the company, so the planner’s payoff turns out to be ∑i t̂i(m)− J(x̂(m))
(the net income of the planner).

For the mechanism-induced game G, NE is an appropriate solution concept. At the
equilibrium point m∗, if x̂(m∗) coincides with the optimal allocation (i.e., the solution
of (3a)–(3c)), we say that the mechanism implements the optimal allocation at m∗. A mech-
anism has the property of full implementation if all of the NE m∗s implement the optimal
allocation.

There are other desirable properties in a mechanism. Individual rationality is the
property that everyone volunteers to participate in the mechanism-induced game instead
of quitting. For the planner, this means that the sum of taxes ∑i t̂i(m∗) collected at NE is
larger than the cost paid to the energy company J(x̂(m∗)). In the context of this paper,
strong budget balance is the property that the sum of taxes is exactly the same as the cost
paid to the energy company, so no additional funds are required by the planner or the
community to run the mechanism other than the true energy cost paid to the energy
company. In addition, if we use the solution concept of NE, one significant problem is
how the users know the NE without full information. Therefore, some learning algorithm
is needed to help users learn the NE. If under a specific class of learning algorithm, the
message profile m converges to NE m∗, then we say that the mechanism has learning
guarantees with this certain class.

3. The Baseline “Centralized” Mechanism

In this section, we temporarily assume that there are no communication constraints,
i.e., all of the message components are accessible for the calculations of the allocation
and taxation. The mechanism designed under this assumption is called a “centralized”
mechanism. In the next section, we extend this mechanism to an environment with
communication constraints.

In the proposed centralized mechanism, we define user i’s message mi as

mi =

({
yi

t

}T

t=1
,
{

qi,l
}

l∈L
,
{

si
t

}T

t=1
,
{

βi
t

}T

t=1

)
.

Each message component above has an intuitive meaning. Message yi
t ∈ R can

be regarded as the demand for time slot t announced by user i. Message qi,l ∈ R+ is
the additional price that user i expects to pay for constraint l, which corresponds to the
Lagrange multiplier λl . Message si

t ∈ R+ is proportional to the peak price that user i
expects to pay at time t. Intuitively, setting one si

t greater than si
t′ means that user i thinks

day t is more likely to be the day with the peak demand rather than t′. This component
corresponds to the Lagrange multiplier µt. Message βi

t ∈ R is the prediction of user
(i + 1)’s usage at time t by user i. This message is included for technical reasons that will
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become clear in the following (for a user index i ∈ N , let i− 1 and i + 1 denote modulo
N operations).

Denote the message space of user i byMi, and the space of the message profile is
represented asM =M1 × . . .×MN . The allocation functions and the tax functions are
functions defined onM. The allocation functions follow the simple definition:

x̂i
t(m) = yi

t, t = 1, . . . , T, ∀i ∈ N . (5)

i.e., users obtains exactly what they request.
Prior to the definition of the tax functions, we want to find some variable that acts

similar to µt at NE. Although si
t is designed to be proportional to µt, it does not guarantee

∑t si
t = p0, which is the KKT condition (4f). To solve this problem, we utilize a technique

similar to the proportional/radial allocation in [13–16,53] to shape the suggested peak
price vector s into a form that satisfies (4f). For a generic T-dimensional peak price vector
s̃ = (s̃1, . . . , s̃T) and a generic T-dimensional total demand vector ỹ = (ỹ1, . . . , ỹT), define
a radial pricing operatorRP i : RT

+ ×RT 7→ RT
+ as

RP i(s̃, ỹ) =
(
RP i

1(s̃, ỹ), . . . ,RP i
T(s̃, ỹ)

)
, (6a)

where

RP i
t(s̃, ỹ) =


s̃t

∑t′ s̃t′
p0, if s̃ 6= 0,

p0·1{t∈arg max
t′

ỹt′}

#(arg max
t′

ỹt′ )
, if s̃ = 0,

(6b)

and #(arg max
t′

ỹt′) represents the number of elements in ỹ that are equal to the maximum value.

The output of the radial pricingRP(·, ·) is taken as the peak price in the subsequent
tax functions. When the given suggested price vector s̃ is a nonzero vector, the unit peak
price is allocated to each day proportional to s̃t. If the suggested price vector s̃ = 0, then
divide p0 to the days with peak demand with equal proportion.

The tax functions are defined as

t̂i(m) = costi(m) +
T

∑
t=1

prβi
t(m) + ∑

l∈L
coni,l(m) +

T

∑
t=1

coni
t(m), (7)

where

costi(m) =
T

∑
t=1

(pt +RP i
t(s
−i, ζ−i))x̂i

t(m) + ∑
l∈Li

q−i,lai,l x̂i(m), (8a)

prβi
t(m) =(βi

t − yi+1
t )2, (8b)

coni,l(m) =(qi,l − q−i,l)2 + qi,l(bl −∑
j 6=i

aj,lyj − ai,l βi−1), (8c)

coni
t(m) =(si

t − s−i
t )2 + si

t(z
−i − ζ−i

t ), (8d)

and

s−i
t =

1
N − 1 ∑

j 6=i
sj

t ∀i ∀t, (9a)

q−i,l =
1

N − 1 ∑
j 6=i

qj,l ∀i ∀l, (9b)

ζ−i
t = ∑

j 6=i
yj

t + βi−1
t , ∀i ∀t, (9c)

z−i = max
t

{
ζ−i

t

}
∀i, (9d)
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and ai,l is defined as ai,l = [ai,l
1 , . . . , ai,l

T ].
The tax function for user i consists of three parts. The first part costi(m) is the cost for

the demand. According to this part, user i pays a fixed price and the peak price for their
demand. Note that the peak price at time t, RP i

t(s−i, ζ−i), is generated by the vector of
peak prices from all other agents, s−i, and the total demand from all other agents (agent i’s
demand at time t is approximated by βi−1

t ). As a result, the peak price is not controlled
by user i at all. The second part prβi

t(m) (prβ stands for “proxy-β”) is a penalty term for
the imprecision of prediction βi that incentivizes βi to align with yi+1 at NE. The third
part consists of two penalty terms coni,l(m) and coni

t(m) for each constraint l ∈ L and
each peak demand inequality t ∈ {1, . . . , T}, respectively. Both of them have a quadratic
term that incentivizes consensus of the messages qi,l and si

t among agents, respectively. In
addition, they possess a form that looks similar to the complementary slackness conditions
(4d) and (4e). This special design facilitates the suggested price to come to an agreement
and ensures that the primal feasibility and complementary slackness hold at NE, which are
shown in Lemma 2.

The main property we want from this mechanism is full implementation. We expect
the allocation scheme under the NE of the mechanism-induced game to coincide with that
of the original optimization problem. Full implementation can be shown in two steps. First,
we show that, if there is a (pure strategy) NE, it must induce the optimal allocation. Then,
we prove the existence of such (pure strategy) NE.

From the form of the tax functions, we can immediately obtain the following lemma.

Lemma 1. At any NE, for each user i, the demand proxy βi
t is equal to the demand of their neighbor,

i.e., βi
t = yi+1

t for all t.

Proof. Suppose that m is an NE, where there exists at least one user i whose message βi

does not agree with the next user’s demand, i.e., βi 6= yi+1. Say, βi
t 6= yi+1

t for some t. Then,
we can find a profitable deviation m̃ that keeps everything other than βi the same as m but
modifies βi

t with β̃i
t = yi+1

t . Compare the payoff value ui before and after the deviation:

ui(m̃)− ui(m) =− (β̃i
t − yi+1

t )2 + (βi
t − yi+1

t )2

=(βi
t − yi+1

t )2 > 0.

Thus, if there is some βi 6= yi+1, user i can always construct another announcement
m̃i, such that user i gets a better payoff.

It can be seen from Lemma 1 that the messages β play an important role in the
mechanism. They appear in two places in the tax functions: first, in the expression of
ζ−i

t = ∑j 6=i yj
t + βi−1

t which is the total demand at time t used in user i’s tax function, and
second, in the expression for excess demand bl −∑j 6=i aj,lyj − ai,l βi−1 for the lth constraint.
Note that we do not want user i to control these terms with their messages (specifically yi

t)
because they already control their allocation directly and this creates technical difficulties.
Indeed, quoting the self-announced demand in the tax function raises the possibility of
unexpected strategic moves for user i to obtain extra profit. Instead, using the proxy βi−1

instead of yi eliminates user i’s control on their own slackness factor, while Lemma 1
guarantees that, at NE, these quantities become equal.

With the introduction of these proxies, we show in the following lemmas that, at NE,
all KKT conditions required for the optimal solution are satisfied. First, we prove that
primal feasibility (KKT 1) and complementary slackness (KKT 3) are ensured by the design
of the penalty terms “pr”s and constraint-related terms “con”s, if we treat q andRP(s, ζ)
as the Lagrange multipliers.
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Lemma 2. At any NE, users’ suggested prices are equal:

qi,l = ql , ∀l ∈ Li ∀i ∈ N ,

si
t = st, t = 1, . . . , T, ∀i ∈ N .

Furthermore, users’ announced demand profile satisfies y ∈ X , and equal prices, together with
the demand profile, satisfy complementary slackness:

q(Ax− b) = 0,

st

(
z−∑

i
yi

t

)
= 0, ∀t = 1, . . . , T,

which implies

RP i
t(s, ζ−i)

(
z−∑

i
yi

t

)
= 0, ∀t = 1, . . . , T, (10)

where z is the peak demand during the billing period.

Proof. The proof can be found in Appendix B.

Dual feasibility (KKT 2) holds trivially by definition. We now show that stationarity
condition (KKT 4) holds at NE by imposing a first-order condition on the partial derivatives
of user i’s utility w.r.t. their message component yi

t.

Lemma 3. At NE, stationarity holds, i.e.,

v̇i
t(x̂i

t(m)) = pt +RP i
t(s, ζ−i) + ∑

l∈Li

qlai,l
t , (11)

p0 =
T

∑
t=1
RP i

t(s, ζ−i). (12)

Proof. The proof is in Appendix C.

With Lemmas 1–3, it is straightforward to derive the first part of our result, i.e.,
efficiency of the allocation at any NE.

Theorem 1. For the mechanism-induced game G, if NE exists, then the NE results in the same
allocation as the optimal solution to the centralized problem (3a)–(3c).

Proof. If m∗ is an NE, from Lemmas 1 and 2, we know that, at NE, βi∗ = yi+1 and that all
of the prices qi∗, si∗, and all of the ζ−i∗ are the same among all users i ∈ N . We denote
these equal quantities by y∗, q∗, s∗ and ζ∗.

Consider the solution sol = (x, w, λ, µ) = (y∗, maxt{ζ∗t }, q∗,RP(s∗, ζ∗)). From
Lemma 2, the solution sol satisfies (4a)–(4e) (primal feasibility and complementary slack-
ness). From Lemma 3, sol has (4g) and (4f) (stationarity). The dual feasibility (4c) holds
because of the nonnegativity of q and s.

Therefore, sol satisfies all four KKT conditions, which means that the allocation x̂(m∗)
is the optimal allocation.

The following theorem shows the existence of NE.

Theorem 2. For the mechanism-induced game G, there exists at least one NE.

Proof. From the theory of convex optimization, we know that the optimal solution of
(3a)–(3c) exists. Based on this solution, one can construct a message profile that satisfies all
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of the properties we present in Lemmas 1–3 and prove that there is no unilateral deviation
for all users. The details are presented in Appendix D.

Full implementation indicates that, if all users are willing to participate in the mech-
anism, the equilibrium outcome is the optimal allocation. For each user i, the payoff at
NE is

ui(m∗) = vi(x̂i(m∗))

−
T

∑
t=1

(
pt +RP i

t(s, ζ−i) + ∑
l∈Li

q−i,lai,l
t

)
︸ ︷︷ ︸

Aggregated unit price for x̂i
t

x̂i
t(m
∗). (13)

In other words, the users pay for their own demands via the aggregated unit prices
given by the consensus at NE. By counting the planner as a participant of the mecha-
nism with utility ∑i∈N t̂i(m∗)− J(x∗), a strong budget balance is automatically achieved.
However, there are still two questions remaining. Are the users willing to follow this
mechanism or would they rather not participate? Will the planner have to pay extra money
for implementing such mechanism? The two theorems below answer these questions.

Theorem 3 (Individual Rationality for Users). Assume that agent i obtains xi = 0 and pays
nothing if they choose not to participate in the mechanism. Then, at NE, participating in the
mechanism is weakly better than not participating, i.e.,

ui(m∗) ≥ vi(0).

Proof. The main idea for the proof of Theorem 3 is to find a message profile with m−i∗, in
which user i’s payoff is vi(0), and then, we can argue that following NE is not worse since
m∗ is a best response to m−i∗. The details of the proof can be found in Appendix E.

Theorem 4 (Individual Rationality for the Planner). At NE, the planner does not need to pay
extra money for the mechanism:

∑
i∈N

t̂i(m∗)− J(x̂(m∗)) ≥ 0. (14)

Moreover, by slight modification of the tax functions defined in (7), the total payment of users
and the energy cost achieve a balance at NE:

∑
i∈N

t̃i(m∗)− J(x̂(m∗)) = 0. (15)

Proof. The individual rationality of the planner can be verified by substituting m∗ in (14)
directly. By redistributing the income of the planner back to the users in a certain way, the
total payment of users is exactly J(x̂(m∗)), and consequently, no money is left after paying
the energy company. The details are left to Appendix F.

4. Distributed Mechanism

In the previous mechanism, allocation functions and tax functions of users depend
on the global message profile m. If one wants to compute the tax t̂i for a certain user
i, all messages mj for all j ∈ N are needed. Such mechanisms are not desirable for
environments with communication constraints, where such a global message exchange
is restricted. To tackle this problem, we provide a distributed mechanism, in which the
calculation of the allocation and tax of a certain user depends only on the messages from
the “available” users and therefore satisfies the communication constraints. In this section,
we first introduce communication constraints using a message exchange network model.
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We then develop a distributed mechanism, which accommodates the communication
constrains and preserves the desirable properties of the baseline centralized mechanism.

4.1. Message Exchange Network

In an environment with communication constraints, all of the users are organized in a
undirected graph GR = (N , E), where the set of nodes N is the set of users and the set
of edges E indicates the accessibility to the message for each user. If (i, j) ∈ E , user i can
access the message of user j, i.e., the message of j is available for user i when computing
the allocation and tax of user i, and vice versa. Here, we state a mild requirement for the
message exchange network:

Assumption 3. The graph GR is a connected and undirected graph.

In fact, the mechanism we show works for the cases where GR is an undirected tree.
Although an undirected connected graph is not necessarily a tree, since we can always find
a spanning tree from such graph, it is safe to consider the mechanism under the assumption
that the given network has a tree structure. If that is not the case, the mechanism designer
can claim a spanning tree from the original message exchange network and design the
mechanism only based on the tree instead of the whole graph (essentially some of the
connections of the original graph are never used for message exchanges).

The basic idea behind the decentralized modification of the baseline mechanism
is intuitively straightforward. Looking at the tax function for user i in the centralized
mechanism, we observe that several messages required do not come from i’s immediate
neighbors. For this reason, we define new “summary” messages that are quoted by i’s
neighbors and represent the missing messages. At the same time, for this to work, we add
additional penalty terms that guarantee that the summary messages indeed represent the
needed terms at NE.

Notice that, in the previous mechanism, user i is expected to announce a βi
t equal

to the demand of the next user (i + 1). However, here, we might have (i, i + 1) /∈ E , and
owing to the communication constraint, we are not able to compare βi

t with yi+1
t . Instead,

βi
t should be a proxy of the demand of user i’s direct neighbor. This motivates us to define

the function φ(i), where φ(i) ∈ N (i);N (i) is the set of user i’s neighbors (excluding i); and
φ(i) = j denotes that, in user i’s tax function, the proxy variable β used for user i’s conl

i(m)
terms in their tax function is provided by user j. In other words, φ(i) is a “helper” for user
i who quotes a proxy of their demand whenever needed.

In the next part, we use the summaries of the demands to deal with the distributed
issue. For the sake of convenience, we define n(i, k) as the nearest user to user k among the
neighbors of user i and user i itself. n(i, k) is well-defined because of the tree structure. The
proof is omitted here. The details can be found in ([72] Chapter 4, Section 7.1).

4.2. The Message Space

In the distributed mechanism, the message mi in user i’s message space Mi is
defined as

mi =

({
yi

t

}T

t=1
,
{

qi,l
}

l∈L
,
{

si
t

}T

t=1
,
{

β
i,j
t : φ(j) = i

}T

t=1
,{

ni,j,l : j ∈ N (i)
}

l∈L
,
{

ν
i,j
t : j ∈ N (i)

}T

t=1

)
.

(16)

Here, ni,j,l is a summary for demands of users related to constraint l and connected to
user i via j, as depicted in Figure 1. Message ν

i,j
t serves a similar role for the peak demand.
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Figure 1. Proxies in the Message Exchange Network: for constraint l, user i announces ni,k,l as a
summary of demands for the tree on the left of i (starting from k) and ni,j,l as a summary of demands
for the tree on the right of i (starting from j).

4.3. The Allocation and Tax Functions

The allocation functions x̂i
t(m) = yi

t are still straightforward. There are some modifi-
cations on tax functions, including adjustments on prices, consensus of new variables, and
terms for complementary slackness.

t̂i(m) = costi(m) + ∑l(prni,l(m) + coni,l(m))

+ ∑t(prβi
t(m) + prνi

t(m) + coni
t(m)),

(17)

where

costi(m) =
T

∑
t=1

(pt +RP−i
t (s−i, ζ−i))x̂i

t(m) + ∑
l∈Li

q−i,lai,l x̂i(m), (18a)

coni,l(m) = (qi,l − q−i,l)2 + qi,l(bl − ∑
j∈N (i)

f i,j,l − ai,l βφ(i),i), (18b)

coni
t(m) = (si

t − s−i
t )2 + si

t(z
−i − ζ−i

t ), (18c)

prni,l(m) = ∑
j∈N (i)

(
ni,j,l − f i,j,l

)2
, (18d)

prβi
t(m) = ∑

j:φ(j)=i
(β

i,j
t − yj

t)
2, (18e)

prνi
t(m) = ∑

j∈N (i)

(
ν

i,j
t − f i,j

t

)2
(18f)

f i,j,l = aj,lyj + ∑
h∈N (j)\{i}

nj,h,l , (18g)

f i,j
t = yj

t + ∑
h∈N (j)\{i}

ν
j,h
t . (18h)

and

s−i
t =

1
|N (i)| ∑

j∈N (i)
sj

t ∀i ∀t, (19a)

q−i,l =
1

|N (i)| ∑
j∈N (i)

qj,l ∀i ∀l, (19b)

ζ−i
t = ∑

j∈N (i)
f i,j
t + β

φ(i),i
t , ∀i ∀t, (19c)

z−i = max
t

{
ζ−i

t

}
∀i. (19d)
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In order to intuitively see how the decentralized mechanism works, take as an ex-
ample the term coni,l(m) in (18b), which is a modified version of (8c), repeated here
for convenience coni,l(m) = (qi,l − q−i,l)2 + qi,l(bl − ∑j 6=i aj,lyj − ai,l βi−1) related to the
l-th constraint. Other than the quadratic term, which is identical in both expressions,
the difference between the centralized and decentralized versions is in the expressions
∑j 6=i aj,lyj + ai,l βi−1 and ∑j∈N (i) f i,j,l + ai,l βφ(i),i, respectively. The second term in each
of these expressions relates to the proxy βi−1, which in the decentralized version is
substituted by the proxy βφ(i),i due to the fact that the proxy for yi is not provided by
user i − 1 anymore but is provided by user i’s helper φ(i). The first term, ∑j 6=i aj,lyj =

∑j∈N (i) aj,lyj + ∑j/∈N (i)∪{i} aj,lyj, which cannot be directly evaluated in the decentralized
version (since it depends on messages outside the neighborhood of i) is now evaluated
as ∑j∈N (i) f i,j,l = ∑j∈N (i) aj,lyj + ∑j∈N (i) ∑h∈N (j)\{i} nj,h,l . It should now be clear that the
role of the new messages nj,h,l quoted by the neighbors j ∈ N (i) of i is to summarize the
total demands of other users. Furthermore, the additional quadratic penalty terms has to
effectuate this equality. This idea is made precise in the next section.

4.4. Properties

It is clear that this mechanism is distributed, since all of the messages needed for the al-
location and tax functions of user i come from neighborhoodN (i) and the user themselves.
Due to way the messages and taxes are designed, the proposed mechanism satisfies proper-
ties similar to those in Lemmas 2 and 3, and, consequently, Theorems 1 and 2. The reason
is that the components n and ν behave in the same manner as the absent yh, h /∈ N (i) in
user i’s functions at NE, which makes the proofs of the properties in previous mechanism
still work here. We elaborate on these properties in the following.

Lemma 4. At any NE, we have the following results regarding the proxy messages:

β
i,j
t =yj

t, ∀j : φ(j) = i, (20)

ni,j,l =aj,lyj + ∑
h∈N (j)\{i}

nj,h,l , ∀i, ∀j ∈ N (i), ∀l ∈ L, (21)

ν
i,j
t =yj

t + ∑
h∈N (j)\{i}

ν
j,h
t , ∀t, ∀i, ∀j ∈ N (i). (22)

Proof. βi,j, ni,j,l , and ν
i,j
t only appear in the quadratic penalty terms of user i’s tax function.

Therefore, for any user i, the only choice to minimize the tax is to bid βi,j, ni,j,l , and ν
i,j
t

by (20)–(22).

Now, based on the structure of the message exchange network, we have

Lemma 5. At any NE, ni,j,l and ν
i,j
t satisfy

ni,j,l =
T

∑
t=1

∑
h:n(i,h)=j

ah,l
t yh

t , ∀i ∈ N , ∀j ∈ N (i), ∀l ∈ L, (23)

ν
i,j
t = ∑

h:n(i,h)=j
yh

t , ∀i ∈ N , ∀j ∈ N (i), ∀t ∈ T . (24)

Proof. The proof is presented in Appendix G.

With Lemma 5, we immediately obtain the following results.
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Lemma 6. At any NE, for all user i, we have

∑
j∈N (i)

f i,j,l = ∑
j∈N\{i}

aj,lyj, ∀l ∈ Li, (25)

∑
j∈N (i)

f i,j
t = ∑

j∈N\{i}
yj

t, ∀t ∈ T . (26)

Proof. At NE, by directly substitution,

∑
j∈N (i)

f i,j,l = ∑
j∈N (i)

aj,lyj + ∑
h∈N (j)\{i}

nj,h,l


= ∑

j∈N (i)

aj,lyj + ∑
h∈N (j)\{i}

∑
k:n(j,k)=h

ak,lyk


= ∑

j∈N (i)

 ∑
h:n(i,h)=j

ah,lyh

 = ∑
j∈N\{i}

aj,lyj, ∀l ∈ Li,

The third equality holds by the fact that the users in set {k|h ∈ N (j)\{i}, n(j, k) = h}
are the ones that are not in the subtree starting from a single branch (j, i) with root j, which
is exactly {k|n(i, k) = j}\{j}.

Equation (26) holds for a similar reason.

Lemma 6 plays a similar role to Lemma 1. With Lemma 6, the properties in Lemmas 2 and 3
can be reproduced in the distributed mechanism. We then obtain the following theorem.

Theorem 5. For the mechanism-induced game G, NE exists. Furthermore, any NE of game G
induces the optimal allocation.

Proof. By substituting (25) and (26) in (17), we obtain exactly the same form of tax function
in a centralized mechanism on equilibrium, which yields desirable results, as shown in
Lemmas 2 and 3. We conclude that any NE induces the optimal allocation. The existence of
NE can be proved by a construction similar to that of Theorem 2.

As was true in the baseline centralized mechanism, in the distributed case, the planner
may also have concerns about whether the users have an incentive to participate and
whether the mechanism requires external sources of funds to maintain the balance. As it
turns out, Theorems 3 and 4 still hold here. As a result, the users are better off joining the
mechanism, and the market has a balanced budget. The proofs and the construction of
the subsidies can be performed in a manner similar to the centralized case and therefore
are omitted.

5. Learning Algorithm
5.1. A Learning Algorithm for the Centralized Mechanism

The property of full implementation ensures that social welfare maximization can be
reached if all participants reach NE in the mechanism-induced game and no one obtains
a unilateral profitable deviation at NE. Nevertheless, it is troublesome for participants to
anticipate NE as being the outcome if none of them knows (or can calculate) NE with-
out knowledge of other users’ utilities. To settle this issue, one can design a learning
algorithm to help participants learn the NE in an online fashion. In this section, we
present such a learning algorithm for the centralized mechanism discussed in Section 3.
Instead of using Assumption 1, here, we make a stronger assumption in order to obtain a
convergent algorithm.
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Assumption 4. All of the utility functions vi
t(·)s are proper, twice differentiable concave functions

with δ-strong concavity.

Here, δ-strong concavity of a function g(·) is defined by the δ-strong convexity of
−g(·). A function f (·) is strongly convex with parameter δ if

f (y) ≥ f (x) +∇ f (x)T(y− x) +
δ

2
||y− x||2.

The design of the learning algorithm involves three steps. First, we find the relation
between NE and the optimal solution of the original optimization problem. This step
was performed in the proof of Theorem 1: we see in NE that y∗ coincides with x∗ in the
optimal allocation, that qi∗ equals λ∗, and that the components of si∗ are proportional to
the components of µ∗. Then, by Slater’s condition, strong duality holds here, so we connect
the Lagrange multipliers λ∗, µ∗ with the optimal solution of the dual problem. Due to the
strong concavity of the utilities and stationarity, given λ∗ and µ∗, the optimal allocation x∗

can be uniquely determined. Finally, if we can find an algorithm to solve the dual problem,
the design is completed.

The first two steps are straightforward. For the third one, we can see that the dual
problem is also a convex optimization problem, so projected gradient descent (PGD) is one
of the choices for the learning algorithm. The proof of convergence of PGD is not trivial. In
the proof developed in [29], the convergence of PGD holds when (a) the objective function
is β-smooth and (b) the feasible set is closed and convex. In Appendix H, we show that
(a) is satisfied by Assumption 4. To check (b), we need to find a feasible set for the dual
variables. Since in PGD of the dual problem, the gradient of the dual function turns out
to be a combination of functions of the form (v̇i

t)
−1(·), the feasible set should satisfy two

requirements: first, all of the elements are in the domain of the dual function’s gradient in
order to make every iteration valid; second, (λ∗, µ∗) is in the feasible set so that we do not
miss it. With these requirements in mind, we make Assumption 5 and construct a feasible
set for the dual problem based on that.

Assumption 5. For each utility vi
t(·), there exist ri

t, r̄i
t ∈ R satisfying

1. ∀x ∈ X , v̇i
t(xi

t) ∈ [ri
t, r̄i

t],
2. ∀p ∈ [ri

t, r̄i
t], ∃xi

t ∈ R, s.t. v̇i
t(xi

t) = p.

Before we explain this assumption, we define
r = [r1

1, . . . , r1
T , . . . , rN

T ]T, r̄ = [r̄1
1, . . . , r̄1

T , . . . , r̄N
T ]T,

p = [p1 . . . pT ]
T, p̃ = 1N ⊗ p and

Ã =

(
A

1TN ⊗ IT

)
, λ̃ =

(
λ
µ

)
, p̃ = 1N ⊗ p. (27)

where ⊗ represents the Kronecker product of matrices. Then, we define a set of proper
prices P as the feasible set for the dual problem:

P = {λ̃ = (λ, µ) ≥ 0 : r ≤ ÃTλ̃ + p̃ ≤ r̄, 1TT µ = p0}.

Observe that, by stationarity, the ((i− 1)T + t)th entry of ÃTλ̃ + p̃ equals v̇i
t(xi∗

t ) in
the optimal solution. Consequently, Assumption 5 implies two things: first, λ̃∗ ∈ P ; second,
all ÃTλ̃ + p̃ can be a vector of v̇i

ts on some x ∈ RNT if λ̃ ∈ P . Hence, with Assumption 5,
it is safe to narrow down the feasible set of the dual problem to P without changing the
optimal solution. Furthermore, for all of the price vectors in P , (v̇i

t)
−1(·) in PGD can

be evaluated. Back to condition (b) stated above, since P is closed and convex, PGD is
convergent in this case.

Based on all of the assumptions and the PGD method, we propose Algorithm 1 as a
learning algorithm for the NE of the centralized mechanism.
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The convergence of PGD yields the convergence of proposed learning algorithm:

Theorem 6. Choose a step size α ≤ δ′/‖A‖, where ‖A‖ is A’s spectral norm and δ′ is the
parameter of strong concavity of the centralized objective function. As the number of iterations K
grows, the distance between the computed price vector (q(K), s(K)) and the optimal price vector
(q∗, s∗) is non-increasing. Furthermore, limK→∞ m(K) = m∗, where m∗ is the NE.

Proof. See Appendix H.

Algorithm 1: Learning algorithm for the centralized mechanism.

Data: Time index k, a set of proper prices P , a vector of initial prices (q0, s0) ∈ P ,
message profiles m(k), iteration step size α, number of iterations K.

Result: Message profile m(K) = (y(K), β(K), q(K), s(K)).
1 k = 0, qi,l(0) = q0,l , si

t(0) = s0
t , ∀i ∈ N , l ∈ L, t ∈ T ;

2 yi
t(0) = (v̇i

t)
−1(pt + ∑l∈L ai,lqi,l(0) + si

t(0)), ∀i ∈ N , t ∈ T ;
3 while k < K do
4 q̃i,l(k + 1) = qi,l(k)− α(bl − aly(k)), ∀i ∈ N , l ∈ L;

5 s̃i
t(k + 1) = si

t(k) + α ∑j yj
t(k), ∀i ∈ N , t ∈ T ;

6 (qi(k + 1), si(k + 1)) = ProjP
(
q̃i(k + 1), s̃i(k + 1)

)
, ∀i ∈ N ;

7 yi
t(k + 1) = (v̇i

t)
−1(pt + ∑l∈L ai,l

t qi,l(k + 1) + si
t(k + 1)), ∀i ∈ N , t ∈ T ;

8 k← k + 1;
9 end

10 βi
t(K) = yi+1

t (K) ∀i ∈ N , t ∈ T ;

5.2. A Learning Algorithm for the Distributed Mechanism

Algorithm 1 cannot be applied in a distributed environment because lines 4 and 5
for the price adjustments require global user messages. Luckily, the price adjustment
is the only part requiring messages from other users during an iteration. Based on this
fact, the main modification of the algorithm is to figure out a way for users to obtain the
aggregated demand of each constraint, which was indeed the same problem we needed to
address when we modified the centralized mechanism to a distributed one. Naturally, we
can utilize the proxies ν, n to help exchange the necessary messages, as we did in the design
of the distributed mechanism. If the proxies ν and n behave the same way as described in
Lemma 5, then we can modify line 4 and 5 in Algorithm 1 as follows and we can expect the
same output as that of the original algorithm:

q̃i,l(k + 1) = qi,l(k)− α

bl − ∑
j∈N (i)

aj,lyj(k) + ∑
h∈N (j)\{i}

nj,h,l(k)

− ai,lyi(k)

, ∀i ∈ N , l ∈ L, (28)

s̃i
t(k + 1) = si

t(k) + α

 ∑
j∈N (i)

yj
t(k) + ∑

h∈N (j)\{i}
ν

j,h
t (k)

+ yi
t(k)

, ∀i ∈ N , t ∈ T . (29)

To make sure the proxies behave the same way as described in Lemma 5, some
additional message exchanges are required in the beginning of each iteration before price
adjustments. We design the maintenance algorithm for n, ν in Algorithms 2 and 3.

It is worth noting that a deadlock does not occur during the proxy maintenance and
that the proxies after maintenance behave the way we expect in Lemma 5. The reason is
that the distributed mechanism uses an acyclic subgraph of the network, so there are no
loops. Notice that the proof of Lemma 5 (see Appendix G) uses an iterative process to
justify the statement. Indeed, what happens during the maintenance process described
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here is exactly the same as the process depicted in the proof of Lemma 5. The termination
signal is used to notify users when to proceed to the price adjustment step.

With the assistance of proxy maintenance Algorithms 2 and 3, we arrive at an ex-
tended version of the original learning algorithm for the distributed mechanism stated as
Algorithm 4.

Algorithm 2: Maintenance algorithm for proxy ni,j,l .

Data: Time index k, messages mh(k) for h ∈ N (i).
Result: The proxy value ni,j,l(k), a termination signal.

1 while yj(k) or nj,h,l(k) for some h ∈ N (j)\{i} is not calculated do
2 wait;
3 end
4 ni,j,l(k) = aj,lyj + ∑h∈N (j)\{i} nj,h,l(k);
5 Broadcast the termination signal of ni,j,l to all the neighbor l ∈ N (i);

Algorithm 3: Maintenance algorithm for proxy ν
i,j
t .

Data: Time index k, messages mh(k) for h ∈ N (i).
Result: The proxy value ν

i,j
t (k), a termination signal.

1 while yj
t(k) or ν

j,h
t (k) for some h ∈ N (j)\{i} is not calculated do

2 wait;
3 end

4 ν
i,j
t (k) = yj

t(k) + ∑h∈N (j)\{i} ν
j,h
t (k);

5 Broadcast the termination signal of ν
i,j
t to all the neighbor l ∈ N (i);

Algorithm 4: Learning algorithm for user i in the distributed mechanism.

Data: Time index k, a set of proper prices P , a vector of initial prices (q0, s0) ∈ P ,
message profiles m(k), iteration step size α, number of iterations K.

Result: Message mi(K) with form (16).
1 k = 0, qi,l(0) = q0,l , si

t(0) = s0
t , ∀i ∈ N , l ∈ L, t ∈ T ;

2 yi
t(0) = (v̇i

t)
−1(pt + ∑l∈L ai,lqi,l(0) + si

t(0)), ∀i ∈ N , t ∈ T ;
3 while k < K do
4 Run Algorithms 2 and 3 for ni,j,l(k) and ν

i,j
t (k) ∀j ∈ N (i), l ∈ L, t ∈ T

simultaneously;
5 Wait for the termination signals with timestamp k from all the neighbors

j ∈ N (i) for all of their proxy maintenances;
6 Price adjustments (28) and (29), ∀i ∈ N , l ∈ L, t ∈ T ;
7 (qi(k + 1), si(k + 1)) = ProjP

(
q̃i(k + 1), s̃i(k + 1)

)
, ∀i ∈ N ;

8 yi
t(k + 1) = (v̇i

t)
−1(pt + ∑l∈L ai,l

t qi,l(k + 1) + si
t(k + 1)), ∀i ∈ N , t ∈ T ;

9 k← k + 1;
10 end

11 Run Algorithms 2 and 3 to obtain ni,j,l(K), ν
i,j
t (K) ∀j ∈ N (i), l ∈ L, t ∈ T ;

12 β
i,j
t (K) = yj

t(K) ∀j : φ(j) = i, t ∈ T ;

With the support of Lemma 5 and Theorem 6, this modified learning algorithm is also
guaranteed to converge to NE in the distributed mechanism. Nevertheless, this algorithm
is not as fast as the original one. We can observe that one user can do nothing but wait if
any of the dependencies for their calculations is absent. As a result, this scheme has a mixed
sequential and concurrent operation. To be more precise, the extra time for the modified
algorithm is proportional to the length of the longest path of the chosen spanning tree in
the network (one can derive this result following the procedures detailed in Lemma 5 by
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focusing on the steps for the transmission of the message from one side of the network to
another side). Thus, the algorithm time complexity is impacted by the network structure.

6. A Concrete Example

To give a sense of how the two mechanisms and the learning algorithm work, we
provide a simple non-trivial example here. We first present the original centralized problem
for the example, and then identify the NE of the centralized mechanism based on the
properties we found. For the distributed mechanism, we illustrate how the proxy variables
at NE are determined with a simple example of a message exchange network. Lastly, we
implement the learning algorithm for the centralized mechanism.

6.1. The Demand Management Optimization Problem

In the energy community, assume that there are three users in the user setN = {1, 2, 3}
and T = 2 days in a billing period. Suppose user i on day t has the following utility function:

vi
t(xi

t) = i · t · ln(2 + xi
t).

Set p1 = 0.1, p2 = 0.2, and the peak price p0 = 0.05. We adopt the following
centralized problem as a concrete example:

maximize
x

2

∑
t=1

3

∑
i=1

i · t · ln(2 + xi
t)− J(x)

subject to xi
t ≥ −1, i = 1, 2, 3, t = 1, 2,
2

∑
t=1

(x1
t + x2

t + x3
t ) ≤ 2,

where J(x) = 0.1 ·∑2
t=1 t ·

(
∑3

i=1 xi
t

)
+ 0.05 ·maxt{∑3

i=1 xi
t}.

The exact solution to this problem is x1∗
1 = −1, λ7∗ = (249+

√
106201)/520, µ2 = 0.05,

and xi∗
t = 2/(λ7∗ + pt + µ∗t )− 2 for (i, t) 6= (1, 1), λ1∗ = λ7∗ + p1 − 1/(x1∗

1 + 2). λl∗ = 0
for l = 2, . . . , 6, µ∗1 = 0. The interested readers can verify it by using KKT conditions. For
the sake of convenience, we adopt the following approximate results:

(x1∗
1 , x1∗

2 , x2∗
1 , x2∗

2 , x3∗
1 , x3∗

2 ) = (−1.0000,−0.5246,−0.3410, 0.9508, 0.4885, 2.4263).

The lower bound constraint for x1
1 and the upper bound constraint for the sum are

active. Thus, according to KKT conditions, λl∗ = 0 for l = 2, . . . , 6, λ1∗ = 0.2056, and
λ7∗ = 1.1056 by stationarity. The total demands of Day 1 and Day 2 are −0.8525 and 2.8525,
respectively, so Day 2 has the peak demand w∗ = 2.8525, Day 1 charges no peak price
(µ∗1 = 0), and Day 2 has an extra unit peak price µ∗2 = 0.05.

6.2. The Centralized Mechanism

For this example, in the centralized mechanism, user i needs to choose their message
mi with the following components:

mi = (yi
1, yi

2, {qi,l}7
l=1, si

1, si
2, βi

1, βi
2).

For the sake of brevity, let us take user 1 for example. In this problem setting, user 1
needs to report their demands for two days (y1

1, y1
2); suggest a set of prices for constraints 1–7

(q1,1, . . . , q1,7), suggest unit peak prices for two days (quantities s1
1 and s1

2 do not necessarily
sum up to p0 = 0.05); and lastly, provide proxies β1

1 and β1
2 for user 2’s demands.
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User 1’s tax function is

t̂1(m) =
2

∑
t=1

(
pt +RP1

t (s
−1, ζ−1)

)
y1

t − q−1,1y1
1 − q−1,2y1

2 + q−1,7(y1
1 + y1

2)

+
2

∑
t=1

(β1
t − y2

t )
2 + (q1,1 − q−1,1)2 + q1,1(1 + β3

1) + (q1,2 − q−1,2)2 + q1,2(1 + β3
2)

+
6

∑
l=3

(q1,l − q−1,l)2 + q1,3(1 + y2
1) + q1,4(1 + y2

2) + q1,5(1 + y3
1) + q1,6(1 + y3

2)

+ (q1,7 − q−1,7)2 + q1,7(2− y2
1 − y2

2 − y3
1 − y3

2 − β3
1 − β3

2)

+ (s1
1 − s−1

1 )2 + s1
1(z
−1 − ζ−1

1 ) + (s1
2 − s−1

2 )2 + s1
2(z
−1 − ζ−1

2 )

where

q−1,l = (q2,l + q3,l)/2,

s−1
t = (s2

t + s3
t )/2,

ζ−1
t = β3

t + y2
t + y3

t ,

z−1 = max
{

ζ−1
1 , ζ−1

2

}
,

and according to the definition (6a) and (6b) of the radial pricing operator, we have

RP1
t (s
−1, ζ−1) =



s−1
t

s−1
1 +s−1

2
p0, if s−1

1 + s−1
2 > 0,

p0, if s−1
1 = s−1

2 = 0 and ζ−1
t > ζ−1

t′ (t′ 6= t),
p0/2, if s−1

1 = s−1
2 = 0 and ζ−1

t = ζ−1
t′ (t′ 6= t),

0, if s−1
1 = s−1

2 = 0 and ζ−1
t < ζ−1

t′ (t′ 6= t).

From Theorem 1, we know that, at NE, user 1’s message m∗1 is such that y1 corresponds
to the optimal solution x1, q1 equals the optimal Lagrange multiplier λ, β1 equals y2, and
finally s1 is proportional to the Lagrange multiplier µ.

6.3. The Distributed Mechanism

In this subsection, we first demonstrate the modifications on message spaces compared
with the centralized mechanism and then show how the newly introduced components n
and ν work. The specific NE can be determined in a similar way to that of the centralized
mechanism and is therefore omitted.

Assume that the energy community has communication constraints with the message
exchange network depicted in Figure 2. Apart from the network topology, the φ-relation
that indicates the responsibility of proxy β is also an important part of distributed mecha-
nism. Here, we set φ(1) = 2, φ(2) = 1, φ(3) = 2. Then, for proxy variables βφ(i),i, i = 1, 2, 3,
β2,1 in user 1’s tax is provided by user 2, β1,2 in user 2’s tax is provided by user 1, and β2,3

in user 3’s tax is provided by user 2.

1 2 3

Figure 2. Message exchange network: Users 1 and 2, and users 2 and 3 are neighbors. User 1’s
message is invisible to user 3, and vice versa.
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For this message exchange network, the message components for each user are

m1 =
(

y1
1, y1

2, {q1,l}7
l=1, {s1

t }2
t=1, {β1,2

t }
2
t=1, {n1,2,l}7

l=1, {ν1,2}2
t=1

)
,

m2 =
(

y2
1, y2

2, {q2,l}7
l=1, {s2

t }2
t=1, {β2,1

t }
2
t=1, {β2,3

t }
2
t=1,

{n2,1,l}7
l=1, {n2,3,l}7

l=1, {ν2,1}2
t=1, {ν2,3}2

t=1

)
,

m3 =
(

y3
1, y3

2, {q3,l}7
l=1, {s3

t }2
t=1, {n3,2,l}7

l=1, {ν3,2}2
t=1

)
.

Therefore, in the distributed mechanism, users are still required to provide their
demands y, suggested unit prices q, and suggested unit peak prices s. Different from the
centralized mechanism, there are no β among user 3’s message components, while user 2
needs to provide two βs, namely β2,1, β2,3. In addition, for each constraint l, every user
needs to announce variable n to each of their neighbors; for each day t, every user also
needs to provide variable ν to each of their neighbors.

For the rest of this subsection, we focus on user 3 and consider how the n variables
play their roles in the tax evaluation. With this message exchange network, we can write
down user 3’s tax function explicitly:

t̂3(m) =
2

∑
t=1

(
pt +RP3

t (s
−3, ζ−3)

)
y3

t − q−3,5y3
1 − q−3,6y3

2 + q−3,7(y3
1 + y3

2)

+
7

∑
l=1

prn3,l(m) +
2

∑
t=1

prν3
t (m) +

7

∑
l=1

(q3,l − q−3,l)2

+ q3,1(1− n2,1,1) + q3,2(1− n2,1,2) + q3,3(1 + y2
1 − n2,1,3) + q3,4(1 + y2

2 − n2,1,4)

+ q3,5(1 + β2
1 − n2,1,5) + q3,6(1 + β2

2 − n2,1,6) + q3,6(1 + β2
2 − n2,1,6)

+ q3,7(2− β2
1 − β2

2 − y2
1 − y2

2 − n2,1,7) +
2

∑
t=1

(
(s3

t − s−3
t )2 + s3

t (z
−i − ζ−3

t )
)

,

where

prn3,l(m) = (n3,2,l − n2,1,l)2, for l = 1, 2, 5, 6,

prn3,3(m) = (n3,2,3 + y2
1 − n2,1,3)2,

prn3,4(m) = (n3,2,4 + y2
2 − n2,1,4)2,

prn3,7(m) = (n3,2,7 − y2
1 − y2

2 − n2,1,7)2,

prν3
t (m) = (ν3,2

t − y2
t − ν2,1

t )2,

and

q−3,l = q2,l , l = 1, . . . , 7,

s−3
t = s2

t , t = 1, 2,

ζ−3
t = β2,3

t + y2
t + ν2,1

t , t = 1, 2,

z−3 = max
{

ζ−3
1 , ζ−3

2

}
.

In user 3’s tax function, there are no prβ3
t (m) terms because user 3 is not assigned to

any other users for providing β proxies.
To figure out how the proxies n work, here, we focus on the seventh constraint, and

see how the corresponding constraint term is evaluated in user 3’s tax function. The reason
why other ns and νs work is similar. For user 3, the constraint term is
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con3,7(m) = (q3,7 − q−3,7)2 + q3,7 (2− y2
1 − y2

2 − β2,3
1 − β2,3

2 − n2,1,7)︸ ︷︷ ︸
Slackness part

.

In the centralized mechanism, the slackness part turns out to be 1−∑2
t=1 ∑3

i=1 xi∗
t at

NE. What we want to show is that, with the distributed mechanism, the same outcome
can be realized at NE. Similar to the centralized mechanism, yi = xi∗ at NE, so y2

1 =

x2∗
1 , y2

2 = x2∗
2 . By Lemma 4, β2,3

1 + β2,3
2 = y3

1 + y3
2 = x3∗

1 + x3∗
2 , so it remains to show that

n2,1,7 = x1∗
1 + x1∗

2 .
Let us trace how the n2,1,7 is generated at NE. From (21),

n2,1,7 = a1,7
1 y1

1 + a1,7
2 y1

2 + ∑
h∈N (1)\{2}

n1,h,7.

Notice that N (1) = {2}, so N (1)\{2} is empty. As a result, at NE, n2,1,7 = y1
1 + y1

2 =
x1∗

1 + x1∗
2 .

6.4. The Learning Algorithm

Before the algorithm is implemented, one might want to check whether the problem
setting satisfies Assumptions 4 and 5.

First, we can check Assumption 5. Suppose for the specific environment that we have
ri

t = i · t/9 and r̄i
t = i · t. Then, for the first condition in Assumption 5, since each xi

t has a
lower bound −1, we have

v̇i
t(xi

t) =
i · t

xi
t + 2

≤ i · t
−1 + 2

= r̄i
t.

Additioanlly, every xi
t is upper bounded by 7 because, from the seventh constraint,

we have
xi

t ≤ 2− ∑
(i′ ,t′) 6=(i,t)

xi′
t′ ≤ 2− 5 · (−1) = 7,

and thus
v̇i

t(xi
t) =

i · t
xi

t + 2
≥ i · t

7 + 2
= i · t/9.

For the second condition in Assumption 5, for all p ∈ [i · t/9, i · t], we have

v̇i
t(xi

t) = p⇔ xi
t =

i · t
p
− 2,

so Assumption 5 is verified.
With the ri

ts and r̄i
ts chosen above, a dual feasible set P is constructed. Within this

price set P , Algorithm 1 evaluates the function (v̇i
t)
−1(·) only in the interval [i · t/9, i · t].

Consequently, in running Algorithm 1, we only need to define vi
t(·) on the interval [−1, 7].

Regarding Assumption 4, we need to show that vi
t(·) is strongly concave on [−1, 7].

Since one can verify that the function −it ln(2 + x)− ax2/2 is convex on [−1, 7] for 0 ≤
a ≤ it/81, every vi

t(·) is strong concave, and thus, Assumption 4 holds (this is based on the
fact that f is strongly convex with parameter δ iff g(x) = f (x)− δ

2‖x‖2 is convex.).
To choose an appropriate step size α for the algorithm, we need to investigate further

the parameter δ. In our environment, the sum of utility functions f (x) = −∑2
t=1 ∑3

i=1 vi
t(xi

t)
is strongly concave on [−1, 7]6 with parameter δ = 18/81 because each component vi

t of
f is a strongly concave function with parameter i · t/81 and the parameter δ is additive:
∑2

t=1 ∑3
i=1 it/81 = 18/81. By calculation, ‖Ã‖ ≈ 3.1623, so one possible step size can
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be α = 0.1 < 2× δ/‖Ã‖. According to Algorithm 1, the updates required are (define
η(i, t) = 2(i− 1) + t for convenience):

q̃i,η(j,t)(k + 1) = qi,η(j,t)(k)− α(1 + yj
t(k)), j = 1, 2, 3, t = 1, 2,

q̃i,7 = qi,7 − α(2−
3

∑
j=1

2

∑
t=1

yj
t(k)),

s̃i
t(k + 1) = si

t(k) + α
3

∑
j=1

yj
t, t = 1, 2,

(qi(k + 1), si(k + 1)) = ProjP (q̃
i(k + 1), s̃i(k + 1)),

yi
t(k + 1) =

i · t
pt − qi,η(i,t)(k + 1) + q7(k + 1) + si

t(k + 1)
− 2.

To verify the convergence of the learning algorithm, we run it with the initial price
set to (q(0), s(0)) = ProjP (09×1). After K = 100 iterations, we observe the convergence
for both the suggested prices q, s and the corresponding announced demands y. Figure 3
shows the process of convergence and verifies that the convergence rate is exponential, as
expected.
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Figure 3. The convergence of the learning algorithm.

7. Conclusions

Motivated by the work of mechanism design for NUM problems, we proposed a
new class of (indirect) mechanisms, with application in demand management in energy
communities. The proposed mechanisms possess desirable properties including full im-
plementation, individual rationality, and budget balance and can be easily generalized
to different environments with peak shaving and convex constraints. We showed how
the original “centralized” mechanism can be modified in a systematic way to account for
environments with communication constraints. This modification leads to a new type of
mechanisms that we call “decentralized” mechanisms and can be thought of as the analog
to decentralized optimization (developed for optimization problems with non-strategic
agents) for environments with strategic users. Finally, motivated by the need for practical
deployment of these mechanisms, we introduced a PGD-based learning algorithm for users
to learn the NE of the mechanism-induced game.

Possible future research directions include seeking more efficient learning algorithms
for the distributed mechanism as well as co-design of a (distributed) mechanism and
characterization of the class of convergent algorithms for this design.
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Appendix A. Equivalence of Centralized Optimization Problem (2) and Original
Problem (3a)–(3c)

We first prove this sufficiency by showing that we can always derive the optimal
solution of (2) from the optimal solution of newly constructed (3a)–(3c). Suppose that
the optimal solution of (3a)–(3c) is (x∗, w∗). We claim that x∗ is the optimal solution of
the original problem (2). First, the feasibility of x∗ in (2) is ensured by (3b) in the newly
constructed problem.

Now, we check the optimality. Suppose that x∗ is not the optimal for (2), and instead,
x′ is the optimal. In the new problem, construct

x̃ = x′, w̃ = max
1≤t≤T

N

∑
i=1

x
′i
t ,

then it is easy to verify that (x̃, w̃) is feasible for the new optimization. Notice that

N

∑
i=1

vi(x̃i)−
T

∑
t=1

pt

N

∑
i=1

x̃i
t − p0w̃

=
N

∑
i=1

vi(x
′i)−

T

∑
t=1

pt

N

∑
i=1

x
′i
t − p0 max

1≤t≤T

N

∑
i=1

x
′i
t

>
N

∑
i=1

vi(x∗i)−
T

∑
t=1

pt

N

∑
i=1

x∗it − p0 max
1≤t≤T

N

∑
i=1

x∗it

≥
N

∑
i=1

vi(x∗i)−
T

∑
t=1

pt

N

∑
i=1

x∗it − p0w∗.

(A1)

The first inequality follows the optimality of x′ in the original optimization (2); the
second inequality comes from the constraint (3c) in the new optimization. By this inequality
chain, we find a (x̃, w̃) with a better objective function value in (3a)–(3c) than (x∗, w∗),
which contradicts the assumption that (x∗, w∗) is an optimal solution of (3a)–(3c).

Therefore, by contradiction, we shows that, if (x∗, w∗) is optimal solution of (3a)–(3c),
x∗ must be the optimal solution for the original optimization (2).

For the other direction, we need to show if x′ is optimal solution of (2), then we are
able to construct an optimal solution of (3a)–(3c) based on x′. We construct x̃ = x′ and
w̃ = max

1≤t≤T
∑N

i=1 x
′i
t and argue that this (x̃, w̃) is the optimal for (3a)–(3c). Assume that

(x∗, w∗) is the optimal for (3a)–(3c); then, we still obtain the same inequality chain as (A1)
(except that, for the second line, there should be a “greater than or equal” sign instead),
and the equality and inequalities hold for the same reasons, as stated above. This shows
that (x̃, w̃) has the same objective value as the optimal solution of (3a)–(3c), and thereforem
(x̃, w̃) constructed from x′ of the original problem is also the optimal for the new problem.
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Appendix B. Proof of Lemma 2

Proof. At NE m∗, for the constraint l in L, consider the message components qi,l for each
user i. In user i’s tax function, denote the part relative to qi,l by t̂i,l

q . We have

t̂i,l
q (mi, m−i∗) = (qi,l − q−i,l∗)2 + qi,l

(
bl −∑

j 6=i
aj,lyj∗ − ai,l βi−1

)

= (qi,l − q−i,l∗)2 + qi,l

(
bl −∑

j
aj,lyj∗

)
︸ ︷︷ ︸

denoted by el(y∗)

(βi−1 = yi)

by Lemma 1.
For any user i, there is no unilateral profitable deviation on mi∗. Hence, if we fix m−i∗

and all of the message components of mi∗ except qi,l , it is a necessary condition that user i
cannot find a better response than qi,l∗.

Consider the best response of qi,l in different cases of el(y∗).
Case 1. el(y∗) > 0, i.e., the constraint l is inactive at NE. Note that t̂i,l

q is a quadratic
function of qi,l of the following form

t̂i,l
q = (qi,l)2 − (2q−i,l∗ − el(y∗))qi,l + (q−i,l∗)2.

Without considering the nonnegative restriction, the best choice should be q−i,l∗ −
el(y∗)/2. Since qi,l ≥ 0, the best choice for qi,l would be (q−i,l∗ − el(y∗)/2)+ (here, (·)+ =
max{·, 0}), which is unique with fixed m∗−i.

Therefore,
qi,l∗ = (q−i,l∗ − el(y∗)/2)+.

Observe that (q−i,l∗ − el(y∗)/2)+ ≤ (q−i,l∗)+ = q−i,l∗. Equality holds only if q−i,l∗ ≤
el(y∗)/2 and q−i,l∗ = 0. Thus, for all i, qi,l∗ ≤ q−i,l∗, equality holds only if qi,l∗ = 0 and
q−i,l∗ = 0. In other words, if for one user i we have qi,l∗ = q−i,l∗, then all of the qi,l∗ = 0.

Notice that qi,l∗ < q−i,l∗ implies that qi,l is smaller than one of the qj,l among user
j 6= i, which means that qi,l is not the largest. Assume that qi,l∗ < q−i,l∗ for all i; then, no
qi,l can be the largest among {qi,l}i∈N , but we also know that {qi,l}i∈N is a finite set, and
therefore, it must have a maximum. Here comes the contradiction. As a result, there must
exist at least one i such that qi,l∗ = q−i,l∗, which implies that all of the qi,l∗ = 0.

Case 2. el(y∗) = 0, i.e., the constraint l is active at NE. In this case, t̂i,l
q = (qi,l − q−i,l∗)2.

It is clear that every user’s best response is to make their own price align with the average
of others.

Notice that, if qi,l∗ = q−i,l∗, then q−i,l is equal to the average of all ql . Consequently,
qi,l∗ = qj,l∗ for all i, j ∈ N .

Case 3. el(y∗) < 0, i.e., the constraint l is violated at NE. In this case,

t̂i,l
q = (qi,l)2 − (2q−i,l∗ − el(y∗))︸ ︷︷ ︸

>0

qi,l + (q−i,l∗)2,

which leads to a condition for all user i as

qi,l∗ = q−i,l∗ + (−el(y∗)/2)︸ ︷︷ ︸
>0

> q−i,l∗.

In a finite set, if one number is strictly larger than the average of the others, it means
that it is not the smallest number in the set. If this condition is true for all user i, it means
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there is no smallest number among the set, which is impossible. Therefore, Case 3 does not
occur at NE.

In summary, at NE, we always have el(y∗) ≥ 0, and qi,ls are equal. Moreover,
qi,l∗el(y∗) = 0. These prove the primal feasibility, equal prices, and complementary
slackness on prices q in the Lemma 2.

Now, for time t, consider the message component si
t for each user i. In user i’s tax

function, denote the part relative to si
t by t̂i,l

s . We have

t̂i,t
s (mi, m−i∗) = (si

t − s−i∗
t )2 + si

t

(
z−i −∑

j 6=i
yj∗

t − βi−1∗
t

)

= (si
t − s−i∗

t )2 + si
t

(
z∗ −∑

j
yj∗

t

)
︸ ︷︷ ︸
denoted by gt(y∗)

,

where z∗ = maxt ∑j yj∗
t .

Different from the proof of previous part, here, we only need to consider two cases
of gt(y∗) because, by definition of z, gt(y∗) is always nonnegative. Another thing we can
observe is that there exists at least one t such that gt(y∗) = 0, i.e., at least one time t is the
time for the peak demand. Define the set T̃ as the time set containing all time t with peak
demand.

Check the best response of st separately. For all t′ /∈ T̃ , gt′(y∗) > 0, then following the
similar steps shown above, we know si∗

t′ = 0 for all i. For those t ∈ T̃ , we have already had
gt(y∗) = 0. For those t, the best response is si∗

t = s−i∗
t , which is true for every user i. As a

result, we also have the equal prices and complementary slackness for si
t.

Check (10). For t ∈ T̃ , gt(y∗) = 0, so (10) holds.
For t /∈ T̃ , gt(y∗) > 0, so

t /∈ arg max
t̃

∑
j 6=i

yj
t̃ + βi−1

t̃ .

Adiitionally, we know that such a t /∈ T̃ has st = 0. Therefore, for t /∈ T̃ , for either
branch in the definition of radial pricing RP , RP i

t(s, ζ−i) = 0. Hence, (10) holds for
t = 1, . . . , T.

Appendix C. Proof of Lemma 3

Proof. At NE, for user i, the ui(mi, m−i) can be treated as a function of mi, with m−i fixed.
By the assumption of the existence of NE, ui(mi, m−i) must have a global maximizer with
respect to mi. Given m−i, all of the auxiliary variables and functions only determined
by m−i are constants here, and one can check that the other terms in (5) and (7) are
differentiable. Necessary conditions for the global maximizer are

∂ui

∂yi
t
= v̇i

t(x̂i
t(m))−

(
pt +RP i

t(s, ζ−i) + ∑
l∈Li

ai,l
t ql

)
= 0.

Therefore,
v̇i

t(x̂i
t(m)) = pt +RP i

t(s, ζ−i) + ∑
l∈Li

ai,l
t ql ,

which is exactly the equation (11).
Equation (12) follows directly from the definition ofRP operator.
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Appendix D. Proof of Theorem 2

Proof. By assumption, the centralized problem is a convex optimization problem with a
non-empty feasible set, so there must exist an optimal solution {x∗, w∗} and corresponding
Lagrange multipliers λl∗, µ∗t which satisfy KKT conditions (4a)–(4g).

Consider the message profile m∗ consisting of

yi
t = xi∗

t , t = 1, . . . , T, ∀i ∈ N ,

qi,l = λl∗, l ∈ Li, ∀i ∈ N ,

si
t = µ∗t , t = 1, . . . , T, ∀i ∈ N

βi
t = xi+1∗

t , t = 1, . . . , T, ∀i ∈ N .

If for arbitrary user i, no profitable unilateral deviations exist, i.e., there does not exist
an m̃ =

(
m̃i, m∗−i

)
such that ui(m̃) > ui(m∗), then m∗ is a NE of the game G.

We can focus on ui(m) of user i to see whether they have a profitable deviation given
m∗−i. For user i, we have

q−i,l = λl∗, ∀l ∈ L
s−i

t = µ∗t , t = 1, . . . , T,

RP i
t(s
−i, y−i, βi−1) = µ∗t , t = 1, . . . , T,

z−i = w∗ = max
t

(
∑j∈N xj∗

t

)
.

Therefore, in the interest of user i, they want to maximize the following

ui(mi, m−i∗) =
T

∑
t=1

(
vi

t(y
i
t)− (pt + µ∗t )y

i
t − ∑

l∈Li

λl∗ai,l
t yi

t

)
︸ ︷︷ ︸

Function of yi
t

− ∑
l∈L

(
(qi,l − λl∗)2 + qi,l

(
bl −∑

j

T

∑
t=1

aj,l
t xj∗

t

))
︸ ︷︷ ︸

Function of qi,l

−
T

∑
t=1

(
(si

t − µ∗t )
2 + si

t

(
w∗ −∑

j
xj∗

t

))
︸ ︷︷ ︸

Function of si
t

−
T

∑
t=1

(βi
t − xi+1∗

t )2︸ ︷︷ ︸
Function of βi

t

.

(A2)

The last term of (A2) is the only term related to βi, which is a quadratic terms. As a
strategic agent, it is clear that user i does not deviate from βi = xi+1∗; otherwise, they pay
for the penalty.

The second and third terms of (A2) are quite similar: they both consist of a quadratic
term and a term for complementary slackness. For the second term, let us consider
constraint l. If l is active in the optimal solution, the complementary slackness term goes to
0. To avoid extra payment, user i does not deviate qi,l from the price suggested by optimal
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solution λl∗. If l is inactive, the price λl∗ suggested by optimal solution is 0. Then, the
penalty of constraint l for user i is

(qi,l)2 + qi,l

(
bl −∑

j

T

∑
t=1

aj,l
t xj∗

t

)
︸ ︷︷ ︸

>0

,

where user i can only select a nonnegative price qi,l . There are no better choices better than
choosing qi,l = 0 = λl∗. A similar analysis works for the third term of (A2). As a result,
there are no unilateral profitable deviations on qi,l for all l and si

t for all t.
Now, we denote the terms in the parentheses in the first part of (A2) by f i

t (y
i
t). Since

these four terms are disjoint in the aspect of inputted variables, ui(mi, m−i∗) achieves its
maximum if and only if every f i

t (y
i
t) achieves its maximum, and the other three terms equal

their minimum. For the first part, due to the strict concavity of vi
t(·), the second-order

derivative of f i
t (y

i
t) for each t is negative, which indicates that f i

t (y
i
t) is strictly concave as

well. We can find the maxima of f i
t (y

i
t) by the first-order condition:

d f i
t

dyi
t
(yi∗

t ) = v̇i
t(y

i
t)− (pt + µ∗t )− ∑

l∈Li

λl∗ai,l
t = 0. (A3)

By (4g) in the KKT conditions, we know that the only yi
t that makes (A3) hold is

yi
t = xi∗

t for all t. The reason is that, by the strict concavity assumption of utility function
vi

t(·), the first-order derivative of vi
t strictly decreases, and therefore, for one aggregated

price, there is at most one demand value x that makes v̇i
t(x) equal that price.

Therefore, for any agent i, if others send messages m−i∗, the only best response of
agent i is to announce mi∗. Under this circumstance, sending messages other than mi∗ does
not increase agent i’s payoff ui(m). Consequently, m∗ is an NE of the induced game G.

Appendix E. Proof of Theorem 3

Proof. For any user i, if they choose to participate with other users, when everyone antici-
pates the NE, user i’s payoff is of the form (13) if they only consider modifying yi and keeps
other components unchanged. Thus, user i faces the following optimization problem:

yi = arg max
yi∈RT

vi(yi)−
T

∑
t=1

(
pt +RP i

t(s, ζ−i)
)

yi
t − ∑

l∈Li

q−i,l
T

∑
t=1

ai,l
t yi

t.

By the definition of NE, yi∗ is one of the best solutions, which yields a payoff ui(m∗).
User i can also choose ỹi = 0. Denote the corresponding message by m̃i. Then, the payoff
value becomes ui(m̃i, m−i∗) = vi(0), which coincides with the payoff for not participating.
Since mi∗ is the best response to m−i∗, we have ui(m∗) ≥ ui(m̃i, m−i∗) = vi(0). In other
words, if every one anticipates the NE as the outcome, to participate is at least not worse
than not participating.

Appendix F. Proof of Theorem 4

Proof. Suppose that the optimal solution for the original problem given by NE is (x∗, λ∗, µ∗);
then, the tax for user i is

t̂i(m∗)− J(x̂i
t(m
∗)) =

T

∑
t=1

(pt + µ∗t )xi∗
t + ∑

l∈Li

λl∗
T

∑
t=1

ai,l
t xi∗

t − J(xi∗).
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The total amount of tax is

∑
i∈N

t̂i(m∗)− J(xi∗)

= ∑
i∈N

T

∑
t=1

(pt + µ∗t )xi∗
t + ∑

i∈N
∑

l∈Li

λl∗
T

∑
t=1

ai,l
t xi∗

t − J(xi∗)

=
T

∑
t=1

(
pt ∑

i∈N
xi∗

t + µ∗t ∑
i∈N

xi∗
t

)
+ ∑

l∈L
λl∗

T

∑
t=1

∑
i∈N

ai,l
t xi∗

t − J(xi∗)

= ∑
l∈L

λl∗
T

∑
t=1

∑
i∈N

ai,l
t xi∗

t .

For each constraint l, by the complementary slackness, we have

λl∗
(

bl −
T

∑
t=1

∑
i∈N

ai,l
t xi∗

t

)
= 0.

Therefore,
∑

i∈N
t̂i(m∗)− J(xi∗) = ∑

l∈L
λl∗bl ≥ 0,

which shows that, at NE, the planner’s payoff is nonnegative.
Furthermore, in order to save unnecessary expenses on the planner, the energy com-

munity can adopt the mechanism with the following tax function t̃i(m) instead

t̃i(m) = t̂i(m)− ∑
l∈L

q−i,lbl/N.

Note that user i has no control on the additional term because no components of mi

are in that term, and thus, the additional term does not change NE. Since the prices are
equal at NE, the planner actually gives ∑l∈L λl∗bl back to the users. Hence,

∑
i∈N

t̃i(m∗)− J(xi∗) = 0,

As a side comment, the choice of t̃i(m) is not unique. Any adjustment works here as
long as it does not depend on mi for each ti(·) and sums up to ∑l∈L λl∗bl at NE.

Appendix G. Proof of Lemma 5

Proof. Here, we provide a non-rigorous proof of (24). The proof of (23) is quite similar. For
a detailed version of the proof, we refer the interested readers to 7.1, Chapter 4, of [72].

Before we show the proof of this part, for the sake of convenience, we define n(i, k)
as the nearest user among the neighbors of user i and user i itself to user k. n(i, k) is
well-defined because one can show that n(i, k) = j provides a partition for all the users.

Equation (24) can be shown by applying (22) iteratively. Recall that the message
exchange network is assumed to be a undirected acyclic graph (i.e., a tree). First, consider
the user j on the leaves (the nodes with only one degree). Suppose the neighbor of user j is
i, then N (j) = {i}. By (22), we have ν

i,j
t = yj

t. Since no k satisfies n(i, k) = j other than j
themselves, (24) holds for ν

i,j
t , where j is a leaf node.

For more general cases, to compute ν
i,j
t , it is safe to only consider the subgraph GRi

that contains only node i and node k such that n(i, k) = j. When applying (22), it is
impossible to have node l ∈ GRC

i involved because, if it occurs when expanding “ν” term
for some j′, l is a neighbor of j′. We know that there is a route from i to j′, say route iLj′.
Since l ∈ GRC

i , n(i, l) 6= j, there exists a route L′ that does not involve any node in the
branch starting from node j, such that lL′i, which results in a loop lL′iLj′l.
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Then, by using (22) iteratively, we can see that (1) every node in GRi is visited at
least once and gives a corresponding demand “y”; (2). each yj

t is given only once (except
root i, which does not give yi

t in this procedure); and (3) when it proceeds to the leaf
nodes, the iteration terminates because there are no more “ν” terms to expand. Hence,
ν

i,j
t = ∑h∈GRi

yh
t , and we can easily verify that GRi\{i} is nothing but {h : n(i, h) = j}.

Appendix H. Convergence of the Learning Algorithm for Centralized Mechanism

The convergence of the proposed learning algorithm can be shown in the three steps
mentioned in Section 5. THe first step shows the connection between m∗ and x∗, λ∗, µ∗

of the optimal solution for the original optimization, which has already been clarified in
Section 5. As a result, learning NE is equivalent to learning the optimal solution of the
original optimization problem. For the second step, as a convex optimization problem
with a non-empty feasible set defined by linear inequalities, Slater’s condition is easy to
check. Therefore, we have a strong duality in this problem, which means we can obtain the
optimal solution of the original problem as long as we solve the dual problem. The last
step is to identify the dual problem and to find a convergent algorithm for it. This part of
appendix explains how to pin down the dual function and the dual feasible set, and shows
the convergence of PGD algorithm on this dual problem.

Before we identify the dual function of the original problem, for the sake of conve-
nience, in constraint (3c) of the original problem, move w to the left-hand side and rewrite
(3b) and (3c) into one matrix form

Ãx + 1̃w ≤ b̃,

where Ã is defined in (27), and

1̃ =

(
0L
−1T

)
, b̃ =

(
b

0T

)
.

Suppose that f (x) = ∑i ∑t(vi
t(xi

t)− ptxi
t); then, the objective function can be written

as f (x)− p0w. Observe that, by Assumption 4, (vi
t(xi

t)− ptxi
t)s are also strongly concave

without cross terms. Sequently, by the definition of strong concavity one can show directly
that, as the sum of these strongly concave functions, f (x) is strongly concave as well.
Let h(x) = − f (x); then, h(x) is strongly convex with parameter δ′. Denote by h∗(·) the
conjugate function of h(x).

With these notations in mind, the dual function of the original problem is

D(λ̃) = sup
x,w

{
f (x)− p0w− λ̃T(Ãx + 1̃w− b̃)

}
=bTλ + sup

x

{
(−ÃTλ̃)Tx− h(x)

}
+ sup

w

{
1TT µw− p0w

}
=bTλ + h∗(−ÃTλ̃),

Here, we should be cautious about the domain of D(λ̃). In the second line,
supw{1TT µw − p0w} is only defined when the coefficient 1TT µ − p0 = 0, i.e., ∑t µt = p0.
Therefore, we get the following dual problem:

minimize
λ,µ

bTλ + h∗(−ÃTλ̃) (A4)

subject to ∑
t

µt = p0, (A5)

λ ≥ 0, µ ≥ 0. (A6)
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Now, we derive the dual problem for the original optimization. To find the optimal
solution, one direct thought is to use a projected gradient descent. Luckily, we have the
following theorem, which ensures the convergence of PGD algorithm.

Theorem A1. For a minimization problem on a closed and convex feasible set X with objective
function f (x), suppose that X ∗ is the set of optimal solutions. If f is convex and β-smooth on X ,
by using PGD with step size α < 2/β, there exists x∗ ∈ X ∗, such that

lim
k→∞

x(k) = x∗.

Proof. The proof can be found in ([29] Theorem 1, Section 7.2).

Theorem A1 indicates that, if the dual problem satisfies certain conditions, the solution
converges to the set of optimal solutions. Although it is not clear whether the dual problem
has a unique solution, by strong duality and the uniqueness of the solution to the primal
problem, no matter which dual optimal solution is achieved, the corresponding primal
solution can only be the unique optimal one and results in the same outcome.

Now, for the dual problem, we need to check the conditions required by Theorem A1.
First, check the objective function. It is clear that any conjugate functions are convex,
so h∗(·) is convex and, consequently, h∗(−Ãλ̃) is convex in λ̃ as a composition of convex
function and affine function. Thus, the objective function is convex. Since h(x) is strongly
convex with parameter δ′, by the result mentioned in [73], the δ′-strong convexity of h(·)
implies that its conjugate h∗(·) is 1/δ′-smooth. Then, we have

||∇h∗(−ÃTλ̃1)−∇h∗(−ÃTλ̃2)|| ≤ 1/δ′ · || − ÃT(λ̃1 − λ̃2)|| ≤ (‖Ã‖/δ′) · ||λ̃1 − λ̃2||,

which indicates that the objective function is β-smooth with β = ‖Ã‖/δ′. However,
we are not sure whether the objective function is well-defined on the whole feasible set.
Fortunately, by Assumption 5, we know that the optimal price vector λ̃∗ lies in P and we
can verify that P is a subset of the feasible set generated by (A5) and (A6). Therefore, by
solving the following optimization problem, we can obtain the same optimal solution, and
Theorem A1 is applicable here.

minimize
λ̃∈P

bTλ + h∗(−ÃTλ̃). (A7)

By applying PGD to (A7) with step size α ≤ 2/β = 2δ′/‖Ã‖, the update rules are as
follows:

λ̂l(k + 1) = λl(k)− α
(

bl + [−Ã∇h∗(−ÃTλ̃(k))]l
)

, (A8)

µ̂t(k + 1) = µ(k)− α[−Ã∇h∗(−ÃTλ̃(k))]L+t, (A9)

(λ(k + 1), µ(k + 1)) = ProjP
(
λ̂(k + 1), µ̂(k + 1)

)
. (A10)

where [·]j represents the jth entry of the inputted vector. To modify these rules into
a learning algorithm for a centralized mechanism, by the relation between m∗ and the
optimal solution of the original problem and the dual, one might want to substitute λ, µ
with qi, si for each user i. However, ∇h∗ is not tractable for users as they do not know
the utilities of the others. Thankfully, users can obtain the values of ∇h∗-related terms
by cooperation without revealing their entire utility functions. This method is realized
by inquiries for the demands under given prices from each user. A key point for this
implementation is to build a connection between ∇h∗ and the marginal value function v̇i

t
for each demand xi

t.
A useful result of subgradient of function f and its conjugate f ∗ can be used here,

which is quoted as Theorem A2.
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Theorem A2. Suppose f ∗(s) is the conjugate of f (x), then

x ∈ ∂ f ∗(s)⇔ s ∈ ∂ f (x).

Proof. The proof can be found in [73].

Since h is closed (because h is proper convex and continuous) and strictly convex by
assumption, h∗ is differentiable (see [73]), and therefore, the subgradient of h∗ on a fixed p
is a singleton. As a result,

x = ∇h∗(−ρ)⇔ ρ = −∇h(x) = ∇ f (x)⇔ xi
t = (v̇i

t)
−1(pt + ρi

t).

The last equivalent sign comes from the fact that

[∇ f (x)](i−1)T+t =
d

dxi
t
(vi

t(xi
t)− ptxi

t) = v̇i
t(xi

t)− pt.

Thus, in every iteration of PGD, before using (A8) and (A9), one can first evaluate

xi
t(k) = (v̇i

t)
−1(pt + [ÃT ˜λ(k)](i−1)T+t), (A11)

and then, (A8) and (A9) become

λ̂l(k + 1) = λl(k)− α
(

bl − [Ãx(k)]l
)
= λl(k)− α

(
bl − al x(k)

)
, (A12)

µ̂t(k + 1) = µ(k) + α[Ãx(k)]L+t = µ(k) + α ∑
j

xj
t(k). (A13)

Arranging (A10)–(A13) in an appropriate order, we obtain an algorithm with the same
convergent property of the original PGD, and significantly, no ∇h∗ is in the algorithm. By
substituting λ and µ with qi and si (by making duplications of (A12) and (A13) for each
user i) and by substituting x with y, we obtain Algorithm 1. Consequently, Theorem 6
follows directly from the convergence of PGD indicated in Theorem A1.

References
1. Schmidt, D.A.; Shi, C.; Berry, R.A.; Honig, M.L.; Utschick, W. Distributed resource allocation schemes. IEEE Signal Process. Mag.

2009, 26, 53–63. [CrossRef]
2. Nair, A.S.; Hossen, T.; Campion, M.; Selvaraj, D.F.; Goveas, N.; Kaabouch, N.; Ranganathan, P. Multi-agent systems for resource

allocation and scheduling in a smart grid. Technol. Econ. Smart Grids Sustain. Energy 2018, 3, 1–15. [CrossRef]
3. HamaAli, K.W.; Zeebaree, S.R. Resources allocation for distributed systems: A review. Int. J. Sci. Bus. 2021, 5, 76–88.
4. Menache, I.; Ozdaglar, A. Network games: Theory, models, and dynamics. Synth. Lect. Commun. Netw. 2011, 4, 1–159. [CrossRef]
5. Hurwicz, L.; Reiter, S. Designing Economic Mechanisms; Cambridge University Press: Cambridge, UK, 2006.
6. Börgers, T.; Krahmer, D. An Introduction to the Theory of Mechanism Design; Oxford University Press: Oxford, UK, 2015.
7. United States Department of Energy. 2018 Smart Grid System Report; United States Department of Energy: Washington, DC,

USA, 2018.
8. Garg, D.; Narahari, Y.; Gujar, S. Foundations of mechanism design: A tutorial part 1-key concepts and classical results. Sadhana

2008, 33, 83. [CrossRef]
9. Garg, D.; Narahari, Y.; Gujar, S. Foundations of mechanism design: A tutorial Part 2-Advanced concepts and results. Sadhana

2008, 33, 131. [CrossRef]
10. Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [CrossRef]
11. Clarke, E.H. Multipart pricing of public goods. Public Choice 1971, 11, 17–33. [CrossRef]
12. Groves, T. Incentives in teams. Econom. J. Econom. Soc. 1973, 41, 617–631. [CrossRef]
13. Kelly, F.P.; Maulloo, A.K.; Tan, D.K. Rate control for communication networks: shadow prices, proportional fairness and stability.

J. Oper. Res. Soc. 1998, 49, 237–252. [CrossRef]
14. Yang, S.; Hajek, B. Revenue and stability of a mechanism for efficient allocation of a divisible good. Preprint 2005. Available

online: https://www.researchgate.net/publication/238308421_Revenue_and_Stability_of_a_Mechanism_for_Ecient_Allocation_
of_a_Divisible_Good (accessed on 14 May 2021).
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