

1
2 Running head: PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS
3
4
5
6
7
8
9
10
11

12 Perceptual distraction causes visual memory encoding intrusions.

13 Blaire Dube and Julie D. Golomb

14 The Ohio State University, Department of Psychology

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 Author Note: This work was supported by grants from the National Institute of Health (R01-
36 EY025648) and from the National Science Foundation (NSF 1848939) to JG. All data and
37 materials are accessible online.

38
39 Correspondence concerning this article should be addressed to Blaire Dube, Department of
40 Psychology, The Ohio State University, Columbus, OH, 43210. E-mail: dube25@osu.edu

41

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Abstract

2 Given the complexity of our visual environments, a number of mechanisms help us prioritize
3 goal-consistent visual information. When searching for a friend in a crowd, for instance, visual
4 working memory (VWM) maintains a representation of your target (i.e., your friend's shirt) so
5 that attention can be subsequently guided toward target-matching features. In turn, attentional
6 filters gate access to VWM to ensure that only the most relevant information is encoded and used
7 to guide behavior. Distracting (i.e., unexpected/salient) information, however, can also capture
8 your attention, disrupting search. In the current study we ask: does distraction also disrupt
9 control over the VWM filter? Although the effect of distraction on search behavior is heavily
10 studied, we know little about its consequences for VWM. Participants performed two
11 consecutive visual search tasks on each trial. Stimulus color was irrelevant for both search tasks,
12 but on trials where a salient distractor appeared on Search 1, we found evidence that the color
13 associated with this distractor was incidentally encoded into VWM, resulting in memory-driven
14 capture on Search 2. In two different experiments we observed slower responses on Search 2
15 when a non-target item matched the color of the salient distractor from Search 1; this effect was
16 specific to the color associated with salient distraction and not induced by other non-target colors
17 from the Search 1 display. We propose a novel Filter Disruption Theory: distraction disrupts the
18 attentional filter that controls access to VWM, resulting in the encoding of irrelevant inputs at the
19 time of capture.

20

21

22

1 **Perceptual distraction causes visual memory encoding intrusions**

2 Our visual environments contain too much detail to process at a given time. To
3 compensate, mechanisms such as attention and visual working memory (VWM) help to constrain
4 processing of these environments to only the aspects most relevant to a current behavioral goal.
5 Effective behavior often relies on interactions between attention and VWM, which are entwined
6 in many contexts (Chun, Golomb, & Turk-Browne, 2011; Dowd, Pearson, & Egner, 2017).
7 Efficient visual search performance, for instance, is often supported by controlled, reciprocal
8 interactions between attention and VWM. That is, the contents of VWM bias attention during
9 visual search to facilitate target-finding and, in turn, attention plays a critical role in regulating
10 what information is encoded in VWM.

11 A number of studies have demonstrated ways in which the contents of VWM can bias
12 attention during visual search. During the search for a friend wearing a blue t-shirt on a busy
13 street, for instance, VWM—our short-term storage system for visual information—maintains a
14 representation of your target (known as an attentional template, i.e., your friend's blue t-shirt)
15 (Carlisle, Arita, Pardo, & Woodman, 2011; Woodman & Arita, 2011), so that attention can
16 subsequently be guided towards visual inputs sharing its features (Bundesen, 1990; Desimone &
17 Duncan, 1995). When the contents of VWM are relevant to the search task (e.g., searching for
18 your friend's blue shirt), the VWM representation can be used to *intentionally* guide search. For
19 example, an attentional template maintained in VWM supports the *facilitation* of target-matching
20 stimuli in the environment (Carlisle et al., 2011; Woodman & Arita, 2011; Woodman, Luck, &
21 Schall, 2007). VWM resources can also be used in 'visual marking' during search to support the
22 *inhibition* of previously attended non-targets to prevent their re-selection (Al-Aidroos, Emrich,

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Ferber, & Pratt, 2012; Dube, Basciano, Emrich, & Al-Aidroos, 2016; Watson & Humphreys,
2 1997). VWM contents, however, are not always relevant to the current search; yet even under
3 these circumstances, VWM can still unintentionally guide attention. Consider a task in which
4 participants remember a color for a memory test, and a visual search task intervenes in which
5 they locate a diamond among circles (i.e., Olivers, Meijer, & Theeuwes, 2006). During search, if
6 one of the circles is uniquely colored, attention will be captured by this “singleton distractor”,
7 and participants will be slower to find the target diamond. Critically, this reaction time (RT)
8 slowing is *exacerbated* when the singleton’s color matches the color concurrently maintained in
9 memory, even if color is irrelevant. This effect is known as *memory-driven* capture (Olivers,
10 2009; Olivers et al., 2006).

11 In addition to VWM driving the guidance of attention, research has shown that goal-
12 driven attention reciprocally plays a critical role in guiding VWM encoding. Specifically, given
13 that VWM is severely capacity limited (Cowan, 2001), its effective use relies on attentional
14 filtering, or the ability to effectively prioritize relevant—and *filter out* irrelevant—information in
15 the environment. Thus, items (or spatial locations) that are prioritized for attention are more
16 likely to be remembered (i.e., Schmidt, Vogel, Woodman, & Luck, 2002). Moreover,
17 performance in a VWM change detection task has been shown to reflect an observer’s ability to
18 ignore irrelevant information in the initial memory array. Specifically, when cued to attend only
19 to objects presented in a specified target color in a memory array, participants who were worse at
20 attentional filtering (i.e., who encoded more memory-irrelevant items of the non-target color)
21 exhibited poorer memory on the subsequent change detection task (Vogel & Machizawa, 2004;
22 Vogel, McCollough, & Machizawa, 2005). Using a similar task adapted for fMRI, McNab and
23 Klingberg (2008) subsequently demonstrated that neural activity associated with the preparation

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 to exclude distractors (i.e., ‘filter set activity’) was negatively correlated with activity associated
2 with VWM load. As such, attention is thought to serve as a VWM filter, restricting goal-
3 irrelevant information from being unnecessarily encoded into capacity-limited VWM.

4 It is clear that effective attentional filtering is necessary for proficient VWM
5 performance. What happens if this filter is disrupted, for example, under conditions of dynamic
6 salient distraction? Distracting (i.e., unexpected and/or physically salient) information appearing
7 during visual search can capture attention, compromising search performance. That is, if an
8 ambulance suddenly appears in view during the search for your friend, rather than being guided
9 toward target-matching visual inputs, spatial attention can be momentarily guided toward
10 distracting information (i.e., the ambulance), increasing search RTs—a phenomenon generally
11 known as *attentional capture*. A wealth of research has focused on the mechanics of attentional
12 capture during visual search, demonstrating its consequences for attention (e.g., search RTs,
13 accuracy, and eye movements; Bacon & Egeth, 1994; Bacon & Egeth, 1997; Folk, Leber, &
14 Egeth, 2002; Folk, Remington, & Johnston, 1992; Theeuwes, 1991; Theeuwes, 1992; Theeuwes,
15 Kramer, Hahn, & Irwin, 1998; Yantis & Jonides, 1984) and, more recently, perception (Chen,
16 Leber, & Golomb, 2019). Less explored is whether distraction affects other ongoing cognitive
17 processes, such as what is encoded into VWM.

18 Here we propose a novel, previously untested consequence of distraction. We
19 hypothesize that distraction not only disrupts the focus of attention for current perception (i.e.,
20 attracting spatial attention to the distractor location), but also disrupts the filter gating VWM
21 encoding such that goal-irrelevant features are encoded into VWM. The implication is not simply
22 that a distractor’s identity is encoded, but that completely irrelevant features (typically blocked

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 by the attentional filter) also intrude into VWM if associated with the distractor. Thus, following
2 attentional capture, *irrelevant* distractor features are incidentally encoded into memory, and once
3 there, guide attention on future tasks.

4 To evaluate this hypothesis, we capitalize on memory-driven capture effects described
5 above (Olivers, 2009; Olivers et al., 2006). In Experiment 1 (pre-registered), participants
6 perform two consecutive visual search tasks on each trial. In the first search, they locate a target
7 letter ‘T’ among non-target letter ‘L’s, all presented within (irrelevant) colored squares. A
8 distracting white border sometimes flashes briefly surrounding a non-target square, capturing
9 attention. We hypothesize that, following capture, the features associated with this Search 1
10 salient distractor—including the task-irrelevant color—will be encoded into memory, thus
11 impacting later search. In Search 2 participants locate a uniquely oriented landolt C stimulus.
12 The Search 2 items are all white except one colored singleton; critically, its color sometimes
13 matches a color from the Search 1 display, including the salient distractor (the color associated
14 with the white border). We evaluate our prediction that the color associated with the Search 1
15 salient distractor will be encoded by assessing for memory-driven capture in Search 2—that is,
16 lengthened RTs on Search 2 trials when the singleton distractor matches the color of the salient
17 Search 1 distractor, relative to other colors viewed in Search 1. Experiment 2 replicates
18 Experiment 1, but with Search 2 stimuli that encourage feature detection mode (i.e., more
19 heterogeneous search distractors) rather than singleton detection mode (i.e., more homogeneous
20 search distractors in Experiment 1) (Bacon & Egeth, 1994; Lamy & Egeth, 2003).

21

22 Methods

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 *Pre-registration*

2 Participant recruitment techniques, target sample size, exclusion criteria, stimuli, task
3 design and procedure, and all data trimming routines and statistical analyses for Experiment 1
4 were preregistered on the Open Science Framework prior to data collection. Experiment 2 was
5 conducted after completion of Experiment 1 using identical analyses.

6

7 *Participants*

8 Thirty-nine undergraduate students (19 female, 18 male, M age = 18.98) from The Ohio
9 State University participated in Experiment 1 for partial course credit, and forty Amazon
10 Mechanical Turk workers (13 female, 27 male, M age = 37.95) participated in Experiment 2 for
11 monetary compensation at a rate of \$10 per hour. All participants reported having normal (or
12 corrected-to-normal) visual acuity and color vision. We conducted a power analysis in advance
13 of data collection based on typical effect sizes for memory-driven attentional capture effects
14 (Olivers, 2009; Olivers et al., 2006), and estimated that 32 participants would be required to
15 detect this effect of interest with 80% power. As pre-registered, we collected data from
16 additional participants in anticipation of performance-based exclusions (i.e., > 20% response
17 error on either Search 1 or Search 2). Based on these criteria, five participants were excluded
18 from Experiment 1 and eight participants were excluded from Experiment 2, leaving final
19 samples of 34 and 32 participants in Experiments 1 and 2, respectively. The study protocol was
20 approved by The Ohio State University Behavioral and Social Sciences Institutional Review
21 Board.

22 *Apparatus*

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Stimuli in Experiment 1 were presented using PsychoPy (Peirce, 2007) on a 1080 x 1920
2 LCD monitor (calibrated using a Minolta CS-100 colorimeter; Minolta, Osaka, Japan) with a 240
3 Hz refresh rate. Viewing distance was fixed at 61 cm using a head and chin rest. Experiment 2
4 was presented online using PsychoPy and PsychoJS and was hosted on Pavlovia (pavlovia.org).

5

6 *Stimuli and Procedure*

7 Stimuli and procedure for Experiments 1 and 2 were identical with the exception detailed
8 below. Sizes are based on Experiment 1 and were approximated as closely as possible in
9 Experiment 2 given the online testing environment. See Figure 1 for a trial schematic. Each trial
10 began with the presentation of a white fixation point (radius = .07 degrees) in the center of the
11 screen for 1.2s. Search 1 then started with four colored squares appearing on the screen (size =
12 1.75 x 1.75 degrees each, arranged in an invisible 2x2 grid centered on fixation with an
13 eccentricity of 3 degrees): 3 squares had the black letter 'L' written in the center and 1 had the
14 black letter 'T' written in the center (text height = .5 degrees). Letters could appear upright or
15 inverted. The colors filling the squares were drawn for each trial from a 360-degree color wheel
16 in CIE L*a*b* space (centered at L* = 70, a* = 20, b* = 38), selected with the constraint that the
17 4 colors used on a single trial were a minimum of 60 degrees from each other on the wheel. All
18 stimuli were viewed on a black background (8.2 cd/m²). Participants searched for the target letter
19 (the letter 'T') and indicated whether it appeared upright or inverted by pressing 'z' for upright
20 and 'x' for inverted with their left hand; they were instructed to respond as quickly and
21 accurately as possible. Color was irrelevant for the task, and participants were instructed to
22 attend only to the letters within the squares. On 40% of trials, a salient distractor (a brief, sudden
23 onset of a white border surrounding one of the non-target squares) appeared during Search 1. The

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 distractor onset .05s after the onset of the Search 1 array and remained on screen for .1s. As such,
2 there were two Search 1 conditions: salient distractor present (240 trials) and salient distractor
3 absent (360 trials). Search 1 terminated with the participant's response, or after 2s if no response
4 was recorded.

5 After a 1s delay (during which only the fixation point appeared on the screen), Search 2
6 started with 8 landolt-cs (size = .88 x .88 degrees) appearing on the screen arranged in a circle
7 with 4.33 degrees eccentricity. One of the landolt-cs (the target) had a gap on the right or left
8 side. In Experiment 1, the other seven stimuli had gaps on the top or bottom; in Experiment 2,
9 the seven non-target landolt-cs were rotated more heterogeneously such that their gaps could be
10 at 0° (i.e., on the top), 45°, 135°, 180° (i.e., on the bottom), 22°, or 315°. In both experiments,
11 participants located the target landolt-c and indicated which side the gap appeared on by pressing
12 the right or left arrow key with their right hand and were instructed to do so as quickly and
13 accurately as possible. On each trial, all of the Search 2 stimuli were colored white except for
14 one of the non-target landolt-c's, which was a uniquely colored singleton. We manipulated the
15 color of this singleton to create four Search 2 conditions: The singleton color could be an entirely
16 novel color to that trial, match the color of a non-critical item from Search 1 (i.e., a square
17 containing a non-target 'L'), match the color of the square that carried the target letter 'T' from
18 Search 1, or match the color associated with the salient distractor from Search 1 (i.e., the square
19 framed by the salient white border on distractor present trials). As such, the four Search 2
20 conditions are referred to as: no match, non-critical match, target match, and salient distractor
21 match. Search 2 terminated with the participant's response, or after 3s if no response was
22 recorded. Participants completed 600 trials. Experimental trials were divided equally among
23 these four conditions for trials on which there was a salient distractor present in Search 1,

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 resulting in 60 trials per Search 2 condition for the main analyses. For trials on which there was
2 no salient distractor present in Search 1, Search 2 trials were divided equally among the no
3 match, non-critical match, and target match singleton distractor conditions.

4

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

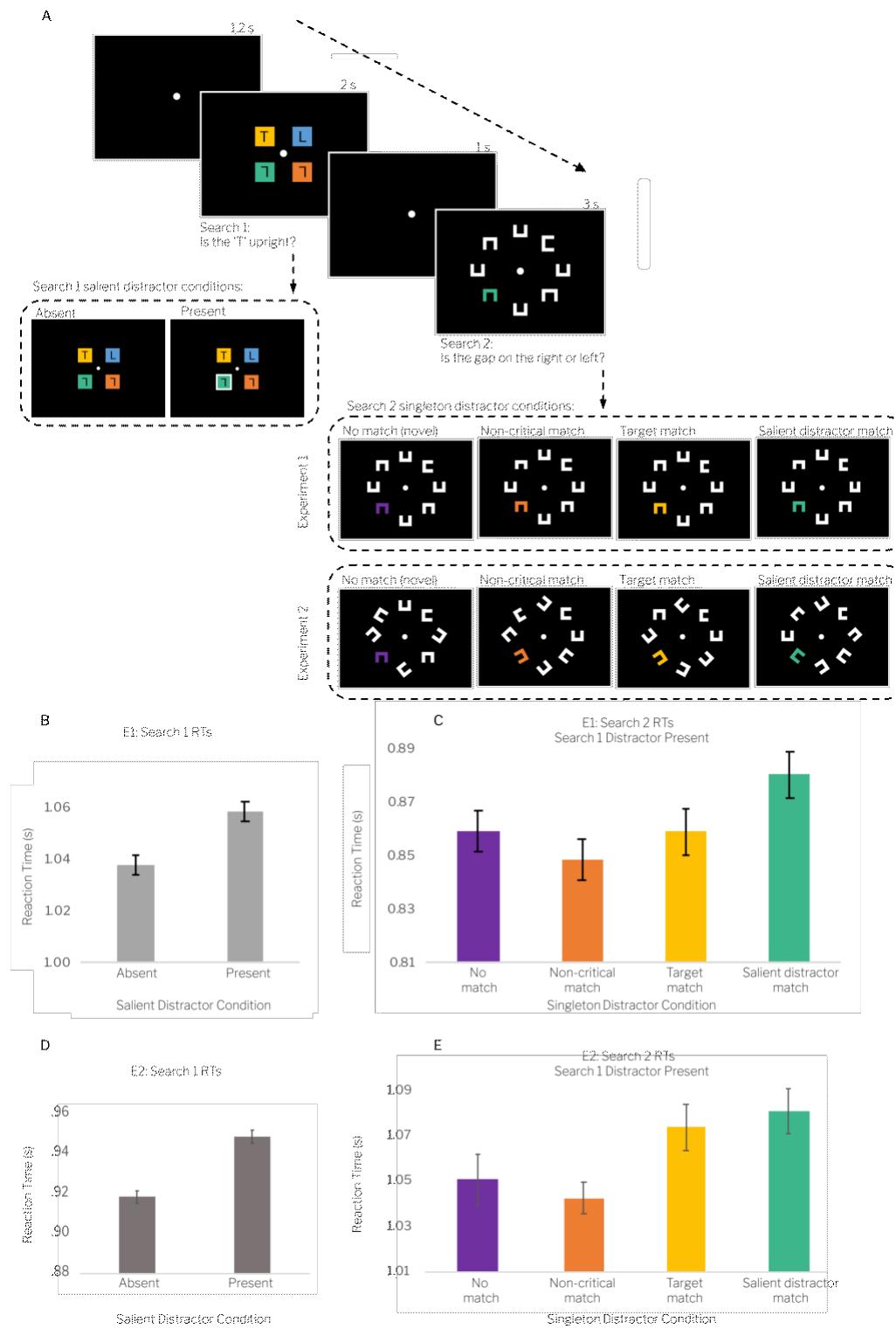


Figure 1. A, Trial schematic with condition breakdowns for Search 1 and Search 2 in both experiments. B-C, RT results for Experiment 1, during Search 1 (B) and Search 2, for trials on which there was a Search 1 distractor present (C). D-E, same for Experiment 2. In both experiments, Search 1 RTs were significantly slower when a salient distractor was present, indicating attentional capture. Search 2 RT was significantly slower for the key comparison: salient distractor match compared to the non-critical match, in both experiments. Error bars are adjusted within-subjects standard error (Morey, 2008), N=34 (Experiment 1), N= 32 (Experiment 2). Note that, consistent with the goal of Experiment 2, Search 2 RTs are substantially slower in Experiment 2 relative to 1.

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 *Analyses*

2 **Reaction times.** As preregistered, our main analyses compare mean RTs across conditions. We
3 exclude full trials (data for both Search 1 *and* 2) which contain extreme RT values (>2.5 standard
4 deviations of the per participant, per condition mean) or incorrect responses, for either Search 1
5 or Search 2. Effect sizes (mean and 95% CI) are provided for all analyses.

6 For each experiment, we perform an initial paired-samples t-test on Search 1 RTs to
7 compare the salient distractor present and salient distractor absent conditions to confirm that the
8 salient Search 1 distractor effectively elicits attentional capture (i.e., slower RTs on distractor
9 present trials).

10 The primary analyses of interest are then carried out on Search 2 RTs, specifically
11 comparing the 4 conditions for the Search 2 trials on which a salient distractor was presented in
12 Search 1. Our preregistered analysis plan stated that we first perform a 1x4 repeated-measures
13 analysis of variance (ANOVA), followed by four planned paired comparisons: (1) An initial
14 check of no match vs. non-critical match to assess whether simply viewing a color in Search 1 is
15 sufficient to grant it privileged access to memory (i.e., lengthened RTs in the non-critical match
16 condition relative to the no match condition would indicate memory-driven capture). (2) Our
17 primary comparison of interest comparing salient distractor match vs. non-critical match to
18 assess for evidence of exacerbated, memory-driven capture in the critical condition. We use non-
19 critical match as the comparison condition for salient distractor match as it was designed to
20 control for expectation and novelty of the singleton colors in the critical Search 2 conditions.
21 There is some precedent to predict that distractor predictability facilitates search (i.e.,
22 Kristjánsson & Driver, 2008; Shurygina, Kristjánsson, Tudge, & Chetverikov, 2019; Vatterott &
23 Vecera, 2012), and that novel colors might attract attention to a greater degree than a just-seen

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 color (i.e., Horstmann, 2005), so this critical test for evaluating our hypothesis compares the
 2 effects of two just-seen nontarget colors, with the difference being that one color was previously
 3 associated with the salient distractor. (3-4) As a secondary question of interest, we also evaluate
 4 memory-driven capture in the target match condition, comparing target match vs. non-critical
 5 match (same rationale as above), and target match vs. salient distractor match. Additional
 6 exploratory paired comparisons are reported in the Table 1 caption.

7

8 **Accuracy.** To confirm that there were no speed-accuracy tradeoffs we also performed
 9 exploratory (i.e., non-registered) analyses on accuracy data. There were no systematic
 10 differences in accuracy across conditions on either Search 1 or Search 2 (Table 1).

11

Search 1			Search 2			
	Salient Distractor Condition	Accuracy (SD)	RT (SD)	Singleton Distractor Condition	Accuracy (SD)	RT (SD)
E 1	Absent	.93 (.08)	1038(164)	No match	.97 (.04)	866 (164)
				Non-critical match	.97 (.04)	871 (157)
				Target match	.97 (.04)	870 (188)
	Present	.92 (.08)	1059 (169)	No match	.97 (.03)	859 (160)
				Non-critical match	.97 (.04)	848 (177)
				Target match	.97 (.04)	859 (180)
E 2	Absent	.96 (.04)	918 (137)	Salient distractor match	.97 (.04)	880 (177)
				No match	.98 (.03)	1051 (224)
				Non-critical match	.98 (.03)	1046 (219)
	Present	.96 (.04)	949 (142)	Target match	.98 (.02)	1062 (226)
				No match	.98 (.03)	1051 (232)
				Non-critical match	.98 (.05)	1042 (218)
				Target match	.98 (.03)	1074 (251)
				Salient distractor match	.99 (.03)	1081 (214)

12 Table 1. Summary of mean accuracy and RT (ms) data for Search 1 and Search 2 in Experiments 1 and 2 (E1, E2). Accuracy did
 13 not significantly differ between Search 1 conditions in either experiment (E1: $t(33) = -.8, p = .43$; E2: $t(31) = 1.21, p = .24$).
 14 Accuracy also did not differ between Search 2 conditions in either Experiment, neither when the search 1 salient distractor was
 15 absent (E1: $F(2,66) = .40, p = .67$; E2: $F(2,62) = .17, p = .84$) nor when it was present (E1: $F(3,99) = .23, p = .87$; E2: $F(3,93) = 1.34, p = .26$). Pre-registered RT comparisons are reported in the text. Additional exploratory comparisons: E1 no match vs. target
 match, $t(33) = .03, p = .98, d = .01$ ($CI_{95\%} [-.33, .34]$), E1 no-match vs. distractor match: $t(33) = -1.88, p = .07, d = -.32$ ($CI_{95\%} [-.66, .03]$), E2 no match vs. target match, $t(31) = -1.45, p = .16, d = -.26$ ($CI_{95\%} [-.61, .10]$), E2 no-match vs. distractor match: $t(31) = -1.91, p = .07, d = -.34$ ($CI_{95\%} [-.69, .02]$).

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Results

2 **Search 1.** In both Experiment 1 and Experiment 2, Search 1 RTs (Figure 1B,D) were
3 significantly longer in the salient distractor present condition relative to the salient distractor
4 absent condition, Experiment 1: $t(33) = -3.88, p < .001, d = -.72$ (CI_{95%} [-1.03, -.29]), Experiment
5 2: $t(31) = -6.63, p < .001, d = -1.17$ (CI_{95%} [-1.69, -.71]), confirming the Search 1 salient
6 distractor captured attention as intended.

7

8 **Search 2.** Figure 1C,E shows Search 2 RTs for the 4 conditions on which the Search 1 salient
9 distractor was present. The 1x4 (singleton condition: no match, non-critical match, target match,
10 and salient distractor match) repeated measures ANOVA yielded a significant main effect of
11 singleton type in both Experiment 1, $F(3, 99) = 2.61, p = .05, \eta_p^2 = .07$ (CI_{90%} [.005, .14]), and
12 Experiment 2, $F(3, 93) = 3.59, p = .02, \eta_p^2 = .10$ (CI_{90%} [.01, .19]). The results of the four
13 planned comparisons detailed in the analysis section are described below.

14 Initial test: *Mere visual exposure to a Search 1 item is not sufficient to grant it privileged*
15 *access to memory.* Consistent with previous work (i.e., Olivers et al., 2006), RTs did not
16 significantly differ between the no match and non-critical match conditions: Experiment 1, $t(33)$
17 $= .96, p = .35, d = .16$ (CI_{95%} [-.18, .50]); Experiment 2, $t(31) = .67, p = .51, d = .19$ (CI_{95%} [-.23,
18 .47]),

19 Main question: *Is the color associated with the Search 1 salient distractor item*
20 *automatically encoded into VWM?* We found memory-driven capture induced by the salient
21 distractor match condition in both experiments, as evidenced by significantly slower Search 2
22 RTs compared to the non-critical match condition (the control condition equated for visual
23 exposure): Experiment 1, $t(33) = -2.72, p = .01, d = -.47$ (CI_{95%} [-.82, -.11]); Experiment 2, $t(31)$

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 $t(33) = -3.33, p = .002, d = -.59$ (CI_{95%} [-.96, -.21]). This result suggests that the color associated with
2 the salient Search 1 distractor was inadvertently encoded into memory, causing exacerbated (i.e.,
3 memory-driven) capture in the subsequent Search 2 when its color re-appeared as the singleton.
4 In Experiment 1, Search 2 stimuli were designed with more homogenous nontargets, which may
5 have encouraged a singleton detection mode (Bacon & Egeth, 1994; Lamy & Egeth, 2003) and
6 potentially amplified or interacted with this effect. Critically, in Experiment 2 we replicated this
7 main finding when the Search 2 stimuli were adjusted to be more heterogeneous to encourage
8 feature detection mode.

9 Secondary question: *What about the Search 1 target item?* When comparing Search 2
10 RTs between the target match and non-critical match conditions, we found mixed results. In
11 Experiment 1 we did not observe reliable evidence that the color associated with the Search 1
12 target interacted with attention in Search 2 to a greater degree than a non-critical Search 1 color,
13 $t(33) = -.92, p = .36, d = -.16$ (CI_{95%} [-.50, .18]). In Experiment 2, however, RTs *did* significantly
14 differ between the non-critical match and target match conditions, $t(31) = -2.59, p = .01, d = -.46$
15 (CI_{95%} [-.82, -.09]), suggesting that the color associated with the Search 1 target did interact with
16 attention in Search 2. This disparity may be due to increased power to detect differences in
17 Experiment 2 afforded by the overall slower Search 2 RTs.

18 *Comparison of target and salient distractor effects.* When directly comparing RTs in the
19 target match and salient distractor match conditions in Search 2, there was a nominal difference
20 in Experiment 1, $t(33) = -1.96, p = .06, d = -.36$ (CI_{95%} [-.68, .01]), and no significant difference
21 in Experiment 2, $t(31) = -.52, p = .61, d = -.09$ (CI_{95%} [-.44, .26]). As such, we do not find
22 reliable evidence that the color associated with the distractor was encoded into memory to a
23 significantly greater degree than the color associated with the Search 1 target. It is interesting to

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 note that the target-associated intrusions into VWM were less consistent across the two
2 experiments with more variable effect sizes, whereas the distractor-associated intrusions (our
3 primary effect of interest) were replicated with large effect sizes across both experiments.

4

5 General Discussion

6 In two Experiments we used a sequential search paradigm to examine whether irrelevant
7 distractor features are incidentally encoded into VWM during attentional capture. We observed
8 evidence for memory-driven capture in the second search when its display contained a non-target
9 singleton that shared an irrelevant feature with the distractor from the first search. That is, RTs in
10 Search 2 were slower when the non-target singleton was the same color as that associated with
11 the Search 1 salient distractor than when it was associated with a viewed but non-critical item
12 from Search 1, despite color being irrelevant in both tasks. We suggest that, in addition to
13 slowing RTs during the current search (Search 1), distraction also disrupts the filter that typically
14 restricts irrelevant information (here color) from VWM encoding, causing the unnecessary
15 storage of distractor features. These incidentally encoded distractor features can then drive
16 attention during a subsequent visual search (Search 2).

17 We formulate this idea as the Filter Disruption Theory, which provides a theoretical
18 framework to explain this novel consequence of distraction. Specifically, in addition to
19 disrupting spatial attention, dynamic distraction disrupts the filter that gates access to VWM,
20 resulting in the intrusion of distractor features in VWM. As a consequence, attention is
21 unnecessarily guided towards distractor-matching elements of the environment – even those
22 features which are completely irrelevant to the task – compromising subsequent visual search
23 efficiency.

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Evaluating the consequences of distraction for VWM during visual search is critical
2 given how closely attention and VWM are entwined. While VWM supports the guidance of
3 attention both towards and away from relevant (i.e., target-matching) and irrelevant (i.e.,
4 previously searched) visual inputs, effective use of this capability requires control over VWM
5 contents via an attentional filtering mechanism to regulate encoding. Our understanding of this
6 attentional filter, however, has thus far been limited to tasks with an explicit memory component,
7 such as tasks that require memory recall following intentional manipulations of attention (i.e.,
8 Dube, Emrich, & Al-Aidroos, 2017; Emrich, Lockhart, & Al-Aidroos, 2017; Vogel et al., 2005),
9 or tasks that evaluate how perceptual distractions that are related to memory representations
10 disrupt memory performance (Kiyonaga & Egner, 2014). Here we evaluate the VWM filter in a
11 novel context with a less explicit memory component, demonstrating filter disruption following
12 abrupt-onset attentional capture in visual search. Despite no explicit role for VWM in the
13 paradigm described here (i.e., no memory task or benefit of maintaining information), distraction
14 results in encoding of irrelevant information into VWM, and this disruption of the attentional
15 filter influences subsequent behavior.

16 The data presented here revealing a VWM filter disruption are particularly striking
17 considering the design elements of the experiment. Specifically, color is a feature that is always
18 optimal to ignore: It is irrelevant to Search 1 and there is no benefit to encoding any of the
19 display colors, and in Search 2, a colored singleton is present on 100% of trials and always
20 coincides with a non-target, so attending to it (a known non-target) incurs a *cost* to performance
21 by delaying target identification. As such, the task was specifically designed to de-incentivize
22 attending to or encoding color information (and even to desensitize participants to color
23 singletons in Search 2). Our finding that the color associated with the Search 1 distractor was

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 encoded into VWM highlights the disruptive effect of dynamic distraction on attentional control
2 and its interactions with VWM encoding. That is, even with experimental conditions intended to
3 strengthen observer control over task performance, dynamic distraction disrupted the filter
4 controlling VWM encoding, causing the intrusion of color information associated with a
5 distractor in Search 1 into VWM in a way that allowed it to drive attention in Search 2, incurring
6 a performance cost. The fact that we replicated this result regardless of whether participants were
7 in singleton selection mode (Experiment 1) or feature detection mode (Experiment 2) – and
8 across both in-lab and online contexts – further strengthens this novel finding.

9 The primary focus of this study – and the analysis for which we had the strongest pre-
10 registered predictions – was whether the salient distractor would intrude into VWM. We had less
11 specific predictions about the *target* match Search 2 distractor condition. On one hand, work by
12 Chen and colleagues (Chen & Wyble, 2015, 2016) on attribute amnesia suggests that an attended
13 (but not directly relevant) attribute of a search target is not recalled during a surprise memory test
14 and is therefore not encoded; yet more recent work by Harrison and colleagues (2020)
15 demonstrates evidence that this attribute may still have a biasing effect on subsequent search
16 behavior. We observed mixed evidence for subsequent guidance by the target-matching feature
17 across our two experiments, consistent with the idea that irrelevant features associated with a
18 target item might sometimes – but not always – be encoded into VWM. Yet critically, the
19 irrelevant features associated with the salient distractor were consistently encoded into VWM.

20 The present results – and the framework of the Filter Disruption Theory – raise a number
21 of intriguing questions for study. One question is whether sudden onset distraction disrupts
22 filtering more generally, or only for items at the spatial focus of attention. If the former,
23 disruption of the filter could have resulted in the incidental encoding of *all* irrelevant features on

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 distractor-present trials (i.e., encoding color across the full display), but we did not observe
2 exacerbated capture in the non-critical match condition relative to no match. If the latter, the
3 features that intrude into VWM may depend on how quickly control over the filter is regained
4 following distraction and where spatial attention is at that time. If control over the filter is not
5 reinstated until after spatial attention moves back to the target, this might explain the intrusion of
6 irrelevant *target* matching features into VWM on some trials.

7 In sum, attention and VWM are tightly linked and, given their strong reciprocal
8 influence, a great deal of cognitive control is required in order to regulate how and when they
9 interact. Here we demonstrate a circumstance in which dynamic distraction disrupts the
10 otherwise carefully controlled interaction between attention and VWM. During a typical visual
11 search, such as the search for a friend on a busy street, attention and VWM have distinct roles
12 and interact in important ways: VWM guides attention towards target-matching representations
13 (i.e., items that match the color of your friend's t-shirt) and monitors and maintains relevant non-
14 targets (i.e., the positions of nearby vehicles), and control over attention ensures that only
15 relevant information is encoded into VWM to guide subsequent behavior. We have long known
16 that the sudden appearance of an ambulance during this search will capture spatial attention,
17 increasing the time it takes to find your target. In line with our Filter Disruption Theory, we
18 show for the first time – and then replicate – that this unexpected distractor can also momentarily
19 disrupt control over whether, and how, attention and VWM are interacting. With the incidental
20 encoding of ambulance features predicted by the Filter Disruption Theory, attentional biasing is
21 disrupted, and fewer VWM resources are available to represent relevant subsequent visual
22 inputs, such as nearby vehicles—which could pose potentially serious consequences for real-
23 world behavior.

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Acknowledgements

2 We thank Dr. Eren Günseli and an anonymous reviewer for their feedback on the initial draft of
3 the manuscript, and we thank Dr. Günseli for suggesting Experiment 2. We also thank Dr.
4 Andrew Leber and members of the Golomb Lab for helpful discussion.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

- 1 Open Practices Statement
- 2 Experiment 1 was pre-registered. All data and materials for both experiments
- 3 (https://osf.io/qgra6/?view_only=945391cb85d74c779694fec2f9a00d41), and the relevant pre-
- 4 registrations (https://osf.io/9jf8c?view_only=5c16547d826140ed83fed8d89ab55759;
- 5 https://osf.io/wcxgk?view_only=d47af01362e040d1b36e4cd530757f45) are accessible online.
- 6
- 7 References
- 8 Al-Aidroos, N., Emrich, S. M., Ferber, S., & Pratt, J. (2012). Visual working memory supports
- 9 the inhibition of previously processed information: Evidence from preview search. *Journal*
- 10 *of Experimental Psychology: Human Perception and Performance*, 38(3), 643–663.
- 11 <https://doi.org/10.1037/a0025707>
- 12 Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. *Perception*
- 13 & *Psychophysics*, 55(5), 485–496. <https://doi.org/10.3758/BF03205306>
- 14 Bacon, W. J., & Egeth, H. E. (1997). Goal-directed guidance of attention: evidence from
- 15 conjunctive visual search. *Journal of Experimental Psychology: Human Perception and*
- 16 *Performance*, 23(4), 948–961. <https://doi.org/10.1037/0096-1523.23.4.948>
- 17 Bundesen, C. (1990). A theory of visual attention. *Psychological Review*, 97(4), 523–547.
- 18 <https://doi.org/10.1037/0033-295X.97.4.523>
- 19 Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional Templates in
- 20 Visual Working Memory. *The Journal of Neuroscience*, 31(25), 9315–9322.
- 21 <https://doi.org/10.1523/JNEUROSCI.1097-11.2011>
- 22 Chen, H., & Wyble, B. (2015). Amnesia for Object Attributes: Failure to Report Attended
- 23 Information That Had Just Reached Conscious Awareness. *Psychological Science*, 26(2),

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 203–210. <https://doi.org/10.1177/0956797614560648>

2 Chen, H., & Wyble, B. (2016). Attribute amnesia reflects a lack of memory consolidation for
3 attended information. *Journal of Experimental Psychology: Human Perception and
4 Performance*, 42(2), 225–234. <https://doi.org/10.1037/xhp0000133>

5 Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional Capture Alters Feature Perception.
6 *Journal of Experimental Psychology: Human Perception and Performance*, 45(11), 1443–
7 1454. <https://doi.org/10.1037/xhp0000681>

8 Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of External and
9 Internal Attention. *Annual Review of Psychology*, 62(1), 73–101.
10 <https://doi.org/10.1146/annurev.psych.093008.100427>

11 Cowan, N. (2001). The magical number 4 in short term memory. A reconsideration of storage
12 capacity. *Behavioral and Brain Sciences*, 24(4), 87–186.
13 <https://doi.org/10.1017/S0140525X01003922>

14 Desimone, R., & Duncan, J. S. (1995). Neural mechanisms of selective visual attention. *Annual
15 Review of Neuroscience*, 18, 193–222.
16 <https://doi.org/10.1146/annurev.ne.18.030195.001205>

17 Dowd, E. W., Pearson, J. M., & Egner, T. (2017). Decoding working memory content from
18 attentional biases. *Psychonomic Bulletin and Review*, 24(4), 1252–1260.
19 <https://doi.org/10.3758/s13423-016-1204-5>

20 Dube, B., Basciano, A., Emrich, S. M., & Al-Aidroos, N. (2016). Visual working memory
21 simultaneously guides facilitation and inhibition during visual search. *Attention, Perception,
22 and Psychophysics*, 78(5). <https://doi.org/10.3758/s13414-016-1105-8>

23 Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 regulates the distribution of visual working memory resources. *Journal of Experimental*
2 *Psychology: Human Perception and Performance*, 43(10).
3 <https://doi.org/10.1037/xhp0000428>

4 Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible
5 allocation of visual working memory resources. *Journal of Experimental Psychology:*
6 *Human Perception and Performance*, 43(7), 1454–1465.
7 <https://doi.org/10.1037/xhp0000398>

8 Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture
9 produces a spatial blink. *Perception and Psychophysics*, 64(5), 741–753.
10 <https://doi.org/10.3758/BF03194741>

11 Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary Covert Orienting Is
12 Contingent on Attentional Control Settings. *Journal of Experimental Psychology: Human*
13 *Perception and Performance*, 18(4), 1030–1044. <https://doi.org/10.1037/0096-1523.18.4.1030>

15 Harrison, G. W., Kang, M., & Wilson, D. (2020). Remembering More Than You Can Say: Re-
16 Examining “Amnesia” of Attended Attributes. *Acta Psychologica*, 1(343), 103265.
17 <https://doi.org/10.1016/j.actpsy.2021.103265>

18 Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on
19 expectation discrepancy. *Journal of Experimental Psychology: Human Perception and*
20 *Performance*, 31(5), 1039–1060. <https://doi.org/10.1037/0096-1523.31.5.1039>

21 Kiyonaga, A., & Egner, T. (2014). The Working Memory Stroop Effect: When Internal
22 Representations Clash With External Stimuli. *Psychological Science*, 25(8), 1619–1629.
23 <https://doi.org/10.1177/0956797614536739>

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

1 Kristjánsson, Á., & Driver, J. (2008). Priming in visual search: Separating the effects of target
2 repetition, distractor repetition and role-reversal. *Vision Research*, 48(10), 1217–1232.
3 <https://doi.org/10.1016/j.visres.2008.02.007>

4 Lamy, D., & Egeth, H. E. (2003). Attentional Capture in Singleton-Detection and Feature-Search
5 Modes. *Journal of Experimental Psychology: Human Perception and Performance*, 29(5),
6 1003–1020. <https://doi.org/10.1037/0096-1523.29.5.1003>

7 McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to
8 working memory. *Nature Neuroscience*, 11(1), 103–107. <https://doi.org/10.1038/nn2024>

9 Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory
10 type, display type, and search type. *Journal of Experimental Psychology. Human*
11 *Perception and Performance*, 35(October), 1275–1291. <https://doi.org/10.1037/a0013896>

12 Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional
13 capture: visual working memory content affects visual attention. *Journal of Experimental*
14 *Psychology: Human Perception and Performance*, 32(5), 1243–1265.
15 <https://doi.org/10.1037/0096-1523.32.5.1243>

16 Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. *Journal of Neuroscience*
17 *Methods*, 162(1–2), 8–13. <https://doi.org/10.1016/j.jneumeth.2006.11.017>

18 Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic
19 attentional control of visual working memory. *Perception & Psychophysics*, 64(5), 754–
20 763. <https://doi.org/10.3758/Bf03194742>

21 Shurygina, O., Kristjánsson, Á., Tudge, L., & Chetverikov, A. (2019). Expectations and
22 perceptual priming in a visual search task: Evidence from eye movements and behavior.
23 *Journal of Experimental Psychology: Human Perception and Performance*, 45(4), 489–499.

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

- 1 <https://doi.org/10.1037/xhp0000618>
- 2 Theeuwes, J. (1992). Perceptual selectivity for color and form. *Perception & Psychophysics*, 51(6), 599–606. <https://doi.org/10.3758/BF03211656>
- 3 Theeuwes, J. (1991). *Exogenous and endogenous control of attention* : 49(1981), 83–90.
- 4 Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our Eyes Do Not Always Go Where We Want Them to Go: Capture of the Eyes by New Objects. *Psychological Science*, 9(5), 379–385. <https://doi.org/10.1111/1467-9280.00071>
- 5 Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. *Psychonomic Bulletin and Review*, 19(5), 871–878.
<https://doi.org/10.3758/s13423-012-0280-4>
- 6 Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. *Nature*, 428(April), 748–751.
<https://doi.org/10.1038/nature02447>
- 7 Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. *Nature*, 438(7067), 500–503. <https://doi.org/10.1038/Nature04171>
- 8 Watson, D. G., & Humphreys, G. W. (1997). *Visual Marking: Prioritizing Selection for New Objects by Top-Down Attentional Inhibition of Old Objects* (pp. 90–122). pp. 90–122.
- 9 Woodman, G. F., & Arita, J. T. (2011). Direct Electrophysiological Measurement of Attentional Templates in Visual Working Memory. *Psychological Science*, 22(2).
<https://doi.org/10.1038/jid.2014.371>
- 10 Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. *Cerebral Cortex*, 17, i118–i124.

PERCEPTUAL DISTRACTION CAUSES MEMORY INTRUSIONS

- 1 <https://doi.org/10.1093/cercor/bhm065>
- 2 Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. *Journal of Experimental Psychology: Human Perception and Performance*, 10(5), 601–621. <https://doi.org/10.1037/0096-1523.10.5.601>
- 3
- 4
- 5