
Foundations of Data Science doi:10.3934/fods.2021019
©American Institute of Mathematical Sciences

A SURROGATE-BASED APPROACH TO NONLINEAR,

NON-GAUSSIAN JOINT STATE-PARAMETER

DATA ASSIMILATION

John Maclean∗

School of Mathematical Sciences
University of Adelaide

SA 5005, Australia

Elaine T. Spiller

Department of Mathematical and Statistical Sciences

Marquette University

Milwaukee, WI 53201, USA

Abstract. Many recent advances in sequential assimilation of data into non-
linear high-dimensional models are modifications to particle filters which em-

ploy efficient searches of a high-dimensional state space. In this work, we
present a complementary strategy that combines statistical emulators and par-

ticle filters. The emulators are used to learn and offer a computationally cheap

approximation to the forward dynamic mapping. This emulator-particle fil-
ter (Emu-PF) approach requires a modest number of forward-model runs, but

yields well-resolved posterior distributions even in non-Gaussian cases. We ex-

plore several modifications to the Emu-PF that utilize mechanisms for dimen-
sion reduction to efficiently fit the statistical emulator, and present a series of

simulation experiments on an atypical Lorenz-96 system to demonstrate their

performance. We conclude with a discussion on how the Emu-PF can be paired
with modern particle filtering algorithms.

1. Introduction/motivation. Data assimilation (DA) – the process of updating
models with data to give state estimates and forecasts complete with attendant
uncertainties – has progressed tremendously over the last three decades [9, 15, 27, 5].
Sequential data assimilation techniques, those that update current state estimates
and forecasts on the fly as data becomes available, fall into two general categories:
Kalman-type filters (KF) and particle-type filters (PF). There are two dominant
challenges in sequential DA, namely systems with high-dimensional state spaces and
strong non linearity/non Gaussianity. Typically ensemble-based KF techniques,
that use relatively few model runs, can address the former while particle-based
techniques that require many model runs can address the latter.

2020 Mathematics Subject Classification. Primary: 62R07, 62M20, 62C12; Secondary: 62M05,

62G07, 86A10.
Key words and phrases. Data assimilation, uncertainty quantification, data science, statistical

surrogates, parameter estimation.
The first author is supported by the ARC grant DP180100050, and acknowledges past support

from ONR grant N00014-18-1-2204. The second author is supported by NSF grant DMS-1821338.
∗ Corresponding author: John Maclean.

1

http://dx.doi.org/10.3934/fods.2021019

2 JOHN MACLEAN AND ELAINE T. SPILLER

Over roughly the same time frame, the field of statistical surrogates of complex
computer models emerged [28, 35]. Statistical surrogates provide computationally
efficient approximations to nonlinear input/output mappings of a computer model;
these statistical surrogates are typically based on a modest number of training
runs. Further, statistical surrogates offer built-in uncertainty estimates for utilizing
the approximation. In this work we develop particle filters that employ statistical
surrogates to approximate mappings of system dynamics.

Often dynamic model forecasts are the computational bottleneck in sequential
data assimilation. Our approach employs Gaussian process emulators (GPs) to learn
the mapping from state and/or parameter values at one observation instance to the
next. This mapping provides an effective interpolation between model forecasts and
makes available slews of additional approximate model forecasts with negligible
additional computational burden. Thus GP emulators are natural to pair with
“sample hungry” DA techniques like particle filters. As such, we can produce finely-
sampled non-Gaussian posterior estimates with a modest number of model runs
typical of ensemble KF techniques. GP enhanced PFs are not an alternative to
the assortment of recent innovative PF methodologies, rather this “GP emulator +
PF strategy” can naturally be adapted to work with and bolster leading-edge PF
algorithms. We demonstrate such a case by combining the ‘Optimal Proposal’ PF
[8] with the GP emulator in section 4.6.

Several papers amount to a recent flurry of activity combining modeling learning
and data assimilation, each approach with advantages and drawbacks. [6] combines
statistical emulation and data assimilation to aid in model calibration, effectively
a smoothing problem. This approach is quite similar to [1], but cleverly utilizes
an ensemble Kalman filter (EnKF) sequentially between observations to choose a
good design (e.g. a well-chosen set of training runs) to fit the statistical emulator.
That emulator then replaces forward model evaluations in MCMC evaluations in the
calibration problem. [3] sets up methodology for combining Neural networks (NN)
to learn an approximation to the dynamic forward model from noisy observations in
a data assimilation framework. Effectively they construct a posterior distribution as
one would in a sequential DA problem and use expectation maximization algorithm
(EM) to compute mode posterior estimates of the NN parameters. This approach is
quite appealing as it does not rely on physics-based model for forward propagation,
yet simulation experiments in [4] indicate the need for a significant amount of data
to train the NNs sufficiently. [11] is similar in spirit, but uses a random feature map
instead of NNs and they combine their “physics-agnostic” forward model with an
EnKF. Like [3, 4], this methodology requires a significant amount of training data.

The core idea of this paper is that interpolation between model forecasts, thought
of as functions of the parameter and/or previous state values at a fixed time, may
be used to produce additional forecasts, and thus provide a cheap means to improve
PF performance. If the state is interpreted as a function of the parameter estimates,
then the interpolation exploits smoothness of the state with respect to parameter
values, that is not used (nor required) in the usual formulations of the PF. Consider
the following pedagogical example in terms of parameter dependence (dependence
on previous state values or both is similar in spirit.) Suppose we have some compu-
tational model that provides forecasts of a single state variable, and which depends
on a single parameter. Notionally this model is expensive to run, and we sample the
model forecast at eight parameter values, as in Figure 1a. Provided the sampling
is space filling in parameter space, one might be able to predict the state values

A SURROGATE APPROACH TO NON-GAUSSIAN DA 3

-1 -0.5 0 0.5 1

parameter

-2

-1

0

1

2
s
ta

te

(a)

-1 -0.5 0 0.5 1

parameter

-2

-1

0

1

2

s
ta

te

(b)

-1 -0.5 0 0.5 1

parameter

-2

-1

0

1

2

s
ta

te

(c)

Figure 1. Schematic for state dependence on parameters: we plot
the state at eight different samples (1a), then apply a variety of in-
terpolating schemes (1b) and lastly a statistical surrogate (1c). The
shaded region in the rightmost plot shows one standard deviation
in uncertainty. The second and third plot allow for the state to be
estimated at a variety of parameter values.

at other choices of the parameters, as in Figure 1b. Maintaining a space-filling
design – that is, not just relying on training points for the emulator near the bulk
of the mass of the distribution – is key. Note that low probability samples are not
used directly in the PF, but are used instead to construct a fast approximation to
the mapping. Using a statistical surrogate instead of a deterministic interpolant,
we can further capture the uncertainty in the state-parameter dependence at pa-
rameter values that have not been sampled, as in Figure 1c. These interpolating
schemes allow for the output of the computational model to be estimated at many
more potential sampling points than the initial eight. It is worth noting that access
to more samples through the surrogate does not imply anything about the weight
or likelihood of those samples. If these fine samples are used as “model forecasts” in
a PF, then the effect is to obtain a dense estimate of the posterior using relatively
few model forecasts.

The performance of this method relies on an efficient implementation of the
simple interpolate-and-sample concept above. In particular the parameter values at
which the model is evaluated should not all be fixed, but updated at each observation

4 JOHN MACLEAN AND ELAINE T. SPILLER

time, and the interpolating method should be a statistical surrogate that captures
uncertainty. These foundational concepts from Data Assimilation and Uncertainty
Quantification are introduced in Section 2. Our novel surrogate DA scheme is
described in Section 3, and numerous visualisations of the internal mechanisms and
error statistics of the new scheme are contained in Section 4.

2. Background.

2.1. Sequential data assimilation. Let us begin by reviewing the setup for se-
quential data assimilation and two “standard” techniques: particle filters (PF)
and ensemble Kalman filters (EnKF). In these approaches data or observations
of a system are assimilated into a model describing the dynamics of the underly-
ing system to offer an estimate of the state, and of parameters of interest along
with attendant uncertainties. This is often achieved by employing Bayes theorem,
p(x, θ | y) = p(y | x, θ)p(x, θ)/p(y) where x ∈ Rn is the state variable, y ∈ Rm is
the data, and θ ∈ Rp are parameters.

In the sequential case where data are available as a time series, we will fol-
low the notation of Doucet et. al. [8]. For observations available at times t =
{tj , tj+1, . . . , tk} we use the shorthand yj:k = {yj , . . . ,yk} and likewise for state
variables and parameters at times t, xj:k = {xj , . . . ,xk}, θj:k = {θj , . . . , θk}. Ul-
timately for sequential state-parameter data assimilation, we are interested in de-
scribing the posterior distribution

p(x0:k, θ0:k | y1:k) =
p(y1:k | x0:k, θ0:k)p(x0:k, θ0:k)

p(y1:k)
,

where the marginal distribution in the denominator is given by p(y1:k) = Ep(x0:k,θ)

[p(y1:k | x0:k, θ0:k)]. All of these distributions are updated sequentially as data be-
come available. For both PFs and EnKFs, we can think of the representation of the
prior and posterior probability density functions (pdfs) as a collection of N “parti-
cles”, e.g. state variable and parameter estimates with weights, {xij , θij , wij}Ni=1. In
both cases, the particle states are advanced via system dynamics, e.g. ẋ =M(x, θ),
from time tj to time tj+1, according to some map. For deterministic simulations
we write

xij = ϕ(xij−1, θ
i
j−1) = xij−1 +

∫ tj

tj−1

M(xi, θi)dt . (1)

For a stochatic simulation we use the same notation, xij = ϕ(xij−1, θ
i
j−1), but ϕ

now refers to a realization of the stochastic dynamics. Obtaining state estimates is
typically the most computationally intensive part of the particle filter, particularly
in the diverse applications in which the dynamical system M is high-dimensional.

Particle filters. For generic particle filters, the particle representations of probabil-
ity density functions (pdfs) are updated by adjusting the weights via the likelihood
as current data are incorporated while state values remain unchanged. Often se-
quential importance resampling (SIR) [17] is employed to overcome inherent filter
degeneracy. The idea behind SIR particle filters is to use the posterior distribu-
tion from one time step as the prior distribution for the next (along with the state
updated by the forward dynamics in eq. (1)) as

p(xj , θj | xj−1, θj−1,y1:j) =
p(yj | xj)p(xj , θj | xj−1, θj−1,y1:j−1)

p(yj)
. (2)

A SURROGATE APPROACH TO NON-GAUSSIAN DA 5

Each particle is a notionally independent guess (xij , θ
i
j) for the states and parame-

ters, where i runs from 1 to the number of particles Ne. A simple implementation
of this approach involves updating both particles and weights sequentially in time.

The state component of the particles is updated from time j − 1 to time j by
running the model eq. (1). The parameter component of each particle may formally
be assigned the model

θij = θij−1

associated with the trivial dynamics θ̇ = 0; however, to allow parameter estimates
to vary over time, in practice one would employ a non-trivial parameter model. We
employ the parameter model from [16, e.g.]: at each observation time, parameter
estimates are shrunk slightly towards their mean and then some noise is added.
Shrinking the parameter estimates mitigates over-dispersion from the repeated ap-
plication of noise. The parameter model is

θij = αθij−1 +
1− α
Ne

Ne∑
i=1

θij−1 + βξij , (3)

where ξij ∼ N (0, I) are iid. The parameters α and β determine the strength of
the shrinking and noise effects, respectively. Following advice in [16] we generally
employ α = 0.99, and choose small β = 0.01.

Once the particles are updated to time j, the weights are updated by computing
the likelihood p(y|x) and normalising, with the jth observation yielding

wij =
p(yj | xij)∑N
i=1 p(yj | xij)

wij−1 (4)

and the posterior approximation

p(xj , θj | y1:j) ≈
N∑
i=1

wijδ(x− xij)δ(θ − θij).

Generally for particle filters, resampling will need to be employed when the effec-

tive number of particles, Neff ≈
∑N
i=1 1/(wij)

2, falls beneath some user defined
threshold—typically 5 − 10% of N [8]. Note, unless Neff is large, this resulting
discrete representation of the posterior is inherently coarse.

Perturbed-obs EnKF. The ensemble Kalman filter with perturbed observations
(summarized here following the work by Evensen [10]) is a sequential data assimila-
tion technique that evolves an ensemble of model states through time and performs
Kalman filter style updates as new observations are incorporated.

Given an ensemble of Ne model states at time tj−1, each ensemble member is
evolved according to eq. (1). This forecast ensemble is used to generate a Gaussian
estimate of the prior distribution at time tj . We denote the forecast ensemble as
{xij,f |i = 1, ..., Ne}. The forecast ensemble sample mean x̄j,f and sample covariance
Pj,f can be estimated as follows:

x̄j,f =
1

Ne

Ne∑
i=1

xij,f (5)

Pj,f =
1

Ne − 1

Ne∑
i=1

(xij,f − x̄j,f)(xij,f − x̄j,f)T . (6)

6 JOHN MACLEAN AND ELAINE T. SPILLER

Observations are assumed to have the form Yj = Hxj +ηj , where H is an obser-
vation matrix (typically a linearized observation operator) and observation errors ηj
are taken to be iid Gaussian random variables with mean 0 and known covariance
R, i.e. ηj ∼ N (0,R). We create an ensemble of Ne perturbed observations with
mean equal to Yj and covariance R according to Yi

j = Yj+εij where εij ∼ N (0,R).
The covariance of the ensemble of perturbed observations is given by

Re
j =

1

Ne − 1

Ne∑
i=1

εijε
i
j

T
. (7)

The ensemble members are then updated according to

xij,a = xij,f + Pj,fH
T (HPj,fH

T + Re
j)

−1(Yi
j −Hxij,f) (8)

and the sample analysis mean and analysis covariance can be calculated as above
yielding

x̄j,a =
1

Ne

Ne∑
i=1

xij,a, and Pj,a =
1

Ne − 1

Ne∑
i=1

(xij,a − x̄j,a)(xij,a − x̄j,a)T . (9)

The analysis ensemble is used to generate a Gaussian approximation of the poste-
rior distribution at time tj . The analysis ensemble {xij,a} is then evolved to the
next observation time by eq. (1) and used as the forecast ensemble for the next
assimilation step.

2.2. Gaussian process emulators. The key approach in this work is, at time tj ,
to learn about the mapping from an “input space” (parameter space and/or state
space at time tj−1) to an “output space” (state space) through a limited number
of particle/ensemble samples. (Note, the weights of the particles do not inform
us about this mapping directly.) To this end, we will employ a weakly stationary

Gaussian process (GP) to model such an unknown relationship, xj ≈ f̂j(xj−1, θ)

or xj ≈ f̂j(θ). In the statistical computer models community, such modeling is
typically referred to as statistical surrogates or GP emulators – effectively statistical
models of physical models. [30, 26, 35] provide excellent and broad overviews of
this approach, but for the unfamiliar reader, we summarize the salient points here.
It is worth emphasizing that “Gaussian” in GP emulators refers to the class of non-
parametric random functions used for interpolation, and does not impose Normal
approximations on either the input or output random variables. To frame it another
way, the values the particles take on at times tj−1 and tj inform the mapping to be
learned in equation 1, but the weights of the particles do not inform this mapping.

Consider nD training or design input values, qD = {q1, . . . ,qnD
}, with each

qk ∈ Rr, and a scalar output yk (e.g. “output” may be one of the state variable
values at time tj , yk = xkj) at each of these nD inputs, yD = (y1, . . . , ynD

)T . We

can model ŷ ∼ MVN
(
m(qD),Σ

)
, a multivariate normal with m(·) a known mean

trend and Σ = σ2R̂, with variance σ2. Here the correlation matrix R̂ is computed
by evaluating a chosen correlation function c(·, ·), e.g. each element is given by

(R̂)ij = c(qi,qj). A Gaussian process emulator provides a prediction ŷ(q∗) at an
untried value of the input space q∗ as

ŷ(q∗) = h(q∗)β + rT (q∗)R̂−1(yD − h(qD)β) + δ

= f̂(q∗) . (10)

A SURROGATE APPROACH TO NON-GAUSSIAN DA 7

where r(q∗) =
(
c(q∗,q1), . . . , c(q∗,qnD

)
)T

. In other words, this gives the mean
value of a Gaussian process at input q∗, where the process is conditioned to take
on values of yD at inputs qD if the uncorrelated noise term, δ, is zero. Here h is
a set of basis functions (typically taken to be constant or linear), so m(q) = h(q)β
gives the overall trend based on the data, and the coefficient(s) are given by

β = (hT (qD)R̂−1h(qD))−1hT (qD)R̂−1yD.

In these formulae, R̂ is the nD × nD correlation matrix of the input design; often
a power exponential or Matérn correlation kernel is assumed and “fitting” an em-
ulator amounts to finding the trend coefficients and correlation length scales that
best represent the design pairs {qD,yD}. We can also gain a sense of uncertainty
induced by using the GP instead of the computer model simulation directly at q∗

by considering the standard prediction error

s2(q∗) = σ2
(

1− rT R̂−1r +
(1− 1T R̂−1r)2

1T R̂−11

)
, (11)

where 1 is an n-vector of ones and σ2 is the variance scaling of the process and found
during the “fitting” of the GP. Implementations of GP emulators are available: in
Matlab one can use the function fitrgp()1 or the Robustgasp() package [13]
(also available in R).

In the computer model community, space filling designs—typically Latin Hyper-
cubes (LHC)—are the standard approach for training emulators [30]. LHC designs
spread out samples and ensure that the maximum distance between each neigh-
boring pair of design points is (approximately) minimized [14]. In using emulators
in conjunction with DA methods, it is important to keep in mind that we are not
assigning any probability to events in the design used for the construction of emula-
tors. That said, we are interested in the GP being a “good” mapping, e.g. the GP
having small sample variance in regions of design space where the prior distribution
has significant mass. To this end for constructing emulators, we chose some design
points to be space filling and some to target the mass of the prior. We describe
details of the our proposed emulator design for the Emu-PF in section 4.1.

The Parallel Partial Emulator (PPE) generalizes the standard emulator con-
struction presented in eq. (10) for scalar outputs, to an emulator for vector-valued
outputs [12]. Consider then a set of nD model design inputs and n-dimensional
responses {qD,Y D}. Y D is now an nD × n matrix. PPE allows each output com-
ponent to have a unique mean mj(q) = h(q)ψj and variance σ2

j (j = 1, . . . , n),
but assumes a shared correlation structure and correlation parameters among all
locations. Equations for predictive mean and standard error are nearly identical to
eq. (10), but are n−dimensional. We mention that the means and variances of the
individual Gaussian processes inherit some measure of (spatial) correlation that is
present in the physical system, even though no explicit assumption is made about
spatial relationships.

2.3. A pedagogical example. Before diving into details of the algorithm and
application, we will again focus on the simple pedagogical example of the mapping
from parameter space to state space illustrated in Figure 1. Now let us consider a
bi-modal prior pdf on the parameter and walk through one PF update step given
an observation in state space. We visualize this setup in the left panel of Figure 2.

1Introduced in version R2015b, see https://mathworks.com/help/stats/fitrgp.html

https://mathworks.com/help/stats/fitrgp.html

8 JOHN MACLEAN AND ELAINE T. SPILLER

Although we only have eight points to learn it, the GP allows us to sample the prior
as much as we like and push those samples through the emulator-based mapping
in order to compare them to the observation. For demonstration, we consider
three cases in this update step: a large sample (103) using the emulator mapping
(EmuPF), the same large sample using the true mapping (for comparison), and
a case with eight samples from the prior that is analogous to a standard sample-
limited PF implementation. The resulting posterior histograms are displayed in the
right panel of Figure 2. (Note the large sample cases are normalized and the small
sample posterior is visualized as a stem plot with the height of the stems reflecting
relative weights.) From this figure we can see that error introduced by using the
emulator-based mapping instead of the true mapping is small – the histograms are
nearly identical – and does not impose Gaussianity on the posterior pdf.

The error introduced by utilizing emulator mapping in the Particle Filter shows
up in the posterior sample weights: consider assimilating an observation of a single
variable. Define the emulator mapping error as e = h − h̃ where h is the true
mapping and h̃ is the emulator-based mapping. Assuming an observation, y, is
normally distributed with mean h and variance σ2, then we can relate the weight
calculation of the particle filter wPF to the weight of the EmuPF, wEmuPF , by

− log(wPF)1/2 =
y − h√

2σ
=
y − h̃− e√

2σ
=
y − h̃√

2σ
− e√

2σ
(12)

− log(wPF) =
(y − h̃√

2σ

)2

− 2e(y − h̃)

2σ2
+
(e√

2σ

)2

(13)

=
(y − h̃√

2σ

)2

− 2e(y − h+ e)

2σ2
+
(e√

2σ

)2

=
(y − h̃√

2σ

)2

︸ ︷︷ ︸
− log(wEmuPF)

−
(e(y − h)

σ2
+

e2

2σ2

)
︸ ︷︷ ︸

log(wERR)

The error in the weighting, wERR depends both on the mapping error, e, and on
the difference between observation and mapped prior sample. Note that e is not
constant, but its magnitude is estimated by the predictive standard deviation of the
GP, s(·) from Equation 11, for any input sample. As long as e is small relative to
σ, the weighting error introduced by utilizing emulators – which is controllable by
adding targeted training/design points in regions of input space with large predictive
variance – will be close to one as will the ratio wPF /wEmuPF .

3. Methodology. This section constructs approximations of the Particle Filter
that employ only a relatively small number of model runs. The model runs are used
as design-response pairs in a Gaussian Process emulator; a large number of samples
from the GP emulator are then treated as particles in a PF. Several algorithms are
presented here, as the practical options for emulator design and response variables
depend on the parameter and state dimension.

The following section 3.1 introduces a naive but straightforward blending of the
GP emulator and PF, which is then employed as a springboard to introduce multiple
refinements.

We employ subscripts for time indices and superscripts for particle indices, and
employ bold font for vectors.

A SURROGATE APPROACH TO NON-GAUSSIAN DA 9

-1 -0.5 0 0.5 1

parameter

-3

-2

-1

0

1

2

3

s
ta

te

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(a)

(b)

Figure 2. Here we demonstrate how the GP example mapping
from parameter space to state space (as in Figure 1) can be used
in a particle filter update step. (A) The same GP mapping from
parameter to state space is plotted (black line) along with the de-
sign points (blue dots along black line) used to fit that mapping
and an observation (red dot and line) in state space along the left
axis. A bi-modal prior distribution is plotted (light blue) along with
samples from that distribution (103 in light blue and 8 in black)
along the horizontal axis. (B) Stem plots of the eight-sample PF
posterior along with 103-sample normalized posterior histogram of
parameters taking into account the likelihood of GP mapped prior
samples given the observation in (A). Plotted behind the emuPF
histogram is the equivalent (and nearly identical) histogram using
the true mapping instead of the GP mapping for each of the 103

samples.

10 JOHN MACLEAN AND ELAINE T. SPILLER

3.1. The Emulator Particle Filter: Emu-PF. We construct an emulator for
the map eq. (1) from time tj−1 → tj . Then, we use the emulator output in a PF as
if it were samples from the prior distribution in eq. (2).

At time tj−1 suppose we have evenly weighted parameter estimates and state
estimates θij−1 ∈ Rp and xij−1 ∈ Rn, i from 1 to nD. Suppose also we have a large

ensemble of parameter estimates Θi
j−1 and corresponding state estimates Xi

j−1 with

weights wij−1, i from 1 to NF . Then follow the following sequence:
Forecast: Employ the numerical model eq. (1),

xij = ϕ(xij−1, θ
i
j−1) ,

Label the lth component of xij by xi,lj . Set θij = θij−1 and Θi
j = Θi

j−1.
Emulate: For each l from 1 to the state dimension n,

E1. Set the emulator design variables (inputs) to be the state and parameter
estimates at which we employed the model,

qD = {xij−1, θ
i
j−1}

nD
i=1 .

E2. Set the response variables (outputs) to be the lth component of the state
variable from the model output,

yD = {xi,lj }
nD
i=1 ,

and fit the emulator with the design-response pairs.
E3. Evaluate the emulator at each of the fine state and parameter values: set

q∗ = {Xi
j−1, Θi

j−1}
nD
i=1 ,

obtain ŷ(q∗) = f̂(q∗) from eq. (10), and save each scalar emulator output as

the lth component of Xi
j , X

i,l
j = {ŷ(q∗)}i, for each i from 1 to NF .

Assimilate: Treat {Θi
j ,X

i
j} as samples from the prior and perform a Data Assim-

ilation scheme in the high-dimensional NF space. For example, in a Particle Filter,
employ eq. (4) to judge the emulator outputs,

wij =
exp(− 1

2

(
yj − h(Xi

j)
)T

R−1
(
yj − h(Xi

j)
)∑N

k=1 exp(− 1
2

(
yj − h(Xk

j)
)T

R−1
(
yj − h(Xk

j)
) ,

assuming the observation errors are Gaussian with covariance R, and the observa-
tion operator is h(). Calculate the effective sample size Neff , defined below eq. (4),
and resample {Θi

j ,X
i
j} if needed.

Subsample: Use a resampling algorithm to sample nD times from the weighted

pairs
(
{Θi

j ,X
i
j}, wij

)
.

In the above we use {.}Ni=1 to indicate when an operation can be vectorized by
concatenating together ensemble members as columns in a matrix.

Figure 3 shows a schematic for this class of surrogate DA methods. The key
steps in this schematic are displayed for an Emu-PF (with implementation details
delayed until section 4) in fig. 4. The long-time error statistics for this Emu-PF are
compared to Particle Filters employing nD particles and NF particles in fig. 5.

Two shortcomings of GP emulators motivate improvements in the above algo-
rithm. First, it is notoriously challenging to fit emulators with a high-dimensional
input space. Yet the surrogate DA method employs high-dimensional inputs to
the emulator, as the parameter and state vectors are combined and used as design

A SURROGATE APPROACH TO NON-GAUSSIAN DA 11

Ensemble size: nD NF

Ensemble at time tk−1 Ensemble at time tk−1

Model forecast to time tk

Construct tk−1 → tk emulator Evaluate emulator for large ensemble

Run Data Assimilation scheme

Ensemble at time tkSubsample ensemble at time tk

Figure 3. Overview of the novel synthesis of Gaussian process
emulators with Data Assimilation methods.

variables. Some recent works [2, 18] offer approaches for dimension reduction for
statistical emulators that require either significant prior knowledge of the variability
of the input space or a significant amount of data to characterize that variability
well. For sequential DA, as a matter of course we have this prior knowledge avail-
able, but the flavor of appropriate dimension reduction will be problem specific. In
particular, DA schemes that employ localization may favor a dimension reduction
approach that is local as opposed to a global dimension reduction. We will ex-
plore variations of each. Secondly high-dimensional response variables are avoided
by looping through the entire state vector, one dimension at a time; but this is a
potentially slow and expensive procedure. There are multiple recent approaches to
emulating high-dimensional output and we will explore a variation of our algorithm
that utilizes one of those approaches, namely partial parallel emulation [12].

We now introduce practical variations of the Emu-PF. Each either reduces the
dimension of the design variables or improves the efficiency of sampling from the
emulator.

3.2. Variant: Include only some state values in the emulator input. This
modification implements a straightforward localization for the emulator inputs.
Modify the emulation step to include only state values near the response variable.
For each l from 1 to the state dimension n,

Es1. Choose some integer Γ. Set the emulator design inputs to be the parameter
estimates at which we employed the model, and a slice of the state inputs,

qD =
{(
θij−1, x

i, (l−Γ:l+Γ)
j−1

)}nD

i=1
.

Es2. As item E2.
Es3. Evaluate the emulator at each of the fine parameter values and corresponding

state estimates: set

q∗ =
{(

Θi
j−1, Xi, (l−Γ:l+Γ)

)}nD

i=1
,

otherwise as item E3.

In 2-d or 3-d space, instead choose a localization distance parameter Γ ≥ 0 and

include every grid point within radius Γ of x
.,(l)
j in the design input step item Es1.

12 JOHN MACLEAN AND ELAINE T. SPILLER

(a) Parameter design variables (left) and fine weighted ensemble (right) before assimila-
tion. Red crosses show modes of the true parameter distribution.

(b) Left: state variable x(1) after model integration, viewed as a function of two param-
eters. This is used as input to train the emulator. Right: emulator output at 10, 000
samples. This output has been weighted by a measure of distance from the observations
(the highest-weight particles, with larger dot sizes, are concealed within the cloud of sam-
ples).

(c) Parameter estimates after assimilation. Right: weights in the fine ensemble, shown by
dot size, reveal a highly non-Gaussian posterior that is shifting towards the true parameter
values (red crosses). Left: the brighter dots have been sampled from the fine ensemble; the
darker dots are unchanged from Figure (a). Section 4.1 explains the benefits of keeping
some of the design variables fixed.

Figure 4. Visualisation of the internal Emu-PF mechanisms over
one assimilation step. Left column shows components of dimension
nD = 100. Right column shows components of dimension NF =
10, 000. (a): parameter ensembles at time tj . (b): distribution
of one state variable as a function of parameters. (c): parameter
ensembles at time tj+1. Full details for this 8 state, 2 parameter
experiment are given in section 4.

A SURROGATE APPROACH TO NON-GAUSSIAN DA 13

Figure 5. Long term error statistics for the implementation of
Emu-PF from fig. 4, compared to: a “coarse” PF that employs
nD = 100 model runs (as in the Emu-PF), and a “fine” PF that
employs NF = 10, 000 model runs, equal to the number of samples
in the Emu-PF emulator. Performance of Emu-PF is markedly
better than the coarse PF.

One extremely simple implementation of this variation on the Emu-PF is to set
Γ = −1; that is, to include no state variables at all in the emulation. This imple-
mentation is justified if the distribution x|θ ≈ g(θ)+noise, for a smooth function g.
Equivalently, the distribution x|θ should be roughly unimodal. This condition is
frequently satisfied in practice [21], and the resulting algorithm is fast but still
readily capable of filtering nonGaussian marginal distributions for θ.

If this variant of the Emu-PF is employed, we refer to it by the value of Γ chosen;
DA methods are benchmarked against the Emu-PF with Γ = −1 in figs. 6 to 8.

3.3. Variant: Compute emulator outputs in parallel with ppgasp. Use Par-
tial Parallel Estimation (described in section 2.2) to compute all states at once.

Ep1. Set the emulator design inputs to be the parameter estimates at which we
employed the model,

qD = {θij−1}
nD
i=1 .

Ep2. Set the response variables to be the model output,

yD = {xij}
nD
i=1 .

14 JOHN MACLEAN AND ELAINE T. SPILLER

Ep3. Evaluate the emulator at each of the fine parameter values: set

q∗ = {Θi
j−1}

nD
i=1 ,

obtain ŷ(q∗) = f̂(q∗) from eq. (10), and save each column of emulator output
as Xi

j = {ŷ(q∗)}i for each i from 1 to NF .

The above implementation avoids the for-loop present in sections 3.1 and 3.2, but
as written requires Γ = −1 (no state variables as design inputs) discussed in sec-
tion 3.2. We discuss simultaneous parallelization and localization in section 5. A
more radically localized Emu-PF for state estimation is discussed in section 3.5.

3.4. Variant: Perform a global dimension reduction before using emula-
tor inputs. Employ a data-based dimension reduction algorithm (e.g. PCA, DMD,
diffusion maps, UMAP, . . .) on the state variables going into the emulation mapping
of xj+1 = ϕ(xj ; θj). This approach is not generically used to emulate high dimen-
sional parameter inputs because it’s often unclear how to represent the variability
of parameters, but in the sequential DA case there is an obvious candidate—the
vector of state variables.

As a clear example, in the remainder of the section and in numerical examples we
employ PCA. That is, we have an approximation from the fine sampled posterior

at the jth time step,
(
{Θi

j ,X
i
j}, wij

)NF

i=1
. Let X = Xdata− X̄data1NF

be the n×NF
matrix where the ith column of Xdata is Xi

j , X̄data = 1
NF

∑NF

i=1 Xi
j , and 1NF

is a row

vector consisting of NF ones. Then A = XXT is a covariance matrix representative
of the variance in X. A singular value decomposition of A produces A = V ΛV T

where Λ is a unitary matrix containing ordered singular values, the columns of
V contain the corresponding singular vectors, and V T = V −1 as A is symmetric.
Truncate Λ and V to keep only the largest r < n singular values; label the truncated
matrices Λ̃, now r × r, and Ṽ , now J × r. Note A ≈ Ṽ Λ̃Ṽ T . Now let Y = Ṽ TX.
Effectively Y is a matrix of weights to multiply the principal components vectors
(columns of Ṽ) to recover the original data X.

In Emu-PF schemes employing PCA, we use the weights Y as input variables for
emulation in item E1. The response variables are unchanged in item E2, but when
evaluating the emulator at fine samples in item E3 we replace Xi

j−1 with Ṽ TXi
j−1.

We discover a fast, flexible and powerful Emu-PF algorithm by combining global
dimension reduction of inputs (by PCA in our experiments) and fast emulator out-
puts (with PPE, described in section 3.3); this algorithm is employed in Experiments
Two and Four of section 4.

3.5. Variation: Localize the emulator by “slicing and stacking” the em-
ulator inputs. This variation on the Emu-PF involves a radical rethinking of the
emulator state inputs; for that reason we suppress parameter dependence and con-
sider state estimation only. Assume that the physical law governing state evolution
is the same for each component of the state vector; then a single model run, ini-
tialized at xij−1 and producing xij ∈ Rn, provides n samples of that physical law.
The following algorithm exploits this rich data by configuring the emulator design
inputs as n× nD samples, rather than nD samples.

We suppose that some localized slice of state variables at time j − 1, within
distance Γ of state variable l, is sufficient to predict the lth state variable at time
j. The following procedure learns a R2Γ+1 → R map for the state update.

A SURROGATE APPROACH TO NON-GAUSSIAN DA 15

Er1. Choose some integer Γ ≥ 0. The design inputs qD are to be a (2Γ + 1)× (n×
nD) array, with the q-th row of that array given by{

xi, l−Γ:l+Γ
j−1

}nD

i=1
,

where i = ceil(q/n) and l = mod (q, n).
Er2. Set the response variables yD to be the corresponding n× nD-vector of state

variables, with the qth entry

{xi,lj }
nD
i=1 ,

Er3. Evaluate the emulator at each of the state estimates: set

q∗ =
{
Xi, l−Γ:l+Γ

}nD

i=1
,

otherwise as item E3.

This approach entails a radical reduction in the dimension of emulator inputs and
outputs. Due to the unusual “slicing” of the emulator input to obtain rich training
data, we refer to it as the “sliced Emu-PF.” We test it on a state estimation problem
in fig. 9.

4. Numerical experiments and results. We consider a joint state-parameter
estimation problem from [29]. The state xj is generated by integrating from time
tj−1 to tj the system of ordinary differential equations introduced in [19],

ẋ(l) =
(
x(l+1) − x(l−2)

)
x(l−1) − x(l) + F (l) , (14)

commonly called the Lorenz-96 system. Superscripts in parentheses denote com-
ponents of a vector, l ranges from 1 to n, and (as introduced in [29]) the forcing
depends on two parameters

F (l) = 8 + θ(1) sin

(
2πl

nθ(2)

)
. (15)

We will compare the surrogate DA algorithms to Particle and Ensemble Kalman
Filters. Our goal is to obtain performance similar to that of a Particle Filter that
employs a large number of particles, NF , but only allowing nD � NF model runs
in our scheme. In order to quantify the benefits, and drawbacks, of our approach,
we will include the following algorithms for comparison:

• A “fine PF” employing NF = 10, 000 particles,
• A “coarse PF” employing nD = 100 particles,
• An EnKF employing nD = 100 particles.

While several of our results feature implementations of the Emu-PF that compete
with, or exceed the performance of, the fine PF, it is important to remember that
our original goal was to attain performance somewhere between the coarse and fine
PF. Exact implementation details for all DA methods are given in section 4.1. We
will also briefly discuss better implementations of the Particle Filter.

It is standard in the atmospheric forecasting community to employ eq. (14) with
dimension n = 40, and to compute and subsequently discard a “burn-in” period
of at least a thousand assimilation steps. Our benchmark fine PF is incapable of
resolving the n = 40 case without extensive modifications that, if also implemented
in an Emu-PF, can make it difficult to be sure what the contributions of the emulator
are. Additionally, good filter performance during the first twenty assimilation steps
are crucial for parameter estimation (assuming an initially uninformative prior on

16 JOHN MACLEAN AND ELAINE T. SPILLER

the parameters). For these reasons we choose model dimension n = 8 (analysed
in [23]) for the initial experiments, and include the filter performance over the
initial assimilation steps. The numerics section concludes by studying Emu-PF
performance applied to joint state-parameter estimation in the full 40-dimensional
state case.

Over all experiments, a vast quantity of information is computed. We will sum-
marize this information with the Root Mean-Squared-Error (RMSE) and the sample
variance. For parameter estimates the posterior distribution is multimodal (see sec-
tion 4.2); when calculating RMSE or variances of parameter estimates, we first
apply absolute values to reduce the number of modes.

4.1. Implementation details. Particle Filters all employ the merging particle
filter of [22]. This filter constructs new particles from weighted averages of extant
samples when resampling; we employ the recommended weights a1 = 3/4; a2 =

(
√

13 + 1)/8; a3 = −(
√

13 − 1)/8. Additionally PFs employ the parameter model
from [16] which, at each observation time, draws all particles slightly towards the
particle mean, preserving α = 0.99 of the variation among particles, then jitters all
particles randomly by adding noise generated with standard deviation β = 0.01.

The EnKF employs multiplicative covariance inflation of 1.02. That is, when the
sample forecast covariance is calculated in eq. (6), it is multiplied by 1.02 before it
is used in eq. (8). Covariance inflation is a common remedy to the problem of a
slightly under-dispersive ensemble in the EnKF.

The Emu-PF algorithms divide the nD particles that are used in model runs
into two groups. The first group is sampled from the fine posterior after every
assimilation step, as described earlier in the paper (fig. 3, for example). The second
group is not sampled from the posterior, and remains fixed over the assimilation
steps. We fix this second group, comprising 20 of the 100 design variables, so that
the emulator can evaluate inputs at a wide range of θ even if the subsampled group
has narrow support. Figure 4c (left) shows the first group (80 bright dots) and
second group (20 dark dots). The GP emulators packages fitrgp() and ppgasp()

estimate correlation parameters of a GP. In this work, we choose the correlation
function, c(·, ·), to be a Matérn kernel with smoothness parameter 5/2.

A modern implementation of the particle filter to a high-dimensional filtering
problem should involve intensive modifications to mitigate the curse of dimension-
ality. Successful innovations include proposal densities [34], mixtures [7], and di-
mension reduction strategies including the classic Rao-Blackwellized PF or recent
localized PFs [24, 25]. We conclude the numerics section by displaying the compat-
ibility of Emu-PFs with a proposal density based PF, the Optimal Proposal PF, in
section 4.7. In that section we show that the Emu-PF can in fact improve on the
Optimal Proposal PF in high-dimensional filtering problems. Further modifications
along these lines are discussed in section 5.

4.2. Experiment details. Unless specified otherwise, we assimilate data at 1000
observation times with time step of 0.05 between them. Model and truth are in-
tegrated between these observation times with five steps of a fourth order Runge-
Kutta scheme. At each of these integration steps the true value of θ(1), θ(2) is drawn
from a Gaussian with mean (2, 1)T and variance 0.01I2. All DA schemes use fixed
parameter estimates between assimilation steps. The discrepancy between fixed
parameters in model updates for DA schemes, and varying parameters by draw-
ing them from a distribution for the true dynamics, introduces a simple form of

A SURROGATE APPROACH TO NON-GAUSSIAN DA 17

model error. We initialize state ensembles at t = 0 with a tight spread of variance
0.01I8 around the true initial condition, which is generated randomly. By contrast
the parameter ensembles are initially uninformative, being drawn from a uniform
distribution on the square (−5, 5) × (−5, 5). The symmetry of eq. (15) ensures
that the posterior distribution in the parameters is always at least bimodal, as the
forcing F (l) is identical at +θ, −θ; but, also by symmetry, we can calculate reason-
able RMSE and variance statistics for parameters by taking the absolute value of
parameter estimates. All schemes employ nD = 100 and NF = 10, 000.

Interpret plots of the DA schemes with the following: if two different initial
conditions for eqs. (14) and (15) are integrated for a long time, the mean distance
between the two trajectories will be around 5. Any DA method attaining a state
RMSE value near 5 is no different to employing no assimilation. However smaller
RMSE is not necessarily optimal; each DA scheme is trying to estimate the posterior,
which is unknown. Generally we will compare methods to results from the fine PF.

We also present tables with summary statistics for each experiment. These ta-
bles present the mean RMSE and the median sample variance over the final 50% of
assimilation steps, recorded separately for parameters and for states. We compute
median variance as the mean variance is dominated by large variance terms in a few
of the state variables. Generally the sample variances will appear to suggest meth-
ods are under-dispersive; but the EnKF performs better estimating the bimodal
parameter distribution if it is under-dispersive than otherwise (explained further in
the discussion of Experiment One).

We vary two quantities between experiments; the dimension m of the observa-
tions, and the accuracy of the observations. We will consider m = 2, 4, 8 evenly
spaced observations. The observation accuracy is measured by the scalar σo, which
controls the observation error covariance matrix R from section 2.1 according to
R = σ2

oIm. More difficult experiments are obtained by reducing m and/or σo.
Fewer observations at each observation time lead to a more uncertain posterior,
which is difficult for the Emu-PF algorithms to represent with the low number of
design variables nD. Accurate observations, that is smaller values of σo, are difficult
for Particle Filters in general.

4.3. Experiment 1. We begin by presenting statistics for a fully observed (m = 8)
system with observation accuracy σo = 1. in fig. 6 and table 1. The Emu-PF with
Γ = −1 outperforms the, equivalent in number of model runs, coarse PF. The fine
PF does not appear to estimate the state variables well in fig. 6; fig. 5 is another
run with the same setup in which the fine PF is clearly distinct from the coarse.
Table 1 shows that the Emu-PF with Γ = −1 reliably estimates parameters about
as well as the fine PF (albeit with even smaller variance) and estimates states about
as well as the coarse PF (albeit with large variance).

The EnKF performs poorly in fig. 6, with large errors compared to other schemes
in both the parameters and state variables, but the median performance in table 1
is excellent; we now discuss why. Poor performance is expected, as the distribution
of the parameters is bimodal and the EnKF relies on unimodal approximations.
In practice we do observe that the EnKF RMSE reliably remains high for the
first thirty to fifty assimilation steps of this experiment, long after the PFs have
converged; however the EnKF parameter ensemble also tends to shrink over those
assimilation steps. Once the parameter ensemble has shrunk sufficiently, the peaks
of the posterior—visible in fig. 4c, right—are no longer both contained in the span of
the ensemble, and the ensemble will move close to one or another peak in subsequent

18 JOHN MACLEAN AND ELAINE T. SPILLER

Figure 6. Error statistics for Experiment One, m = 8 observa-
tions at each observation time, of accuracy σ0 = 1. In this (and
every) plot, only every 20th data point is shown. For this mildly
difficult filtering problem, we observe that the Γ = −1 implemen-
tation of section 3.2, that uses no state variables at all as emulator
inputs, is stable and reasonably accurate.

RMSE (θ) Var (θ) RMSE (x) Var (x) Resampling
Fine PF 0.066 0.0035 0.34 0.15 226

Coarse PF 0.79 0.0015 2.1 0.16 663
EnKF 0.048 0.0018 0.32 0.12 -

Emu-PF (Γ = −1) 0.13 0.00026 2.4 5.1 483

Table 1. Summary statistics for twenty repetitions of experiment
One. The ‘Resampling’ column counts how many resampling steps,
out of a thousand, were performed by each algorithm.

assimilation steps. That is, the EnKF is successfully locating one of the two peaks
of the bimodal posterior; since the RMSE only records distance from either peak,
the EnKF performance appears good in the tables.

4.4. Experiment 2: Sparse observations. Consider the more challenging setup
of m = 2 evenly spaced observations with the same accuracy σo = 1. from the

A SURROGATE APPROACH TO NON-GAUSSIAN DA 19

Figure 7. Error statistics for Experiment Two, m = 2 observa-
tions at each observation time, of accuracy σ0 = 1. The Γ = −1
Emu-PF and fine PF both under-perform compared to their mean
behaviour; the Emu-PF employing PCA is stable and accurate.

previous experiment. An implementation of the Emu-PF employing both, the PCA
dimension reduction from section 3.4 (to four variables), and PPE from section 3.3
to compute all emulator outputs simultaneously, is tested in fig. 7. The Emu-PF
implementation with PCA not only stably estimates states and parameters under a
difficult filtering problem, but out-competes both the EnKF and the fine PF (which
employs 100× as many model runs). This good performance from the Emu-PF with
PCA far outstrips our original goal, that was just to replicate the performance of
the fine PF. However, on repeating this experiment, we discovered that the Emu-PF
employing PCA suffers issues with instability: the support of the design inputs may
shrink, and then the emulator can output NaNs. To address this issue, we stabilised
the design variables by adding noise with variance 0.01 to the parameters when
they are subsampled (see section 3.1). This design is stable, but less technically
impressive; statistics from 20 runs, showing significant improvement on the Coarse
PF, are recorded in table 2. Future work will focus on less intrusive alterations to
the Emu-PF design.

4.5. Experiment 3: Accurate, sparse observations. We preserve σo = 0.5 but
reduce to m = 4 observations. One drawback to the Γ > 0 Emu-PF that we have

20 JOHN MACLEAN AND ELAINE T. SPILLER

RMSE (θ) Var (θ) RMSE (x) Var (x) Resampling
Fine PF 0.074 0.0043 0.7 0.61 173

Coarse PF 0.49 0.0016 4.9 0.13 312
EnKF 0.065 0.0027 0.78 0.66 -

Emu-PF (Γ = −1) 0.38 0.00085 3.8 6.1 526
Emu-PF (PCA) 0.27 0.00051 3.1 0.58 339

Table 2. Summary statistics for twenty repetitions of experiment
Two.

RMSE (θ) Var (θ) RMSE (x) Var (x) Resampling
Fine PF 0.062 0.0032 0.28 0.13 243

Coarse PF 1 0.0012 3.4 0.11 739
EnKF 0.045 0.0017 0.25 0.1 -

Emu-PF (Γ = −1) 0.15 0.00034 2.4 5.1 590
Emu-PF (PCA) 0.084 0.00075 1.5 0.085 334

Table 3. Summary statistics for twenty repetitions of experiment
Three.

observed is that it can be unstable if the filtering problem is slightly too hard; we
infer that the emulator is given insufficient training data for the strongly localized
input variables. Figure 8 shows the Γ = 1 Emu-PF performs significantly worse than
the, technically inferior, Emu-PF with Γ = −1. In this case again the Emu-PF em-
ploying both PCA and PPE significantly improves on the Coarse PF performance.
Localising strategies like the Γ = 1 approach are critical in many modern DA appli-
cations. The results of Experiment Four demonstrate that the localization strategy
we have adopted is insufficient for more difficult filtering problems. We plan for
future work to combine such localization strategies with the dimension reduction
strategy of section 3.4.

4.6. Experiment 4: State estimation. Supposing the model parameters are
known and fixed, we now showcase the localization strategy of section 3.2, the
sliced Emu-PF with Γ = 1. We fix θ = (0, 1)T in all methods, so that the filtering
problem is the standard Lorenz-96 model with F = 8, and test DA schemes that
estimate the state variables. In this state estimation experiment we assimilate
every second variable with m = 4 and standard accuracy σ0 = 1, at each of 10, 000
observation times. Implementation for two algorithms differs in this experiment: the
EnKF employs multiplicative inflation of 1.1 (tuned to minimize RMSE) and the PF
algorithms jitter particles with white noise of variance 0.01 after each resampling
step2. The Emu-PF with Γ = 1 and the Emu-PF employing PCA (not plotted)
both attained similar error values to the coarse PF3. Results in fig. 9 and table 4
show the sliced Emu-PF outperform the EnKF and attain performance almost on
par with the fine PF.

2this step is necessary here because the model is deterministic; if not jittered, the PF ensemble
will collapse and all particles will be identical. Jittering is not strictly necessary for the PF in
previous experiments because the parameter model is stochastic, and is not needed for the Emu-PF

anywhere because the emulator already translates model uncertainty into noise.
3additionally, the Emu-PF with PCA halted due to an error with the PPE code.

A SURROGATE APPROACH TO NON-GAUSSIAN DA 21

Figure 8. Error statistics for Experiment Three, m = 4 obser-
vations at each observation time, of accuracy σ0 = 0.5. In this
case the Γ = 1 Emu-PF performs only as well as the coarse PF.
However the Emu-PF employing PCA is still competitive with the,
much more expensive, fine PF.

RMSE (x) Var (x) Resampling
Fine PF 0.47 0.15 1706

Coarse PF 5.1 0.16 9917
EnKF 1 0.096 -

Emu-PF (Localized) 0.83 0.31 3566

Table 4. Summary statistics for Experiment Four.

4.7. Experiment 5: High dimensional, non-Gaussian joint state-para-
meter estimation. We test the emulator-PFs in the 40-dimensional Lorenz-96
system with forcing given by eq. (15). We employ the Optimal Proposal PF (OP-
PF) in all Particle Filters: a variation on the Particle Filter in which the particles are
nudged in the direction of observations. The OP-PF is well described in [8, 32, 31]
and employed in a similar context for state estimation in [20].

In addition to employing the OP-PF for all PF algorithms, we modify the Emu-
PF as well. All Emu-PF variants train the emulator on the proposal of the OP-PF,

22 JOHN MACLEAN AND ELAINE T. SPILLER

Figure 9. Summary statistics for Experiment Four, long-time
state estimation with m = 4 observations of accuracy σo = 1.
The median RMSE for EnKF and fine PF are similar; however the
EnKF error occasionally spikes. The sliced Emu-PF of section 3.2
is stable, with no large error spikes, and performs close to the fine
PF in accuracy.

and employ the weight update appropriate for OP-PF. If the emulator samples
converge to the prior distribution as the amount of training data increases, then the
Emu-PF will converge to an OP-PF.

We choose challenging experimental parameters: observations of every second
variable, m = 20, corrupted with measurement errors σo = 0.5. We introduce a
model error/noise term: at each observation time the truth, and model forecasts,
are altered by additive Gaussian noise with standard deviation 1 in each component.

For this difficult filtering problem, the Fine and Coarse OP-PFs do not produce
significantly different error statistics (see table 5). However the Emu-PF is promis-
ing: the ‘standard’ variant with Γ = −1 estimates model parameters more than
twice as well as any standard method, and the localised variant with Γ = 2 also
estimates parameters well while estimating the state about as well as the Particle
Filters.

Let us focus on the performance of two filters: the Fine OP-PF and the best-
performing filter, the Emu-PF with Γ = 2. The evolution over time of the RMSE
in parameters and states for each of the 20 applications of these filters is shown
in fig. 10. The localised Emu-PF clearly improves over the Fine PF—despite the
Emu-PF only aiming to mimic the Fine PF at lower computational cost!

5. Discussion and future directions. In this work, we present a straight-for-
ward utilization of statistical emulators within sequential data assimilation. We use
random function models, specifically Gaussian process emulators (GPs), to learn
the mapping from state and/or parameter values at one observation instance to the
next. This model-learning technique pairs well with particle filters that typically
require 103 − 105 forward model runs to assimilate each observation in time. The
gist of our methodology is that a GP provides interpolation between model forecasts
– thought of as functions of the parameter and/or previous state values at a fixed
time – and may be used to produce additional forecasts, and thus provide a cheap
means to improve PF performance. Further, statistical emulators provide a built-in

A SURROGATE APPROACH TO NON-GAUSSIAN DA 23

Figure 10. RMSE against time for Experiment Five: dashed red
lines plot the Fine PF (formulated under the Optimal Proposal),
and solid blue lines plot the best-performing Emu-PF according to
table 5. There is a clear improvement in skill in parameter esti-
mation. State estimates are similar in skill (and, importantly, do
possess some skill: the state RMSE is well below 5, the approximate
long-term or climatic mean RMSE of forecasting with no DA).

RMSE (θ) Var (θ) RMSE (x) Var (x) Resampling
Fine OP-PF 1.2 0.0075 1.9 3.3 226

Coarse OP-PF 1.2 0.004 2.0 2.8 205
EnKF 1.1 0.00042 1.5 1.8 -

Emu-PF (Γ = −1) 0.5 0.0017 2.6 3.5 243
Emu-PF (Γ = +2) 0.75 0.0035 2.0 3.7 232
Emu-PF (PCA) 1.1 0.061 2.0 2.8 238

Table 5. Summary statistics for twenty repetitions of experiment
Five.

24 JOHN MACLEAN AND ELAINE T. SPILLER

estimate of model performance in terms of the predictive variance of the Gaussian
process. In our suite of simulation studies, we find that GP emulator-based particle
filters with 100 model runs outperform particle filters with the same modest run
budget and in some experiments nearly meet the performance levels of perform on
par or better when compared to a 104 particle “gold-standard” particle filter.

We explore several variations of the basic emu-PF algorithm, both to improve
performance and to test various approaches to dimension reduction within the em-
ulator. We introduce these various adaptions to mimic two salient flavors of di-
mension reduction on inputs to the dynamic forward mapping—namely two forms
of localized dimension reduction, and a strategy for global dimension reduction.
Localization is a widely-used and effective tool in DA to eliminate the impacts of
long-range correlations on estimations and forecasts. The two approaches may be
combined in future implementations of Emu-PF: one can imagine utilizing “global”
dimension reduction tools within the localization domain of a gridded model. We
further utilize the parallel partial emulator in a variation of the Emu-PF appropri-
ate for functional or vector-valued model output. These variations on the Emu-PF,
while promising, are not agnostic to the choice of model or observing system. For
example, dimension reduction through PCA is inappropriate in turbulent systems,
in which there is no clear scale separation to exploit. The choice of dimension
reduction should be informed by the dynamical properties of the forward mapping.

Simulation experiments were performed on an 8-member and a 40-member Lorenz-
96 system. We begin by considering a parameterized forcing that induces a bi-modal
posterior distribution in parameter space. The emu-PF is able to obtain well-
resolved bi-modal posteriors in parameter space with only 100 forward-model runs.
We then consider a series of assimilation experiments that present an increased
challenge as we lower the dimension of the observational space. We conclude that
the success of the computationally cheap emu-PF with various forms of localization
bodes well for this tool to be explored more widely.

A very strong asset of this methodology is that it can readily be combined with
other modern advances in sequential data assimilation. For example, we combined
the Optimal Proposal PF [31] in conjunction with emulators to improve on the exist-
ing performance of Particle Filters on the 40-dimensional Lorenz-96 model. Further,
the approach could be combined with a Localized PF [24]. In this case, we envision
a dimension reduction for the emulator based on the support of the localization(s)
utilized within the Localized PF. The emulator-based particle filter also has the
potential to work nicely with the Equal Weight PF [33]. One can re-express the
equivalent weights problem readily on the probability density functions obtained
with emulators. Then one could sample from the resulting distribution. These
advanced PF techniques devise approaches to overcome the challenge of search-
ing large sample spaces; our contribution is effectively to accelerate the sampling
procedure, so that more samples can be taken.

A challenging future research direction is to include multi-scale modes in the
posterior, particularly in combination with high dimensional systems.

REFERENCES

[1] M. J. Bayarri, J. O. Berger, J. Cafeo, G. Garcia-Donato and F. Liu, et al., Computer model

validation with functional output, Ann. Statist., 35 (2007), 1874–1906.

[2] J. Betancourt, F. Bachoc, T. Klein, D. Idier, R. Pedreros and J. Rohmer, Gaussian pro-
cess metamodeling of functional-input code for coastal flood hazard assessment, Reliability

Engineering & System Safety, 198 (2020).

http://www.ams.org/mathscinet-getitem?mr=MR2363956&return=pdf
http://dx.doi.org/10.1214/009053607000000163
http://dx.doi.org/10.1214/009053607000000163
http://dx.doi.org/10.1016/j.ress.2020.106870
http://dx.doi.org/10.1016/j.ress.2020.106870

A SURROGATE APPROACH TO NON-GAUSSIAN DA 25

[3] M. Bocquet, J. Brajard, A. Carrassi and L. Bertino, Bayesian inference of chaotic dynamics
by merging data assimilation, machine learning and expectation-maximization, Foundations

of Data Science, 2 (2020), 55–80.

[4] J. Brajard, A. Carassi, M. Bocquet and L. Bertino, Combining data assimilation and machine
learning to emulate a dynamical model from sparse and noisy observations: A case study with

the Lorenz 96 model, J. Comput. Sci., 44 (2020), 11pp.
[5] A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences:

An overview of methods, issues, and perspectives, Wiley Interdisciplinary Reviews: Climate

Change, 9 (2018).
[6] E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider and A. M. Stuart, Calibrate, emulate,

sample, J. Comput. Phys., 424 (2021), 20pp.

[7] D. Crisan and K. Li, Generalised particle filters with Gaussian mixtures, Stochastic Process.
Appl., 125 (2015), 2643–2673.

[8] A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice, Sta-

tistics for Engineering and Information Science, Springer-Verlag, New York, 2001.
[9] G. Evensen, Data Assimilation. The Ensemble Kalman Filter , Springer-Verlag, Berlin, 2009.

[10] G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementa-

tion, Ocean Dynamics, 53 (2003), 343–367.
[11] G. A. Gottwald and S. Reich, Supervised learning from noisy observations: Combining

machine-learning techniques with data assimilation, Phys. D , 423 (2021), 15pp.
[12] M. Gu and J. O. Berger, Parallel partial Gaussian process emulation for computer models

with massive output, Ann. Appl. Stat., 10 (2016), 1317–1347.

[13] M. Gu, J. Palomo and J. O. Berger, RobustGaSP: Robust Gaussian Stochastic Process Em-
ulation in R, The R Journal , 11 (2019), 112–136.

[14] M. E. Johnson, L. M. Moore and D. Ylvisaker, Minimax and maximin distance designs, J.

Statist. Plann. Inference, 26 (1990), 131–148.
[15] K. Law, A. Stuart and K. Zygalakis, Data Assimilation. A Mathematical Introduction, Texts

in Applied Mathematics, 62, Springer, Cham, 2015.

[16] J. Liu and M. West, Combined parameter and state estimation in simulation-based filtering,
in Sequential Monte Carlo Methods in Practice, Stat. Eng. Inf. Sci., Springer, New York,

2001, 197–223.

[17] J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynamic systems, J. Amer.
Statist. Assoc., 93 (1998), 1032–1044.

[18] X. Liu and S. Guillas, Dimension reduction for Gaussian process emulation: An application
to the influence of bathymetry on tsunami heights, SIAM/ASA J. Uncertain. Quantif., 5

(2017), 787–812.

[19] E. N. Lorenz, Predictability - A problem partly solved, in Proceedings of Seminar on Pre-
dictability, Cambridge University Press, Reading, UK, 1996, 1–18.

[20] J. Maclean and E. S. V. Vleck, Particle filters for data assimilation based on reduced-order
data models, Q. J. Roy. Meteor. Soc., 147 (2021), 1892–1907.

[21] M. Morzfeld and D. Hodyss, Gaussian approximations in filters and smoothers for data as-

similation, Tellus A, 71 (2019).

[22] S. Nakano, G. Ueno and T. Higuchi, Merging particle filter for sequential data assimilation,
Nonlin. Processes Geophys., 14 (2007), 395–408.

[23] D. Orrell and L. A. Smith, Visualizing bifurcations in high dimensional systems: The spectral
bifurcation diagram, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 3015–3027.

[24] J. Poterjoy, A localized particle filter for high-dimensional nonlinear systems, Monthly

Weather Review , 144 (2016), 59–76.

[25] R. Potthast, A. Walter and A. Rhodin, A localized adaptive particle filter within an opera-
tional NWP framework, Monthly Weather Review , 147 (2019), 345–362.

[26] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adaptative
Computation and Machine Learning, MIT Press, Cambridge, MA, 2006. Available from:

http://www.gaussianprocess.org/gpml/chapters.

[27] S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge
University Press, New York, 2015.

[28] J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn, Design and analysis of computer

experiments, Statist. Sci., 4 (1989), 409–423.
[29] N. Santitissadeekorn and C. Jones, Two-stage filtering for joint state-parameter estimation,

Monthly Weather Review , 143 (2015), 2028–2042.

http://dx.doi.org/10.3934/fods.2020004
http://dx.doi.org/10.3934/fods.2020004
http://www.ams.org/mathscinet-getitem?mr=MR4117875&return=pdf
http://dx.doi.org/10.1016/j.jocs.2020.101171
http://dx.doi.org/10.1016/j.jocs.2020.101171
http://dx.doi.org/10.1016/j.jocs.2020.101171
http://dx.doi.org/10.1002/wcc.535
http://dx.doi.org/10.1002/wcc.535
http://www.ams.org/mathscinet-getitem?mr=MR4156948&return=pdf
http://dx.doi.org/10.1016/j.jcp.2020.109716
http://dx.doi.org/10.1016/j.jcp.2020.109716
http://www.ams.org/mathscinet-getitem?mr=MR3332850&return=pdf
http://dx.doi.org/10.1016/j.spa.2015.01.008
http://www.ams.org/mathscinet-getitem?mr=MR1847783&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3437-9
http://www.ams.org/mathscinet-getitem?mr=MR2555209&return=pdf
http://dx.doi.org/10.1007/978-3-642-03711-5
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1007/s10236-003-0036-9
http://www.ams.org/mathscinet-getitem?mr=MR4249157&return=pdf
http://dx.doi.org/10.1016/j.physd.2021.132911
http://dx.doi.org/10.1016/j.physd.2021.132911
http://www.ams.org/mathscinet-getitem?mr=MR3553226&return=pdf
http://dx.doi.org/10.1214/16-AOAS934
http://dx.doi.org/10.1214/16-AOAS934
http://dx.doi.org/10.32614/RJ-2019-011
http://dx.doi.org/10.32614/RJ-2019-011
http://www.ams.org/mathscinet-getitem?mr=MR1079258&return=pdf
http://dx.doi.org/10.1016/0378-3758(90)90122-B
http://www.ams.org/mathscinet-getitem?mr=MR3363508&return=pdf
http://dx.doi.org/10.1007/978-3-319-20325-6
http://www.ams.org/mathscinet-getitem?mr=MR1847793&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3437-9_10
http://www.ams.org/mathscinet-getitem?mr=MR1649198&return=pdf
http://dx.doi.org/10.1080/01621459.1998.10473765
http://www.ams.org/mathscinet-getitem?mr=MR3686816&return=pdf
http://dx.doi.org/10.1137/16M1090648
http://dx.doi.org/10.1137/16M1090648
http://dx.doi.org/10.1017/CBO9780511617652.004
http://dx.doi.org/10.1002/qj.4001
http://dx.doi.org/10.1002/qj.4001
http://dx.doi.org/10.1080/16000870.2019.1600344
http://dx.doi.org/10.1080/16000870.2019.1600344
http://dx.doi.org/10.5194/npg-14-395-2007
http://www.ams.org/mathscinet-getitem?mr=MR2020994&return=pdf
http://dx.doi.org/10.1142/S0218127403008387
http://dx.doi.org/10.1142/S0218127403008387
http://dx.doi.org/10.1175/MWR-D-15-0163.1
http://dx.doi.org/10.1175/MWR-D-18-0028.1
http://dx.doi.org/10.1175/MWR-D-18-0028.1
http://www.ams.org/mathscinet-getitem?mr=MR2514435&return=pdf
http://www.gaussianprocess.org/gpml/chapters
http://www.ams.org/mathscinet-getitem?mr=MR3242790&return=pdf
http://dx.doi.org/10.1017/CBO9781107706804
http://www.ams.org/mathscinet-getitem?mr=MR1041765&return=pdf
http://dx.doi.org/10.1214/ss/1177012413
http://dx.doi.org/10.1214/ss/1177012413
http://dx.doi.org/10.1175/MWR-D-14-00176.1

26 JOHN MACLEAN AND ELAINE T. SPILLER

[30] T. J. Santner, B. J. Williams and W. I. Notz, The Design and Analysis of Computer Exper-
iments, Springer Series in Statistics, Springer, New York, 2018.

[31] C. Snyder, Particle filters, the “optimal” proposal and high-dimensional systems, in Pro-

ceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean,
2011, 1–10. Available from: https://www.ecmwf.int/sites/default/files/elibrary/2012/

12354-particle-filters-optimal-proposal-and-high-dimensional-systems.pdf.
[32] C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, Obstacles to high-dimensional particle

filtering, Monthly Weather Review , 136 (2008), 4629–4640.

[33] P. J. van Leeuwen, Nonlinear data assimilation in geosciences: An extremely efficient particle
filter, Q. J. Roy. Meteor. Soc., 136 (2010), 1991–1999.

[34] P. J. van Leeuwen, H. R. Künsch, L. Nerger, R. Potthast and S. Reich, Particle filters for

high-dimensional geoscience applications: A review, Q. J. Roy. Meteor. Soc., 145 (2019),
2335–2365.

[35] W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell and M. D. Morris, Screening,

predicting, and computer experiments, Technometrics, 34 (1992), 15–25.

Received October 2020; revised June 2021; early access August 2021.

E-mail address: john.maclean@adelaide.edu.au

E-mail address: elaine.spiller@marquette.edu

http://www.ams.org/mathscinet-getitem?mr=MR3887662&return=pdf
http://dx.doi.org/10.1007/978-1-4939-8847-1
http://dx.doi.org/10.1007/978-1-4939-8847-1
https://www.ecmwf.int/sites/default/files/elibrary/2012/12354-particle-filters-optimal-proposal-and-high-dimensional-systems.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2012/12354-particle-filters-optimal-proposal-and-high-dimensional-systems.pdf
http://dx.doi.org/10.1175/2008MWR2529.1
http://dx.doi.org/10.1175/2008MWR2529.1
http://dx.doi.org/10.1002/qj.699
http://dx.doi.org/10.1002/qj.699
http://dx.doi.org/10.1002/qj.3551
http://dx.doi.org/10.1002/qj.3551
http://dx.doi.org/10.2307/1269548
http://dx.doi.org/10.2307/1269548
mailto:john.maclean@adelaide.edu.au
mailto:elaine.spiller@marquette.edu

	1. Introduction/motivation
	2. Background
	2.1. Sequential data assimilation
	2.2. Gaussian process emulators
	2.3. A pedagogical example

	3. Methodology
	3.1. The Emulator Particle Filter: Emu-PF
	3.2. Variant: Include only some state values in the emulator input
	3.3. Variant: Compute emulator outputs in parallel with ppgasp
	3.4. Variant: Perform a global dimension reduction before using emulator inputs
	3.5. Variation: Localize the emulator by ``slicing and stacking'' the emulator inputs

	4. Numerical experiments and results
	4.1. Implementation details
	4.2. Experiment details
	4.3. Experiment 1
	4.4. Experiment 2: Sparse observations
	4.5. Experiment 3: Accurate, sparse observations
	4.6. Experiment 4: State estimation
	4.7. Experiment 5: High dimensional, non-Gaussian joint state-para-meter estimation

	5. Discussion and future directions
	REFERENCES

