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Abstract: Mapping invasive vegetation species in arid regions is a critical task for managing water
resources and understanding threats to ecosystem services. Traditional remote sensing platforms,
such as Landsat and MODIS, are ill-suited for distinguishing native and non-native vegetation species
in arid regions due to their large pixels compared to plant sizes. Unmanned aircraft systems, or UAS,
offer the potential to capture the high spatial resolution imagery needed to differentiate species.
However, in order to extract the most benefits from these platforms, there is a need to develop more
efficient and effective workflows. This paper presents an integrated spectral-structural workflow for
classifying invasive vegetation species in the Lower Salt River region of Arizona, which has been
the site of fires and flooding, leading to a proliferation of invasive vegetation species. Visible (RGB)
and multispectral images were captured and processed following a typical structure from motion
workflow, and the derived datasets were used as inputs in two machine learning classifications—one
incorporating only spectral information and one utilizing both spectral data and structural layers
(e.g., digital terrain model (DTM) and canopy height model (CHM)). Results show that including
structural layers in the classification improved overall accuracy from 80% to 93% compared to the
spectral-only model. The most important features for classification were the CHM and DTM, with the
blue band and two spectral indices (normalized difference water index (NDWI) and normalized
difference salinity index (NDSI)) contributing important spectral information to both models.

Keywords: UAV; vegetation mapping; machine learning; random forest; species classification;
non-native species; flooding; hydrology

1. Introduction

Invasive species are a leading cause of biodiversity loss [1] and a threat to many
ecosystem services [2]. These species are also referred to as non-native, alien, or exotic,
and can cause harm to the environment by outcompeting native species for food and
other resources, causing direct impacts on resources and indirect impacts on the growth
and vitality of other native species [3]. In arid regions such as the American southwest,
controlling certain introduced and invasive species that threaten water resources has
become an issue of great concern during recent decades [4-6].

Accurately mapping species level vegetation is an essential step in managing invasion
risk [7], guiding remediation efforts and intervention strategies [8], monitoring outcomes
of management actions [9], and ultimately understanding what processes are facilitat-
ing growth or expansion [10]. These activities are particularly important for justifying
and sustaining public support of management programs [11], especially on public lands.
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However, mapping invasive vegetation at the species level using traditional platforms,
such as Landsat or MODIS, is difficult due to the coarse spatial resolution of the imagery
(i.e., 30-500 m). Many plant species are much smaller than a Landsat pixel, making dis-
crimination difficult [12]. A host of methods have been developed to spectrally unmix
signals from platforms such as Landsat [5,13], but these methods are unable to map the
spatial distribution of different species at the subpixel scale [14]. Imagery captured by un-
manned aircraft systems (UAS, or drones) at high spatial resolutions can support targeted
management efforts [15-17], but pipelines for capturing, processing, and analyzing these
data do not always leverage the full range of possible products, and they can be expensive
and time consuming, reducing their effectiveness [18].

Structural characteristics, such as canopy height and terrain, have generally been
omitted from remote sensing classification workflows, but they can provide key informa-
tion on hydrology and geomorphology. UAS provide the ability to capture images with
sufficient overlap to apply modern photogrammetric structure from motion (SfM; [19])
workflows to develop high resolution digital elevation and surface models [20]. Several
studies have begun integrating 3D structural layers derived from UAS images using an
SfM workflow with spectral orthomosaics in the classification process [21-24]. The benefits
of an integrated spectral-structural approach are that the spatial and spectral information
from the high resolution UAS images can be leveraged directly for species-level discrimi-
nation while also incorporating structural landscape characteristics that may not manifest
in spectral signatures but might impact the spatial distribution of species, such as the
geomorphology. Additionally, while spectral signatures may change throughout the year
based on phenology and environmental changes, structural characteristics will remain
more temporally stable and can thus potentially be used to predict which areas may be
prone to invasion, overcoming a limitation of a purely spectral approach.

This paper develops a spectral-structural workflow for mapping several invasive
species in an arid region that is prone to flooding. The workflow combines drone images
with SfM and a machine learning classification approach to map vegetation species. Drone
images were captured and processed into a spectral orthomosaic and structural models
including a digital terrain model (DTM) and canopy height model (CHM). The spectral
orthomosaic was then used to derive vegetation indices, while the DTM was used to derive
a hydrology-based flow accumulation model of the site. The spectral and structural data
layers were then used as inputs into a spectral-only and spectral-structural random forest
classification schemes to map vegetation species. The area of focus is the Lower Salt River
area in central Arizona in the Tonto National Forest, which has been the site of both fire
and flooding during recent years. The workflow described can be applied regionally or in
other similar environments to effectively monitor and manage restoration efforts.

2. Materials and Data
2.1. Study Area and Species of Concern

This study area (33°31'11” N; 111°40'14” W) is an approximately 76-hectare site
located about 10 km northeast of Mesa, Arizona (Figure 1) in the Tonto National Forest.
Climatically, the area is classified as desert [25] and receives 8.4 inches (213.36 mm) average
annual rainfall [26]. Water is the main limiting factor for vegetation growth, and river
floods and precipitation are the primary water sources. In the summertime, temperatures
often reach 43.3 °C (110°F) or more, but this area is generally 5-7 °C cooler than the
Phoenix metropolitan area [27]. The Salt River is the major hydrological feature in the
region (Figure 1), and there are several dams along its length that feed a system of canals
that supply the Phoenix metropolitan area with water. Despite being dammed at various
points, the river is subject to occasional flash floods, especially during monsoon storms in
late July and August. These floods provide opportunities for invasive vegetation species
to establish and proliferate. Some of the invasive vegetation in the area includes giant
reed (Arundo donax), stinknet/globe chamomile (Oncosiphon piluliferum), Sahara mustard
(Brassica tournefforti), saltcedar (Tamarix spp.), and southern cattail (Typha domingensis),
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while fremont cottonwood (Populus fremontii), arrow weed (Pluchea sericea), and velvet
mesquite (Prosopis velutina) are native. The region is also prone to wildfires, which can
exacerbate the effects of flooding on invasive species establishment.
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Figure 1. (a) Inset map of Arizona, located in the southeastern United States, with major hydrology
shown; (b) the study site along the Salt River in the Tonto National Forest, located northeast of
Phoenix. The area burned by the Cactus fire is outlined.

The two species of most concern to land managers are giant reed and saltcedar. Both
consume more water than and displace native species and obstruct and narrow water flow
channels [14,28]. Giant reed is an invasive grass common to riparian areas throughout
the southwestern United States. It is a common hydrophytic plant found along disturbed
and undisturbed streambanks, desert springs, flood plains, drainages, and irrigation
waterways [29-31]. It thrives in moist soils (moderately saline or freshwater), on sand
dunes, and in wetland or riparian areas. Saltcedar was introduced into the United States
in the mid-19th century as an ornamental shrub and to assist with bank erosion, but it
has since become a threat, particularly in southwestern riparian ecosystems [29,32]. Once
established, saltcedar is remarkably tolerant to environmental stresses including drought,
flood inundation, and high soil salinity [4,33]. Saltcedar is associated with the host of
negative impacts mentioned above as well as increasing soil salinity and lowering the
water table [4]. Saltcedar will outcompete native vegetation species for water, ultimately
replacing native stands with dense, impenetrable thickets. Dense saltcedar stands have also
been found to support lower biodiversity than the natural communities they replace [34].
It is widely acknowledged that saltcedar is replacing native vegetation species along major
rivers in the American southwest at an alarming rate [32,35].

2.2. Cactus Fire and Flooding Event

In 2017, the Cactus Fire ignited and burned 331 hectares in the Tonto National Forest
(Figure 1) along the Salt River [36], creating ideal conditions for colonization by invasive
species. Fire creates positive conditions for invasion [37] by eliminating existing native veg-
etation and promoting propagules, creating a negative feedback loop in the system [25,27].
Since invasive species are often better fire-adapted than the native species they replace [38],
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and the environment can lack the pathogens and insect enemies that might help to keep
these species in check in their home ranges [39], certain invasive species can flourish after
fire. As such, the invasion of many ecosystems by fire-adapted non-native plants is a threat
to conservation [39].

Recognizing the potential for negative outcomes to the ecosystem after the cactus fire,
Tonto National Forest personnel along with agencies such as the National Forest Foundation
and Northern Arizona University have been actively managing the site—known as the
Lower Salt River Restoration Project—to prevent the spread of species such as giant reed
and saltcedar and encourage regrowth of native species. These management activities have
included removing and/or treating invasive species through mechanical and chemical
means along with planting native species to prevent future colonization by invasive species.
However, land managers have been unable to assess the vegetation composition in many
parts of the river channel because the terrain is rough and the vegetation is dense. Without
first-hand knowledge of the distribution of vegetation in these areas, management activities
(e.g., mechanical removal of invasive species) cannot be planned or executed. UAS offer an
ideal tool to collect quality data from these inaccessible areas for ecosystem assessment.
The pilot study area covers portions of two of the 46 grids under restoration management
(Figure 2, grids A3 and A4).
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Figure 2. (a) The Lower Salt River Restoration Project divided into 46 grids showing the Cactus fire
perimeter, (b) the study area (black outline around A3 and A4) within the fire perimeter, and (c) aerial
imagery with different treatment boundaries overlain.
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2.3. Data Collection and Processing
2.3.1. Image Data Collection

Imagery was collected in two phases. During Phase 1, basic RGB digital imagery was
collected with a DJI Phantom 4 Pro (D]JI P4P) sensor (full details in Table A1). The purpose
of the Phase 1 RGB imagery was to develop SfM three-dimensional (3D) models of the
structural characteristics of the study area in order to analyze terrain elevation, vegetation
heights, and flow patterns (discussed below) for classifying invasive species. Phase 1 data
were collected on 3 March 2020 between 10:30 am and 12:45 pm local time. Image overlaps
(Table A2) are in line with recommendations and provide sufficient overlap to identify key
points for creating 3D point clouds for surface models [16]. During Phase 2, multispectral
imagery was captured for enhanced vegetation species identification using a DJI Phantom
4 Multispectral (DJI P4M), which has six sensors including blue (450 nm), green (560 nm),
red (650 nm), red edge (730 nm), and near-infrared (NIR; 840 nm) along with a visible light
(RGB) sensor. The DJI P4M also includes a sun irradiance sensor on top of the platform
for improved sensor calibration. Wavelengths are the band center with all bands being
£16 nm, except the NIR, which is £26 nm. Full details on flight parameters are included
in the Appendix A (Table A1l). Due to the different sensor specifications of the DJI P4AM
compared to the P4P (2 Megapixels vs. 20 megapixels, respectively), the Phase 2 data
collection required a lower flight altitude to reach a similar ground sampling distance.
Thus, five separate campaigns were needed to image the entire area, which were conducted
over consecutive days in early April 2020. Again, all flights were conducted between
10:00 am and 1:00 pm local time. Flights were designed to include considerable overlap
between the five sections. The images were processed in separate chunks and later stitched
together into a single mosaic.

Many drones are not equipped with sufficient on-board Global Navigation Satellite
System (GNSS) receivers to enable direct control of imagery through camera positions,
so ground control points (GCPs) are needed to improve georeferencing accuracy [40]. Prior
to image collection, 28 GCPs were placed throughout the study area following best practices
to ensure visibility [41]. The GCPs consisted of round, gray plastic discs, approximately
20 cm in diameter, with an orange knob in the center on which a Trimble Geo 7 Series
Premium Centimeter Kit RTK GPS unit was positioned to collect coordinates (Figure 3).
The GCPs were fixed to the ground with a stake, left in place between the flight campaigns,
and revisited prior to the second campaign to clear off any debris or obstructions. Images
were georeferenced using the coordinates of the GCPs combined with the internal geotags
and orientation parameters of the images. Radiometric corrections were applied during
image processing using built-in software functionality.

2.3.2. Ground Reference Vegetation Data Collection

Reference data for existing plant species were collected in the field on 28 June 2020.
These data were ultimately used to train and test the random forest classification (discussed
below). Data were collected using Collector for ArcGIS software and a Bad Elf GPS Receiver
to record the coordinates of field observations. Forty-eight reference points were collected
for eight different species. Data included information on the vegetation type, description,
and pictures so species could be verified by an expert if needed (Figure 4).
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Figure 3. (a) Distribution of the 28 ground control points (GCPs) throughout the study area; (b) RTK

GPS unit used to capture coordinates.
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Figure 4. Examples and locations of some of the ground reference data collected in the field for

training and testing the classification.
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3. Methods

The integrated spectral-structural workflow for mapping invasive species involved
three stages, which are detailed below. In the first stage, the Phase 1 P4P drone images were
processed using SfM [19] to generate a series of structural data products including a digital
terrain model (DTM), digital surface model (DSM), and a canopy height model (CHM,;
the difference between the DTM and DSM). The Phase 2 P4M images were processed using
SfM into a multiband orthomosaic. During the second stage, these data products were
used as inputs to derive vegetation indices (from the orthomosaic) and a hydrological
flow accumulation raster (from the DTM). In the third stage, the original and derived data
products were integrated into two separate machine learning random forest classifications
to map vegetation. Full details are provided below.

3.1. Image Data Processing

The images from both Phase 1 and Phase 2 were processed using Pix4Dmapper v. 4.5.6.
The Phase 1 dataset was used to produce the 3D models (Figure 5) while the Phase 2 dataset,
captured using the multispectral sensor, was used to create an orthomosaic and vegeta-
tion indices. Additional processing details are provided in the Appendix A (Table AT).
The same 28 GCPs were incorporated into both image sets to improve georeferencing
accuracy. The point cloud from Phase 1 was also used to orthorectify the Phase 2 data to
improve geolocation compatibility between the two layers [41]. Both the orthomosaic and
elevation product were coregistered to an output coordinate system of NAD83/UTM Zone
12 N and underwent positional checks to ensure coincidence. The DEM had a nominal
resolution of 3.28 cm/pixel while the orthomosaic had a nominal resolution of 3.9 cm/pixel.
Both layers were resampled to 0.16 m, which accounted for any minor geolocation er-
rors between the two layers while also remaining at a high enough resolution to permit
differentiation of the vegetation species.

3.1.1. Vegetation Indices

Using the multispectral orthomosaic, we computed a set of vegetation indices to
aid species discrimination during classification. The most commonly used vegetation
index is the Normalized Difference Vegetation Index (NDVI), which highlights vegetation
vigor, or “greenness” [42], but NDVI alone is not sufficient to discriminate species in the
study area. We therefore computed five additional indices (Table 1) commonly used to
discriminate vegetation, especially in arid regions [43] (Table 1). The Normalized Difference
Water Index (NDWI) is sensitive to changes in plant water content [42]. The Normalized
Difference Salinity Index (NDSI) highlights soil salinity levels [44,45], which can aid in
identifying saltcedar since these plants excrete salt through their leaves, which then drop
to the ground and salinate the soil. The Soil Adjusted Vegetation Index (SAVI) is similar to
NDVI but performs better in areas with sparse vegetation coverage. A high NDSI value
with low NDVI or low SAVI value indicates higher soil salinity with less greenness, which
should help distinguish saltcedar from the other vegetation [45]. The Two Band Enhanced
Vegetation Index (EVI-2) indicates plant vigor [46], while the Green Normalized Difference
Vegetation Index (GNDVI) has been successful at differentiating varying plant greenness
levels [47]. Indices were computed in ArcGIS Pro v 2.7.
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Table 1. Vegetation indices computed for plant species classification.

Index Equation
Normalized Difference Vegetation Index (NDVTI) %
Normalized Difference Water Index (NDWI) %ﬁ&lfﬁ
Soil Adjusted Vegetation Index (SAVI) * (% (1+1L)
Normalized Difference Salinity Index (NDSI) %
Two Band Enhanced Vegetation Index (EVI-2) 2.5 N IRI\EZ %g&% )
Green Normalized Difference Vegetation Index (GNDVI) %%;g R EE%

* L was set to 0.5 following [48].

3.1.2. Hydrological Flow Accumulation

The DTM was used to create a raster representing hydrological flow accumulation
throughout the study area, since flow accumulation can serve as a proxy for drainage
patterns [49,50]. Water accumulation and drainage are known to contribute to invasive
species establishment in the study area. Using the method of Garbrecht and Martz [51],

we computed flow accumulation from the DTM as the accumulated weight of all cells

flowing into each downslope cell in the output raster. Cells with a high flow accumulation
can signal stream channels or other areas where water may persist after a flood. The flow
accumulation analysis was conducted in ArcGIS Pro v. 2.7.

3.2. Image Classification

Advances in high performance computing have created an opportunity to speed
up processing pipelines for semiautomated image classifiers, which are vital for natural
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resource monitoring [52]. Machine learning offers a means to integrate spectral and
structural components into land cover classification, and random forest classification [53,54]
in particular has been demonstrated to produce accurate classifications of multisource
remote sensing data in land cover studies [11,55-57]. The advantage of the random forest
machine learning approach to classification is its versatility along with its ability to assign
relative importance rankings to the various input features, allowing users to understand
which components (spectral or structural) are contributing most to the prediction.

Pixel-based classification using random forest (RF; [54]) was determined to be most
appropriate for the study area based on the size and characteristics of the vegetation species
present [58]. RF is a supervised classification technique that can identify learned charac-
teristics in unclassified data [58] and is more robust than unsupervised approaches [59].
RF uses decision trees to vote on the most likely class for each pixel. A single decision tree
is a weak learner, but many decision trees together will ensemble a strong learner. The 11
spectral and three structural layers discussed above were included in two separate classifi-
cation schemes (Table 2). During the first run, only the 11 spectral layers were included
in the RF classification. In the second run, the three structural layers (DTM, CHM, flow
accumulation) were added to the complete set of spectral layers (14 total) to understand
how the integration of structural information improves classification accuracy.

Table 2. List of layers included in the random forest classification.

Layer Number Scheme Number Layer Name
1 1,2 Red band (RED)
2 1,2 Green band (GREEN)
3 1,2 Blue band (BLUE)
4 1,2 Red Edge band (RE)
5 1,2 Near Infrared band (NIR)
6 1,2 Two Band Enhanced Vegetation Index (EVI-2)
7 19 Green Normalized Difference Vegetation Index
! (GNDVI)
8 1,2 Normalized Difference Salinity Index (NDSI)
9 1,2 Normalized Difference Vegetation Index (NDVI)
10 1,2 Normalized Difference Water Index (NDWI)
11 1,2 Soil-Adjusted Vegetation Index (SAVI)
12 2 Canopy Height Model (CHM)
13 2 Digital Terrain Model (DTM)
14 2 Flow Accumulation (FLOW)

We classified the orthomosaic into 11 classes including the eight vegetation species
(listed in Section 2.1) plus bare soil, water, and roads. Polygons of ground reference data
were digitized based on the reference locations of the vegetation collected in the field. Since
the pixel sizes of the orthomosaic are small (0.16 m), and the spatial precision of the GPS
unit used to map reference species in the field was greater than the size of pixels, the use
of polygons is preferred over points to capture the variation in reflectance from a single
species. Manually digitized polygons of bare soil, water, and roads were identified from
the orthomosaic (Figure 6). The RF algorithm was implemented using Python 3.7 language,
Scikit-Learn 0.23.1 package, GDAL python 3.1.2 API, and Numpy 1.19.0 packages. All of
the layers for each scheme (Table 2) were stacked into a single raster. The code was run
in PyCharm Integrated Development Environment (IDE) 2019.3.1 Version. The reference
samples were split into 70% for training and 30% for testing with a bootstrap method (with
replacement) for sampling. The RF classifier was parameterized with 200 trees, a minimum
leaf size of one, and no maximum tree depth. Node splitting utilized the gini criterion with
a minimum of 2 samples (no maximum) for splitting. Classification accuracy was assessed
using overall accuracy (%) and user’s and producer’s accuracy.
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Figure 6. (a) Inset map showing the focus area of interest; (b) polygons of the training and validation
samples digitized based on field reference data.

4. Results
4.1. Image Products

The DEM derived from the Phase 1 images had a root mean square (RMS) error of
0.056 m while the multispectral orthomosaic derived from the Phase 2 images had an
RMS error of 0.046 m. Coregistration error was less than 1 cm. Ground eleva-tion (DTM;
Figure 7a) in the study area ranged from 319 to 390 m, with lower eleva-tions around the
eastern and western edges and higher elevations in the north and central portions of the
study area (Figure 7a). Vegetation canopy heights (CHM) ranged from 0 to 6.80 m with
the highest heights located along the eastern edge as well as in the central and southern
portions of the study area, generally corresponding to areas of higher elevation (Figure 7b).
Flow accumulation, derived from the DTM, ranged from 0 to 3.72 ha. Flow direction in
the study area is from north to south. Ac-cumulation generally followed the elevation
profile with high accumulation in lower elevation areas corresponding to the primary river
channel, which runs along the western edge of the study area. Greater accumulation was
also found in areas to the southwest (Figure 7c). Areas with lower accumulation were
located in the central part of the study area where elevations are higher.

The vegetation indices show heterogeneous value distributions across the study area
(Figure 8). NDVI (Figure 8a) ranged [—-0.92, 0.93], with the highest values being adjacent
to the river channel on the west and also in the area of high elevation in the center of the
study area. NDWI (Figure 8b) ranged [—0.91, 0.93], with wetter areas surrounding the
high elevation area in the center of the study area. SAVI (Figure 8c) ranged [—1.39, 1.39],
with values highly correlated with NDVI. NDSI (Figure 8d) ranged [—0.93, 0.927], with
higher salinity areas corresponding to lower elevations. EVI-2 was also similar to NDVI
but showed more contrast amongst the vegetated areas. GNDVI also followed the patterns
of NDVI, SAVI, and EVI-2, but with less contrast.
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Figure 7. The three structural layers including (a) Digital terrain model (DTM), (b) canopy height model (CHM), and (c)

flow accumulation.

4.2. Classification Results

The spectral-only model, which included the 11 spectral layers only, had an over-
all accuracy of 80%. Producer and user accuracies for each class are provided in the
Appendix A (Table A2). The most important layers for classifying vegetation were the
BLUE band along with two spectral indices, NDWI and NDSI (Figure 9). NDVI and the
related GNDVI were found to be only moderately important along with the NIR band. The
remaining spectral bands (RE, RED, and GREEN) and the remaining indices (SAVI, EVI-2)
only marginally contributed to the classification results.

The integrated spectral-structural model, which included all 14 layers, had an overall
accuracy of 93%. Producer and user accuracies for each class and model are provided in the
Appendix A (Table A2). In contrast to the spectral-only model, two structural layers, CHM
and DTM, were the most important features for classification (Figure 10). Additionally;,
there was a sharp decline in feature importance scores after these two structural layers, with
NDSI, NDWI, and the BLUE band remaining important predictors but with lower scores
than they had in the spectral-only model. The remaining spectral layers were ranked in a
similar order as they were in the spectral-only model, with the GREEN, RED, and RE bands
having low feature importance scores. The flow accumulation variable (FLOW), the third
structural variable included in the model, had a very low feature importance score.

Classification results for the spectral-structural model show large areas of saltcedar
and giant reed—the two main species of concern—along the southern portion of the study
area (Figure 11). Based on the confusion matrix for the spectral-structural model (Table A3),
saltcedar was most often confused with cattail and giant reed. These three species were
mapped in close proximity to each other in the southern part of the study area. Cattail,
arrow weed, and giant reed were the most prolific species in the area, followed by mesquite
and saltcedar. There is a clear pattern between the classification results and the structural
(DTM, CHM; Figure 7) results, where the species-level classification closely follows the
elevation and canopy height gradients from the terrain model. It should be noted that
validation samples were captured primarily in the southern portions of the study area,
so accuracies may be greater in those regions.
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(b) NDWI (c) SAVI

(e) EVI

Figure 8. (a) Normalized Difference Vegetation Index (NDVI), (b) Normalized Difference Water Index (NDWI), (c) Soil
Adjusted Vegetation Index (SAVI), (d) Normalized Difference Salinity Index (NDSI), (e) Two Band Enhanced Vegetation
Index (EVI-2), and (f) Green Normalized Difference Vegetation Index (GNDVI). Lighter shades are higher values, darker
shades are lower values.
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Figure 9. Feature importance from the spectral-only classification using the 11 spectral features (5 spectral bands plus six
spectral indices) in the classification model.
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Figure 10. Random forest feature importance scores for the integrated model with the entire suite of 14 spectral and
structural variables.
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Figure 11. (a) Classification results with areas for mechanical and chemical treatment of giant reed overlaid, and (b)
comparison of the area mapped for each class with areas (in hectares) following each bar.

5. Discussion

Past studies using UAS for terrestrial investigations have tended to focus either on the
development of 3D models (i.e., DTM, DSM, etc.) for terrain, geomorphic, or other similar
analyses, or they have focused on the development of accurate, high spatial resolution
multispectral orthomosaics for creating classifications. However, structural information
from the 3D models also has value for classification, particularly vegetation discrimina-
tion. In this study, we compared a spectral-only model, which included only spectral
layers, to a spectral-structural model that included both spectral and elevation layers
to differentiate invasive species in an arid study region prone to fire and flooding. The
spectral-structural model outperformed the spectral-only model, with overall accuracy
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increasing to 93% compared to 80% for the spectral-only model. The vegetation in the
study area, particularly non-native species, is known for opportunistically establishing and
spreading after flood events. Since flooding and water flow patterns are closely related
to the terrain elevation, the importance of elevation uncovered in the classification here
is not unexpected. However, the degree to which the accuracy of the classification model
improved with the incorporation of the DTM and CHM structural layers suggests they
may be more important than previously considered, particularly for classifying invasive
vegetation in the study area.

The CHM and DTM combined to account for more than 30% of the variable importance
in the spectral-structural model (Figure 10). According to the SEINet data Portal for
southwestern biodiversity, there is considerable variation in the height of the vegetation
species in the study area (Table 3) [60], which may explain why the CHM layer was highly
important in the combined spectral-structural model. In short, vegetation species in
the region may be more differentiable based on plant height compared to their spectral
differences. These differences likely led to the CHM being more important than any
of the spectral layers for classifying vegetation. More broadly, the importance of the
structural variables in the classification model is important for future studies because the
structural characteristics of a landscape often do not change as frequently as the spectral
characteristics. While spectral signatures are prone to seasonal and phenological changes
as well as water and nutrient inputs [61,62], structural signatures of the plants themselves
such as canopy height and the elevation of the ground where they are growing do not
change as dynamically. The findings from this study suggest there is great potential to use
structural information such as terrain elevation to understand which areas may be at risk
for future invasion. For example, if saltcedar distribution is predicted well through a digital
terrain model, similar elevations can be proactively treated following a disturbance event
(e.g., flood) to prevent establishment without having to wait for the plants to physically
establish themselves in order to detect a spectral signal. Another benefit of this finding
for land management is that digital terrain models already exist for much of the world
(although not necessarily at the high spatial resolution used here). Depending on their
resolutions, pre-existing digital terrain models may provide initial insights into which areas
are at risk for future invasion. Global canopy height and other 3D structure data has also
recently become available through the Global Ecosystem Dynamics Investigation (GEDI)
high resolution laser deployed on the International Space Station [63].

Table 3. Typical heights or height ranges for the vegetation species classified in the study area (from
SEINet Southwest Data Portal).

Vegetation Species Height (m)
Arrow Weed 1.5-3
Cattail 1-3
Cottonwood up to 30
Chamomile 0.5
Giant Reed 2-5
Sahara Mustard 0.3-1.2
Mesquite up to 17
Saltcedar usually 4-5, up to 8

Given the importance of the DTM layer in the classification, and the wide availability
of DTM datasets worldwide, a logical next study would be to test how the spatial resolution
of the DTM affects classification accuracy. An investigation into the optimal spatial scale
could aid in determining the coarsest resolution at which structural information can
provide key information for species discrimination. The spatial resolution used in this
study was 0.16 m, which is moderate for a drone study. Selecting an appropriate minimum
mapping unit (MMU) has long been recognized in remote sensing studies of land cover [64],
where MMU is the area of the smallest entity to be mapped. For land cover studies, some
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scholars have suggested that MMU should be 2-5 times smaller than the smallest object
of interest [65], but similar thresholds have not yet been determined for classifications
involving a terrain model. Elevation values vary continuously, whereas land cover can
transition more discretely (e.g., from plant in one pixel to water in the next). Determining an
appropriate MMU for structural layers such as DTMs can help users balance accuracy needs
with data volume and processing costs [40]. Even if UAS-acquired DTMs are required,
coarser MMUs can minimally translate into higher flying altitudes with less time and fewer
images needed to cover the study area, saving time, money, and resources.

Interestingly, while the CHM and DTM were found to be important to the classification
model, flow accumulation only marginally contributed. FLOW was derived directly from
the DTM, and is also correlated with DTM. Therefore, it is possible the FLOW layer simply
did not contribute any new information to the model. If DTM was removed from the model,
the importance of FLOW may increase. The BLUE band was found to be the most important
spectral layer in the spectral-only and the spectral-structural classification. Blue light is
scattered considerably by atmospheric constituents, which has made it challenging to use
this information from satellite imagery because the band can be noisy. When flying UAS at
low altitudes, atmospheric scattering effects are often reduced [40]. Recent research using
other close-range remote sensing methods found that blue and even ultra-blue wavelengths
hold potential for vegetation discrimination and estimating biophysical (e.g., chlorophyll)
components [66]. Our findings suggest that sensors specifically designed for close-range
UAS that capture reflectance in the blue wavelength regions where chlorophyll a and b are
absorbed may aid vegetation discrimination.

Lastly, in terms of public land management, saltcedar is generally absent from the
area that has been chemically treated for giant reed, and these areas also have a more
heterogeneous mixture of vegetation (Figure 11). In the areas that have been mechanically
treated for giant reed, saltcedar appears to be thriving, and in the areas that have not
been treated at all for giant reed, saltcedar appears in dense stands (Figure 11). Saltcedar
is notoriously difficult to remove mechanically [67] and can reproduce adventitiously,
making follow-on treatments necessary. These classification results along with the spatial
overlays of treatment areas suggest that treatments should be targeted based on the type of
vegetation and location within the study area, particularly since mechanical treatments can
be difficult due to the need for heavy machinery [67].

6. Conclusions

This study developed a spectral-structural workflow for classifying invasive species in
an arid region prone to fire and flooding. Drone images were captured and processed into
spectral orthomosaics and structural digital elevation models, including a digital terrain
model and a canopy height model. The spectral mosaics were used to derive a suite of
vegetation indices, while the digital terrain model was used to derive a hydrological flow
accumulation model of the site. The spectral data layers, which included five multispectral
bands and six vegetation indices, were used to develop a spectral-only random forest
classification model to distinguish vegetation species. The full set of spectral and structural
layers were combined into a spectral-structural model for the same purpose. Comparison
of the two models indicates that the spectral-structural model outperformed the spectral-
only model, and the canopy height model and digital terrain model were identified as
the most important variables in the combined model. The implications of these findings
for land management are that more robust forecasting of where areas are likely to be
colonized by invasive species is possible using terrain models, but more research is needed
on what the ideal spatial resolutions of these models are for invasive species mapping in
arid regions.
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Appendix A

Table A1. Camera and processing parameters for the two flight campaigns. Processing completed using Pix4DMapper v. 4.5.6.

Parameters Phantom 4 Pro Phantom 4 Multispectral

Flight: altitude 115m 61m
Flight: sensor angle Nadir Nadir
Flight: forward lap 90% 85%
Flight: side overlaps 80% 75%
Flight: image trigger rate 30s 25s
Flight: resolution 3.28 cm 3.89 cm
Flight: Area covered 121.05 ha 121.05 ha
Camera: sensor 1”7 CMOS 1/2.9” CMOS
Camera: Focal length 8.6 mm 5.740 mm
Camera: sensor width 13.2 mm 4.96 mm
Camera: field of view 84° 62.7°
Camera: effective pixels 20M 2.12M
Camera: gimbal angle Nadir Nadir

Camera: optimization

All internal and external

All internal and external

Images: total number 2268 78,555 *
Images: % calibrated 100% 99%

Images: % geolocated 100% 100%
Georeferencing: no. GCPs 28 28
Georeferencing: mean RMSE 0.056 m 0.046 m
Georeferencing: RMSE X, Y, Z 0.3997, 0.0463, 0.0828 0. 0550, 0. 0517, 0. 1365
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Table A1. Cont.

Parameters Phantom 4 Pro Phantom 4 Multispectral
Processing: no. key points Automatic Automatic
Processing: Calibration Standard Standard
Processing: Point cloud densification % image scale % image scale
Processing: Point density Optimized Optimized
Processing: Noise filtering Yes Yes
Processing: Surface smoothing Yes Yes
Processing: Type Sharp Sharp
Processing: Raster type GeoTIFF GeoTIFF

* The multispectral camera had five separate sensors, so the effective number of images was 15,117 per sensor.

Table A2. Producer’s and user’s accuracy for the random forest classification of 11 classes using the
spectral-only and the spectral-structural model.

Class Spectral-Only Model Spectral-Structural Model
Producer’s User’s Producer’s User’s
Arrow Weed 0.62 0.68 0.92 0.92
Cattail 0.82 0.89 0.90 0.97
Chamomile 0.94 0.84 0.96 0.93
Cottonwood 0.63 0.37 0.96 0.88
Giant Reed 0.63 0.6 0.90 0.89
Mesquite 0.55 0.32 0.90 0.67
Road 0.98 0.99 0.99 1.0
Sahara Mustard 0.56 0.29 0.82 0.43
Saltcedar 0.69 0.78 0.91 0.94
Soil 0.96 0.91 0.98 0.96
Water 0.99 0.99 1.0 1.0

Table A3. Confusion matrix for the spectral-structural model for classes: Arrow weed, cattail, chamomile, cottonwood,
giant reed, mesquite, road, Sahara mustard, saltcedar, soil, and water.

Arro Catt Cham Cott Gian Mesq Road Saha Salt Soil Water
Arro 38,013 2114 12 0 630 96 0 56 394 48 0
Cat 820 149,501 423 18 1695 102 190 494 600 124 137
Cham 35 2660 43,310 2 70 172 13 435 6 103 0
Cott 6 232 4 16,272 100 37 0 2 1912 0 1
GR 1017 2515 20 7 60,080 481 306 29 2869 6 3
Mesq. 757 1183 320 1 2080 13,875 16 96 2473 4 0
Road 0 8 1 0 23 34 63,004 1 0 107 0
SM 216 5497 900 1 160 87 0 5197 10 16 0
Salt 583 2105 76 599 1577 569 0 37 88,801 0 2
Soil 66 738 19 0 16 3 46 0 0 20,069 0
Water 0 156 3 0 4 0 0 0 8 0 88,935
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