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Pathogens evolve different life-history strategies, which depend in part on
differences in their host populations. A central feature of hosts is their
population structure (e.g. spatial). Additionally, hosts themselves can exhi-
bit different degrees of symptoms when newly infected; this latency is a key
life-history property of pathogens. With an evolutionary-epidemiological
model, we examine the role of population structure on the evolutionary
dynamics of latency. We focus on specific power-law-like formulations
for transmission and progression from the first infectious stage as a
function of latency, assuming that the across-group to within-group trans-
mission ratio increases if hosts are less symptomatic. We find that simple
population heterogeneity can lead to local evolutionarily stable strategies
(ESSs) at zero and infinite latency in situations where a unique ESS exists
in the corresponding homogeneous case. Furthermore, there can exist
more than one interior evolutionarily singular strategy. We find that
this diversity of outcomes is due to the (possibly slight) advantage of
across-group transmission for pathogens that produce fewer symptoms in
a first infectious stage. Thus, our work reveals that allowing individuals
without symptoms to travel can have important unintended evolutionary
effects and is thus fundamentally problematic in view of the evolutionary
dynamics of latency.

1. Introduction

The traits of pathogens are shaped by numerous trade-offs, and these compet-
ing forces mould their life-history strategies. In this context, perhaps the best
studied characteristic is pathogen virulence, with the underlying trade-off
that increased pathogen virulence can lead to host death before transmission.
This idea was first introduced by Anderson & May [1] (for reviews of recent lit-
erature on evolution of virulence, see [2,3] and references therein). In addition to
virulence, other pathogen characteristics that have been examined include
transmission and contact rates in a model with parallel severe and mild infec-
tions [4], persistence and invasion constraints [5], and transmission versus
recovery [6].

A key feature of certain pathogens is their ability to transmit early in an
infection, while the host is either fully asymptomatic or only mildly sympto-
matic before progressing to a fully symptomatic infectious stage. It is crucial
to characterize this stage for pathogen control [7]. Indeed, if the number of
asymptomatic infections is high, then control is substantially more challenging.
It is thus imperative to understand why certain infections can transmit early on
before the appearance of symptoms, e.g. HIV, whereas others cannot, e.g.
measles or smallpox. The potential importance of ‘silent’ transmission in the
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current COVID-19 outbreak further underlines the impor-
tance of understanding the evolutionary dynamics of a
latent first stage of infection [8].

An initial latent infectious stage can be studied from a
life-history perspective. Saad-Roy et al. [9] formulated an
evolutionary-epidemiological model for a homogeneous
population with two infectious stages. Here, latency is defined
as the degree to which a host does not exhibit symptoms in the
first infectious stage, and ranges from zero to infinite (fully
asymptomatic). Due to smaller pathogen loads and thus
reduced host immune responses, a host with larger latency
may progress more slowly to the second infectious stage (i.e.
remain in the first infectious stage for longer), at the cost of
reduced transmission. For general dependences of progression
and transmission on latency, the authors of [9] investigated
the existence of local ESSs, and found that bistability, i.e. two
strategies that each locally maximize fitness, can occur. Fur-
thermore, for specific formulations of simple power-law-like
functional dependences of transmission and progression on
latency, they proved there are exactly four distinct evolutionary
scenarios: (i) the unique evolutionarily stable strategy (ESS) is
at zero latency, i.e. the first infectious stage is fully sympto-
matic, (ii) the unique ESS is at infinite latency, i.e. the first
infectious stage is fully asymptomatic, (iii) the unique ESS is
at intermediate latency, i.e. the first infectious stage is mildly
symptomatic (0 < A < c0) or (iv) there is a unique evolutionarily
singular strategy that is unstable, yielding bistability with either
zero or infinite latency. The main parameters that determine
evolutionary outcomes are the exponents that govern the
decrease in transmission and progression as functions of
latency, and in addition the transmission rate of an individual
that is completely asymptomatic in the first infectious stage.
Thus, the shape of the transmission—progression trade-off
(figure 2b) can dramatically influence pathogen evolutionary
dynamics, as has been previously noted more generally [10,11].

However, populations are rarely homogeneous. To address
and incorporate heterogeneity in mathematical models of
epidemiological dynamics, numerous approaches have been
developed. In a nutshell, population structure can be considered
either through discrete groups (e.g. [12]), or more explicitly as
continuous variables (e.g. [13]). For example, Lajmanovich &
Yorke [12] introduced a mathematical model for disease
transmission in a heterogeneous population with an arbitrary
number of discrete groups. These groups could represent phys-
ical separation, such as different patches on a landscape [14-16],
or represent another grouping with assortative mixing, such as
one based on age, social, or economic factors.

In addition to affecting epidemiological dynamics, host
population structure can also affect the evolution of pathogen
traits. For example, a series of studies has examined the evol-
ution of virulence under spatial heterogeneity of host
populations from both a theoretical [17-21] and experimental
standpoint [22]. These findings illustrate that space can play
an important role in virulence evolution. In particular, due
to relatedness [23,24], lower virulence can arise from rapid
depletion of susceptibles at a local scale by more virulent
pathogens, a process described in the literature as ‘self-
shading’ [3]. In related work on population heterogeneity,
Gandon [25] found that the existence of multiple possible
hosts may have important evolutionary effects on pathogen
virulence; van Baalen & Sabelis [26] and Lion [27] showed
that multiple infections (a form of population structure) can
substantially affect virulence evolution.

In an otherwise homogeneous population, it is also poss- n

ible that structure stems from efforts to mitigate disease
transmission. Imperfect regional quarantine partially restricts
contacts between hosts from different regions, and so gives
rise to heterogeneity. Another example of disease control
generating population structure is unequal degrees of vacci-
nation leading to differential transmission [28]. Thus,
human interventions can lead to host population heterogen-
eity, which could itself alter the evolutionary dynamics of
pathogens and their life-history strategies. It is therefore
important to investigate the relationship between population
heterogeneity and initial infection dynamics from a life-
history perspective, especially due to the general public
health relevance of initial asymptomatic transmission.

In this paper, we aim to understand how the interplay of
population structure and transmission shapes the evolutionary
dynamics of the initial infectious stage. Whether population
structure is inherent due to biological constraints, e.g. restricted
movement in space, or imposed by social processes, such het-
erogeneity invariably affects the nature of the trade-offs
between transmission and progression in the initial infectious
stage. Here, we use a simple, analytical model with identical
groups in order to distill the effect of heterogeneity on the evol-
utionary dynamics of latency. However, in order to focus on
this effect, we omit many other important biological and
social factors (which themselves lead to very complex systems).
Understanding the interplay of these factors with heterogen-
eity and latency evolution are salient areas for future work,
especially to inform disease mitigation in human populations.
We first formulate an epidemiological model with interacting
groups (separated in space). Then, we examine the resulting
evolutionary dynamics for general formulations, in addition
to power-law-like relations, for transmission and progression
as functions of latency. Additionally, we first consider a general
formulation for the ratio of across-group to within-group
transmission rates. Then, when we utilize specific power-law-
like relations, we assume that this ratio increases with increased
latency. Thus, hosts that are more symptomatic have lower
relative across-group to within-group transmission in contrast
to hosts that exhibit fewer symptoms and can thus mix more
readily between groups. We conclude by examining the
implications of our findings for disease control strategies.

2. Epidemiological model

We extend the SIIRS model of [9] to include two groups of
individuals, with a fraction N; and N, of individuals in
group 1 and group 2, respectively. The model is depicted
in figure 1 and, for group i #k, is formulated as

9 = N — an,il1,;Si — a2,ilo,iSi — provean i1 xSi
—oragklp kSi — 8Si + uR;,

dr,
ar = a1,il1,iSi + 0a,il2iSi + projay i1 xSi

‘oo ilp i Si — vi,il1,i — ol
db;
= vl — (o + b,

and  Ri=1,h; - 8R; — uR;.

2.1)

Fori,q=1,2, S;is the fraction of individuals that are in group
i and are susceptible, I, ; is the fraction of individuals that are
in group i and in the gth infectious stage, and R; is the fraction
of individuals that are in group i and are recovered.
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Figure 1. Flowchart of the two-group model for disease transmission. Here, the fraction of individuals that are susceptible (S;), infectious in the first stage (/;),
infectious in the second stage (/;,), and recovered (R) in group / are depicted within each group. The within-group transmission rate for group / and infectious stage
J is a;. The transmission rates from group 1 to group 2 are multiplied by pioy and o for infectious individuals in the first and second stages, respectively, and
those from group 2 to group 1 are analogously multiplied by p,o, and o,. For each group, these are depicted as flowing from $; to /;; because individuals do not
transfer between groups. The progression rates from infectious stage j in group / is v;;. The rate of loss of immunity () and the birth (death) rate (6) are the same

in both groups. This figure is extended from [9].

Furthermore, g, ; is the transmission rate of infectious individ-
uals in stage g and group i, v, is the rate of progression
for stage g in group i, p,o; is the across-group decrease in
initial (stage 1) transmission for group i, and o; is the decrease
in across-group stage 2 transmission for group i. Note that
we assume p;€[1, 1/0;], i.e. the ratio of the across-group
to within-group transmission rate in the first stage pio;
can vary from equivalency with stage 2 (p;o;=0;) to across-
group and within-group transmission being equivalent
pioi =1 (although p; could also be a constant that is decoupled
from these equivalencies). Lastly, we assume that the birth/
death rate (6) and rate of loss of immunity (i) are the same
in both groups.

Adding these equations for each group gives that N; and
N, are constant. In this model, there is a unique disease-free
equilibrium Py, where S;=N;, S,=N,, and ;1 =11 =R, =
Li,=5,=R;=0. Therefore, for i=1, 2, we define the
within-group basic reproduction number, i.e. the number of
infections in a fully susceptible group caused by one infection
of the same group, as

i _ N vii N
O T ui+6 (it o)+ 0

2.2)

and the across-group basic reproduction number, ie. the
average number of infected individuals in one group, that
is completely susceptible, arising from an infected individual
in the other group, as

_ pigioq iN; vy

R oiayiN;
i v+ 0 W1+ 8) (i + 8

2.3)

Here, for group i, a1,;N;/(v1,+6) and op,;N;/(v,;+6) are
the numbers of infections arising within this same group
while the initial infectious host is in the first and second
stage, respectively, and v;,;/(v;;+ ) is the probability of
surviving the first stage. Similarly, pioiori;N;/(v1;+38) and
0i012,iN;/ (v,; + 8) are the corresponding numbers of infections
in the other group. It follows from the next-generation matrix

method [29,30] that the basic reproduction number Ry is the
largest eigenvalue of the matrix of new infections that result
among susceptibles in each group from a single infectious
individual. Thus, for our two-group model,

Rgl) 4 R(()?.)
> .

2.4)

<> @\ 2
RY — RS
2

Ro = r|RciRc2 + (

Since N; is fixed and R;=N;—S;—1;—1I; we consider
the reduced six-dimensional model. In this space, the disease-
free equilibrium is globally asymptotically stable if Ry <1
(theorem 1, section 2, electronic supplementary material).

3. Evolutionary dynamics

Here, A is a measure of ‘latency’, i.e. the degree to which the
first infectious stage is an asymptomatic infectious stage.
Thus, 2=0 corresponds to a fully symptomatic first stage
of infection, whereas 1 — oo denotes a fully asymptomatic
first stage of infection. We assume that 1 governs a trade-
off between transmission (a;[A]), progression (1[A]), and
across- to within-group first-stage relative to second-stage
transmission rates (p[4]), all of which relate to the first infec-
tious stage. Modulated by host immunity, a decrease in
latency may increase transmissibility during the first infec-
tious stage but also accelerate progression to the second
infectious stage (for further rationale of this trade-off, see
[9] and references therein including Fraser ef al. [31] for trans-
mission and progression of HIV, and other references that tie
symptoms to transmission). Since symptoms can increase the
probability of transmission per contact (through coughs,
sneezes, etc.), then even for pathogens where viral load is
independent of latency, the transmission rate may decrease
as latency increases. Furthermore, hosts with more symptoms
(and thus a more severe infection) often have a reduced abil-
ity to disperse (e.g. due to screening for symptoms in airports
[32,33]), and this corresponds to p[A] increasing as A increases.
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Figure 2. Relationships between key parameters. (a) Scaled transmission rate,

A — X0

josasa function of the scaled progression rate. This panel is as in fig. 1D in

Saad-Roy et al. [9]. (b) Scaled within-group to across-group first-stage transmission ratio (p — 1)/a; as a function of the scaled progression rate, (v — v; o0)/c1. (0)
Examples of scaled across-group transmission rate, (pa; — ploolay o)/a1by, as a function of the scaled progression rate. Letting y denote the scaled across-group
transmission rate and x denote the scaled progression rate, the relationship between these variables is y = —xlatbd/a 4 (1 4 (1 /a1))x”1/ 2 — (@100 /b1 we/a,

For the schematics in this panel, (1+ (1/a;)) =2 and o /b7 =0.1.

On the other hand, in the biologically less realistic case that
symptoms and severity do not correlate with reduced disper-
sal, then p[A] is constant.

The theory of adaptive dynamics [34,35] assumes ecologi-
cal and evolutionary dynamics occur on separate timescales,
and is used to study the fate of a rare, nearby mutant that
arises once the ecological equilibrium has been reached
in the environment established by the resident (i.e. weak
selection). Ultimately, over evolutionary time, a strategy that
maximizes the mutant’s invasion fitness is an evolutionarily
stable strategy (ESS). Note that this approach is used to
study evolutionary outcomes in systems where equilibria
have been reached, and the disease is endemic. For newly
emerging diseases, such an equilibrium has not been attained
yet, and numerous other factors are also important for
persistence (e.g. depths of transient troughs [36]).

Here, elucidating epidemiological dynamics for the
full two-group SI;I,RS model is elaborate, and is currently
an open problem. However, if an endemic equilibrium
E= (§1, TM, Tz,l, IA{1, §2, Tm, Tz,z, ﬁz) is reached for a phenotype

X, then, following the next-generation matrix [29,30], the basic
reproduction number for a mutant with phenotype 4 is

~ ~ ~ ~ 2
~ 1| SRc1S%Rca  (SIRY  SRY
LA =242 ' -
RulA, Al 5 NN, + ( N, A
1(SRY SR
5 1
+z( N TN ) 3.1)

where Rf)l) =RPIAL RBZ) = RE)Z)[/\], Reci1 = RealAl,
Rc2 = ReplAl are functions of the mutant phenotype 4, and
S1 = S1[A], are functions of the resident phenotype A. Note

that, by definition, R,, [X, Al=1.

3.1. Two identical groups

Inspired by Lloyd & May [37], we first focus on the case of
two identical groups, ie. 11 =01p=011, A1 =C2=0, V11 =
Vip=Vi, V21=Vop=Vy, 01=02=0, p1=p2=p, Ny=N,=N=
1/2 and so ’Rg) = RBZ) =R and Rci1=Rcp =Rc (for a
summary of parameter definitions, see table S1A, electronic
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supplementary material). Note that in this case, the basic
reproduction number is

a1 [)\]N
vi[Al 4 6

v1[A] N

RolAl = (1 + po) vi[Al + 8 (v + &)

+0+0) . (32

If we let R=(a;/(vi+08)+(vi/(vi+Maa/(v2+9)), ie.
the homogeneous basic reproduction number (setting p =
o=1, since N=1/2), Ry can be rearranged to give
Ro[Al=N(o +1R[A] + No(plA]—D(aq [Al/ (w1 [A] + 8)). (It can
also be seen that Ry < R). Here, for two identical groups,
there is a unique endemic equilibrium E if and only if Ry > 1,
with S = % (theorem 2, section 2, electronic supplementary
material). If Ry > 1, the equilibrium E is locally asymptotically
stable with respect to symmetric perturbations (theorem 3, sec-
tion 2, electronic supplementary material).

Once the epidemiological dynamics have reached the
endemic equilibrium, the reproduction number for an invad-
ing mutant (i.e. the invasion fitness) with phenotype 1 in a
population with resident phenotype Ais

Rul, A1 = 311 (w>

N

o ai[A]
= S[A] ((0'+ DRI + O(P[)\] — 1)m> (3.3)

In this setting with two identical groups, we aim to maxi-
mize the mutant’s fitness, i.e. R, [X, Al in equation (3.3), over
all possible mutant strategies A. Here, R,,[A, Al is simply the
product of the resident’s equilibrium susceptible fraction
(i.e. 25[A] since N=1/2) multiplied by the basic reproduction
number Ro[A] (in a totally naive population) for the mutant.
Therefore, this maximization is equivalent to finding the
strategy that minimizes the resource in a pure exploitation
model [38]. For this minimization, the ‘resource’ is the frac-
tion of susceptible hosts (cf. [9]). Thus, population structure
decreases the basic reproduction number (if o<1, and since
po<1, then Ry < R), and evolution then maximizes it.

Noting that v;, a7 and p are functions of 1, we seek to
find extremal values of 2§[/\], which are therefore extremal
values of S[Al. Since S[A] = % (and recalling N=1/2 is
constant), a value of 1 that maximizes S minimizes Ry, and
a value of A that minimizes S maximizes Ro. Thus, since
Rol[A] = N(o + DRIA] + No(plA] — 1)(a1 /(v1 + 8)), evolutiona-
rily singular strategies are values of A such that

dRo_ dR aq dp
(p— Do [dey a; duvg _
no [ﬁ‘vl +5ﬁ} =0 G4

The first term alone of equation (3.4) gives qualitatively
equivalent evolutionary dynamics to the homogeneous
model. Thus, the second and third terms are responsible for
any emergent phenomena. In the limiting case as v; — o,
ie. when the first stage is negligible, these terms vanish.
Additionally, if the ratio of the first to second stage relative
across-group to within-group transmission rates (p) is not a
function of latency, then the second term is zero. Lastly, if
p =1, the third term disappears. These observations indicate
an important interplay between infectious stages and hetero-
geneity. The second term denotes the change in pathogen
fitness as a function of latency due to a change in the ratio
of the first-stage transmission rates as latency increases.
The third term can be rearranged as N(p—1)o(d/dA)(e;/

(v1+0)). Thus, this term denotes the change in pathogen [ 5 |

fitness due to differential across-group transmission in the
first relative to the second infectious stages.

Additionally, since Ry does not depend on the rate of
waning immunity x, the evolutionary dynamics are indepen-
dent of this parameter. Thus, our evolutionary analyses hold
for any duration of immunity (including both SI;I,S and
SR extremes). Furthermore, the following evolutionary
analyses also hold for a model that includes death due to
infection (see section 3, electronic supplementary material).

In the homogeneous case [9], i.e. p=0=1, and with a gen-
eral progression-transmission trade-off, there are relations that
guarantee the existence of an evolutionarily singular strategy
that is either stable or unstable. With power-law-like formu-
lations of transmission and progression as functions of
latency, there are four distinct evolutionary outcomes: a
unique non-zero ESS A > 0, bistability with local ESSs at
A =0and A — o, or a unique ESS at either A = 0 or A — oo.
These ESSs are all trivially convergence stable, since they
emerge from susceptible minimization. (Note that nearby
mutants cannot invade an ESS at a finite value of 1. By contrast,
we say 4 — oo is an ESS when R[A] is eventually an increasing
function of A, i.e. nearby mutants with progressively larger
latency can invade.)

How does population structure affect these outcomes? In
this model with heterogeneity and general formulations for
aq[A], »i[A] and p[A], modified conditions (see equations
(S1)—(S3), electronic supplementary material) guarantee that
there is an ESS at zero latency, positive latency, or at least two
alternative stable states (section 1.1, electronic supplementary
material). The subsequent focus was then on power-law-like
formulations of these trade-offs (figure 24, table S1B-C, elec-
tronic supplementary material), such as

a;[A] = by (FIAD ™ + 1,00 (3.5)
and
vi[Al = et (FIAD ™ + 1100, (3.6)

where F[0] =1, F[oo] —» o0, and F'[A] > 0. Importantly in [9], the
authors noted that the key relation is the dependence between
aq and vy, and so the choice of F[1] does not affect the biological
interpretation. In particular, rearranging equations (3.5) and
(3.6), we obtain «; as a function of v;, and we see that this func-
tion is concave up if b, > ¢, and concave down if b, < ¢, (figure
2a). Overall, the power-law-like formulation represents a situ-
ation where additional symptoms (i.e. a decrease in 1) lead to
progressively larger increases in transmission (see [9] for
specific examples). In related literature on the evolution of viru-
lence, Gandon et al. [39] modelled transmission and recovery as
power-law functions of virulence. In what follows, we present
our results and the evolutionary behaviour we obtain for the
two-group model.

3.1.1. General across-group to within-group first-stage

transmission ratio
Here, we assume these formulations for a;[A] and v;[A], but
consider any non-decreasing function p[A] >1 not identical
to 1. We examine the possible evolutionary outcomes in com-
parison to the homogeneous case. We find that, if there exists
an interior ESS A in the homogeneous setting, then there is
an analogous ESS in the heterogeneous two-group model,
i.e. 0< o<1, with positive latency 1* with A* > A (theorem 5,
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Table 1. Summary of the evolutionary dynamics dlassifications in model (1) with two identical groups. These results are explained in detail in Expanded [}

Results, electronic supplementary material, and the relevant theorems are proved in the electronic supplementary material. Additionally, for certain special cases,
we proved the uniqueness of the interior evolutionarily singular strategy or the boundary ESS (see sections 1.2 and 1.3 electronic supplementary material for

more details).

parameter inequalities

G>by a,<b, 0,00 >0
000 =0
maZSbZ' R na
. (2v<vbz . wazé (2 . "“T°°<V2”f;5mg‘f;+1 .
MTW > vﬁ&maﬁjﬂ
az'<c2' dL;,SO
a1,°;¥0

section 2, electronic supplementary material). Thus, even with
two identical groups, heterogeneity increases latency. Further-
more, if the unique ESS is at maximal latency, i.e. A — oo, then
the corresponding unique ESS is also at A* — oo (theorem 4, sec-
tion 2, electronic supplementary material). Lastly, if there is
bistability with zero and maximal latency in the homogeneous
setting, then there is at least a local ESS at 1* — o in the corre-
sponding heterogeneous model with two identical groups
(theorem 6, section 2, electronic supplementary material).
These results are summarized in electronic supplementary
material, figure S1. If p[A] =p >1 is constant, then p[1] is non-
decreasing and greater than 1, and so the above results hold.
If plA]=1, then Ry[A] = N(o+ 1)R[A], and the evolutionary
dynamics are equivalent to the homogeneous model.

3.1.2. Power-law or exponential across-group to within-group

first-stage transmission ratio
To obtain more specific results on the evolutionary dynamics
of latency with heterogeneity, we now assume a specific form
for the non-decreasing function p[i], namely

plAl =a1(1 — FIAI™™) 4+ 1, (3.7)

where the function F[A] is the same as in equations (3.5) and
(3.6). For example, F[A] = (1 + 4) gives trade-offs formulated as
power-laws, whereas F[A]=¢" gives an exponential formu-
lation. Here, a, can be interpreted biologically as the
exponent that governs the increase of the across-group to
within-group transmission ratio as a function of latency. There-
fore, we refer to a, as the ‘relative heterogeneous transmission
growth exponent’. Since F[0] =1 and F[eco] — o, it follows that
pl0]1=1 and ploo] — a1 + 1. As a special case, it is possible that
the fully asymptomatic first-stage transmission between
groups is the same as within groups, giving a; =1 — 1.

pos.
neg
pos.
neg
'p'os.” o
neg
v pos .
neg
pos.
neg
p'os.' v
neg
pos.' '
neg

location of local ESSs

(possibly other interior ESSs) relevant theorems

A=01-> 0 9

A=0 10
L
L 12[13
L
lev,Vl—>oo v8v
.2:.0’1.._)00. B Yy

e N T
L

Figure 2b,c presents schematics of the key relationships
between transmission and progression rates that are parame-
terized by latency (1), focusing on the across-group to within-
group first-stage transmission governed by pl[A], and the
across-group first-stage transmission rate governed by
plAlen[A] as functions of the first-stage progression rate v;[4].

Rearranging p[A] and v;[A] gives p as a function of the pro-
gression rate v;. This function is concave up if a, <c, and
concave down if a, > ¢, (figure 2b). As a function of the pro-
gression rate, the across-group transmission rate is more
complicated, and depends on the exact values of multiple par-
ameters (figure 2c and see the caption of figure 2 for the exact
equation). The shapes of these curves depict the interactions
between progression, transmission and heterogeneity: it is
apparent that complicated trade-offs may emerge.

In our model, evolutionarily stable strategies (ESSs) are
those strategies A* that minimize the fraction of susceptibles
5. We separate our analyses depending upon the relative mag-
nitudes of the progression decay exponent (c;) and the
transmission decay exponent (b;). We present a summary of
the classification of evolutionary outcomes according to the
relative magnitudes of these parameters in table 1 (see sections
1.2 and 1.3, in electronic supplementary material for the math-
ematical details). In what follows in figures 3-6, we illustrate
these results with well-chosen examples that capture the
important contrasts in evolutionary dynamics between our
model and prior work that assumed homogeneity [9].

Figure 3 provides numerical examples to summarize the
effect of heterogeneity on the evolutionary dynamics of latency
when the progression rate decreases faster than the trans-
mission rate, i.e. ¢, > b,, for different values of §’ [0]. In figure
3a, g[)\] is decreasing at zero in all three cases examined. If
the relative heterogeneous transmission growth exponent is
smaller than the transmission decay exponent, i.e. a,<b,,
then there is a unique ESS at infinity. By contrast, if a, > b, or
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Figure 3. Examples of possible evolutionary dynamics in the identical two-group model when progression decreases faster than transmission, ie. ¢, > b, for
different values of S'[0]. (a) S’ 5[0] << 0 for all three examples, (b) the sign of S'10] s affected by the value of the relative heterogeneous transmission ratio
growth exponent a,, and (¢) g [0] > 0 for all three examples. Within each panel, parameters are the same (b;=0.6, ¢; =02, b,=2, =225 k=a)/
(v, +6) =3, 011,00 =0.18, §=1/(365(50))) except for a,, and p=o =1 for the homogeneous case (green line). The heterogeneity parameters are o=
0.6, a;=(1/0) =1, and a, =03 and a,=2.5 for the blue and red curves, respectively. Across the three panels, these fixed parameters are also the same,
except for vy o, which then determines whether S'[0] is positive. (a) V1 oo = 0.05, (b) v; o =0.125 and (¢) vy, = 0.3. Note that the vertical axis denotes

the total fraction of susceptibles in both groups, i.e. twice the susceptible fraction in a single group.

a2>c2

(a) 4= C ()

Fully latent transmission rate
times average lifespan

0 25 50 0

(c) homogeneous

25 50 0 25 50

latency

latency

latency

Figure 4. Examples of evolutionary effects of heterogeneity when progression decreases slower than transmission (c, < b,) and the emergence of alternative stable
states. In all three panels, we plot the sign of S'[A] as a function of the fully latent transmission rate times the average lifespan (¢t1 ./6) and latency. Here, red and
blue denote that S[A] is decreasing and increasing function, respectively. The heterogeneous transm|55|on ratio growth exponent is (a) smaller than the pro-

gression decay exponent and (b) larger than the progression decay exponent, and in both c=10.7 and a; =

=01, bz =225 6=

in the homogeneous model, there is a unique interior ESS. In
figure 3b, whether SIAL is increasing or decreasing at zero
depends on the magnitude of a,. Thus, this provides an
example where the evolutionary dynamics in all three scen-
arios are different. If a, < b,, there is bistability with zero and
infinite latency. If a,>b,, there is a unique interior ESS. If
there is no heterogeneity, then the unique ESS is at zero latency.
In figure 3c, §[,\] is increasing at zero in all three situations, and
the homogeneous model and the example with a,> b, both
have a unique ESS at zero latency. By contrast, if a, < by, then
zero and infinite latency are bistable.

When the progression rate decreases more slowly than
the transmission rate, i.e. c; <b,, figure 4 illustrates how the
inclusion of heterogeneity favours alternative stable states

= ;— 1.In (0), p= o= 1. Across all panels, b; = 0.6,

2, V1,00 =0.01, 6=1/(365(50)) and k = axp/(v, + 8) =3 are fixed. In (a), a, =1.75, and in (b), a,=2.5.

of latency. Across a range of values of the fully latent trans-
mission rate times the average lifespan (¢,.,/6) and latency,
SIAlis a decreasing function of 2 in the red regions, whereas
S[Al is an increasing function in the blue regions. Thus, for
any horizontal transect, an evolutionarily singular strategy
occurs at the intersection of a red and blue region: if a blue
region is followed by red, then this is an unstable evolutiona-
rily singular strategy. In figure 4a, we illustrate the important
qualitative difference that heterogeneity can introduce in con-
trast with the homogeneous model (figure 4c). As long as
fully latent transmission can occur (i.e. oy, > 0), there is an
unstable evolutionarily singular strategy and thus alternative
states that are evolutionarily stable. The evolutionary out-
comes depicted in figure 4b (i.e. a,>c;) are qualitatively
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Figure 5. (a) Schematics of possible transitions in evolutionary dynamics due to changes in heterogeneity parameters. An interior evolutionarily singular strategy is
where S[A] is maximized or minimized. Here, red indicates that S[A] is decreasing, whereas blue indicates S[A] is increasing, and a; = (1/5) — 1. The relative
across-group to within-group transmission ¢ is increased from left to right panels, with c=0.1, 6=0.4, 6=10.7 and o =1, respectively, and ¢, = 2, b, = 2.25.
(b) Schematic of pairwise invasibility plot (PIP) with b, > ¢;, o= 0.1, and a, = 0.01 selected so that there is a unique interior evolutionarily singular strategy which
is unstable. (c) Schematic of PIP for b, > ¢, with o =10.1 and a, = 1.5 chosen so that the system has two interior evolutionarily singular strategies, one stable and
one unstable. (d) As in ¢, but with a bigger a, value (a, = 2.3). In (b—d), light blue denotes a region where the mutant phenotype can successfully invade, whereas
dark blue denotes a region where the mutant phenotype dies out. Other parameter values across all panels are & = 1/(365(50)), k = a,/(v, + 6) =3, by = 0.56,

=01, 0,00 = 0.04, Vioo = 0.01.

similar to the homogeneous model (figure 4c). However, the
quantitative difference in the threshold of oy ., /8 required for
bistability is observed: this phenomenon occurs for a larger
range in the presence of heterogeneity.

3.2. Other interior evolutionarily singular strategies
Analytically, we have proven the existence of at least one
interior ESS or of local ESSs at either zero or maximal latency,
and we have proven that there is a unique interior ESS in
three special cases (see theorems 10, 13 and 14; section 2, elec-
tronic supplementary material). However, in many other cases,
there could be other interior evolutionarily singular strategies.

Numerically, we investigated the evolutionary dynamics of
latency in the first infectious stage as a function of parameters
that govern heterogeneity, and we present these results in
figure 5. (Note that numerically we cannot distinguish a local
ESS at 4 — oo from one at large A.) The panels in figure 5a are
as in figure 4, except that now there are horizontal transects
which, for increasing latency, are red followed by blue, i.e.
SIA] decreases and then increases. The intersections of these
regions are therefore ESSs. For small relative across-group to
within-group transmission (i.e. o<1, figure 5a, leftmost
panel), a small relative heterogeneous transmission ratio
growth exponent a, implies that there is a single unstable evo-
lutionarily singular strategy. As a, increases, the boundary ESS
at A = 0 loses its stability, and an interior ESS emerges and is bis-
table with 4 — . As o increases, the local ESS A =0 loses its
stability at progressively higher values of a,. At p=0c=1, the
two groups behave homogeneously.

Schematics of possible pairwise invasibility plots (PIPs) for
the evolutionary dynamics of latency in the identical two-
group model are presented in figure 5b—d. In the dark blue
regions, the mutant phenotype cannot invade the resident
phenotype, whereas in the light blue region, the mutant phe-
notype can successfully invade and becomes the new
resident. Figure 5b is a PIP schematic for the case with a
unique interior evolutionarily singular strategy that is
unstable, leading to bistability with no and maximal latency.
By contrast, a schematic PIP with two interior evolutionarily
singular strategies, one stable and one unstable, is presented
in figure 5c,d, illustrating the possibility of bistability with an
interior strategy and A* — o0, a major difference with the homo-
geneous setting where this was not possible unless more
complicated trade-offs, formulated as logistic-like functions
of latency, were considered [9].

The main difference between figure 5¢,d is that a, is smaller
in figure 5c, giving rise to a major difference in the range of
values for which mutants can invade the interior ESS. In par-
ticular, the interior ESS in figure 5c is only locally stable,
whereas the ESS at infinite latency is globally stable. Conversely,
with larger a,, the interior ESS in figure 5d is globally stable,
whereas the ESS at maximal latency is only locally stable in
this case. It is sensible that a larger a, favours the interior ESS
at the expense of the ESS at maximal latency, since, for larger
values of a,, there is a corresponding smaller increase in
across-group transmission for large values of latency.

Figure 6 illustrates another major difference between the
identical two-group model and the homogeneous case.
Here, for the transmission decay exponent greater than the
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Figure 6. Schematics illustrating that the inclusion of heteArogeneity allows for an interior ESS when b, > ¢;, in contrast to the homogeneous case (cf. theorem 15,
section 2, electronic supplementary material). (a) Sign of dS/dA for different values of latency and b,, for o= 0.5, 0.75 and 1. Here, red and blue are as in figure 5.
Thus, across a horizontal transect for a fixed value of b,, a change in colour denotes an interior evolutionarily singular strategy, and from red to blue denotes an ESS.
In all panels, a; = (1/0) — 1, giving plco] =1, and g, is chosen so that it is larger than the maximal value of b, + ¢, (i.e. ¢, =1, b, values from 0.5 to 1.5
and a, = 2.55) (cf. theorem 14, section 2, electronic supplementary material). (b) PIP schematic for b, =1.1> ¢, and o=0.5, giving rise to an interior ESS.
() Schematic for c=0.75 and b, = 1.5 large enough so that there is no interior ESS. Other parameter values across all panels are 6= 1/(50(365)), k = o/

(vy+8) =3, by =06, ¢; = 0.1, @16 = 0.00005, v o = 001,

progression decay exponent, i.e. b, > ¢, and for a very small
latent transmission rate, there can exist a unique interior
ESS. Thus, heterogeneity introduces a qualitative difference
to the evolutionary outcomes of latency: the homogeneous
model in the analogous setting exhibits only a unique ESS
at zero latency. Figure 6a illustrates how the ESS landscape
changes for different ratios of across-group and within-
group fully symptomatic transmission rates (o), with o=1
reducing the two-group model to one homogeneous group.
Figure 6b presents a PIP schematic for b, > c; and an interior
ESS, whereas figure 6c illustrates the case of no interior ESS.

4. Discussion and conclusion

We have formulated an evolutionary-epidemiological model
with two interacting groups and two infectious stages to
examine evolutionary outcomes of latency for structured popu-
lations. We have shown that under the biologically plausible
assumption where, normalized by the respective within-
group transmission rates, progressively more latent individ-
uals can transmit progressively better to other groups relative
to more symptomatic individuals (e.g. increased dispersal
due to fewer symptoms and less severe infection), the incor-
poration of heterogeneity (through identical groups) has
important qualitative and quantitative effects on the evolution-
ary dynamics of latency. Overall, heterogeneity can induce (i) a
shift to alternative stable states, (ii) an increase in latency (i.e.
the ESSs move to larger values of latency), (iii) a transition
from zero latency to partial latency and (iv) the appearance
of more than one local ESS with partial latency. In the

appendix, we show that our conclusions are qualitatively the
same for an arbitrary number of identical groups with identical
across-group interactions, and, as a crude model for trans-
mission around the globe, also for a ring of groups. Below,
we explain the biological mechanisms that underlie our results,
and follow with their detailed implications.

If the ratio between the across-group and within-group
first-stage transmission rates relative to that of the second
stage is constant but greater than one, i.e. dp/dA=0 and p>
1, then the third term of equation (3.4) remains. In this setting,
the evolutionary outcomes of latency are qualitatively similar
to the homogeneous model. However, there are quantitative
differences that arise. In this setting, the fully latent trans-
mission rate is replaced by the ‘effective’ fully latent
transmission rate @ = (1 +po)/(1+ 0))a1» and by is
replaced by El = ((1 +po)/(1 + 0))b; to determine evolution-
ary dynamics. Since 1,0 > @10, Outcomes with an ESS at
positive (non-zero) latency (including bistability) are favoured
(remark 6, section 2, electronic supplementary material).

Thus, the changes in qualitative evolutionary dynamics
that are induced by heterogeneity are due to the presence
of the second term of equation (3.4). In other words, they
are due to an increase, which may be small, in the ratio of
the first-stage transmission rates as latency increases. To intui-
tively understand the basis for the richer evolutionary
dynamics of latency in this model compared to the homo-
geneous one and confirm that this mechanism is responsible
for the new evolutionary behaviour, we examine a highly sim-
plified version of our two-group model (remark 5, section 2,
electronic supplementary material). This means that any
slight advantage that less symptomatic individuals have in
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heterogeneous transmission can lead to very different evol-
utionary behaviour. For example, such a situation arises if
less symptomatic individuals are more likely to travel between
regions (e.g. by evading detection [32,33]). While it is known
that the movement of asymptomatic individuals contributes
to ‘hidden’ transmission that is difficult to trace, we have
shown, through our model with heterogeneity, that this move-
ment can have very important evolutionary implications that
need to be considered for proper public health planning,
especially for endemic diseases.

The inclusion of simple heterogeneity increases the range
of parameters for which there are alternative stable states
of latency. Thus, the ensuing biological implications are
important to examine. For example, consider the case with
alternative stable states at zero and infinite latency, and
suppose a pathogen exhibits zero latency. The parameters
governing the trade-offs can change and give rise to an
interior local ESS. If the parameters change back, it is possible
that the pathogen’s latency is now in the basin of attraction of
the local ESS at infinite latency. Thus, this reversal would not
restore latency to its previous value. It should also be noted
that while our model with two identical groups assumes
density-dependent transmission, an analogous formulation
with frequency-dependence [40], i.e. where transmission is
normalized by the total population of the transmitting
group, does not alter the evolutionary dynamics (remark 3,
section 2, electronic supplementary material, and see
remark 4 for the extension to multiple groups).

Through expansions of their homogeneous model, Saad-
Roy et al. [9] illustrated that their conclusions were robust to
other biological additions. First, these authors showed that the
introduction of other infectious stages that do not interact with
latency in their model gives rise to qualitatively similar behav-
iour, and we have shown that this continues to hold with
simple population structure (see section 4, electronic sup-
plementary material). Moreover, further constraints on the
underlying biology of the system can result in a maximal poss-
ible latency, and these authors showed intuitively how these
constraints can change evolutionary dynamics depending on
where interior evolutionarily singular strategies are located.
Similar analyses also directly translate to our new framework.
Additionally, we have shown in section 3, electronic supplemen-
tary material that an epidemiological model with disease-
induced death yields qualitatively equivalent evolutionary
dynamics of latency. Lastly, with logistic-like trade-offs for trans-
mission and progression, heterogeneity in transmission can
qualitatively and quantitatively affect evolutionary dynamics
of latency (figure S4, electronic supplementary material). For
example, we find that including such heterogeneity can result
in three interior evolutionarily singular strategies (figure S4B,
electronic supplementary material).

4.1. Interplay with strategies for control
With their model of disease transmission in a homogeneous
population, Saad-Roy et al. [9] explored the effect of disease
control strategies on transmission rate and progression rate
trade-offs, and additionally highlighted the importance and
implications of multiple local ESSs of latency. Our theoretical
analyses further illustrate how control strategies could influ-
ence pathogen evolution under different, more broad, settings.
In particular, certain disease control measures could
result in host population structure through the separation of a

homogeneous population into groups, in an effort to reduce
transmission. An archetypal example of such a measure is
imperfect regional quarantine, where less symptomatic individ-
uals are able to mix more readily between regions (e.g. if
detection of infection is based on symptoms, such as travel
screening [32,33]). For these individuals in the first infectious
stage, the across-group to within-group transmission rate
increases as a function of latency, and so our framework applies.
Thus, these control measures could lead to substantially
different evolutionary dynamics, with possible consequences
including higher latency, more circumstances leading to alterna-
tive stable states at zero and maximal latency, or more than one
interior evolutionarily singular strategy. These outcomes are
especially negative since they can substantially increase the dif-
ficulty of control measures that rely upon the identification and
isolation of symptomatic individuals, e.g. through contact
tracing. Consequently, the overall duration of an intervention
relative to evolutionary timescales is important, and it is
therefore imperative to quantify this latter timescale.

Beyond the increase in diversity of possible evolutionary
outcomes due to population structure, control strategies
can influence trade-offs and thus can affect the qualitative evol-
utionary dynamics. Notably, the transmission decay exponent,
the fully latent transmission rate, and the across-group to
within-group transmission ratio growth exponent can all be
altered by control strategies. Saad-Roy et al. [9] extensively dis-
cussed the effect of control measures on evolutionary dynamics
through changes in the transmission decay exponent and in the
fully latent transmission rate. In addition, the exponent govern-
ing the across-group to within-group transmission ratio as a
function of latency can decrease if stronger population struc-
ture is imposed, or increase if population structure is relaxed
(e.g. more symptomatic individuals are able to successfully
travel during imperfect regional quarantine).

4.2. Future work

It would be interesting to incorporate additional infectious
stages that are affected by the evolutionary outcome of latency
and other strain interactions mechanisms such as superinfec-
tion of the first infectious stage (which can lead to branching
in a homogeneous model [41]). Furthermore, connecting
our model to the kinetics that describe the biological processes
of infection within a host would also be valuable. Such ana-
lyses could reveal the interplay between these kinetic
processes and population structure, and the roles they have
in latency evolution.

Additionally, we have only proved uniqueness of interior
evolutionarily singular strategies for certain special cases, and
have shown numerically that two interior evolutionarily
singular strategies can exist for specific parameter values.
Thus, future work could also extend our theoretical analyses
to determine the exact number of interior evolutionarily
singular strategies for all conditions.

Numerous further questions arise that are specific to
our model, ranging from epidemiological to evolutionary
dynamics. The long-term epidemiological dynamics for a
model with groups that are not identical remains an open ques-
tion. If a unique endemic equilibrium also exists in this situation,
similar evolutionary analyses would give insight into the effect
of certain parameters that influence the trade-offs in only one
group. For example, changes in latency ESSs for one group
could result from different control strategies in another group,
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and investigating changes in evolutionary dynamics that result
from these indirect influences would be interesting, and poss-
ibly further inform strategies to mitigate pathogen evolution
towards a more latent first infectious stage. On the other hand,
if there can exist more than one endemic equilibrium, then
these equilibria may have central implications for evolutionary
dynamics [42]. Thus, characterizing the long-term epidemiolo-
gical dynamics is an important area for future work.
Extending epidemiological-evolutionary analyses to an arbi-
trary number of non-identical groups each with potentially
distinct within-group and across-group transmission rates is
also a promising area of future research.

In particular, a specific example of differential mixing is
due to age. With an appropriate epidemiological model that
reflects the flow of individuals as they age, it would be particu-
larly interesting to understand the changes in evolutionary
dynamics of latency that arise due to heterogeneous inter-
actions among children and adults. In principle, an extension
of our model with different group characteristics could crudely
represent age-structure (including different immune durations,
which we have so far ignored). Thus, it would be valuable to
determine the long-term epidemiological dynamics (in particu-
lar, if there is a unique or multiple endemic equilibria) in such
an extension, with which the evolutionary consequences of
age-structure on latency could be examined.
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Appendix A. Numerous identical groups

Instead of two identical groups, our model can be extended
to consider an arbitrary number of identical groups. The
within-group transmission in each stage is the same and
has force of infection o for stage 1 and a, for stage 2. Here,
we assume that the across-group transmission is the same
for any pair of groups, as in §3.1 of Lloyd & May [37]. There-
fore, for the first and second stages, the across-group
transmission rates are poa; and ow,, respectively, and the
fraction of the population in each group is N. Using
the next-generation approach [29,30] (section 1.4, electronic
supplementary material), it follows that

_ _ 0(1N o V1 azN
Ro =1+ po(n —1)) —— 5T 1+ oln 1))7(1)1 Tt o)
(A1)

Furthermore, solving the analogous model equations [ 11 |

to equation (2.1) shows that there is a unique endemic
equilibrium if Ry > 1 with

N 1

Ro (o(n—1) + DR+ (p — Dotn — 1)

S; = S= . (A2)

aq
V1+5

By a similar argument as for the two identical groups model
(cf. theorem 3, section 2, electronic supplementary material),
if Rp>1 then this endemic equilibrium is also locally
asymptotically stable with respect to symmetric perturbations.

To determine the possible evolutionary outcomes for this
model, we seek to maximize Ry or equivalently minimize
g[)\], where 4[], vi[A] and p[A] are functions of 1 as in equations
(3.5)-(3.7). These calculations for n identical groups at the
equilibrium S are the same as for the model with two identical
groups, except that ¢ is now replaced by o(n —1) (remark 1,
section 2, electronic supplementary material).

In what follows, we summarize our results on the evol-
utionary outcomes in this model with n groups. Since the
calculations are equivalent, all the previous results translate
directly to the case with n identical groups. Furthermore,
the limit of infinite groups, i.e. # — oo, can be taken (section
1.5, electronic supplementary material). For n — oo, the
thresholds that determine evolutionary dynamics do not
directly depend on o, the relative strength of the across-
group symptomatic transmission compared to within-group
symptomatic transmission. Rather, they only depend on the
fraction —L- = 2% which is the ratio of the fully symptomatic
to the fully latent across-group transmission rates.

7+ = pleol

A.1. Extension to radially symmetric case

The previous model with an arbitrary number of identical
groups assumes that the transmission rate between any two
different groups is the same. However, transmission around
the globe is not symmetrical. To crudely model global trans-
mission, we assume instead that the groups are radially
oriented and that the transmission rate between groups i and
j#i depends only on the ‘distance’ between these groups,
defined as the modular distance between i and j, i.e. with per-
iodic boundaries (e.g. Rohani et al. [43]). Thus, instead of a
single across-group transmission rate, the transmission rate
depends upon which two groups are considered. It therefore
follows that the basic reproduction number is now

Ro = 1+ poy) 2254 1+ ax,z)(vl”—;g)%, (A3)
where g, is the sum of the relative strengths of the pairwise
interactions, i.e.

/21

2 Z f[k]+f[g} ifniseven,
k=1
= A4
Xon 12 (A4
2 ) flk] ifnisodd,
k=1

and f[k] is a value that depends on the ‘distance’ k between two
groups. For instance, to recover the previous model, f[k] =1 for
all k, so that across-group transmission rates are all poo; and
ooy in the first and second stages, respectively.

Below, we briefly highlight the implications of our
previous results for this extended model. By radial
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symmetry, the # groups are identical, and thus analogues of
the main results (section 1.6, electronic supplementary
material) hold for this model also, and the unique endemic

equilibrium is

—5-

N 1

In reality, numerous other heterogeneities can exist between
groups, leading to different transmission rates among and
between them. Nonetheless, these analyses with the radially

symmetric model illustrate that similar evolutionary behav-

iour (akin to the two-group model) can occur within a
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