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The development of super-resolution fluorescence microscopy 
has enabled the probing of macromolecular assemblies in cells 
with nanometer resolution. Among different super-resolution 

imaging techniques, SMLM has gained wide popularity due to its 
relatively simple implementation.

SMLM reconstructs a super-resolution image by stochastic  
photoactivation and subsequent post-imaging localization of 
single fluorophores1–3. A successful SMLM experiment requires 
the ability to localize and temporally separate individual fluoro-
phores and obtain a sufficient number of localizations to meet  
the Nyquist criterion for spatial resolution4. Due to its nature  
allowing single-molecule detection, one major advantage of SMLM 
is the ability to determine the number of molecules in a macro-
molecular assembly quantitatively, allowing investigation of both 
the molecular composition and spatial arrangement at a level 
unmatched by other ensemble imaging-based super-resolution 
imaging techniques. SMLM has led to new discoveries and quan-
titative characterizations of numerous biological assemblies5,6, such 
as those composed of RNA polymerase7–9, membrane proteins10–13, 
bacterial divisome proteins14–17, synaptic proteins18,19, the cytoskel-
eton20, DNA-binding proteins21,22, chromosomal DNA23, viral pro-
teins24 and more.

One critical aspect in realizing the full quantitative potential of 
SMLM relies on the careful handling of the blinking behavior of 
fluorophores. A photoswitchable fluorophore can switch multiple 
times between activated and dark states before it is permanently 
photobleached, leading to ‘repeat localizations’ from the same mol-
ecule. These repeat localizations are often misidentified as multiple 
molecules, leading to the formation of false nanoclusters and errors 
in quantifying numbers of molecules (Fig. 1a)25–30.

Multiple methods have been developed to correct for 
blinking-caused artifacts in SMLM (see Supplementary Table 1 
for an overview of these methods). These methods can be coarsely 
divided into two categories depending on whether a method pro-
vides a corrected image void of repeat localizations or a statistical 
analysis summarizing the properties of the image at the ensemble 
level. Methods in the first category commonly use a variety of thresh-
old values in time and space to group localizations that likely come 
from the same molecule1,2,26,28,30. The advantage of using thresholds 
is that it results in a corrected image, allowing one to observe the 
spatial distribution of fluorophores in cells and apply other quanti-
tative analyses as needed. The disadvantage is that a constant thresh-
old value is often insufficient in capturing the stochastic nature of 
fluorophore blinking and heterogeneous molecular assemblies. 
Furthermore, calibration experiments and/or a priori knowledge 
of the fluorophore’s photokinetic properties are often needed to 
determine the appropriate threshold values28,30–32. Statistical analy-
ses such as maximum likelihood or Bayesian approaches have been 
developed to take into account the stochastic behavior of blinking 
but have yet to produce corrected super-resolution images void of 
repeat localizations33–35. Additionally, many of these approaches are 
dependent on specific photokinetic models for the fluorophore, 
which can be complex and difficult to determine31,32,36–39.

Methods in the second category use statistical methods to char-
acterize the organization of molecules in uncorrected SMLM images 
at the ensemble level. Pair- or autocorrelation-based analyses have 
been used extensively29,40, in which the shape of the correlation 
function can be fit to a model to extract quantitative parameters 
with specific assumptions4. New methods using experimentally var-
ied labeling densities27 and post-imaging computational analysis41 
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are powerful in determining whether a protein forms clusters or 
not, but they fail to provide a corrected image, which limits their 
use in analyzing heterogeneously distributed molecular assemblies 
and their spatial arrangement in cells.

Here we present an algorithm, termed Distance Distribution 
Correction (DDC), which is applied after the successful acquisition 
of an SMLM imaging stream and enables robust reconstruction and 
quantification of SMLM images with a near-complete reduction of 
blinking artifacts and without setting empirical thresholds or per-
forming calibration experiments. We first validate our approach 
using a diverse set of simulated and experimental data and compare 
DDC to other existing methods. In each situation, DDC outper-
formed the existing methods in obtaining the closest representation 
of the ‘true’ image and in determining the number of fluorophores. 
We then applied DDC to experimentally collected SMLM images 
of membrane scaffolding proteins42–44, dynein oligomers45 and sister 
chromatin fibers46. Under all the conditions, DDC provided SMLM 
images substantially different from those obtained from other correc-
tion methods, allowing differential identification of membrane pro-
tein cluster properties, characterization of dynein assembly states and 
quantification of DNA content between sister chromatin fibers. These 
results demonstrate the broad application of DDC for SMLM imag-
ing. Finally, we discuss critical considerations of how to apply DDC.

Results
Principle of DDC. DDC is based on the principle that the pairwise 
distance (Δr) distribution Pd(Δr∣Δn) of the localizations separated 

by a frame difference (Δn) much larger than the average number 
of frames that a molecule’s fluorescence lasts (N), approximates 
the true pairwise distance distribution PT(Δr) (Supplementary 
Information). Note that N does not need to be precisely deter-
mined as long as it is in the regime where Pd(Δr∣Δn) approaches 
a steady state. This principle is also independent of the particular 
photokinetic property of the fluorophore (Fig. 1 and Supplementary 
Information). One intuitive way to understand this principle is that, 
if one collects an imaging stream that is long enough such that all 
the localizations in the first and last frames of the stream come 
from distinct sets of fluorophores, the pairwise distance distribu-
tion between the localizations of the two frames will then be devoid 
of repeat localizations and will reflect the true pairwise distance 
distribution PT(Δr). A mathematical justification of this principle 
is provided in the Supplementary Information with an in-depth 
discussion and illustration (Supplementary Fig. 1). Because of this 
principle, DDC is most applicable when a substantial proportion 
of the fluorophores bleach during the acquisition of an imaging 
stream, that is, Pd(Δr∣Δn) reaches a well-defined steady state when 
Δn = N (Fig. 1 and Supplementary Figs. 2 and 3). Note that this con-
dition is typically and easily met in direct stochastic optical recon-
struction microscopy (dSTORM) and photoactivated localization 
microscopy (PALM) experiments when the acquisition time is suf-
ficiently long.

To demonstrate the principle of DDC, we used simulated SMLM 
images of randomly distributed fluorophores that followed the pho-
tokinetic model shown in Extended Data Fig. 1b. One representative 
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Fig. 1 | a, Simulated SMLM super-resolution images (top) of randomly distributed molecules without repeats (truth) and with repeats (no correction). The 
corresponding scatterplots (colored through time) are displayed in the bottom panel. b, Schematics of how the pairwise distance distributions at different 
frame differences (Δn) were calculated. c, Pairwise distance distributions at different Δn values (black to gray curves) converge to the true pairwise 
distribution (black dots) when Δn is large. d, Normalized Z values measured for three commonly used fluorophores and a simulated fluorophore (randomly 
distributed, Extended Data Fig. 1a). All Z values reach plateaus at large Δn values, indicating that, at large Δn values, the pairwise distance distributions 
converge to a steady state. The normalized Z values were calculated by taking the difference between the cumulative pairwise distance distribution at a Δn 
value and that at Δn = 1 (Z(Δn) = ∑∣cdf(Pd(Δr∣Δn)) − cdf(Pd(Δr∣Δn = 1))∣).
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super-resolution image and the corresponding scatterplot, colored 
through time, with and without repeat localizations, are shown in 
Fig. 1a. Using uncorrected images, we computed the pairwise dis-
tance distributions at all frame differences Δn (Fig. 1b). As shown in 
Fig. 1c and Extended Data Fig. 2, at small Δn values, there are large 
peaks at short distances, indicating that there were repeat localiza-
tions from the same fluorophores closely spaced in time and space. 
When Δn is large, the pairwise distance distributions approach a 
steady state converging upon the true pairwise distance distribution 
(Fig. 1c, dotted curve). This behavior supports the principle that, 
when Δn is sufficiently large, the pairwise distance distribution rep-
resents the true pairwise distance distribution. Using simulations, 
we also show that the pairwise distance distributions converge upon 
the true distributions at large Δn values, irrespective of the underly-
ing photokinetics or molecular spatial distributions (Extended Data 
Fig. 2 and Supplementary Information).

Next, we used experimentally obtained SMLM images of 
three molecular assemblies labeled with different fluorophores in 
Escherichia coli cells: the bacterial transcription elongation fac-
tor NusA fused with the reversibly switching green fluorescent 
protein Dronpa47, E. coli RNA polymerase fused with the pho-
toactivatable red fluorescent protein PAmCherry48 and precur-
sor ribosomal RNA species (pre-rRNA) labeled with organic 
fluorophore Alexa 647-conjugated DNA probes49 (Supplementary  
Fig. 4). We determined the pairwise distance distribution for each 
fluorophore and calculated the normalized, summed differences 
of the cumulative distributions for each Δn, relative to that of  
Δn = 1 (Z(Δn) = ∑∣cdf(Pd(Δr∣Δn)) − cdf(Pd(Δr∣Δn = 1))∣), where cdf  
is the cumulative distribution function. In all cases, the correspond-
ing normalized Z values reach plateaus at large Δn values despite 
different photokinetics and spatial distributions (Fig. 1d). The rate 
at which each fluorophore reaches the plateau for the normalized Z 
value reflects the photokinetics of the fluorophore: the longer that 
a fluorophore blinks (such as Alexa 647 compared to Dronpa), the 
longer the time until Z plateaus. These experimental results further 
confirm the principle of DDC that the pairwise distance distribu-
tions converge upon a steady state distribution as Δn increases.

Once determined, PT(Δr) can then be used to calculate the 
likelihood of having a particular subset of true localizations 
(Supplementary Figs. 5–9) using the following equation:

L({R, T}|r, n) =
∏

i,j∈{T}
PT(Δri,j)×

∏

i∈{R},j∈{R,T}
PR1(Δri,j|Δni,j),

(1)

where {R, T} are sets that contain the indices of the localizations 
considered repeats {R} and the true localizations {T}, given coor-
dinates r and associated frame numbers n obtained from experi-
ment. The first term on the right of the equation is the probability 
of observing all distances Δr between every pair of true localiza-
tions (i, j ∈ {T}). Here the probability distribution PT(Δri,j) is the true 
pairwise distance distribution. The second term is the probability of 
observing all distances between pairs of localizations with at least 
one being a repeat (i ∈ {R} and j ∈ {R, T}). The probability distri-
bution PR1(Δri,j∣Δni,j) gives the probability of observing a distance 
between a pair of localizations with a frame difference Δni,j if at 
least one of the localizations is a repeat. This probability distribution 
can be easily determined once PT(Δr) is known (Supplementary 
Information). Maximizing the likelihood with respect to {R, T} 
results in a subset of true localizations where the pairwise distance 
distributions Pd(Δr∣Δn) are equal to PT(Δr) (Extended Data Fig. 3). 
DDC maximizes the likelihood with respect to the two sets ({R, T}) 
using a Markov chain Monte Carlo method50,51 to reconstruct the 
corrected image (Supplementary Figs. 8 and 9). In Extended Data 
Fig. 4 and the Supplementary Information, we provide a toy model 
to walk readers through the calculation. To validate equation (1), 

we performed six simulations of distinct spatial distributions with 
various fluorophore photokinetic models. We show that, when the 
likelihood reaches its maximum, more than 97% of the final local-
izations are true localizations (Extended Data Fig. 5).

DDC outperforms existing methods in image reconstruction and 
quantification. To compare the performance of DDC with those 
of commonly used blinking-artifact-eliminating methods, we simu-
lated five systems: random distribution (no clustering), small clus-
ters, dense clusters, parallel filamentous structures with low labeling 
density and intersecting filamentous structures with high labeling 
density (Fig. 2 and Supplementary Information). In these simula-
tions, the fluorophore had two dark states and followed the pho-
tokinetic model shown in Extended Data Fig. 1a. The raw images 
without any repeat localizations for each simulation are shown in 
Fig. 2a. We applied DDC, three published thresholding methods 
(T1 (refs. 1,26), T2 (ref. 30) and T3 (ref. 28)) (Supplementary Figs. 8 
and 9) and a customized thresholding method (T4, Supplementary 
Information) to all the images.

Method T1 links together localizations using a time threshold 
determined by an empirical estimation (similar to that in Betzig 
et al.)1,26 (Supplementary Fig. 8). Method T2 uses experimentally 
quantified photokinetics of the fluorophore to set extreme thresh-
olds so that the possibility of overcounting is extremely low30. 
Method T3 uses the experimentally determined number of repeats 
per fluorophore to choose thresholds that result in the correct num-
ber of localizations within each image28 (Supplementary Fig. 9). T2 
and T3 but not T1 require additional experiments to characterize 
fluorophore photo properties. Method T4 is an ideal thresholding 
method that scans all possible thresholds and uses the threshold 
that results in the least image error for each system (Supplementary 
Information). T4 cannot be applied in real experiments because the 
true image is unknown; we included it to illustrate the best scenario 
of what a thresholding method could achieve.

To quantitatively compare the ability of these methods, we calcu-
lated two metrics, the image error and the counting error (Fig. 2b 
and Supplementary Information). The image error was calculated 
by first summing the squared difference of each pixel’s normalized 
intensity between the corrected and the true images and then divid-
ing this squared difference by the error between the uncorrected 
and the true images (Supplementary Information). The image error 
quantifies the amount of error in determining the distribution of 
localizations without being penalized for the error in the number 
of localizations. The counting error was calculated as the difference 
between the true number of fluorophores and that determined from 
the corrected image divided by the actual number of fluorophores 
(Supplementary Information). Additionally, in Extended Data  
Fig. 6, we further show the degree of overcounting and undercount-
ing of these different methods at the level of individual pixels52.

As shown in Fig. 2b, DDC outperforms all methods by having 
the lowest image errors and the lowest (or close-to-lowest) count-
ing errors. Interestingly, even with the best possible thresholds 
(T4), DDC still outperforms T4 for both metrics. This result sug-
gests that thresholds cannot adequately account for the stochastic 
nature of blinking. Similar results are shown in Supplementary  
Fig. 10 for a fluorophore with one dark state (Extended Data  
Fig. 1b). When counting the number of localizations is the main 
concern, T3 performs equally to or slightly better than DDC because 
T3 was applied with an experimental calibration providing the aver-
age number of blinks per fluorophore (Fig. 2 and Supplementary 
Information). Nonetheless, DDC outperforms T3 by having lower 
image errors across all five simulation systems. In particular, for the 
dense cluster and the intersecting filament systems, two scenarios 
commonly encountered in biology, the average image errors of T3 
were more than four times those of DDC (Fig. 2b). The advantage 
of DDC for these two systems highlights the unique superiority of 
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DDC for heterogeneously distributed proteins with uneven den-
sities. These results demonstrate that DDC can be used to obtain 
the correct number of true localizations while producing the most 
accurate SMLM images.

Validating DDC using a labeled nuclear pore complex reference 
cell line. To validate the ability of DDC to produce SMLM images of 
real biological structures, we used a cell line that was recently devel-
oped as a reference standard for SMLM imaging53. In this cell line, 
the endogenous nucleoporin Nup96 of the nuclear pore complex 
(NPC) is tagged with monomeric enhanced GFP (mEGFP). The 
known arrangement and composition of the NPC (Fig. 3a) enabled 
us to quantitatively compare DDC and thresholding methods in 
their ability to produce images in which the number of localizations 
per NPC matched the copy number of Nup96 in NPCs.

We performed SMLM on the cell line using an anti-GFP nano-
body labeled with Alexa 647. In Fig. 3b, we show a representative 
raw SMLM image of NPCs (top) and zoomed-in images of two 
individual NPCs with and without DDC (bottom). The image pro-
cessed with DDC showed the expected ring-like arrangement with a 

more even intensity distributed along the circumference of the pore. 
Using the raw images and a previously published procedure53, we 
determined the effective labeling efficacy (ELE) of the nanobody 
at 0.44 (Supplementary Information). The ELE is the proportion 
of target protein molecules labeled with a detectible fluorophore, 
and its calculated value is independent of the overcounting artifacts 
caused by fluorophore blinking53. Using the calculated ELE, we 
found the number of localizations per fluorophore obtained from 
DDC centered around unity (1.05 ± 0.3, μ ± s.d., n = 3,947), whereas 
the number without DDC centered around 4.4 ± 2.5. Consequently, 
we found the mean number of localizations per NPC to be 33.6 ± 11 
for DDC after taking into account the ELE. This number is indis-
tinguishable from the known copy number of 32 for Nup96 within 
experimental noise (Fig. 3c). Note that the spread of the distribu-
tions in Fig. 3c is expected from the stochastic noise in the labeling 
efficiency of individual NPCs.

Next, we compared the performance of thresholding with three 
different distance thresholds (40 nm, 60 nm and 80 nm), each 
with time thresholds ranging from 1 to 5,000 frames (Fig. 3d). We 
found that all distance thresholds tended to overcount at short time 
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thresholds and undercount at long time thresholds. Only when the 
time threshold was within a relatively small window, which varied 
for each of them, did they produce the correct number of localiza-
tions per NPC (adjusted for ELE). In realistic experiments in which 
the biological structure is unknown, it would be difficult to deter-
mine which time and distance threshold to use. In sum, these results 
validate the application of DDC to SMLM images as the method 
of choice to obtain the true representation of underlying cellular 
structures.

DDC identifies differential clustering properties of membrane 
microdomain proteins AKAP79 and AKAP150. Membrane 
microdomains have been observed in super-resolution imag-
ing studies and have raised substantial interest in their biological 
functions13. However, concerns remain as to whether the charac-
terizations of these microdomain protein clusters were impacted 
by blinking-caused artifacts27. Here we used DDC to investigate 
a membrane scaffolding protein, A-kinase anchoring protein 
(AKAP), which plays an important role in the formation of mem-
brane microdomains42–44. The two orthologs AKAP79 (human) and 
AKAP150 (rodent) were previously shown to form dense mem-
brane clusters, which are likely important for regulating anchored 
kinase signaling.

We performed SMLM imaging on AKAP150 in murine pan-
creatic β cells using an anti-AKAP150 antibody and analyzed the 
resulting SMLM data using DDC (Supplementary Information). 
For AKAP79, we applied DDC to previously acquired SMLM data 
from HeLa cells42. For comparison, we also applied the T1 method 
to both scaffolding proteins as in the previous study of AKAP79 
(refs. 1,26,42) (Extended Data Fig. 7 and Supplementary Fig. 11). We 
found that DDC-corrected images still showed substantial devia-
tions from simulated random distributions, indicating the presence 
of clustering. However, the degree of clustering was significantly 
reduced when compared to those in uncorrected and T1-corrected 
images for both proteins (Fig. 4a). We further confirmed these 
results at the ensemble level by computationally varying the labeling 
density using a previously published method (Extended Data Fig. 8 
and Supplementary Information)41.

To quantitatively compare these images, we used a tree-clustering 
algorithm (Supplementary Information) to group localizations in 
individual clusters and plotted the corresponding cumulative distri-
butions in Fig. 4b. Interestingly, the cumulative distributions showed 
that AKAP150 had a higher degree of clustering when compared to 
AKAP79, with more than 50% of the localizations within clusters 
containing more than 15 localizations, twice that of AKAP79. These 

results suggest that the clustering of the AKAP scaffolds are differ-
entially regulated and that the context dependence is likely impor-
tant in considering the microdomain-specific signaling functions 
of the clusters. These accurate, quantitative comparisons of cluster 
properties would be difficult to achieve by other threshold-based 
methods.

DDC identifies both subcellular locations and oligomeric states 
of dynein. Previously, using a well-defined DNA origami struc-
ture as a calibration standard, SMLM studies showed that dynein, 
a cytoskeletal motor protein responsible for retrograde transport 
on microtubules, can exist in monomeric, dimeric and multimeric 
states in different subcellular locations45. This system provides 
a previously quantified experimental system to investigate how 
blinking-caused artifacts can influence the assignment of individual 
assemblies.

We performed SMLM imaging on anti-GFP antibody-labeled 
HeLa IC74 cells that stably express a GFP-fused dynein intermedi-
ate chain (Fig. 5a and Supplementary Information)45. We applied 
the thresholding method (T1) and DDC to the resulting raw images, 
with zoomed-in sections shown (white box top) in Fig. 5b. We 
observed that both the threshold method and DDC yielded a lower 
amount of signal when compared to that from raw localizations  
(Fig. 5b, white box i), indicating that a substantial number of raw 
localizations were repeat localizations. Importantly, we also observed 
that the difference between threshold- and DDC-corrected images 
was not constant throughout the images (Fig. 5b, last row), suggest-
ing different assignments of multimeric state for individual dynein 
assemblies between different methodologies.

To investigate further, we assigned oligomeric states to individual 
assemblies from each methodology such that the fractions of each 
oligomeric state matched those calibrated in the work of Zanacchi 
et al.45 (Supplementary Information). We then compared the assign-
ment of individual assemblies between the methodologies by calcu-
lating the probability of assigning the same oligomeric state to the 
same individual complex using two different methods. In Fig. 5c, we 
showed that, for single dynein monomers, both the raw and thresh-
old methodologies were in relative agreement with the assignment 
of DDC (probability > 90%). However, we observed that the higher 
oligomeric states assigned by both the raw and threshold methods 
had considerable deviations from those of DDC, resulting in differ-
ent spatial distribution of oligomeric dynein motors in cells. These 
results demonstrate the importance of using the correct method to 
obtain both subcellular locations and the quantitative properties of 
molecular assemblies.
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DDC minimizes measurement noise in labeled symmetric sister 
chromatin fibers. DDC can also be applied to minimize noise in 
the measurement of cellular structural features such as shape and 
symmetry. To demonstrate an application, we examined the sym-
metric structure of sister chromatin fibers. Previous studies have 
shown that, during stem cell differentiation, Drosophila melanogas-
ter male germline stem cells undergo asymmetric division to pro-
duce a self-renewing stem cell and a differentiating daughter cell54. 
The asymmetric division is likely directed by biased replication fork 
movement and asymmetric histone incorporation between two sis-
ter chromatids46,55.

To provide a quantitative comparison standard for analyzing 
DNA and protein contents in sister chromatids, we performed 
SMLM imaging on YOYO-1-stained chromatin fibers isolated from 
D. melanogaster embryos (Supplementary Information and Fig. 6a). 
Chromatin fibers isolated from embryonic, non-stem cells should 
exhibit homogeneous and symmetric labeling on both sisters. We 
then applied the threshold (T1) and DDC methods to the raw 
SMLM images (Fig. 6a). In many fibers, we could resolve two par-
allel sister chromatin fibers; the apparent width of each sister was 
~140 nm, similar to that reported in Wang et al.56 (full width at half 
maximum), and the separation between sisters was ~200 nm. These 
characteristics were measured from the projected localizations 
along the length of fibers.

Next, to determine whether the two sister chromatin fibers have 
a similar amount of DNA, we quantified the ratio of signal (num-
ber of localizations) between the two using segments of different 
lengths (~1 μm was used in the original work of Wooten et al.46 
(Supplementary Information)). Two sisters having identical repli-
cated DNA content would have a ratio of 1, irrespective of the aver-
age length of segment used. As shown in Supplementary Fig. 12,  
while the ratios of signal between the two sisters for all three 
methodologies (raw, threshold (T1) and DDC) are approximately 
centered around 1.0, the spreads in the ratios vary considerably, 
suggesting that, while repeat localizations may not affect the accu-
racy of these measurements, they may instead affect the precision.

To investigate further, we calculated the s.e.m. for the different 
segment lengths (Fig. 6b). We observed that s.e.m. from DDC were 
consistently the lowest for segments greater than 300 nm. When the 
segment lengths became too short, the level of variation became 

indistinguishable between DDC and the thresholding method 
due to the intrinsic stochastic labeling density in the experiment. 
Nevertheless, the apparent s.e.m. in raw and threshold-corrected 
images at length scales of chromatin fibers (300 nm to 1 μm) could 
mask asymmetries in labeled sister chromatin fibers isolated from 
germline stem cells (previously quantified with this technique46), 
making it difficult to identify corresponding molecular mechanisms 
contributing to asymmetry. In summary, this example illustrates how 
the mishandling of repeat localizations lowers precision and demon-
strates the need of DDC for measuring cellular structural features.

Considerations in the application of DDC. In this section, we 
evaluate the impact of localization density and activation rate on the 
performance of DDC using simulations. We also demonstrate that 
the practice of ramping the UV activation power in SMLM imaging 
should be avoided when applying DDC.

To quantify the influence of localization density on the perfor-
mance of DDC, we simulated random distributions of fluorophores 
with densities ranging from 1,000 raw localizations to 15,000 local-
izations per 1 μm2. Note that a density greater than 5,000 localiza-
tions per μm2 corresponds to a Nyquist resolution of 30 nm or better. 
As shown in Extended Data Fig. 9a, the image error increases with 
localization density and reaches a plateau at ~0.35. We found that 
the increase in image error at high localization densities was mostly 
due to the decreased raw image error of the uncorrected images at 
high localization densities (Extended Data Fig. 10a). The decreas-
ing improvement of DDC at increasing sampling rates suggests that 
a high sampling rate of the underlying structure reduces the image 
distortion caused by repeats, although very high labeling densities 
(>10,000 localizations per μm2) are usually difficult to achieve for 
protein assemblies.

Next, to quantify the influence of the activation rate, we var-
ied the activation probability of each simulated fluorophore from 
0.025 to 0.15 per frame, with 1,000 fluorophores randomly dis-
tributed throughout a 1-μm2 area. Extended Data Fig. 9b shows 
that the image error of DDC steadily increases with the activation 
rate. This increase was because, at high activation rates, the tem-
poral overlaps of individual fluorophores that were spatially close 
increased, which made it difficult to distinguish the repeat localiza-
tions from different fluorophores. This trend holds true for all other 
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blinking-artifact-correction methodologies. Therefore, as with oth-
ers, DDC obtains the best images when the activation rate is slow.

Finally, we illustrate that one critical requirement for the suc-
cessful application of DDC, that is, the photokinetics (blinking 
behavior) of the fluorophore, must be kept constant throughout the 
acquisition of the SMLM imaging stream. One common practice in 
SMLM imaging is to ramp the activation power gradually through-
out the imaging sequence to speed up the acquisition at later times. 
However, the activation power may not only change the activa-
tion rate of a fluorophore (that is, the probability of a fluorophore 
being activated per frame), such as that of Dendra32, but may also 
change the photokinetics of a fluorophore’s blinking behavior (that 
is, number of blinks, dark time and fluorescence-on time), such 
as that of mEos2 and PAmCherry31,32. If the fluorophore’s blinking 
behavior varied during the acquisition, errors will be introduced 
into the calculation of its pairwise distance distributions at vary-
ing frame numbers, and they may not converge to the true pairwise 

distance distribution function (equation S1 in the Supplementary 
Information). Note that this requirement is also needed for all other 
blinking-artifact-correction methods1,26,28,30.

To illustrate this critical point, we investigated the blinking 
behaviors of the photoactivatable fluorescent protein mEos3.2 and 
the organic fluorophore Alexa 647 at different activation (405-nm) 
intensities. We quantified three parameters: the number of blinks, 
off times (Toff) and on times (Ton) and reported the mean value for 
each parameter as a function of activation intensity (Extended Data 
Fig. 9c). We define one blink event as one continuous emission 
event that could span multiple fluorescence-on frames, the number 
of blinks as the number of repeated emissions separated by dark 
frames from the same fluorophore, Toff as the time between each 
blink and Ton as the time that the fluorophore remained fluorescent 
at each blink-on event (Extended Data Fig. 9c). We observed that 
both fluorophores had a similar dependence of Ton on UV inten-
sity, where Ton initially increased and then decreased at higher UV  
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intensities (Extended Data Fig. 9d, top), suggesting that UV light 
also participates in the fluorescence emission cycle of the fluoro-
phores. Next, we found that Toff decreased nonlinearly as the UV 
intensity increased for both fluorophores (Extended Data Fig. 9d, 
middle). Finally, we observed that the average number of blinks for 
Alexa 647 increased dramatically with UV intensity while that of 
mEos3.2 remained largely constant (Extended Data Fig. 9d, bot-
tom), suggesting a differential influence of UV light in changing the 
photokinetics of different fluorophores. Thus, varying the activa-
tion intensity during the acquisition of an SMLM image can indeed 
change the blinking characteristics of the fluorophores, which would 
affect the performance of DDC and all other algorithms that are 
based on a fluorophore’s photokinetics. These results suggest that 
changing the activation intensity should only be permitted when 
a quantitative approach is not needed or the proper controls have 
been performed to show that the fluorophore is insensitive to varia-
tions in the activation intensity. We note that, if different activation 
intensities are needed to account for the labeling density, one could 
acquire a series of imaging streams; the activation intensity within 
each stream remains constant but gradually increases through the 
series. Each imaging stream can be analyzed independently using 
DDC and then combined together to obtain the final SMLM image.

Discussion
In this work, we provided a blinking-artifact-correction methodol-
ogy, DDC, that does not depend upon exact thresholds or additional 
experiments to obtain accurate SMLM super-resolution images. 
DDC works by determining a ‘ground truth’ about the underlying 
organization of fluorophores, the true pairwise distance distribu-
tion. It also operates on the prerequisite that a successful SMLM 
experiment (no substantial spatial temporal overlaps between indi-
vidual localizations) must be carried out before the application of 
DDC. DDC can also be applied to previously collected SMLM data, 
as long as, for each stream of imaging acquisition, the UV activa-
tion power stays constant, and the successful SMLM imaging con-
dition is met. We verified, by simulations and experiments, that the 
true pairwise distance distribution is obtained naturally by taking 
the distances between localizations separated by a frame difference 
much longer than the average lifetime of the fluorophore. Using the 
true pairwise distribution, the likelihood can be calculated, where, 
upon maximization of the likelihood, one obtains an accurate rep-
resentation of the true underlying structure. An advantage of DDC 
is that it does not require any prior knowledge or characterization 
of the fluorophore’s photokinetics, as they can vary greatly depend-
ing on specific experimental systems and imaging conditions53,57–59 
(Supplementary Fig. 2), as long as a substantial portion of fluo
rophores is photobleached during imaging (Supplementary Fig. 3). 
Here we should note that DDC does not address the issue of limited 

labeling efficiency, which requires additional experimental consid-
erations60. Additionally, DDC only counts the number of emitters, 
which does not necessarily equal the number of molecules that are 
labeled using dye-conjugated antibodies45. Lastly, DDC can be used 
to group localizations together to improve resolution and does not 
affect the localization precision of the individual localizations.

We compared the performance of DDC against those of thresh-
olding methods using simulated data with various spatial distribu-
tions and photokinetic models. DDC outperformed these methods, 
providing the ‘best’ corrected images as well as excellent estimates 
of the number of molecules. We validated DDC using a reference 
standard cell line for which the spatial distribution pattern and copy 
number of the NPC subunit are known. We then experimentally 
demonstrated that blinking-caused repeat localizations can lead to 
artificial clustering of membrane scaffolding proteins, misassign-
ment of dynein oligomeric state and misidentification of DNA con-
tent in chromatin fibers.

Finally, we demonstrated that the higher the activation rate and 
the density of fluorophores, the smaller the relative improvement 
DDC has. We also showed that, to use DDC, the common practice 
of ramping UV light should be avoided in certain cases. The com-
plete MATLAB package (Supplementary Information) for DDC is 
available for download at https://github.com/XiaoLabJHU/DDC. 
Because of the simplicity and robustness of DDC, we expect that it 
will become a field standard in SMLM imaging for the most accu-
rate reconstruction and quantification of SMLM images to date.
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Methods
Specifics for simulations. For non-filament simulations, six different sets of 
data were simulated: three different underlying structures and two different 
fluorophores. The two fluorophores followed the two models in Extended Data 
Fig. 1. In these simulations, the fluorophore only registered as a localization if it 
was in the active state. For the different simulations, the first condition contained 
no clusters (random), and all fluorophores were randomly distributed within 
a 1,000 nm-by-1,000 nm square and allowed to blink according to the kinetic 
models in Extended Data Fig. 1. The kinetic rates of the one-state system were 
chosen to be similar to those of mEos2 and Dendra2, as determined previously33,61. 
The parameters for the two-state kinetic scheme were also chosen to be relatable 
to these but with an additional dark state that was longer lived. For example, 
assuming a 50-ms exposure time, our one-dark-state system would have the 
following rates (in Hz): kon = 5, koff = 10, kbleach = 5. In Lee et al.61, the rates of mEos2 
were approximately kon = 6, koff = 8 and kbleach = 5. The second (small clusters) and 
third (dense) conditions had three clusters, each with 10% of the fluorophores 
distributed into the clusters for the small cluster system and 50% for the dense 
system. For each of the simulations with clusters, each cluster’s central location 
was randomly defined and the localizations within each cluster followed a normal 
distribution around that center. For each of the six systems, 24 different images 
were generated and analyzed for each methodology.

For simulations involving filaments, we randomly distributed 50% of the true 
localizations along five lines and randomly deposited the rest. We simulated 24 
images, with 1,000 true localizations each, with approximately 4,000 localizations 
in total, following the photokinetic model in Extended Data Fig. 1a. These 
simulations produced filaments that were clearly visible but not homogeneous 
along the filaments.

Third, to produce ‘intersecting’ continuous overlapping filaments, we simulated 
filaments with no varying label density and with a localization error of 20 nm. 
This was carried out by placing a fluorophore every 5 nm along a filament. These 
simulations also followed the model in Extended Data Fig. 1a and resulted in 
images similar to that in Fig. 2, far right.

For all simulations (except for when the activation rate was varied), the 
activation rate results in 0.5 active fluorophores per 1 μm2 per frame. This 
photoactivation density per frame was chosen to minimize the detection of 
overlapping fluorophores similar to that in the experiment.

Methods for experiments used to calculate Z(Δn). Strains. Strains with 
chromosomal fluorescent protein fusion tags were constructed using λ 
Red-mediated homologous recombination62. Some results used in this paper came 
from strains that also harbor a single chromosomal DNA site marker (tetO6); 
the DNA markers are positioned in various positions on the chromosome, 
and a portion of the results are not relevant and thus are not discussed in this 
publication. Details for the construction of these bacterial strains are described in 
detail in a previous publication62.

Cell growth. For live-cell imaging, single colonies were picked from LB  
plates and cultured overnight in EZ Rich Defined Medium (EZRDM, Teknova) 
with 0.4% glucose at room temperature (RT) with shaking. The next morning,  
cells were reinoculated into fresh EZRDM with 0.4% glucose and grown at RT 
until they reached mid-log phase (OD600, 0.3–0.4). For simultaneous visualization 
of DNA site markers (results are not reported here), cells were collected and 
resuspended in fresh EZRDM supplemented with 0.3% l-arabinose and 0.4% 
glycerol and allowed to grow for 2 additional hours; these cells were collected 
via centrifugation and imaged immediately. For fixed-cell experiments, cells 
were grown accordingly and fixed in 3.7% (vol/vol) paraformaldehyde (16% 
paraformaldehyde, EM grade, EMS) for 15 min at RT, washed with 1× PBS and 
imaged immediately.

Nascent rRNA labeling (smFISH). We performed smFISH using a previously 
published protocol63,64. Briefly, cells were grown in EZRDM with glucose as 
previously described; 5 ml mid-log-phase cells were fixed with 3.7% (vol/vol) 
paraformaldehyde (16% paraformaldehyde, EM grade, EMS) and placed on ice 
for 30 min. Next, cells were collected via centrifugation and subsequently washed 
two times with 1× PBS. Cells were then permeabilized by resuspending them in 
a mixture of 300 μl water and 700 μl 100% ethanol and incubating the suspension 
with rotation at RT for 30 min. Cells were stored at 4 °C until the next day. Wash 
buffer was freshly prepared with 40% formamide and 2× SSC and put on ice. Cells 
were pelleted in a bench-top centrifuge at 10,000 r.p.m. for 3 min, and the cell pellet 
was resuspended in 1 ml wash buffer. The sample was placed on a nutator to mix 
for 5 min at RT. Hybridization solution was prepared with 40% formamide and 2× 
SSC; subsequently, dye-labeled oligonucleotide probes were added to hybridization 
solution to a final concentration of 1 μM. Cell were pelleted again, and 50 μl 
hybridization solution with probe was added to the pellet. The hybridization 
sample was mixed well and placed overnight in an incubator at 30 °C. The next day, 
10 μl hybridization sample was washed with 200 μl fresh wash buffer and incubated 
at 30 °C for 30 min; this step was repeated one more time. The washed sample 
was imaged immediately, without stochastic optical reconstruction microscopy 
(STORM) imaging buffer for ensemble fluorescence or with STORM buffer to 

induce dye blinking for super-resolution imaging. Glucose oxidase-supplemented 
thiol STORM buffer was used to image samples with only dye labeling (50 mM 
Tris (pH 8.0), 10 mM NaCl, 0.5 mg ml−1 glucose oxidase (Sigma-Aldrich), 40 g ml−1 
catalase (Roche), 10% (wt/vol) glucose and 10 mM MEA (Fluka))57. Thiol-only 
STORM buffer (10 mM MEA, 50 mM Tris (pH 8.0), 10 mM NaCl) was used to 
image samples with both endogenously expressed fluorescent proteins and dye 
labeling. This was to preserve the fluorescent signal from fluorescent proteins, 
because the presence of glucose oxidase in the STORM buffer tended to quench the 
fluorescent protein signal. Pre-rRNA transcripts were detected with a single probe, 
L1, conjugated at the 5′ end with Alexa Fluor 647 (NHS ester) (IDT)65. Upon 
receiving commercial oligonucleotides, a working stock (50 µM) was made and 
aliquoted for storage at −20 °C.

Cell imaging and SMLM analysis. A 3% gel pad made with low-melting agarose 
(SeaPlaque, Lonza) in EZRDM was prepared. Live cells of an optimal imaging 
density were deposited onto the gel pad and immobilized with a coverslip for 
imaging as previously described63. An Olympus IX81 inverted microscope with 
a ×100 oil objective (UPlanApo, numerical aperture (NA) of 1.4) was used, 
with ×1.6 additional amplification. Images were captured with an iXon DU 895 
(Andor) EMCCD with a 13-μm pixel size using MetaMorph (Molecular Devices). 
Illumination (405 nm, 488 nm, 561 nm, 647 nm) was provided by solid-state lasers 
Coherent OBIS 405, Coherent OBIS 488, Coherent Sapphire 561 and Coherent 
OBIS 647, respectively. Fluorescence was split using a multi dichroic filter (ZT 
405/488/561/647rpc, Chroma), and the far-red, red and green channels were 
further selected using HQ705/55, HQ600/50 and ET525/50 bandpass filters 
(Chroma). Gold fiducial beads (50 nm, Microspheres-Nanospheres) were used 
to correct for any sample drift during imaging. All super-resolution images were 
acquired with a 10-ms exposure time with 3,000–9,000 frames. Activation of 
fluorescent proteins was carried out simultaneously with fluorophore excitation, 
and the activation laser (405 nm) was kept at a constant power throughout the 
imaging session (1 mW at the laser output). For two-color imaging, simultaneous, 
multicolor acquisition was achieved using the Optosplit II or Optosplit III device 
(Cairn Research); colored channels were overlaid using calibration images from 
TetraSpeck beads (Life Technologies, T-7279) as previously described66. Initial 
fitting of raw imaging data was performed via the ThunderSTORM plugin67. Later 
analysis of localizations with DDC was processed using custom MATLAB scripts, 
which will be made available upon request.

Methods for nuclear pore complex experiments. Cell line. Human U-2 OS 
genome-edited Nup96–mEGFP cells (clone 195, 300174) were obtained from 
CLS Cell Lines Service. Cells were grown at 37 °C with 5% CO2 in DMEM (Life 
Technologies) supplemented with MEM NEAA, GlutaMAX and 10% FBS. Cells 
were plated on 8-well Lab-Tek #1 coverglass chambers (Nunc) for immunostaining 
and imaging purposes.

Immunostaining. Cells were fixed with 4% (vol/vol) paraformaldehyde in PBS for 
25 min and blocked in blocking buffer (3% BSA, 0.2% Triton X-100 in PBS) for 1 h. 
Cells were labeled for 2 h on a rocker with the FluoTag-Q anti-GFP Alexa Fluor 
647 nanobody (1:100 dilution, NanoTag Biotechnologies). Cells were then washed 
with washing buffer (0.2% blocking buffer, 0.05% Triton X-100 in PBS) four times, 
10 min each.

Single-molecule localization microscopy imaging. Single-molecule imaging 
was performed using imaging buffer comprising 50 mM Tris, pH 7.5, 10 mM 
NaCl, 0.5 mg ml−1 glucose oxidase (Sigma, G2133), 40 µg ml−1 catalase (Roche 
Applied Science, 106810), 10% (wt/vol) glucose and 30 mM Ciseamine (stock 
concentration, 77 mg ml−1 of 360 mM HCl). Images were acquired on the Oxford 
Nanoimager-S microscope, which has the following configuration: 405-, 488-, 
561- and 640-nm lasers, 498–551- and 576–620-nm bandpass filters in channel 1 
and 665–705-nm bandpass filters in channel 2, ×100 1.4-NA objective (Olympus) 
and a Hamamatsu Flash 4 version 3 sCMOS camera. Localizations were acquired 
with a 10-ms exposure time over 40,000 frames with constant laser power for each 
acquisition. Images were processed, and localizations were obtained using the 
NimOS localization software (Oxford Nanoimaging).

Quantifying the effective labeling efficacy. To determine the ELE, we used the raw 
localizations from the Nup96 SMLM images and applied a simple tree-clustering 
algorithm (centroid, threshold = 100 nm) to segment individual NPCs. We then 
followed the methodology of Thevathasan et al.53 to further filter the segmented 
NPCs to well-defined structures; we only used the well-defined structures in our 
analyses.

First, we fit the segmented complexes to a circle (with the radius as a free 
parameter) and eliminated complexes with a radius <40 nm or >70 nm, as these 
structures did not resemble single NPCs. Second, we refit these complexes with 
a circle of fixed radius and eliminated complexes when more than 25% of the 
localizations were within 40 nm of the center or 40% of the localizations were 
greater than 70 nm. Finally, we eliminated background localizations (those that 
were more than 70 nm away from the center of the refitted circle or those that were 
within 30 nm of the center of the circle).
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Next, (again) as in Thevathasan et al.53, we then quantified the number of 
detected corners of each NPC. To do this, we rotated the filtered localizations of 
the complexes so that the following function was minimized for each complex:

θrot = arg minθrot (θrot − θimodπ/4),

where θi is the angle of the ith localization within the complex under consideration. 
We then rotated the localizations by θrot. We then constructed a histogram of each 
complex’s new θi values with bins starting at −π/8 of width π/4. The number of 
detected corners (for each complex) was equal to the number of bins with at least 
one localization detected inside.

With the number of detected corners for each complex on hand (again, as in 
Thevathasan et al.53), we then used the following equation to determine the ELE 
(see Thevathasan et al.53 for further details):

B(k|8, (1 − B(0|4, ELE))),

where k is the number of detected corners, and B(k|n, p) =
( n
k
)

pk · (1 − p)n−k is 
the binomial probability density function.

Methods used for AKAP150. For fixed-cell STORM imaging, cells were fixed with 
4% paraformaldehyde for 20 min and then washed with 100 mM glycine in Hanks’ 
balanced salt solution (HBSS) to quench the free paraformaldehyde. Cells were 
permeabilized and blocked in a permeabilization solution with 0.1% Triton X-100, 
0.2% BSA, 5% goat serum and 0.01% sodium azide in HBSS. Cells were then 
incubated overnight at 4 °C with an anti-AKAP150 (MilliporeSigma, 07-210; EMD 
Millipore, 07-210) antibody at a 1:500 dilution, followed by a 1–2-h incubation 
with goat anti-rabbit Alexa 647-conjugated antibodies at a 1:1,000 dilution. Cells 
were then post-fixed again in 4% paraformaldehyde, quenched with 100 mM 
glycine in HBSS and washed with HBSS to prepare for imaging. Immediately before 
imaging, the medium was changed to STORM-compatible buffer (50 mM Tris-HCl 
(pH 8.0), 10 mM NaCl and 10% glucose) with glucose oxidase (560 mg ml−1), 
catalase (170 mg ml−1) and mercaptoethylamide (7.7 mg ml−1). STORM images 
were obtained using a Nikon Ti total internal reflection fluorescence (TIRF) 
microscope with N-STORM, an Andor iXon3 Ultra DU 897 EMCCD and a 
×100 oil-immersion TIRF objective. Photoactivation was driven by a Coherent 
405-nm laser, while excitation was driven with a Coherent 647-nm laser. Puncta 
localization was performed using both Nikon Elements analysis software.

Methods used for sister chromatid experiments. Chromatin-fiber preparation 
from D. melanogaster embryos with YOYO-1 staining. Young embryos (<2 h 
old, 15–20 embryos per experiment) were collected and washed three times 
with lysis buffer at RT (100 mM NaCl, 25 mM Tris base, 0.2% Joy detergent, 
pH 10; adapted from McKnight and Miller68). Embryos were transferred to the 
center of a clean glass slide (Fisherbrand Superfrost Plus Microscope Slides) and 
subsequently drained of residual lysis buffer. Following removal of residual lysis 
buffer, 20 μl fresh lysis buffer was then added to the surface of the glass slide to 
immerse embryos. Embryos were then manually broken apart with dissecting 
forceps to release embryonic nuclei from the intact embryo. After breaking open 
the embryo, the protective outer layers of the embryo (chorion layers, waxy layer 
and vitelline membrane) were removed, and the nuclei were allowed to sit in lysis 
buffer until fully lysed (2 min). A sucrose–formalin solution (10 μl, 1 M sucrose, 
10% formaldehyde) was then added on top of the lysed nuclei, after which a large 
coverslip (22 × 50 mm, Thermo Scientific Rectangular Cover Slips) was placed 
on top of the lysed chromatin solution and incubated for 2 min at RT. Following 
incubation, slides containing chromatin fibers derived from lysed embryonic 
nuclei were transferred to liquid nitrogen and allowed to sit for 2 min. Slides 
were then removed from liquid nitrogen, after which the coverslip was removed 
with a razor blade. Slides were then transferred to cold (−20 °C) 95% ethanol and 
incubated for 10 min. Slides were removed from ethanol and placed at a 45° angle 
for 2 min (or until almost all ethanol had evaporated from the slide, but it was not 
completely dry). A fixative solution (500 μl, 0.5% formaldehyde in 1× PBS with 
0.1% Triton) was then slowly added to the surface of the slide, after which the 
slide was incubated for 2 min. Slides were then drained of fixative solution and 
transferred to a coplin jar containing 50 ml 1× PBS. To fully wash chromatin-fiber 
samples, slides were then removed from the coplin jar and drained of remaining 
1× PBS. Used PBS in the coplin jar was then discarded, and the coplin jar was 
refilled with 50 ml fresh PBS. Slides were then placed back inside the coplin jar and 
incubated at RT for 2 min. Slides were removed from the coplin jar and placed in 
fresh PBS two additional times to complete the wash process. Following washing, 
slides were transferred to a humid, dark place and preblocked with 500 μl blocking 
solution (2% MilliporeSigma BSA in 1× PBS) for 30 min. Blocking solution was 
then drained, and 500 μl DNA-labeling solution containing 1 μM YOYO-1 DNA 
dye (Thermo Fisher Scientific Invitrogen, YOYO-1) was then slowly added to 
the surface of the slide. Slides were then incubated for 120 min in a humid, dark 
place. Following incubation, slides were drained of DNA-labeling solution and 
transferred to a coplin jar containing 50 ml 1× PBS. Slides were removed from 
the coplin jar and placed in fresh PBS two additional times to complete the wash 
process. Following washing, slides were removed from the coplin jar and drained of 
residual 1× PBS. Slides were then mounted in preparation for STORM imaging.

Single-molecule localization microscopy imaging. SMLM imaging of DNA fibers 
is based on the DNA-intercalating dye method75. The fibers on cover slides were 
labeled with 1 µM YOYO-1 for 120 min. dSTORM buffer (8–10 μl)76 was added on 
the top of the fibers and sandwiched with a clean coverglass (#1, Fisher Scientific). 
The coverglass was then sealed with nail polish. The sample can be imaged 
within 4–5 h with reasonable localizations. Image acquisitions were performed 
on an Olympus IX71 inverted microscope with a 1.49-NA ×100 TIRF objective, a 
ZT405/488/561 dichroic mirror (Chroma), an ET525/50 emission filter (Chroma) 
and an Andor iXon Ultra 897 EMCCD camera. Ten to 30 3,000-frame acquisitions 
of YOYO-1 signal were then obtained at a rate of 30 frames per second with 
488-nm laser power at 1 kW cm−2. During imaging, the activation 405-nm laser 
was ramped up stepwise (images were analyzed individually and then recombined) 
by 1 W cm−2 per movie (3,000 frames) to obtain more localizations. Specifically, 
different activation intensities were needed to account for the labeling density; 
therefore, we acquired an image with different set activation intensities and 
used DDC to analyze them separately and then recombined them at the end (as 
discussed in the last section of the main text). dSTORM data were first localized 
using 2D Gaussian fitting in an ImageJ plugin, ThunderSTORM. A bandpass 
filter (70 500 nm) for sigma was applied to remove the single pixel noise and 
out-of-focus molecules. The cross-correlation method in ThunderSTORM was 
applied to correct the long timescale drift.

Analysis. To quantify the number of localizations between sister chromatids, we 
first fit a spline function to cropped-out regions that showed single filaments. 
We then projected the localizations along this new axis, such that there was no 
curvature within the filaments and they were centered. We then split the filament 
into as many specifically sized segments as possible (as varied in the corresponding 
figures) and quantified the number of localizations in the upper sister relative to 
that in the lower sister for the different blinking-artifact methods.

Methods used for dynein experiments. Cell line. Stably transfected HeLa 
IC74-mfGFP cells (the dynein intermediate chain is GFP labeled, from the T. 
Murayama lab, Juntendo University School of Medicine) were plated on an 8-well 
Lab-Tek #1 coverglass chamber (Nunc). Cells were cultured under standard 
conditions (DMEM, high glucose, pyruvate, 10% FBS and 2 mM glutamine).

Immunostaining. Cells were fixed with paraformaldehyde (4% in PBS) at RT for 
20 min and incubated with blocking buffer (3% (wt/vol) BSA (Sigma) in PBS and 
0.2% Triton X-100 (Thermo Fisher Scientific) for 1 h. Dynein intermediate chain–
GFP was immunostained with primary antibody (chicken polyclonal anti-GFP, 
Abcam, 13970) diluted 1:500 in blocking buffer for 45 min at RT. Cells were 
rinsed three times with blocking buffer and incubated for 45 min with secondary 
antibodies (donkey-anti chicken labeled with photoactivatable dye pairs) for 
STORM (Alexa Fluor 405–Alexa Fluor 647).

Imaging. Imaging was performed using the Nanoimager-S microscope (Oxford 
Nanoimaging) with the following specifications: 405-, 488-, 561- and 640-nm 
lasers and 665–705-nm bandpass filters, ×100 1.4-NA objective (Olympus) and 
a Hamamatsu Flash4 version 3 sCMOS camera. Localization microscopy images 
were acquired with 16-ms exposure and 50,000 frames. Activation (405 nm, 
~0.5 W cm−2) was kept constant and then processed using NimOS localization 
software (Oxford Nanoimaging).

Analysis. To quantify each ‘cluster’ as a particular oligomerization state, we first 
quantified the number of localizations within each individual cluster using the 
hierarchical tree-clustering algorithm built in MATLAB. We then assigned the 
oligomer state of dynein (for each method) such that the fractions of each state 
were the same as those in ref. 45. We then compared the assigned state for each 
individual ‘cluster’ as described in the main text.

Methods used for characterizing blinking. Sample preparation. The Plac::mEos3.2 
plasmid (pXY329) was constructed based on pJL005 (Plac::FtsZwt-mEos3.2)69 
using In-Fusion cloning (Takara) to remove the ftsZ gene. MG1655 cells were 
transformed with pXY329 and grown in M9+ medium. Cells were collected at log 
phase and fixed with 3.8% paraformaldehyde in 1× PBS buffer. Fixed cells were 
washed with 1× PBS three times and stored at 4 °C for no longer than 1 week.

Streptavidin conjugated with Alexa Fluor 647 (SA–AF647) was purchased 
from Thermo Fisher Scientific. The SA–AF647 working solution was made fresh 
every time by diluting the original stock (36 μM) to 10 pM in 1× PBS with 0.5% 
Tween-20.

Imaging. Photoactivated localization microscopy. Fixed MG1655-Plac::mEos3.2 
cells were sandwiched between a 3% PBS agar pad and a coverglass as previously 
described70. PALM imaging was performed as in a previous study69 on an Olympus 
IX71 inverted microscope with a ×100, 1.49-NA oil-immersion objective. The 
561-nm excitation laser power was tuned to 1,500 W cm−2, while the 405-nm laser 
power varied from 0 to 3.5 W cm−2. For the 0 W cm−2 condition, a short laser pulse 
(1 s) at 3.5 W cm−2 and 405 nm was applied to activate some mEos3.2 molecules 
to a red fluorescent state. At each 405-power condition, six movies of 3,000-frame 
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images with an exposure time of 10 ms were collected continuously. Three repeats 
of all the 405 conditions were performed to obtain the average blinking behavior.

Direct stochastic optical reconstruction microscopy. SA–AF647 (10 pM) was  
flown into a preassembled chamber with biotin–PEG-coated coverglasses for  
5 min and washed three times with 1× PBS. STORM buffer was made fresh 
using the recipe described in ref. 71 and injected into the chamber to replace the 
PBS buffer before imaging. All STORM images were taken after 60 min, as the 
oxygen level in the buffer was shown to be stable after 1 h. dSTORM imaging 
was performed on an Olympus IX81 inverted microscope with a ×100, 1.45-NA 
oil-immersion objective. The 647-nm excitation laser power was tuned to 
1,800 W cm−2, while the 405-nm laser power varied from 0 to 13.9 W cm−2. At 
each 405 condition, two to three 5,000-frame movies at different regions on the 
coverglass were taken with an exposure time of 30 ms. Two repeats of all the 405 
conditions were performed.

Data processing. The single fluorophore spots in both PALM and dSTORM movies 
were localized with an ImageJ72 plugin, ThunderSTORM73. All spots with irregular 
properties (abnormal sigma, intensity too high or low or multiple spots within a 
500-nm range) were removed. A customized MATLAB code was used to link the 
same spots within three- to fourfold of localization limitation (100 nm) throughout 
the whole movie using a nearest-neighbor algorithm. Continuous frames with 
localization from the same linked fluorophore were counted as on frames. Other 
frames before the last on frame were counted as off frames. Blinking number was 
calculated as the sum of on-frame number. The mEos3.2 sample size was 540, 
1,634, 2,571, 3,548, 5,062; the AF647 sample size was 1,833, 3,919, 6,341, 8,795, 
11,400, 13,848.

Bleaching of Alexa 647. To provide the bleaching timescale of AF647 under our 
imaging conditions, we used the nuclear pore (NUP) experiment (Fig. 3) and 
quantified the bleaching time of single nanobody-conjugated AF647 fluorophores 
sparsely distributed in the cytoplasm of cells.

As shown in Supplementary Fig. 2a, Nup96 labeled with nanobody-conjugated 
AF647 fluorophores predominantly localized on the nuclear membrane 
(dense area in the cell). Single nanobody–AF647 fluorophores were also found 
sparsely distributed in the cytoplasm, similar to previously observed results53 
(Supplementary Fig. 2b). We used the sparse distribution of cytoplasmic 
fluorophores to analyze the photobleaching behavior of AF647.

To identify individual AF647 fluorophores in cropped regions of the cytoplasm, 
we determined the best protocol to link localizations into individual trajectories 
using the following procedure. We first used the number of repeats per AF647 
fluorophore (determined from the analysis in the main text based on the known 
true number of Nup96 molecules in the NPC) and divided the total number of 
localizations in a cropped cytoplasmic region by this number to obtain the true 
number of AF647 fluorophores in this region. We then simulated a random 
distribution of the same number of fluorophores within the same region with the 
same number of repeats per fluorophore that bleached over a timescale of 10,000 
frames. These simulated fluorophores also had the same localization precision 
as our imaging condition. Using this simulated image, we determined that the 
following protocol resulted in the best estimation of photobleaching times: (1) 
we used a distance threshold of 40 nm to link any two localizations that were 
<40 nm into the same trajectory, and (2) we eliminated trajectories in which the 
maximal distance between any two localizations within the trajectory was >40 nm 
(data not shown). Additionally, we only used trajectories for which the first 
localization appeared within the first 1,000 frames to avoid potential incomplete 
photobleaching toward the end of the imaging. Note that we did not set any time 
threshold to link localizations. Using these criteria, we obtained a total number 
of 2,813 single AF647 fluorophores and plotted the CDF of the total number of 
frames that a fluorophore lasts (that is, the photobleaching time, calculated as 
maximum frame of trajectory − minimum frame of trajectory, Supplementary 
Fig. 2c). The CDF shows that, under our imaging conditions, 90% of AF647 
fluorophores bleached within 6,100 frames (61 s, frame time = 10 ms). The average 
blinking number per AF647 fluorophore is 4.4.

Additionally, we performed the same analysis (with one modification)  
upon the publicly available data of Thevathasan et al.53 (Supplementary Methods), 
who also imaged Nup96 labeled by nanobodies conjugated with AF647.  
Here we used trajectories for which the first localization appeared within the first 
10,000 frames instead of 1,000 frames due to the smaller amount of data available 
and the longer acquisition time of these images (number of single AF647  
molecules, 173; total acquisition time, 65,000 frames). As shown in Supplementary 
Fig. 2d, in this experiment, 90% of AF647 molecules bleached within 22,000  
frames (330 s, frame time = 15 ms). Note here that the 90% bleaching time has a 
large error range because the CDF curve was compiled from only 173 molecules; 
the original paper only contained a limited amount data of the sparsely distributed 
AF647 fluorophores in the cytoplasm due to the fact that the work focused on  
NUP in the nucleus. The average blinking number per AF647 fluorophore in this 
work is 3.9.

Finally, we performed the same analysis on precursor ribosomal RNA species 
(pre-rRNA) labeled with AF647-conjugated DNA probes in E. coli cells using the 

same data that contributed to Fig. 1d. We selected cells with less than 500 total 
localizations to enrich for more sparse samples and used the same parameters 
described above (40-nm linkage distance, maximal distance of 40 nm, first 
localization appeared within the first 1,000 frames) to analyze the photobleaching 
timescale of DNA-conjugated AF647 fluorophores. The resulting CDF of 
bleaching times showed that 90% of fluorophores bleached within 1,200 frames 
(12 s, Supplementary Fig. 2e). Note that this photobleaching time could be an 
overestimate, as pre-rRNA species tend to cluster together74.

In sum, these results illustrate that, in our experiments, the AF647 fluorophore 
can be substantially photobleached, satisfying the criterion for the application of 
DDC. In all data acquired in this work to which DDC was applied, the acquisition 
time was ~6 min or greater. Furthermore, these results demonstrate that the 
specific photokinetics of a fluorophore can vary depending on experimental 
systems and imaging conditions. The great variability of AF647’s photokinetics 
under similar buffer conditions but in different experimental systems has also 
been observed before and is especially apparent in the variability of the switching 
cycles53,57–59. Finally, we note that, if the dark time of AF647 within an imaging 
condition is much longer than the imaging time, the reappearance of these 
molecules would be limited. Therefore, if this scenario were indeed the case, 
the lack of reappearance of AF647 would be approximately equivalent to AF647 
bleaching over the experimental timescale, and DDC still applies.

Data specifics of Thevathasan et al.. The particular publicly available data we 
used for analyzing AF647 are available in Thevathasan et al.53. The particular 
condition that we analyzed in the Bleaching of Alexa 647 section was the 
GLOX + 35 mM MEA condition (mEGFP-NB-Q-AF647), using localizations fit 
with at least a localization precision of 15 nm to exclude uncharacteristic spots. See 
Thevathasan et al. for further details53.

Methodology of Spahn et al.. The implementation of Spahn et al. was carried out 
by randomly selecting subsets of localizations (with replacement) and then using 
the threshold of 2.5 (just as in ref. 41) as the definition of a cluster to create the 
cluster masks. The normalized average density within the clusters (P/Po) versus the 
relative area of the image that the clusters covered (η) was plotted for all subsets 
of localizations to determine whether clustering was significant for the system of 
interest. For this methodology, clustering is deemed significant if P/Po rises above 1 
and stays above 1.

We tested this method on three different simulation systems (random, small 
clusters, dense clusters) with the two-state fluorophore, and we show these results 
in Extended Data Fig. 8a. We observed that the randomly distributed fluorophores 
maintained a P/Po equal to 1, while the dense cluster system rose substantially well 
above 1, demonstrating that the methodology could adequately recognize that 
there were clusters in the dense cluster system and that there were not clusters in 
the random system. As expected, an intermediate value for the small cluster system 
was also observed.

Next, to investigate the clustering of AKAP79 and AKAP150 with a method 
orthogonal to DDC, we applied the methodology of Spahn et al.41 to the 
super-resolution data of each of the two orthologs. The results of this analysis are 
shown in Extended Data Fig. 8b, where P/Po values for both orthologs rose slightly 
above P/Po = 1. These results support the previous findings that the two orthologs 
are significantly clustered, supporting the analysis as quantified by DDC. Although, 
we should note that P/Po did not reach high values (like those for the dense cluster 
system), suggesting that, just as with DDC, the clustering of the two orthologs is 
not ‘extreme.’

Statistics. Means were calculated with the following equation.

μ =
1
N

N
∑

i=1
(xi)

Standard deviation and s.e.m. (through bootstrapping) were calculated with the 
following equation.

σ =

√

√

√

√

1
N

N
∑

i=1
(xi − x̄)2

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data in this paper are shown in the main figures and Extended Data figures. 
All raw data for each of the simulation systems (Figs. 1 and 2) are also included at 
https://github.com/XiaoLabJHU/DDC. Source data are provided with this paper. 
All other data are available upon request. The complete package of DDC (data, 
code, user guide) is available for download at https://github.com/XiaoLabJHU/
DDC (there are no access restrictions).
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Extended Data Fig. 1 | Photokinetic Models. The two kinetic models used to simulate blinking, (a) 2 dark state and (b) 1 dark state. The transition 
probabilities per frame are shown in the figure.
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Extended Data Fig. 2 | Converging of Pairwise distance distributions. The pairwise distance distributions for both photo-kinetic models shown in 
Extended Data Figure 1 and 6 molecular assemblies. Note here that the axis is no longer log scale as in the main text and the true pairwise distance 
distribution is shown as black dots.
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Extended Data Fig. 3 | Matching the true pairwise distance distribution. An illustration of the pairwise distance distributions at a certain frame difference, 
Δn, before and after being corrected with DDC. When the likelihood is maximized all of the pairwise distance distributions will match the true pairwise 
distance distribution. [The true pairwise distance distribution is shown as black dots.].
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Toy model illustration for inner workings of DDC. Toy model illustration for inner workings of DDC (See text within SI for in depth 
description): a, Simple toy model with 4 true localizations and 2 repeats (color coded), with the number showing the frame of each localization (can also 
be used to identify each localization for this example). b, The true pairwise distance distribution (PT (Δr)) and the distribution of distances between loci 
given that at least one is a repeat (PR1(Δr∣Δn = 1)) for the localizations within (a) The number (and probability) for ‘small’ distances and ‘large’ distances 
for each distribution is above each bar, with an assigned variable (a, b, c, d) used in the calculation of the Likelihood (Lik). We also show the specific pairs 
of loci under the bars to illustrate how assigning a particular loci to a certain set influences the likelihood calculation. Note: for this specific example blinks 
only appear with Δn = 1, and hence we ignore the distributions with Δn > 1 (See text). c, Simplified illustration of how Alg. 1 and Alg. 2 work together 
and assign localizations as a true localization or repeat localization. Multiple steps of the MCMC are shown with different rows (1 to 3) (See Text). 
Alg. 1 essentially calculates the probability that a localization is a repeat (green bars), if this value is above .5 it is assigned to that set. Alg. 2 varies this 
calculation by a small amount each step, generating new sets d, The sets assigned in (c) lead to different likelihoods (due to the particular distribution the 
distance between each pair is assigned (changing (a,b,c,d), note how the specific distances between each pair change with each assigned set), when the 
distributions of the assigned sets match the correct distributions (those in (B)) Lik is maximized. (See text for further details).
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Extended Data Fig. 5 | Maximization of Likelihood Results in Correct Conformation of Localizations. Maximization of Likelihood Results in Correct 
Conformation of Localizations: For 6 systems investigated within this work, we randomly varied the percentage of true localizations and calculated the 
log(Lik) and the image error for each conformation (See Text).
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Extended Data Fig. 6 | Overcounting and undercounting in individual pixels. Overcounting and undercounting in individual pixels: Comparison of four 
different thresholding methods with DDC in counting the number of true localizations in individual pixels on five spatial distributions as depicted and 
simulated in main text Fig. 2. The y axis is the difference between the true count and the method-identified count expressed as Count-[True Count], 
with positive values indicating the degree of over-counting and negative values the degree of under-counting. The x-axis is the number of true counts in 
individual pixels. The pixel size was set to 50 nm. Note that only DDC shows consistent distributions of y values near zero at different true count values 
and across all five spatial patterns. [Each scatter point is colored to illustrate the estimated probability density - allowing one to visualize the regions of 
high density (red) and regions of low density (blue).].
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Extended Data Fig. 7 | AKAP scatter plots through time. Scatter plots for a section of a cell with the localizations from AKAP79 with the color indicating 
the frame of the localization (Blue is early and Red is late) for the three different methodologies.
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Extended Data Fig. 8 | Computationally varying the label density. a, The results of computationally varying the label density on some of the simulation 
systems. b, The results of computationally varying the label density on AKAP79 and AKA150. (Values greater than 1 indicate significant clustering.).
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Extended Data Fig. 9 | Experimental Concerns. Image Error at different densities of localizations (a) and activation probability per frame (b). The raw data 
points are shown as gray points and the moving average is shown in black (Supporting Material). c, An intensity trajectory of a single mEos3.2 molecule 
with labels showing the definitions of Ton and Toff. d, The average Ton, Toff (per frame, frame rate 33Hz), and number of blinks for Alexa647 and mEos3.2 at 
different UV activation intensities (405 Power).
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Extended Data Fig. 10 | Varying Raw Image Error. The raw Image Error (Not Normalized) for the uncorrected SMLM images for varying the density of the 
localizations and the activation energy.
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