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We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models.

In this work we investigate the transition between a Z3 ferromagnet and a phase with valence bond solid (VBS)

order in a spin chain with Z3 × Z3 global symmetry. We study a model with alternating projective representations

on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS

order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem

typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition

from the VBS phase to a Z3 ferromagnet. Finite-entanglement scaling data are consistent with a second-order or

weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing

the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results

for this model, we propose that the transition is extremely weakly first order and is part of a family of deconfined

quantum critical points described by walking of renormalization group flows.

DOI: 10.1103/PhysRevB.103.155143

I. INTRODUCTION

One of the broad objectives of recent studies in con-

densed matter physics is to describe quantum phase transitions

outside the scope of the usual Landau-Ginzburg theory of

symmetry breaking. Within this topic, a number of spiritu-

ally similar proposals have been categorized as a “deconfined

quantum critical points” (DQCP). This label was originally

used for a model of spins with SU(2) symmetry on the

two-dimensional (2D) square lattice to describe a transition

between a phase with Néel antiferromagnetic order and a one

with columnar valence-bond solid (VBS) order. Senthil et al.

[1,2] proposed a mechanism for a continuous transition which

relies on emergent symmetry, leading to a theory in terms

of fractionalized fields. This description inspired a variety of

other proposals, which are united by the property that the

natural variables for the system at the critical point are con-

fined on either side of the transition. Meanwhile, the original

proposal has been extensively tested in numerical studies,

which are consistent with either a second-order or very weakly

first-order transition [3–20].

The low-energy theory for the Néel-VBS transition is the

noncompact CP1 model of complex scalars coupled to a U(1)

gauge field which, however, does not include monopole terms

in the action. Quantum Monte Carlo simulations suggest that

the IR theory hosts an emergent symmetry, with the three

components of the Néel order parameter and two components

of the VBS order parameter transforming together as an
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SO(5) vector [12]. This emergent symmetry, which is real-

ized anomalously, proved to be useful for understanding the

transition through various dualities to theories appearing on

the surface of a three-dimensional symmetry protected topo-

logical (SPT) phase [21].

Surprisingly, conformal bootstrap bounds on unitary CFTs

with SO(5) symmetry turn out to exclude the conformal data

measured in numerics, most notably for the SO(5) vector

which is too relevant to satisfy consistency conditions [22].

This discovery followed earlier observations of unusual nu-

merical features such as drifting “universal” quantities and

inconsistencies in finite-size scaling [6,7,11,14]. The reso-

lution may be that the phase transition is in fact weakly

first order (or pseudocritical), a phenomenon thought to be

generically a result of renormalization group (RG) walking

[11,21,23–30]. In this scenario, the transition displays approx-

imate conformal symmetry below some long, but finite, length

scale. At intermediate distances the system’s properties are

governed by nonunitary complex fixed points which can be

viewed as analytic continuations of a unitary CFT; however,

eventually the theory is trivial. For the DQCP with SU(2)

symmetry such a description requires a fixed point with in-

herent SO(5) symmetry and a tunable parameter providing

access to the pseudocritical regime [21]. Some proposals in

this direction have identified as a candidate a nonlinear sigma

model with WZW term continued to d = 2 + ǫ dimensions,

with SO(4 + ǫ) symmetry [31,32].

A complementary perspective on the above story arises

from framing the phenomenology of the DQCP in models in

1D, where one breaks the global symmetry to some discrete

subgroup. In Ref. [33] a transition was considered between

an Ising ferromagnet and a dimerized VBS phase in a 1D

system with Z2 × Z2 symmetry. Exact lattice dualities lead
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to a mapping to microscopic variables which unify these

order parameters and allow a controlled low-energy theory,

which turns out to be a one-component Gaussian theory (a

Luttinger liquid) with a single relevant cosine term and contin-

uously varying critical indices. In these variables an emergent

U(1) × U(1) symmetry is manifest at the transition. Studies of

a concrete spin system established many nontrivial properties

of this theory [34–36]. There are also connections to the web

of 1+1 dualities considered in Ref. [37]. Another example of

DQCP in 1D has also been observed by using long-ranged

Heisenberg terms to circumvent the Mermin-Wagner theorem;

such a model (which can be realized on the boundary of a SPT

state in 2D [38]) exhibits a direct transition between a gapless

phase with AFM order and one with VBS order [39].

One may wonder to what extent the lessons learned from

the Z2 × Z2-symmetric DQCP in 1D are representative of a

more general class, as opposed to being somehow special. In

the present work we begin to address this question through

detailed studies of a concrete lattice model with Z3 × Z3

symmetry. We will end up arguing that the evidence suggests

that a family of DQCP in Zq × Zq-symmetric models in 1D

in fact exhibits pseudocritical behavior due to RG walking,

a situation reminiscent of the current status of the canonical

DQCP with SU(2) symmetry in 2D. The putative transition

in our Zq × Zq-symmetric DQCP appears to be described by

an integrable model with very long correlation length, and

the availability of analytical results make it a particularly

appealing candidate for controlled studies of the RG walking

scenario for a very weakly first-order DQCP.

This paper is organized as follows. In Secs. II and III

we introduce our lattice Hamiltonian and present numerical

results from matrix product states on the phase diagram and

evidence for a DQCP. In Sec. IV we present some low-energy

continuum theories related to the lattice model and calculate

supporting results in a fine-tuned two-component Gaussian

theory that appears to capture many (but not all) aspects of the

numerical results. In Sec. V we provide details on exact results

for an integrable model suggested by numerics to describe

the DQCP, which leads us to conclude the transition is very

weakly first order. In Sec. VI we use exact diagonalization

studies to identify some light primary fields in the complex

CFTs associated with the RG walking conjecture. Finally, in

the Appendices we expand on background information and

further technical details related to various aspects of this work.

II. MODEL WITH Z3 × Z3 SYMMETRY

A quantum chain respecting an internal Z3 × Z3 symme-

try is most naturally realized using a three-dimensional local

Hilbert space, placed on the sites of a 1D lattice. We pro-

vide detailed motivation and clarification about the form of

our Hamiltonian by reviewing the group SU(3) and relevant

previous results on lattice models with SU(3) symmetry in

Appendix A.

A. Lattice Hamiltonian

We choose the following generators of the global internal

symmetry group:

gx =
∏

j

gx, j =
∏

j

X j, gz =
∏

j

gz, j =
∏

k

Z
†
2k

Z2k+1, (1)

which are written using the Z3 clock operators

X =

⎡
⎣

0 0 1

1 0 0

0 1 0

⎤
⎦, Z =

⎡
⎣

1 0 0

0 ω 0

0 0 ω−1

⎤
⎦, (2)

with ω = ei 2π/3 being the primitive cubic root of unity. Be-

cause of the commutation relation ZX = ωXZ the Z
z
3 × Z

x
3

symmetry is realized projectively on a single lattice site.

The projective representations are classified by H2[Z3 ×
Z3, U(1)] = Z3 and labeled by {[0], [1], [2]}, where for class

[r] we have gz, jgx, j = ωrgx, jgz, j . The sublattice of odd-

numbered (even-numbered) sites hosts the [1] ([2]) projective

representation of Z3 × Z3.

The general lattice Hamiltonian we consider is

H = H[Jx, Jz, K] = −
∑

j

[(JxX jX j+1 + JzZ
†
j Z j+1 + H.c.) + K (1 + X jX j+1 + H.c.)(1 + Z

†
j Z j+1 + H.c.)] (3)

= −
∑

j

(JxX jX j+1 + JzZ
†
j Z j+1 + H.c.) + 6K

∑

j

(
∑

a

T
a

jT
a
j+1 −

1

6

)
. (4)

In the second line the K term is written using standard SU(3)

spin operators connecting to an integrable model with VBS

ground state, as reviewed in Appendix A. We generally restrict

all coupling constants to be real and non-negative.

Other internal symmetries of Eq. (3) include time rever-

sal �, which we implement as complex conjugation in the

Z eigenbasis, and charge conjugation symmetry C : |n〉 →
|3 − n mod 3〉. Together C and gx generate the S3 permuta-

tion symmetry of the local basis state labels. With periodic

boundaries on the lattice, the model is invariant under the

generator of translation T1, as well as spatial inversion I about

a site. While T1 is a symmetry of H , it does exchange the

projective symmetry groups on the sublattices. The action of

the symmetries on the clock operators is

gx : (X j, Z j ) �→ (X j, ω
−1Z j ), (5)

gz : (X j, Z j ) �→ (ω2p j−1X j, Z j ), (6)

� : (X j, Z j ) �→ (X j, Z
†
j ), i �→ −i , (7)

C : (X j, Z j ) �→ (X †
j , Z

†
j ), (8)

T1 : (X j, Z j ) �→ (X j+1, Z j+1), (9)

I : (X j, Z j ) �→ (X− j, Z− j ), (10)
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where we use p j to denote the parity of j:

p j =
1 − (−1) j

2
=
{

0, j even,

1, j odd.
(11)

B. Classical picture of phases

In the limiting case Jx = K = 0, Jz > 0, the ground state

is a ferromagnetic phase in the Z basis which breaks Z
x
3,

leading to a three-dimensional ground-state manifold spanned

by basis

BzFM =

{
⊗

j

|0〉 j,
⊗

j

|1〉 j,
⊗

j

|2〉 j

}
. (12)

The ground states in the zFM phase are of course subject

to quantum fluctuations but remain connected to this simple

basis of product states.

Similarly, for Jz = K = 0, Jx > 0 the ground states exhibit

ferromagnetic order in the X eigenbasis (local basis states

denoted |0x〉, |1x〉, |2x〉 = | − 1x〉):

BxFM =

{
⊗

j

|0x〉 j,
⊗

j

|(1−2p j )x〉 j
,
⊗

j

|(2p j −1)x〉 j

}
.

(13)

Setting Jz = Jx = 0, K > 0 recovers the Hamiltonian HbQ

of Eq. (A8) which respects the full SU(3) symmetry. As

described in Sec. A 2, the ground state of this model is known

to preserve SU(3) but spontaneously breaks the translation

symmetry generator T1 to T2 = (T1)2, thus breaking a Z/2Z =
Z2 symmetry and leading to twofold ground-state degener-

acy [40]. While the ground states at this point are finitely

correlated, including additional terms discussed in Sec. A 2

connects to a Majumdar–Ghosh-like point in the same phase.

Thus we take the classical picture of the VBS phase to be

spanned by

BVBS =

{
⊗

k

|ψs〉2k−1,2k,
⊗

k

|ψs〉2k,2k+1

}
, (14)

where |ψs〉 j, j′ = 1√
3
(|00〉 j, j′ + |11〉 j, j′ + |22〉 j, j′ ).

Although every unit cell hosts a nontrivial projective rep-

resentation, this system does not have an LSM anomaly

[41–43], and it turns out that one can construct a gapped

symmetric ground state. This symmetric phase is actually

an SPT phase characterized by a fractionalized entanglement

spectrum; as such, there is no simple classical picture of this

state. In Appendix B we develop an analytic MPS for this

phase.

III. RESULTS FROM UNIFORM MATRIX

PRODUCT STATES

In order to reduce the three-dimensional parameter space

of Eq. (3) to a two-dimensional phase diagram, we perform a

change of variables to the anisotropy δ = Jz−Jx

Jz+Jx ; that is, Jz =
J (1 + δ) and Jx = J (1 − δ), and we set J = 1. We find the

phase diagram using the variational uniform matrix product

state numerical method [44]. We use an adiabatic protocol

for determining the phase boundary, fully optimizing a trial

state far away from the transition, then using this state as the

initial condition for the variational procedure with a slightly

perturbed Hamiltonian. In this way the state is tuned toward

the phase transition but biased toward a particular symmetry-

breaking order. Because at the mean-field level the phase

transition is first order, the energy landscape of the MPS

close to the transition will develop two local minima, with

one being metastable on each side. The two choices of initial

conditions, locating the trial states close to one or the other

energy minimum, allow a comparison of trial energies which

determines very precisely the exact location of the crossing

for a given MPS bond dimension [34]. Scaling with bond

dimension provides an estimate of the true location of the

phase transition, based on the understanding of MPS as a

dressed mean-field approximation [45].

For the purposes of data uniformity, we add a very small

symmetry-breaking term to the Hamiltonian when prepar-

ing the initial variational states (i.e., at the very start of the

adiabatic protocol scan inside each phase), so that all data

are comparable across values of χ . In particular, in the state

coming from the zFM side, we break gx by biasing toward

⊗ j |0〉 j , as this ground state is invariant under the C symmetry

generator. The symmetry-breaking term is removed during the

rest of the adiabatic protocol scan. All scans are performed

independently of one another.

A. Numerical phase diagram

As we will describe in Sec. IV A, the point (δ, K ) = (0, 0)

maps under duality to two decoupled three-state clock models

tuned to the self-dual point, supported on the two sublattices

of the dual lattice. The critical theory describing each sub-

lattice is the CFT for the three-state self-dual Potts model,

the minimal model with c = 4/5. Accordingly, this point in

the phase diagram is critical with c = 8/5. The K pertur-

bation in this language has the form of an energy-energy

term coupling the two clock models in a way that preserves

self-duality. The corresponding field theory operator is RG

relevant but is in fact integrable, known to lead to a massive

fixed point [46] which presumably describes the VBS phase

in our context. The δ term has support on the energy operator

for each of the two Potts models and is strongly relevant,

breaking self-duality and precluding a perturbative expansion

about this point. (It is interesting that the model with only

δ perturbation is also an integrable deformation of this CFT

[47].)

Our numerical data, shown in Fig. 1, are consistent with

a “wedge” shape; that is, at δ = 0 the system is in the VBS

phase for any finite K > 0. (For K < 0 we find a direct

first-order transition between the zFM and xFM phases along

δ = 0.) The data are consistent with a second-order transition

between the zFM and VBS ordered phases, without contin-

uously varying critical exponents. However, as we describe

later, the situation turns out to be more complicated but also

very interesting.

The slice δ = 1 is indicated on Fig. 1, which in the original

parameters of Eq. (3) sets Jx = 0 and Jz = 2. For Jx = 0 the
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FIG. 1. The phase diagram of H [δ, K] is determined from ex-

trapolation in MPS correlation length of optimized variational MPS

using an adiabatic protocol. The dashed line at δ = 1 has an enhanced

U(1) × U(1) onsite symmetry. The inset shows an example of the

finite-entanglement process of approximating Kc. Each data point

indicates a crossing of trial energies for states biased toward each

symmetry-breaking order, which we scan along slices of constant δ.

The data shown is for δ = 1, with bond dimensions from 90 to 300

and correlation lengths between roughly 50 and 175 lattice spacings.

The numerically extrapolated critical point is Kc(ξ → ∞) = 2.0002.

Evident in this data is a nonuniversal correction to the asymptotic

scaling form, the magnitude of which is decreasing with 1/ξ . We

examine the (δ, K ) = (1, 2) point in the phase diagram in detail in

Secs. V and VI.

Hamiltonian takes a simpler form:

H[Jx = 0, Jz, K]

= −3
∑

j

[
Jz
∑

α

|αα〉〈αα| j, j+1 + K
∑

α,β

|αα〉〈ββ| j, j+1

− (Jz + K )
]
. (15)

Along this line the global symmetry Z
z
3 × Z

x
3 is enhanced to

U(1)2
⋊ Z

x
3, where generators of the U(1) × U(1) symmetry

can be constructed from any linearly independent combina-

tions of Z and Z† [48].

We represent the U(1) × U(1) symmetry generators by

N1 =
∑

j

n1, j =
∑

j

(−1) j |1〉〈1| j, (16)

N2 =
∑

j

n2, j =
∑

j

(−1) j |2〉〈2| j . (17)

A group element is written as

u(ϕ1, ϕ2) = ei (ϕ1N1+ϕ2N2 ) =
∏

j

ei (ϕ1n1, j+ϕ2n2, j ), (18)

and we have gz = u(−2π/3, 2π/3). The action of the other

symmetry generators on na, j (a = 1, 2) is given by

gx : n1, j �→ n2, j, n2, j �→ (−1) j − n1, j − n2, j, (19)

� : na, j �→ na, j, i �→ −i , (20)

FIG. 2. Entanglement scaling is shown at the precise phase tran-

sition for several values of δ. We draw data points in random order

to emphasize consistency. Numerical c are obtained by fits to critical

scaling of entanglement entropy S = c

6
ln ξ . States are optimized at

the critical point but break gx slightly. The best estimates for the exact

locations of the phase transition are (δ, Kc ) = (0.6, 1.327), (1.0,2.0),

(1.4,2.664), which were determined by numerical extrapolations in

the thermodynamic limit similar to inset in Fig. 1.

C : n1, j �→ n2, j, n2, j �→ n1, j, (21)

T1 : na, j �→ −na, j+1, (22)

I : na, j �→ na,− j . (23)

Note that the appearance of (−1) j in Eq. (19) indicates

that each site forms a projective representation of the onsite

symmetry group generated by gx and N1,2. Furthermore, gx

commutes with N1,2 only in the N1 = N2 = 0 sector.

B. Central charge

Through a somewhat different protocol than was used to

find the phase diagram, we are able to estimate the central

charge at the phase transition. In this case we optimize MPS

at the phase transition beginning from random initial states of

small bond dimension; we then increase the bond dimension

of the optimized state and reconverge. As a result, individual

data points are not independent of one another, although the

data for differing δ are independent. We do not explicitly

break any symmetries in this scheme.

In Fig. 2 we show results for the central charge measured

at the phase transition along cuts δ = 0.6, 1.0, 1.4. In this

figure we have used the extrapolated critical values Kc(δ) and

generated MPS for these points over a large range of bond

dimensions χ from 30 to 360, corresponding to ξ ranging

from approximately 10 to 200. The entanglement entropy

measurements are consistent with the expected critical scaling

S = c
6

ln ξ , where ξ is the correlation length induced in the

wave function by the finite MPS bond dimension.

We find nearly the same central charge at these fairly

widely separated points on the phase boundary. This pro-

vides initial evidence that the phase boundary is controlled

by a single fixed point. For values of δ close to 0 there

is a crossover which interferes with the accurate scaling,
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but otherwise all results are consistent with a single fixed

point.

C. Critical exponents

With optimized MPS ground states in hand describing

the phase transition, measuring correlation functions of lat-

tice operators with suitable symmetry properties allows for

probing the universality based on critical indices. At a criti-

cal point various correlations display quasi-long-range order

with asymptotic scaling given by CO(r) = 〈O†(0)O(r)〉 −
〈O†(0)〉〈O(r)〉 ∼ r−2
O for a local observable O(r).

We focus on the line δ = 1 and measure correlations at the

phase transition, including of observable Z j which carries gx

charge. We also consider S+
1, j , which is charged under N1 but

not N2:

S+
1, j =

⎡
⎣

0 p j 0

1 − p j 0 0

0 0 0

⎤
⎦, (24)

where p j is the parity of j from Eq. (11).

We also consider the U(1) current with temporal part n1, j

and spatial part j1, j derived from the conservation of N1.

Explicitly,

j1, j ∼ (−1) j
(
T 1

j T 2
j+1 + T 2

j T 1
j+1 − T 6

j T 7
j+1 − T 7

j T 6
j+1

)
, (25)

in the notation of Appendix A. In order to extract long-

wavelength correlations of the conserved currents, we mea-

sure

Cn1
(r = j′ − j) ≡ 〈(n1, j + n1, j+1)(n1, j′ + n1, j′+1)〉 (26)

and similarly for C j1 (r).

The counterparts S+
2, j , n2, j , and j2, j are related to these

operators by C. These are all sensible for the transition at

δ = 1; away from this line definite charge under gz is carried

by X j or X
†
j , depending on p j . However, X j and X

†
j are simply

linear combinations of the U(1) × U(1) raising and lowering

operators as well as other terms related by permutation sym-

metry, which we expect is respected at the critical point. So the

critical exponent governing S+
1, j and S+

2, j will also determine

the decay of correlations of X j . We confirmed the symmetry

numerically but do not show these results, instead summariz-

ing this family of operators by S+
1, j only, and similarly for n1, j

and j1, j .

We also measure the 0-momentum and π -momentum com-

ponents of the energy term E j = T
a

jT
a
j+1 which is invariant

under the full internal symmetry group:

ǫ0
j = E j + E j+1, (27)

ǫπ
j = E j − E j+1. (28)

The operator ǫπ
j is the natural lattice operator for VBS corre-

lations, being in the singlet sector of all internal symmetries

[actually the entire SU(3)] but odd under Z2 translation sym-

metry.

Finally, we wish to investigate the conjecture that the crit-

ical theory at the point δ = 1 in fact controls the entire phase

boundary. This would imply that the U(1) × U(1) symmetry

of the line δ = 1 is emergent at the transition for other values

of δ; equivalently, terms breaking the symmetry are irrelevant

at the transition for δ = 1. We measure correlations of a term

which carries charge under U(1)2 but preserves all symmetries

of H in Eq. (3). Specifically, consider the following operator:

A =
∑

j

A j (29)

with

A j =
∑

h∈S3

(|h(1)〉〈h(0)| j ⊗ |h(0)〉〈h(2)| j+1 + H.c.). (30)

The sum is over elements of the permutation group, and

the term corresponding to the identity element e = (012) is

S+
1, jS

+
2, j+1 + S−

1, jS
−
2, j+1. It is easy to see that A respects gz,

gx, C, �, and lattice symmetries, while all terms in A break

N1 and N2. We thus interpret A as a fieldlike term driving

U(1) × U(1) symmetry breaking, hence maintaining critical-

ity to leading order in the field.

Based on the above interpretation, we can predict the slope

of the phase boundary in the phase diagram at δ = 1 in

Fig. 1. As mentioned there, the critical point H∗ appears to be

(δ, K ) = (1, 2), where Jz = K . Now we suppose that A turns

out to be the most relevant symmetry-breaking operator, and

moreover that H∗ + λA remains critical to leading order in λ.

Decomposing this term into the (δ, K ) basis, which control

terms (X jX j+1 − Z
†
j Z j+1 + H.c.) and 6T

a

jT
a
j+1, respectively,

yields the unique solution

A j =
(
X jX j+1 + 1

3
Z

†
j Z j+1 + H.c.

)
+ 2T

a

jT
a
j+1 (31)

= (X jX j+1 − Z
†
j Z j+1 + H.c.) + 5

3

(
6T

a

jT
a
j+1

)

+
4

3

[
(Z†

j Z j+1 + H.c.) − 6T
a

jT
a
j+1

]
. (32)

The final line in Eq. (32) simply changes the overall scale of

H∗, allowing it to be removed from the perturbation term in

this picture. So as a consequence of the conjectured irrele-

vance of this U(1)2 symmetry-breaking term, we predict that

the critical manifold in these variables has slope dδ/dK = 3
5

at (δ, K ) = (1, 2); this is highly consistent with the numerical

data shown in Fig. 1.

1. Direct approach

The most straightforward approach to determining scaling

dimensions is simply to measure the correlation function in

real space and fit to a power-law form. We refer to this as the

“direct approach,” following terminology used in Ref. [49].

This is very similar to the procedure used in Ref. [34] to

fit critical indices for the transition between Ising FM and

VBS. As was the case there, we determine a power law for

the decay of correlations for a single bond dimension (usually

the largest studied). However, in contrast to that work we will

always use the connected correlations; accordingly, we will

not obtain bounds on exponents as we did there but rather

simple estimates. We suspect that this measurement will tend

to overestimate operator scaling dimensions as a result of the

finite length scale induced by the MPS bond dimension even

at a critical point. In addition, the direct approach suffers

from ambiguity in determining the appropriate intermedi-

ate power-law region between nonuniversal short-distance
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FIG. 3. Direct measurements of correlations are taken from an

MPS of bond dimension χ = 300 optimized for the phase transition

at δ = 1, with translation invariance; that is, biased toward breaking

gx . These operators are described in Sec. III C, and all correlations

measure the connected component. In the trace of Cǫ0 we include

only odd separations r in the interest of visual clarity; the power law

is unaffected.

behavior and eventual exponential decay. We show the results

of these measurements in Fig. 3.

There is already an interesting observation visible in the

raw data; namely, that the magnetic zFM and VBS observables

have very similar power laws. This is suggestive of some

enhanced symmetry unifying the two order parameters at the

putative critical point, a characteristic property of DQCP.

2. Finite-entanglement scaling approach

As mentioned previously, finite-entanglement approxi-

mations necessarily induce a length scale; here the MPS

correlation length ξ introduces some scaling function to the

critical correlations which eventually decays exponentially.

One technique to counteract this is referred to as “finite-

entanglement scaling” (FES) [49], which is based on the

observation that irrespective of the functional form of the

correlations with a length scale, one finds that CO(sξ ) ∼
(sξ )−2
O . Here s is a dimensionless fraction which is kept

fixed as one varies bond dimension (and hence ξ ). We employ

this more sophisticated strategy which incorporates data from

multiple optimized MPS in Fig. 4, and provide a comparison

with the direct results.

One sees that the direct approach tends to overestimate

scaling dimensions as compared to FES, with the exception of

the S+
1,2 operators, whose raw data is not amenable to a power-

law fit. Other results are qualitatively consistent with the direct

approach, with highly relevant operators in the magnetic and

translation symmetry-breaking sectors, along with other less-

relevant operators charged under the U(1) symmetries and in

the singlet sector. The expectation that the conserved space-

time current components n1 and j1 have scaling dimension 1 is

reasonably well satisfied. Additionally, the similarity between

the zFM and VBS order parameters is maintained in this

FIG. 4. In the FES approach we measure the correlations CO(sξ )

for a range of fixed dimensionless fractions s and varying ξ . The

top panel shows data for the spatial part of the U(1) current j1, j .

For s > 1 the raw data is already in the exponential decay regime

of Fig. 3, while this approach still exhibits consistent power-law

scaling; thus FES is indeed largely insensitive to the scaling function

induced by finite MPS bond dimension. In the bottom panel we

show scaling dimensions as a function of s. 
 j1 and 
n1
are visually

identical for all values of s. We do not include A, whose correlations

decay too quickly to use this method. Horizontal lines marked 
d

indicate values found by power-law fits in the direct approach in

Fig. 3. In the table, we provide FES results at s = 1.

approach, albeit with slower power laws. The correlations CA

decay below the measurement error threshold too quickly to

effectively treat with the FES method and are not shown.

From the scaling dimensions 
Z , 
ǫπ , and 
ǫ0 measured

in correlation functions we can provide numerical estimates

of the critical indices characterizing the transition. The FES

scaling dimensions generally depend on s, and there is no

a priori best value of this parameter to choose. Fortunately

our measurements do not vary widely, and for lack of a better

option we will choose s = 1. These values are given in Fig. 4,

and the reader is free to decide how seriously to take the

numbers. The correlation length exponent we compute is ν =
1/(2 − 
ǫ0 ) ≈ 1.2 and the order parameter exponents are

βzFM = ν
Z ≈ βVBS = ν
ǫπ ≈ 0.35. Due to the strong irrel-

evance of the A perturbation breaking U(1) × U(1) symmetry,

we predict that these critical indices describe an extended

region of the phase boundary.

We revisit these measurements in Sec. VI and compare

with results from exact diagonalization, identifying these op-

erators with primary fields in a putative CFT where possible.
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IV. THEORIES OF PHASE TRANSITION

A. Domain wall description

We write the standard duality mapping to Z3 domain wall

variables on the dual lattice. Denote these operators by Z̃ j+1/2

and X̃ j+1/2:

X̃ j+1/2 = Z
†
j Z j+1, (33)

Z̃ j+1/2 =
∏

i� j

Xi, (34)

Z̃
†
j−1/2Z̃ j+1/2 = X j . (35)

The dual operators satisfy Z̃X̃ = ωX̃ Z̃ . In these variables H is

written (up to constant terms)

H̃ = −
∑

j

[(JxZ̃
†
j−1/2Z̃ j+3/2 + JzX̃ j+1/2 + H.c.)

+ K (1 + Z̃
†
j−1/2Z̃ j+3/2 + H.c.)

× (1 + X̃ j+1/2 + H.c.)], (36)

and the generators of the Z
x
3 × Z

z
3 symmetry as

gx =
∏

j

Z̃
†
j−1/2Z̃ j+1/2 = 1, gz =

∏

k

X̃2k+1/2. (37)

That on a periodic chain gx appears trivial is a symptom of this

duality failing to account for the global symmetry aspects of

the model on such a chain. In Appendix C, we formulate the

duality on a periodic chain and account for all global aspects

by using a dual Z3 gauge field. We can view the analysis in

this section as being performed in a fixed gauge.

The action of the symmetries on the dual variables is

gx : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+1/2, Z̃ j+1/2), (38)

gz : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+1/2, ω
p j−1Z̃ j+1/2), (39)

� : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ †
j+1/2, Z̃ j+1/2), i �→ −i , (40)

C : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ †
j+1/2, Z̃

†
j+1/2), (41)

T1 : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+3/2, Z̃ j+3/2), (42)

I : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃−( j+1/2), Z̃−( j+1/2)). (43)

The dual Hamiltonian Eq. (36) can be viewed as two in-

dividual three-state clock models residing on the “even” and

“odd” sublattices of the dual lattice (locations 2k + 1/2 and

2k + 3/2, k ∈ Z, respectively), with energy-energy coupling

between them. Physically, when all domain walls are gapped

(that is, 〈Z̃odd〉 = 〈Z̃even〉 = 0) the zFM order is preserved. The

threefold degeneracy of this phase is encoded in the gauge

sector presented in full in Appendix C.

Other phases can be obtained by various condensation pat-

terns of the domain wall variables. For example, condensing

〈Z̃odd〉 = 〈Z̃even〉 �= 0 breaks gz but preserves gx, C, �, and

T1. We thus identify this with the particular classical state⊗
j |0x〉 j in the xFM phase. The other classical states in this

phase break C and T1 but preserve T1C. These correspond to

〈Z̃odd〉 = ω±1〈Z̃even〉 �= 0. It appears naively that there are a

total of nine degenerate minima; however, when global sym-

metry aspects are accounted for, there are indeed only three

degenerate ground states.

By instead condensing domain walls as 〈Z̃odd〉 �= 0 and

〈Z̃even〉 = 0, or vice versa, one finds a phase which breaks

translation symmetry and has twofold ground-state degener-

acy. We identify this condensate with the VBS phase in the

lattice model. While this order parameter appears to trans-

form nontrivially under gz in the above equation, its value is

not gauge invariant, and this phase in fact respects the full

internal symmetry group. From the perspective of the zFM in

this language, the VBS is a particular Higgs phase, with the

transition accomplished by condensing domain walls on only

one sublattice of the dual lattice.

One can write a schematic theory of coarse-grained domain

walls described by complex fields wA ∼ Z̃odd, wB ∼ Z̃even,

transforming as

gx : (wA,wB) �→ (wA,wB), (44)

gz : (wA,wB) �→ (wA, ω−1
wB), (45)

� : (wA,wB) �→ (wA,wB), i �→ −i , (46)

C : (wA,wB) �→ (w†
A,w

†
B), (47)

T1 : (wA,wB) �→ (wB,wA), (48)

I : (wA,wB) �→ (wA,wB). (49)

The associated Lagrangian reads

L = LA + LB + LAB, (50)

Lα = t |wα|2 + u3

(
w

3
α + c.c.

)
+ u4|wα|4 + · · · , (51)

LAB = λ|wA|2|wB|2 + · · · , (52)

where Lα is a schematic theory for the Z3 ordering transition

on each sublattice. Gradient terms are omitted for simplicity.

In addition to the usual mass term t and quartic term u4,

the symmetries allow the Z3 anisotropy term u3, which en-

ergetically distinguishes three particular directions to capture

the qualitative physics of the underlying Z3 clock variables

Z̃odd/even.

In the absence of coupling between the two sublattices, the

critical point (on each sublattice) is obtained by tuning

the parameter t . Schematically, for “renormalized” trenorm > 0

the fields wA and wB are both gapped, which for the orig-

inal system corresponds to the zFM phase. In contrast, for

trenorm < 0 both fields condense; in the original system this

corresponds to the xFM phase. This is not a tractable field the-

ory for describing the Z3 criticality; instead, the actual critical

properties are known from exact solutions of lattice models or

study of the IR theory, which is a conformal minimal model.

Nevertheless, this schematic writing simplifies the discussion

of the domain wall theory.
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LAB represents coupling between the Z3 systems on the

two sublattices. In our model, this has the form of energy-

energy coupling, for which we write the most relevant term

with amplitude λ [50]. It is known from the CFT description

of the Z3 criticality that the energy-energy coupling is relevant

at the decoupled point.

Consider now the full theory including LAB. By lowering

t , one allows domain walls to proliferate and destroy the

zFM order. Focusing on the quartic terms, if λ < 2u4 both

domain walls want to condense simultaneously, leading to the

xFM phase. (As described previously, the above Lagrangian

does not include the dual Z3 gauge field needed to account

for global symmetry aspects, which reduces the ground-state

degeneracy in this case to only three ground states.) If instead

λ > 2u4, then it is energetically favorable for only one domain

wall species to condense, with two possibilities: either 〈wA〉 �=
0, 〈wB〉 = 0 or 〈wA〉 = 0, 〈wB〉 �= 0, which correspond to the

two degenerate ground states of the VBS phase.

In our lattice model, the above two regimes correspond to

K < 0, where we find a transition from the zFM to the xFM

phase, and to K > 0, where we find the VBS phase. Further-

more, along the δ = 0 line we find a first-order zFM-xFM

phase boundary for K < 0 while the VBS phase immediately

opens up for K > 0. This is consistent with the relevance of

the energy-energy coupling at the decoupled point (δ, K ) =
(0, 0), taken together with the above schematic energetics

picture of the preferred domain wall condensation patterns

for K < 0 and K > 0. Moreover, in our model along the

line δ = 0, the domain wall theory is invariant under a si-

multaneous duality transformation for each species A and B,

treated as their own Z3 chains, which we interpret as main-

taining the “thermal” variable teff = 0 and allowing only the

energy-energy coupling to flow. The runaway flows are then

interpreted as leading to coexistence of zFM and xFM on

one side—having wA and wB both gapped or both condensed

being energetically equal by the above self-duality—and the

VBS phase on the other side.

We can now discuss the zFM-VBS phase boundary, which

requires perturbing from the decoupled point in both t and

λ directions in the field theory (both δ and K in our lat-

tice model). In the low-energy theory at the decoupled point

(δ, K ) = (0, 0) both couplings t and λ are relevant, with scal-

ing dimensions 4/5 and 8/5, respectively. The leading flow

equations are dt/dℓ = (6/5)t + · · · and dλ/dℓ = (2/5)λ +
· · · ; in particular, t (ℓ) ∼ λ(ℓ)3 along the flows near the de-

coupled point. To be on the phase boundary, the couplings

t and λ must balance one another. Thus we predict that the

phase boundary has the shape δc(K ) ∼ K3 near the decoupled

point.

Unfortunately, we do not know the ultimate fate of this

type of balanced flow of two relevant couplings. One possi-

bility is that the flow leads to a new fixed point with only

one relevant direction, which would then describe a generic

continuous zFM-VBS transition. The alternative is that there

is no such new fixed point, and a runaway flow is interpreted

as corresponding to a first-order zFM-VBS transition. The

above “theory” does not provide a controlled way to study

this question, but we hope that it will motivate more research

in this problem.

B. Theory for U(1) × U(1)-symmetric model

1. Bosonized variables

The apparently emergent U(1) × U(1) symmetry invites

treatment via bosonization [51–53]. Consider the model

along the δ = 1 line where it has microscopic U(1) × U(1)

symmetry. This model can be approximated by two cou-

pled U(1) rotors with variables (na, j, φa, j ), a = 1, 2, defined

by

(−1) j |a〉〈a| ∼ na, j, S+
a, j ∼ ei φa, j , (53)

where [na,i, φa′, j] = i δaa′ δi j .

To begin writing the field theory description, we first de-

termine the average filling in this system. The filling number

is constrained by the action of gx in Eq. (19); for a fully

symmetric state we have

〈n1, j〉 = 〈n2, j〉 =
(−1) j

3
. (54)

Next, to capture fluctuations δna ≡ na − 〈na〉, we introduce

bond variables θa, j+1/2, where

δna, j =
1

π
(θa, j+1/2 − θa, j−1/2). (55)

We choose θa, j+1/2 as follows:

θa,2k−1/2 =
∑

j′�2k−1

π na, j′ ,

θa,2k+1/2 =
∑

j′�2k

π na, j′ +
π

3
. (56)

The commutator between θa and φa′ is

[θa, j+1/2, φa′, j′ ] = i π δaa′ �( j + 1/2 − j′), (57)

where �(x) is the Heaviside step function.

To get to the low-energy theory, we define long-wavelength

fields θ1,2(x) and φ1,2(x) in continuum space, where θ1,2(x)

are real-valued with periodicity π and φ1,2(x) have periodicity

2π . These fields satisfy
[
∂xθa(x)

π
, φa′ (x′)

]
= i δaa′ δ(x − x′). (58)

The action of the symmetries on the fields can be de-

duced from their lattice operator counterparts in Eqs. (53)

and (56):

u(ϕ1, ϕ2) : (φ1, θ1, φ2, θ2)

→ (φ1 + ϕ1, θ1, φ2 + ϕ2, θ2), (59)

gx : (φ1, θ1, φ2, θ2) → (−φ1 + φ2, θ2,−φ1,−θ1 − θ2),

(60)

� : (φ1, θ1, φ2, θ2) → (−φ1, θ1,−φ2, θ2), i → −i , (61)

C : (φ1, θ1, φ2, θ2) → (φ2, θ2, φ1, θ1), (62)

155143-8



ONE-DIMENSIONAL MODEL FOR DECONFINED … PHYSICAL REVIEW B 103, 155143 (2021)

T1 : (φ1, θ1, φ2, θ2)

→
(
−φ1,−θ1 +

π

3
,−φ2,−θ2 +

π

3

)
, (63)

I : (φ1(x), θ1(x), φ2(x), θ2(x))

→
(
φ1(−x),−θ1(−x) +

π

3
,

× φ2(−x),−θ2(−x) +
π

3

)
. (64)

We are now ready to write down the low-energy theory.

The symmetry-allowed Gaussian part reads

L0 =
2∑

a=1

{
i

π
∂τφa∂xθa +

v

2π

[
g(∂xφa)2 +

1

g
(∂xθa)2

]}

+
v

2π

(
−g∂xφ1∂xφ2 +

1

g
∂xθ1∂xθ2

)
, (65)

with a single tunable “Luttinger parameter” g and one “veloc-

ity parameter” v. There are two types of symmetric scattering

terms:

(1) Type I:

λI
m

{
cos

[
2m(θ1 + θ2) −

2mπ

3

]
+ cos

(
2mθ1 +

2mπ

3

)
+ cos

(
2mθ2 +

2mπ

3

)}
, m ∈ Z ; (66)

(2) Type II:

λII
m [cos (2m(θ1 − θ2)) + cos (2m(θ1 + 2θ2)) + cos (2m(2θ1 + θ2))], m ∈ Z. (67)

The scaling dimensions for generic exponentials of the

fields at the Gaussian fixed point are given by [54]:

dim[exp(i (2m1θ1 + 2m2θ2))] =
2g
√

3

(
m2

1 − m1m2 + m2
2

)
,

(68)

dim[exp(i (p1φ1 + p2φ2))] =
1

2
√

3g

(
p2

1 + p1 p2 + p2
2

)
.

(69)

We now list some important operators in this bosonized

language [identified either microscopically or by using the

symmetry transformations in Eqs. (59)–(64)] along with their

scaling dimensions at the Gaussian fixed point.

(i) As discussed before, operators carrying unit charges

under U(1) × U(1) are S+
1,2 ∼ exp(i φ1,2), which have scaling

dimensions dim[S+
1,2] = 1

2
√

3g
.

(ii) The operator A defined in Eq. (30), which breaks

U(1) × U(1) to Z
z
3, reads

A ∼ cos(φ1 + φ2) + cos(2φ1 − φ2) + cos(φ1 − 2φ2), (70)

and dim[A] =
√

3
2g

.

(iii) The zFM order parameter is given by

OzFM ∼ cos

(
2θ1 + 2θ2 −

2π

3

)
+ e2i π/3 cos

(
2θ1 +

2π

3

)

+ e−2i π/3 cos

(
2θ2 +

2π

3

)
, (71)

and dim[OzFM] = 2g√
3
.

(iv) The VBS order parameter reads

OVBS ∼ cos
(

2θ1 + 2θ2 −
π

6

)
+ cos

(
2θ1 +

π

6

)

+ cos
(

2θ2 +
π

6

)
, (72)

and dim[OVBS] = 2g√
3
.

It is interesting to note that at the Gaussian fixed point,

the zFM and VBS order parameters have the same scaling

dimension, which also coincides with the scaling dimension

of the leading allowed scattering term, given by Eq. (66) with

m = 1. Furthermore, we have the relation

dim[S+
a ]

dim[A]
= dim[S+

a ] dim[OzFM] =
1

3
. (73)

When g >
√

3, all allowed scattering terms are irrelevant

and this system is in a stable gapless phase described by the

Gaussian fixed point, with power-law exponents as described

above. This phase is stable as long as the U(1) × U(1) sym-

metry is present microscopically. Note, however, that we did

not find this phase in our lattice model along the δ = 1 line,

but it would be interesting to look for it in some model defor-

mations in the future. On the other hand, if the U(1) × U(1)

symmetry is broken down to Z
z
3 and the A term is allowed,

one cannot simultaneously make this term and all scattering

terms irrelevant and the gapless phase is unstable.

2. Gapped phases and “classical phase diagram” in the

bosonized variables

We now develop the representation of various gapped

phases in this theory. Different gapped quantum phases

correspond to different patterns of 〈φ1,2〉 or 〈θ1,2〉. As a conse-

quence of the Mermin-Wagner theorem, in the U(1) × U(1)-

symmetric model φ1,2 never condense and we always have

〈exp(i φ1)〉 = 〈exp(i φ2)〉 = 0.

For quantum states preserving T1, we require 〈θ1,2〉 = π/6

or −π/3 (mod π ). For quantum states preserving gx, we re-

quire 〈θ1〉 = 〈θ2〉 = 0 or ±π/3 (mod π ). We are then able to

represent the gapped phases appearing in the previous sections

as follows:

(i) 〈θ1〉 = 〈θ2〉 = −π/3 gives a fully symmetric phase.

The detailed study of this SPT phase is presented in Ap-

pendix B 2.
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FIG. 5. Four distinct phases appear in the classical phase dia-

gram obtained by analyzing the minima of Eq. (74).

(ii) 〈θ1〉 = 〈θ2〉 = 0 or π/3 gives the two degenerate

ground states of the VBS phase.

(iii) (〈θ1〉, 〈θ2〉)= (π/6, π/6), (π/6,−π/3), (−π/3, π/6)

gives the three degenerate zFM ground states.

The classical phase diagram of this two-component Lut-

tinger liquid theory is obtained by minimizing the energy of

the scattering terms. We first consider the symmetric scatter-

ing term Eq. (66) with m = 1, which we label V I
1 . Its scaling

dimension is 2g/
√

3, the lowest among symmetric terms; it

is relevant for g <
√

3. When λI
1 < 0, V I

1 is minimized at

θ1 = θ2 = −π/3, and thus gives the symmetric phase. When

λI
1 > 0, it is instead minimized at θ1 = θ2 = 0 or π/3, and

thus gives the VBS phase. If we also have g > 1/
√

3 so

that the next scattering term—Eq. (67) with m = 1—is irrele-

vant, the VBS to SPT transition is obtained when the single

relevant coupling λI
1 changes sign and is described by the

Gaussian theory in Eq. (65). The correlation length exponent

at this transition is set by the scaling dimension of V I
1 : ν =

1/(2 − 2g/
√

3), while the power-law correlations of various

observables are governed by the scaling dimensions we have

calculated. It is interesting that even though zFM order is not

present on either side of the transition, its correlations decay

with the same power law as the VBS order present on one

side.

To describe the zFM phase and its transition to the VBS

phase, we add the next scattering term [Eq. (67) with m = 1],

labeled V II
1 . Thus the combined scattering term is

V = V I
1 + V II

1 . (74)

When g < 1/
√

3, both V I
1 and V II

1 are relevant.

We parametrize λ
I,II
1 by λ and α, where λI

1 = λ cos α and

λII
1 = λ sin α. For each α, we identify all minima of Eq. (74),

and associate classical phases with the minima by analysis of

symmetry properties. The resulting phase diagram is shown in

Fig. 5.

When arctan(1/8) < α � π/4, then (θ1, θ2)min =
(π/6, π/6), (π/6,−π/3), or (−π/3, π/6), which gives

the zFM phase. We can also identify representative lattice

wave functions for these three states by studying their

transformation properties under C and gx:

(π

6
,
π

6

)
∼
⊗

j

|0〉 j,
(π

6
,−

π

3

)
∼
⊗

j

|1〉 j,

×
(
−

π

3
,
π

6

)
∼
⊗

j

|2〉 j . (75)

When −π/2 < α < arctan(1/8), we find (θ1, θ2)min =
(0, 0) or (π/3, π/3), which gives the VBS phase.

When −π − arctan(1/3) � α < −π/2, (θ1, θ2)min =
(−π/3,−π/3), and we find the symmetric phase.

When π/4 < α < π − arctan(1/3), we get six degenerate

minima, which can be parameterized by a single variable

υ:

(θ1, θ2)min =
(π

6
± υ,

π

6
∓ υ
)
,
(π

6
∓ υ,−

π

3

)
,

×
(
−

π

3
,
π

6
± υ
)
. (76)

The physical picture of this phase can be obtained by ana-

lyzing the symmetries of these minima and their relation to

nearby phases. Denoting the above minima as A±,B±,C±,

they transform in a three-cycle way under gx : A± → B± →
C± → A±, while they are exchanged pairwise under lat-

tice translation T1 and inversion about a site I : A+ ↔
A−,B+ ↔ B−,C+ ↔ C−. Furthermore, A±/B±/C± are ex-

changed pairwise under symmetries C, gxC, or Cgx. At the

point α = π/4, the optimal υ = 0 and these pairs merge to

give the three ground states of the zFM phase in Eq. (75). We

conclude that the phase with υ �= 0 also has magnetic order

similar to zFM with additional translation and site inversion

symmetry breaking (but preserves bond inversion symmetry).

However, the lattice symmetry breaking is different from the

VBS order: The VBS order parameter is zero in all these

states for any υ, and, more directly, the VBS ground states

are invariant under C and gx, which is not the case here.

According to the symmetry properties of this phase, we name

it a “bond-centered magnetic order” phase.

We cannot write simple product states that would have

the desired transformation properties for the bond-centered

magnetic order states, including the expected quantum num-

bers under the U(1) × U(1). However, it is possible to write

MPS wave functions for these ground states, by building

on the MPS wave function for the neighboring SPT phase

from Appendix B 2, with which the present phase connects

at α = π − arctan (1/3), υ = π/2, where all of the minima

collapse to (−π/3,−π/3) (remembering that the θ fields are

defined modulo π ). The MPS construction for this phase is

presented in Appendix B 3.

3. zFM-VBS transition in U(1) × U(1)-symmetric theory

We can now discuss the phase transition between the zFM

and VBS phases within this theory. In the above “classical”

treatment of V I
1 and V II

1 , the phase transition occurs along the

line λII
1 = λI

1/8 with positive λ
I,II
1 ; this is a “level crossing”

transition and is first order. This treatment is appropriate when

both bare couplings λI
1 and λII

1 are large. On the other hand,

we can consider starting from the Gaussian theory when these
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bare couplings are small. In the regime g < 1/
√

3, both cou-

plings are relevant and start flowing to larger values. We may

speculate that the (almost) continuous zFM to VBS transition

observed in our numerical study occurs when these couplings

during their flow balance each other in just the right way,

but unfortunately we do not have a controlled means to study

this.

Nevertheless, it is intriguing that some of the relations

among the various scaling dimensions at the Gaussian fixed

point appear to be approximately satisfied in our numerical

study at the (pseudo-)critical point (δ, K ) = (1, 2). Namely,

we find numerically that the zFM and VBS order parameters

have very close scaling dimensions, while they are equal

in the Gaussian theory. We also find that Gaussian theory

relations in Eq. (73) are approximately satisfied. The scal-

ing dimensions are consistent with a naive estimate geff ≈
0.25. For such geff, both V I

1 and V II
1 would be relevant (in

fact, one more scattering term with coefficient λI
2 would

also be relevant), consistent with these couplings flowing

away from the Gaussian fixed point. For such a value of

geff, the term A breaking the U(1) × U(1) symmetry down

to gz is irrelevant, which is consistent with the observed

emergent U(1) × U(1) symmetry along the zFM-VBS phase

boundary.

We remark that the above relations among various expo-

nents in the Gaussian theory follow from the fact that there

is a single Luttinger parameter in the theory, which in turn

is dictated by the microscopic symmetries. It is possible that

the corresponding approximate relations found in the numer-

ical study of the (pseudo-)critical point are also primarily

due to the symmetries rather than proximity to the specific

two-component Luttinger liquid theory. However, we do not

know how to guess a better description, while the Luttinger

liquid theory at least provides some framework for discussing

observables and noticing these relations.

V. CONNECTION TO INTEGRABLE STATISTICAL

MECHANICS MODELS

A. Classical model of nonintersecting strings

Focusing on the line of enhanced symmetry δ = 1 which

has significantly informed our study so far, one observes in

Fig. 1 that this slice appears to intersect the phase boundary

exactly at the point (δ, K ) = (1, 2), at which Jx = 0 and Jz =
K . Up to constants and an overall scale, this point is equivalent

to

H∗ = −
∑

j

[
(q − 2)

∑

α

|αα〉〈αα| j, j+1 +
∑

α,β

|αα〉〈ββ| j, j+1

]
.

(77)

for q = 3. The above finding suggests that this Hamiltonian

may be special, and in order to understand it we first return

to another special instance of our Hamiltonian, namely, the

point Jx = Jz = 0, which up to normalization and constants

maps exactly to the pure biquadratic spin-1 Hamiltonian HbQ,

Eq. (A8). This Hamiltonian is associated with the transfer op-

erator of a particular 2D statistical mechanics model realizing

“nonintersecting strings” (NIS).

(a) (c) (d)

FIG. 6. The three types of vertices shown here, with α �= β, are

allowed in the vertex models we consider. We consider the model on

the two-dimensional square lattice with vertex weights a, c, and d for

the configurations (a), (c), and (d ) respectively; see text for details.

These models are formulated with classical q-state degrees

of freedom assigned to the edges of a graph—we have in

mind the 2D square lattice—and weights assigned to the

vertices according to their configurations. The only nonzero

vertices are those shown in Fig. 6; when accounting for the

Sq permutation symmetry of the labels α, β = 1, . . . , q, there

are q(2q − 1) allowed vertices. To simplify the notation, we

write the weights as w(a) = a, w(c) = c, and w(d ) = d [55].

Solving the Yang-Baxter equation for the transfer matrix with

Sq symmetry yields two integrable models for each value of q,

satisfying the following conditions [56–58]:

separable: a = c + d, (78)

nonseparable: a2 = a(c + d ) + (q − 2)cd. (79)

The solution Eq. (78) is commonly known as the separable

NIS model, and we refer to that of Eq. (79) as the integrable

nonseparable case.

Schematically, under the separability condition Eq. (78),

vertices of type (a) can be decomposed into both types (c)

and (d ) and thereby removed from the partition sum. Then

one can map via a two-step duality to the self-dual point of

the q2-state Potts model [59]. The q2-state Potts degrees of

freedom reside on half of the plaquettes of the original square

lattice (one color of a checkerboard pattern) and have gener-

ally anisotropic nearest-neighbor interactions in the x̂ + ŷ and

x̂ − ŷ directions of the NIS lattice, with Boltzmann weights

set by c/d and d/c. For any c and d the model is self-dual;

the point c = d corresponds to the isotropic self-dual model.

We provide the explicit duality mapping from the separable

q-state NIS model on the square lattice to the q2-state Potts

model, as well as further discussion, in Appendix D using

Hamiltonian language.

Both integrable NIS statistical mechanics models are ex-

actly solvable for general q by the analytic Bethe ansatz

[58,60]. The structure is quite similar to the solution of the

XXZ model using magnons, with the reference states of the

method being the highest excited states (a manifold spanned

by |α1, α2, . . . , αN 〉 with αi �= αi+1). Although the solution for

the eigenvalues was performed explicitly by De Vega and Gi-

avarini [61], we are not aware of how to access the low-energy

subspace or ground-state wave functions exactly.
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B. Phases of NIS models

The weight of a single vertex can be written (with link

variables labeled in the compass pattern S,W,N,E)

w(α, γ , β, ρ)

= a δαγβρ + c (δαρδβγ − δαγβρ ) + d (δαγ δβρ − δαγβρ )

= (a − c − d ) δαγβρ + c δαρδβγ + d δαγ δβρ . (80)

Since the overall scale of w does not change the probabilities,

the vertex model has two independent parameters, which we

are free to choose. We use c/d , which characterizes lattice

anisotropy, as well as another parameter characterizing the

relative weight of the (a)-type vertices compared to the (c)-

and (d )-type vertices. One choice for such a parameter would

be a2/cd , but we will instead use a related quantity,

� =
a

cd
(a − c − d ) =

a2

cd
−

a
√

cd

(√
c

d
+
√

d

c

)
. (81)

The parameter � is convenient in that the two integrable

models correspond to � = 0 and � = q − 2. At each of these

special values of �, the NIS transfer matrices commute for

any anisotropy parameter c/d; this is simply a restatement of

Yang-Baxter solubility. In particular, the information encoded

in the eigenvectors of the transfer matrices is independent of

the “spectral variable” c/d . Accordingly, we can say that the

physics is strictly independent of the anisotropy parameter.

This conclusion does not hold at other values of � �= 0, q − 2

and the quantitative details will depend on the anisotropy;

however, we expect that the qualitative physics will still be

independent.

Using the freedom afforded by the spectral variable, one

can tune to the extreme anisotropic limit of the � = 0, q − 2

transfer matrices and take a logarithmic derivative to deter-

mine that these integrable models yield precisely the HbQ and

H∗ quantum Hamiltonians, respectively, for the case q = 3

[56,57,60,62,63]. In this section we will allow � to vary and

will argue that � < q − 2 realizes the same phase as the

separable model � = 0 which breaks the lattice translation

symmetry, while � > q − 2 realizes a magnetically ordered

phase. Hence, the integrable nonseparable model � = q − 2

appears to be at the transition between these phases.

As suggested by its name, the NIS model partition sum

can be rewritten in terms of nonlocal strings; these are

“completely packed” on the square lattice, with each edge

containing a string segment. Every vertex can connect the seg-

ments on its adjoining edges in three different ways according

to the pictures of (a)-, (c)-, and (d )-type vertices in Fig. 7.

Ignoring boundaries, one sees that allowed string configura-

tions take the form of loops lying along connected edges, all of

which are in the same state within a single loop. These loops

may self-intersect at (a)-type vertices but do not cross one

another. The partition function can be rewritten independently

of the q possibilities for the state of the edges comprising each

loop, and the sum over flavors performed explicitly, obtaining

a model in which q appears as a parameter and weights in the

partition sum are determined entirely by loop geometry. The

precise formulation in terms of unflavored strings is akin to

a high-temperature expansion for a q-state Potts model. The

(a) (c) (d)

FIG. 7. The vertex configurations of the loop model, which are

unflavored, are shown. The weight of a configuration depends only

on the geometric pattern of connections of the string segments as-

signed to the edges of the two-dimensional square lattice. The weight

of each individual vertex type can be read off from Eq. (80); the

partition sum in terms of such loops is specified in Eq. (82).

utility of this formulation is that treating q as a parameter

specifying a loop fugacity allows it to be varied continuously.

The weights of these vertices are read off from Eq. (80),

so by substituting for � using Eq. (81) we write the general

partition function in terms of the loops:

Z =
∑

σ

qℓ(σ )(a − c − d )na (σ )cnc (σ )dnd (σ )

= (cd )
N
2

∑

σ

qℓ(σ )(
√

� + γ 2 − γ )na(σ )
( c

d

) nc (σ )−nd (σ )

2

, (82)

where γ is determined from the anisotropy by

γ ≡
1

2

(√
c

d
+
√

d

c

)
� 1. (83)

(The isotropic point with γ = c/d = 1 is a one-parameter

loop model.) In the partition sum σ denotes a configuration of

completely packed unflavored loops with connections at the

vertices drawn from Fig. 7. Here ℓ(σ ) is a nonlocal quantity,

namely the number of loops in σ (more precisely, the number

of connected components in the graph formed by the edges

and their connections at the vertices), and na, nc, and nd are

the numbers of vertices of each type in σ .

We note parenthetically that a different variant of the NIS

model also appears in the literature where it is defined on

an oriented lattice with arrows pointing out of one sublattice

and into the other; correspondingly, assignment of weights

for the two types of vertices becomes staggered compared to

our unoriented-lattice model. The NIS model defined on the

oriented lattice coincides with the model defined on the unori-

ented lattice for c = d; thus, the results about integrability still

hold along this line, in agreement with the literature. However,

the staggered model with c �= d does not have commuting

transfer matrices even for � = 0, q − 2 and is not integrable

(this deformation corresponds to moving off self-duality and

hence off criticality in the related q2-state Potts model [59]).

Consider first a regime in which the (a) vertex is sup-

pressed at low energies. Setting � = 0 enforces na(σ ) = 0

identically. As mentioned earlier, this model is equivalent to

the q2-state Potts model, with anisotropic couplings if c �= d ,

but such that self-duality is maintained. For c = d , the model

is isotropic and for q > 2 is known to be at a first-order transi-

tion between the Potts ordered and disordered phases (and we

expect this to be true also for c �= d). In the NIS language, the
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ordered and disordered phases of the Potts model are known to

correspond to short-loop states running predominantly around

one or the other set of plaquettes [40,58,59,64]. This is a

“checkerboard” phase of the loop model which spontaneously

breaks the lattice symmetry, but is symmetric under Sq permu-

tation of the labels. Presumably the short-loop checkerboard

phase is stable under introducing some finite amount of �. (In

the language of the related q2-state Potts model with q2 > 4,

a small � perturbation moves along a first-order coexistence

line.) This is the VBS phase of our spin model.

Conversely, in a regime with high weight on the (a)

vertex, configurations at low energies include strings that

extend across the whole system. In the language of the orig-

inal vertex model degrees of freedom, such proliferation of

strings corresponds to spontaneous breaking of the Sq permu-

tation symmetry by choosing one of the q colors. Thus, the

phase will display long-range correlations of a magnetic-type

order parameter which measures whether distant links are

connected by an unbroken string, whereas in the short-loop

checkerboard phase correlations of this order parameter decay

exponentially. In our spin model, the proliferated-loop phase

is the zFM phase.

Now for an intermediate value of the parameter � there

will be a transition between the extended phase and the short-

loop checkerboard phase. Our finding that the VBS to zFM

transition in the q = 3 model appears to be exactly at the

integrable point corresponding to � = q − 2 suggests that

the completely packed loop model undergoes a transition

between checkerboard short loops and the proliferated loop

phase at exactly � = q − 2. A similar conjecture was made

in Ref. [65] in the context of special completely packed O(n)

loop models (which map precisely onto the above loop model

with q = n) and was supported by transfer matrix studies

for n � 10 and n < 2. As we discuss in the next subsection,

the � = q − 2 model actually has a finite correlation length,

which, however, can be enormous for q � 2, of which our

spin model with q = 3 is an example. Our DMRG study

reaching correlation lengths around 200 and locating the

zFM-VBS transition very close to the point � = q − 2 gives

very strong support to this conjecture also in the vicinity

of q = 3.

C. Walking description of phase transition

1. Summary of exact results for integrable models

There is a way to learn about the spectrum of the trans-

fer matrix of the integrable NIS models without the need

to construct eigenstates, through the so-called inversion trick

introduced by Stroganov [66] and later used to study the

six-vertex model by Baxter [67,68]. In its initial setting the

inversion relation was actually developed specifically to com-

pute the free energy per site of the two integrable q = 3 NIS

models, before more was known about their structure. An

extended inversion relation was used by Klümper [62,63] to

compute subleading eigenvalues of the transfer matrix, expos-

ing some details of the low-energy spectrum. In particular, he

found that the dependence on q of the thermodynamic-limit

energy gaps of both quantum Hamiltonians corresponding to

the integrable NIS models (under some overall normalization)

is governed by the function


 = g(x) = log x

∞∏

n=1

(
1 − x−n/2

1 + x−n/2

)2

, (84)

and the correlation length by ξ = f (x) [63,69],

f (x) = −1/ log k(x), k(x) =
4

√
x

∞∏

n=1

(
1 + x−2n

1 + x−2n+1

)4

.

(85)

The two integrable models correspond to the following func-

tional forms of the argument x:

xsep(q) =
q +
√

q2 − 4

q −
√

q2 − 4
, (86)

xns(q) = q − 1. (87)

One can draw some conclusions about these models from

the equivalence between the separable q-state NIS model and

the q2-state self-dual Potts model. Because the self-dual Potts

model transitions from critical to gapped at QPotts = 4, then


sep = 0 for q � 2 and 
sep > 0 for q > 2. Thus we can also

determine the value qc at which 
ns experiences a transition

from gapless to gapped. Because xsep(q = 2) = 1 ≡ qc − 1, in

fact the nonseparable NIS model also experiences a transition

from gapless to gapped at the value qc = 2. In particular,

using q = 3 and the normalization from Sec. III A, we exactly

determine the energy gap of the Hamiltonian H∗ to be 
 =
1.42 × 10−4 and the correlation length ξ = 190 878 lattice

spacings. From the point of view of the functions g(x) and

f (x), this is because the integrable nonseparable lattice model

has the gap and correlation length which correspond to the

self-dual Potts model with QPotts = [x−1
sep(xns(q = 3))]2 = 9

2
.

The QPotts = 5 model is known to already have a large cor-

relation length of 3553 lattice spacings, and QPotts = 9
2

is even

closer to the critical value Qc
Potts = 4.

To recapitulate the content of this section, the q-state

separable integrable NIS model maps to the self-dual Potts

model with QPotts = q2 states, and this mapping is actually an

equivalence of models in the bulk (that is, ignoring bound-

ary effects). On the other hand, in the q-state nonseparable

integrable NIS model, the expression for the gap and corre-

lation length are those which also apply to a Potts model at

QPotts = [x−1
sep(xns(q))]2 = q2/(q − 1), but we could not find

any arguments for a stronger equivalence between these mod-

els.

2. Implications for renormalization group flow

Supposing that the q = 3 nonseparable NIS model indeed

describes the phase boundary, one concludes that the transi-

tion is extremely weakly first-order. The emergence of such

a length scale enormously greater than the lattice spacing

presents a “hierarchy problem.” Fortunately we can again look

to the self-dual Potts model which provides a more familiar

example of this phenomenon. In the preceding section we

used exact results for the eigenvalues of the transfer matrix to

contextualize the very small gap and long correlation length of

H∗ in terms of the Potts pseudocriticality. A new understand-

ing of the Potts case is due to a recent thorough treatment as an

instance of “walking” of renormalization group flows [28,29].
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In brief, walking is the following proposal of an RG equa-

tion for a microscopic coupling λ:

dλ

d log L
= −ǫ + λ2 + · · · . (88)

For ǫ > 0 the flow has fixed points λ∗ = ±
√

ǫ, one of which

is stable and the other unstable. (In the Potts case these are the

critical and tricritical points existing at QPotts < 4; the system

is assumed to be already tuned to the phase transition, e.g.,

by enforcing the self-duality, and λ is some remaining pa-

rameter in this manifold.) These fixed points merge on tuning

ǫ → 0, and “disappear” for ǫ < 0. However, in this regime

solutions λ∗ = ±i
√

|ǫ| still exist, and represent a particular

type of nonunitary theory. Quantities like central charge, scal-

ing dimensions, and OPE coefficients at these complex fixed

points generally have nonzero imaginary components, and the

conformal data of the two fixed points are related by complex

conjugation.

While the complex fixed points are inaccessible to RG

flows in the unitary theory, they do control the physics at

intermediate length scales. This is because the running of the

coupling slows down considerably near λ = 0 [70], where it

passes close to these “complex CFTs.” The RG time required

for λ to flow from −1 to +1 is found by integrating Eq. (88):

the result is t ∼ π√
|ǫ| , corresponding to a length scale [28]

ξ = ξ0 exp
π
√

ǫ
. (89)

For small values |ǫ| ≪ 1 this scale becomes very long; in this

case the approximate conformal symmetry inherited from the

complex CFTs looks nearly exact even for large finite systems.

However, because the flow is not approaching a conformally

symmetric fixed point, the conformal data measured in sys-

tems with a characteristic length will drift with the scale,

displaying the eventual limiting behavior at a size comparable

to ξ .

In the self-dual Potts model the form of Eq. (88) is well

motivated by a long history of study, with parameter ǫPotts =
1
π2 (4 − QPotts) to leading order in the limit QPotts → 4 [28].

By matching the characteristic walking behavior at ǫ = 0 with

the divergent parts of the exact results in the previous section

we can write down ǫ also for the nonseparable model. The

function k defined in Eq. (85), an elliptic modulus, can equiv-

alently be written k(x) = [ϑ2(q̃)/ϑ3(q̃)]2, where ϑn(q̃) is the

Jacobi theta function ϑn(z = 0, q̃ = 1/x). We emphasize that

the usage of the letter q̃ = 1/x in this way is an unfortunate

coincidence arising from the conventions of elliptic functions.

To leading order as q̃ ր 1 (that is, from the weakly first-

order side), we expand

ϑ2(q̃)

ϑ3(q̃)
≈ 1 −

4

2 + exp
[

π2

1−q̃

] , (90)

so log f (x) ∼ π2

1−q̃
, and consequently

log f (xsep(q)) ∼
π2

2
√

q − 2
, (91)

log f (xns(q)) ∼
π2

q − 2
, (92)

to leading order in the limit q → 2. We therefore propose that

in the RG equation for the integrable NIS models ǫ has the

form

ǫsep = −
4

π2
(q − 2), (93)

ǫns = −
1

π2
(q − 2)2, q � 2. (94)

These statements are strictly applicable only as q → 2 [71].

In this limit, Eq. (93) reproduces the known result for the

self-dual Potts model with QPotts = q2 ≈ 4 + 4(q − 2); in par-

ticular, the complex fixed points separate as the square root

of the deviation from the critical value of q: λ∗
ns = 2

π

√
2 − q.

On the other hand, Eq. (94) indicates that the functional de-

pendence on q is different in the nonseparable case: the next

correction to log f (q − 1) is a constant, so dǫ
dq

= 0 at q = 2

and λ∗ = ± i
π

(q − 2) grows linearly with q. By taking these

results seriously at q = 3—which is dubious based on the

expansion but works well for the Potts model nonetheless; see

Sec. 3.5 of Ref. [28]—from Eq. (89) one arrives at a value

ξ0 ≈ 9.9 for H∗, which can be compared with the UV length

scale ξ0,Potts ∼ 0.19 obtained for the weakly first-order Potts

transition.

In order to follow the standard story of walking ǫns should

change sign at q = 2; it may indeed be the case that, for

instance, an additional factor of sgn(q − 2) is required in

Eq. (94). However, we observe that close to the marginal

value q = 2 the two—separable and nonseparable—stories of

walking we have been telling independently actually merge. In

our spin model the former case lies inside the VBS phase with

fairly large correlation length ξ ≈ 21 for q = 3, diverging for

q → 2, while the latter resides on the VBS-zFM boundary and

has a much larger correlation length with stronger divergence

as q → 2. It is interesting that both of these points occur in

the same NIS model as � is varied, and it is intriguing to

speculate that the walking parameter λ posited separately for

each case may in fact be the same. If this is true, the complex

CFTs discussed for the two models occur in the same larger

parameter space which also contains the parameter �, and in

principle a richer flow structure involving these fixed points

is possible. It would be interesting to address this speculation

with more concrete calculations and also to examine possible

implications for crossovers in the physical spin problem.

VI. EXACT DIAGONALIZATION STUDY OF CFT DATA

OF THE INTEGRABLE MODEL

In the walking picture the physics of our model in the

approximately conformal regime is controlled by complex

CFTs; accordingly, numerics are well suited to illuminate

some of the properties of these theories. In order to do so we

will study the lattice model using exact diagonalization (ED),

where the details of the low-energy spectrum under periodic

boundary conditions provide a reliable way to identify CFT

operators up to finite-size corrections [72]. Specifically, the

energy E and lattice momentum P of an appropriate low-

energy eigenstate are related to the scaling dimension 
 and
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FIG. 8. We show the low-energy spectrum of the integrable

model (δ, K ) = (1, 2) that resides on the zFM-VBS phase boundary

with system size N = 20 in the N1 = N2 = 0 sector. Eigenvalues

are organized based on conformal spin S and gx quantum number,

with gx = 1 shown in blue and gx = ω,ω2 (which are related by C)

in orange. States are offset slightly from their quantized momenta

for visual clarity. Scaling dimensions 
 are determined by normal-

ization of the energy eigenvalue of the |T 〉 state associated with

the stress-energy tensor, as 
T = 2. Highest-weight states identified

using Fourier modes Hn are indicated by name. Quantum numbers

of these states under symmetries C and I (where applicable) are not

shown here but are listed in Table I.

conformal spin S of a CFT operator as

Eα =
2π

Na

(

α −

c

12

)
+ O(N−x ), Pα =

2π

Na
Sα, (95)

under suitable normalization of the lattice Hamiltonian. The

lattice spacing is denoted a and the number of sites N . Here

x > 1 is a nonuniversal exponent controlling the finite-size

scaling. In this way we can also compare ED data with some

of the results of Sec. III by identifying the low-energy ex-

citations associated with primary operators in the CFT. The

application of this idea to lattice models was first worked out

by Koo and Saleur [73] for Bethe-ansatz integrable models

and later developed into a more general numerical technique

[72].

The fundamental idea is based on the observation that the

Fourier modes of the Hamiltonian density in a CFT on a circle

are linear combinations of the Virasoro generators:

HCFT
n =

Na

2π

∫ Na

0

dx einx 2π
Na hCFT(x) = Ln + L−n, n �= 0. (96)

The action of a Virasoro (anti-)chiral operator Ln (Ln) is to de-

crease (increase) conformal spin by n and decrease conformal

dimension by n. That is, HCFT
n imparts conformal spin −n,

connecting lattice momentum sectors 2π
Na

S and 2π
Na

(S − n). In

a CFT, all states are grouped into conformal towers related by

the Virasoso generators. Each tower descends from a unique

highest-weight state, which is associated with a primary field

by the state-operator correspondence. Because the energy of

a state in the theory on a circle depends on the operator

scaling dimension, the highest-weight states can be identified

TABLE I. We identify and measure (the real parts of) several

primary fields in the putative CFT for the integrable point at (δ, K ) =
(1, 2). Just as chiral primaries with S �= 0, N/2 have an antichiral

counterpart obtained by reflection (only φ arises here), also primaries

that do not commute with gx have a counterpart with quantum

number −1 related by time-reversal symmetry �; these are σ̃ , σ̃ ′,

and ṽ. We also resolve charge conjugation C for states with gx = 0

(these symmetries do not commute), as well as spatial inversion I

in the 0- and π -momentum sectors. The operators above the line are

those which we compare with finite-entanglement scaling results for

correlations of lattice operators in the MPS study.

Primary field Re[
] S U(1)2 gx C I

I 0 0 0 0 + +
σ, σ̃ 0.225 0 0 ±1 +
π 0.275 N/2 0 0 + −
s1, s2 0.865 N/2 11, 12 +
j1, j2 1.000 N/2 − 1 0

ǫ 1.061 0 0 0 + +
σ ′, σ̃ ′ 1.622 0 0 ±1 +
φ, φ 1.973 ±1 0 0 −
u 5.025 0 0 0 + +
v, ṽ 5.025 0 0 ±1 +

with those whose overlap with lower-energy states on appli-

cation of Hn vanishes or goes to 0 with increasing size. The

numerical method is obtained by applying these statements

about continuum fields to the lattice operators, in particular

assuming that the relationship Eq. (96) also applies to Fourier

modes of the lattice Hamiltonian and lattice counterparts of

the Virasoro generators, up to finite-size corrections.

Based on the above, one does not need to construct lattice

equivalents of the Virasoro generators; simply acting repeat-

edly with Hn, n ∈ {−2,−1, 1, 2}, on an eigenstate generates

other states in the same conformal tower. By projecting the

lattice Fourier modes Hn into the space of low-energy eigen-

states, the structure of the conformal towers can be read off

from the matrix elements, and those having zero matrix ele-

ment for all Hn with all eigenstates of lower energy will be

the highest-weight states associated with primary fields in the

CFT. We find in our data that for some eigenstates this sum of

matrix elements on lower-energy states vanishes identically.

In other cases an eigenstate may have a small matrix element

which decreases with system size; if the spectrum does not

contain another state from which this state could reasonably

descend, we also label this state a primary and attribute the

nonzero values of Hn to finite-size corrections. However, we

are generally conservative and are not trying to exhaustively

label all highest-weight states in the spectrum, but rather iden-

tify those that correspond to measurements made in previous

sections, in addition to other obvious candidates.

By finite-size scaling of the energy eigenvalues of highest-

weight states we are straightforwardly able to estimate the

scaling dimensions of primary operators in the CFT. Correct

normalization of H is very important; to achieve this we

follow Milsted and Vidal [72] and utilize the state related

to the stress-energy tensor T , which is conserved and has

known scaling dimension 
T = 2. T is quasiprimary, related

to the vacuum I by
√

c
2
|T 〉 = L−2|I〉 and can thus be readily
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FIG. 9. In the upper panel we show scaling dimensions of pri-

mary fields in the putative conformal fixed point obtained using

finite-size scaling of the excitation energies of highest-weight states.

We determine the exponent y = 3/4 numerically, by observation of

finite-size corrections to the vanishing matrix elements of Hn with

the state |T 〉 used for normalization. We do not show the relatively

heavy operators u, v, but these behave similarly. Scaling dimensions


s1,2
of S+

1,2 operators are extracted from ED data in the appropriate

charged sectors different from that in Fig. 8 (not shown). For the

fits we use only system sizes N � 12, though also show data for

N = 8, 10. In the lower panel we repeat the plot containing data for

the critical exponents obtained from the FES method, also shown

in Fig. 4. Now the horizontal lines marked on the figure indicate

the scaling dimension of the most relevant primary field in each

associated symmetry sector as measured in ED.

identified in the S = 2 sector by calculating H−2|I〉. This strat-

egy allows us to avoid incorrectly identifying |T 〉 for small

sizes N , as described in Ref. [72]. So H is normalized by

setting 
I = 0 and 
T = 2. The low-energy spectrum of the

model for system size N = 20 is shown in Fig. 8 and the

finite-size scaling results are shown in Fig. 9, where they are

additionally compared with the finite-entanglement scaling

results obtained previously from MPS. The data are compiled

in Table I.

Due to the appearance of the central charge c in the matrix

element 〈T |H−2|I〉 =
√

c
2
, we can also compare the finite-size

scaling ED results for the central charge with those obtained

from MPS. The finite-size scaling result c ≈ 1.4 is shown in

Fig. 10. While this number is not in agreement with the value

FIG. 10. Finite-size scaling for the central charge is based on the

matrix element 〈T |H−2|I〉, where |I〉 is the ground state and |T 〉 the

state with conformal spin S = 2 associated with the stress-energy

tensor in the field theory. This state has the lowest energy in its sector

for all system sizes studied. The scaling with N−2 is used for other

models [72], and visually appears to be appropriate. The fit excludes

the first two data points N = 8, 10.

obtained previously from scaling with MPS bond dimen-

sion, this is not unexpected, as the value of c will drift with

system size at a pseudocritical point, decreasing with increas-

ing system size and eventually reaching c = 0 at very large

sizes.

VII. DISCUSSION

Motivated by the description of a DQCP in a spin-1/2

chain with rotation symmetry broken to Z2 × Z2 [33,34], we

have probed the nature of a similar transition in a 1D model

of local three-level systems forming projective representations

of Z3 × Z3. On one side of the transition is a ferromagnet

phase with threefold ground-state degeneracy, and on the

other a twofold degenerate VBS phase which preserves onsite

symmetries but breaks translation invariance. This is similar

to the Z2 × Z2-symmetric situation; however, there an LSM

theorem was important in prohibiting an intervening fully

symmetric gapped phase; in the present case a featureless

phase is allowed.

The above notwithstanding, our studies using an adiabatic

protocol for optimized uniform MPS indicate that the phase

diagram of the concrete Hamiltonian in Eq. (3) does indeed

include a direct transition between zFM and VBS phases. Our

numerical results are furthermore consistent with a continuous

phase transition with symmetry group enhanced to at least

U(1) × U(1) ⋊ Z3. In addition, the scaling dimensions of the

two order parameters involved have nearly the same numerical

value, possibly indicating a larger emergent symmetry or self-

duality at the transition.

While we did not obtain a controlled low-energy theory of

the transition using either Z3 domain wall fields or bosoniza-

tion of the U(1)2-symmetric theory (which applies exactly

on the lattice along a particular cut through the phase di-

agram), our numerical results suggest another strategy, by

seemingly locating the special point H∗, Eq. (77), on the phase

boundary. This quantum Hamiltonian is the counterpart to a

two-dimensional solvable classical vertex model we term the

nonseparable integrable NIS model (see Sec. V), and through
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a trick known as transfer matrix inversion one can use the ana-

lyticity properties of the eigenvalues to compute exact results

about the spectrum. The surprising result of this method is

that H∗ is gapped, with very long but finite correlation length

ξ = 190 878 lattice spacings. Such a result is not incompati-

ble with the numerics, which would not distinguish between

such approximate conformal symmetry and a truly continuous

transition.

The most natural conclusion would seem to be that this

DQCP is extremely weakly first order, an intriguing result

in light of the status of the SU(2)-symmetric DQCP in two

dimensions, as discussed in the introduction. As is true there,

the most generic mechanism for generating a hierarchy is

through RG walking, and exact results for H∗ allow us to

write an explicit form for the walking parameter, similar to

the case for the self-dual Potts model but with different func-

tional dependence on the continuous tunable parameter; see

Eqs. (93) and (94). Based on this understanding, we interpret

our numerical results as characterizing (the real parts of) the

conformal data of the complex CFTs in the walking picture,

and we use an ED method to identify some of the light primary

fields of these theories.

These developments suggest that the general picture of

walking of RG flows is the appropriate way to think about this

family of DQCP with Zq × Zq symmetry. In Refs. [28,29]

the algebraic equivalence of the Potts model to the six-vertex

model plays a crucial role, by allowing through the Coulomb

gas formalism many explicit calculations which are then an-

alytically continued into the weakly first-order regime. The

operator algebra of the presented Zq × Zq DQCP model is

a generalization of the Temperley-Lieb algebra which to our

knowledge has not yet demonstrated such equivalences. A

representation theory study of this generalized algebra would

be useful in determining whether there are other equivalent

models which can illuminate the physics, possibly including a

setting for analytic calculations in the ground state.

There is also the interesting possibility of qualitatively

different walking behaviors arising from the coincidence of

the separable and nonseparable integrable NIS models at the

marginal q = 2 point. If these multiple sets of complex CFT

fixed points indeed exist in the same parameter space, then

for small values of (q − 2) one can imagine a rich structure

for walking RG flows based on their interactions. Such a

scenario would manifest in crossovers observable in the as-

sociated spin chains, and despite the very long length scales

involved it is actually possible that quantum Monte Carlo

simulations of the explicitly sign-problem-free Hamiltonian

in Eq. (15) could probe this behavior, along the lines of

Refs. [74,75]. In addition, quantum Monte Carlo studies could

be used to test the conjecture about the precise location of

the DQCP for q > 3, and they could also be used to further

examine emergence of the U(1)2 symmetry at intermedi-

ate scales in the original model Eq. (3) with only Z3 × Z3

symmetry.

Finally, it is not clear what role duality plays in this story.

It seems likely that the successes of duality approaches in

developing descriptions of the DQCP transition in the Z2 ×
Z2-symmetric model [33] are special to that model. However,

there are some hints in the Z3 × Z3 model: chiefly, the close

numerical correspondence of the zFM and VBS order parame-

ters is not generally expected and may indicate that the DQCP

supports an emergent symmetry or self-dual description. In

addition, the lack of an intervening featureless phase without

the help of an anomalous realization of the symmetry on the

lattice could be attributable to an emergent anomaly resulting

from enhanced symmetry at the transition, which would pre-

sumably achieve a “unification” of the two order parameters.

It is our hope that further work on the type of 1D model we

have studied here will lead to a more complete story of the

behaviors of such fixed points in RG space, as well as to a

better understanding of how each of these various components

contributes to the DQCP phenomenology.
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APPENDIX A: REVIEW OF SU(3) AND

SU(3)-SYMMETRIC HAMILTONIANS

1. Basics of SU(3)

The Lie algebra su(3) has eight generators ta, a =
1, . . . , 8, which in the defining representation 3 are repre-

sented by the Gell-Mann matrices λa. We use the alternative

convention T a = λa/2, so the Lie algebra structure constants

fabc are determined by [T a, T b] = i fabcT c. The T a are trace-

less Hermitian matrices, normalized according to tr(T aT b) =
1
2
δab. In the conjugate representation 3 the generators are

represented by T
a = −(T a)∗.

For SU(q), q � 2, one can write a quadratic Casimir

invariant,

C2 =
∑

a

tata. (A1)

By construction C2 commutes with all of the ta. Thus, by

Schur’s lemma, in an irreducible representation C2 is propor-

tional to the identity. This operator is familiar from SU(2),

where C2 = S2 and the eigenvalue in an irreducible represen-

tation of spin l is l (l + 1). More generally, in a q-dimensional

representation of SU(q), C2 = q2−1

2q
.

2. SU(3)-invariant Hamiltonians

In the 1D DQCP with Z2 × Z2 symmetry studied pre-

viously [33,34], a spin Hamiltonian was considered which

connects to the solvable Majumdar-Ghosh model. This en-

sured the appearance of a phase with VBS order. That

construction generalizes straightforwardly to SU(q). The

Majumdar-Ghosh Hamiltonian is the q = 2 case of

HCas =
∑

j

[C2; j, j+1, j+2 − (C2; j + C2; j+1 + C2; j+2)], (A2)
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where C2; j, j+1, j+2 is C2 acting on the tensor product space of

three neighboring sites, and C2; j is simply a constant on each

site individually, as sites host irreducible representations of

SU(q). For q = 2, the fact that the ground states are translation

symmetry-breaking products of singlets is a consequence of

the irrep decomposition 2 ⊗ 2 = 1 ⊕ 3. The appearance of the

singlet 1 is particular to n = 2; in general, enforcing SU(q)

invariance requires as many single-particle orbitals as internal

states.

For q = 3, Eq. (A2) can be used by treating the sites on

one sublattice as hosting the conjugate representation 3. Then

one decomposes 3 ⊗ 3 = 1 ⊕ 8, so neighboring sites favor an

SU(3) singlet. (A similar statement is true for any q, and

in fact because 2 = 2 as irreps of SU(2), that case is also

included.) The analysis then follows in the same way as for

q = 2.

A local term of HCas is

h j, j+1, j+2 = T
a

jT
a
j+1 + T a

j+1T
a

j+2 + T a
j T a

j+2, (A3)

independently of the parity of j, as T
a

jT
a
j+1 = T a

j T
a

j+1. The

action of each of these terms can be understood through the

action of C2 on tensor products of representations. Consider

C2(3 ⊗ 3) =
∑

a

(
T a

j + T
a

j+1

)2 = 2T
a

jT
a
j+1 +

8

3
, (A4)

C2(3 ⊗ 3) =
∑

a

(
T a

j + T a
j+1

)2 = 2T a
j T a

j+1 +
8

3
. (A5)

In Eq. (A4) we see that T
a

jT
a
j+1 distinguishes the singlet and

the eight-dimensional adjoint representations on sites j, j + 1.

A rank-one projector onto the singlet subspace can thus be

written using this term. Explicitly,

T
a

jT
a
j+1 − 1

6
= − 3

2
(�s) j, j+1 = − 3

2
|ψs〉〈ψs| j, j+1, (A6)

where |ψs〉 j, j+1 = 1√
3
(|00〉 j, j+1 + |11〉 j, j+1 + |22〉 j, j+1).

Similarly, 3 ⊗ 3 = 3 ⊕ 6, where 3 is the antisymmetric

subspace and 6 the symmetric subspace. Thus, Eq. (A5) tells

us that

T a
j T a

j+1 + 2
3

= (�∨2 ) j, j+1, (A7)

which is the rank-6 projector onto the symmetric subspace

of sites j, j + 1. (Similar statements apply for general q.)

As a result, HCas admits the same arguments that show the

ground-state manifold of the Majumdar-Ghosh Hamiltonian

is spanned by tensor products of SU(2) singlet dimers, with

instead twofold degenerate ground states spanned by products

of SU(q) singlet dimers.

Conveniently, there is a simpler Hamiltonian than Eq. (A2)

for q = 3 which exhibits VBS order. The following nearest-

neighbor Hamiltonian was known to Barber and Batchelor

[76] and Affleck [40]:

HbQ =
∑

j

T
a

jT
a
j+1. (A8)

This Hamiltonian still respects the full SU(3), and turns out

to map exactly to the pure biquadratic SU(2) spin-1 model.

It is also integrable. Through its Temperley–Lieb operator

algebra this Hamiltonian is related to the XXZ spin-1/2 chain

for a particular anisotropy 
 = −3/2 and to the nine-state

self-dual Potts model [76,77]. The latter equivalence can be

seen more directly via a two-step duality procedure which we

present in Appendix D. Eq. (A8) turns out to be gapped, with

twofold degenerate ground-state and finite dimerization order

parameter. Although the ground states are finitely correlated

and not a Majumdar-Ghosh-like separable product of dimers,

because the ground states respect the SU(3) symmetry we

surmise that this Hamiltonian lies in the same phase as HCas.

Thus, we consider the local term in HbQ to be one favoring

a lattice symmetry breaking but internally symmetric VBS

phase.

APPENDIX B: MPS FOR FULLY SYMMETRIC PHASE

AND PROXIMATE MAGNETIC PHASE

1. SPT phase with Z
z
3 × Z

x
3 symmetry

A gapped fully symmetric ground state is allowed for

Eq. (3), and one generically expects to encounter this phase as

well. In fact, this phase has SPT order, since the entanglement

spectrum and boundary states exhibit degeneracy due to the

projective representation. A simple picture of the phase can

be written using an MPS wave function of bond dimension

three:

|ψsymm〉 =
∑

{α}

Tr [ · · · A|α j 〉A|α j+1〉 · · · ] |{α}〉. (B1)

We choose local tensors to be translationally invariant, so

T1|ψsymm〉 = |ψsymm〉 automatically. We also require A|α〉 =
(A|α〉)⊤, so that the state is symmetric under inversion.

In order to write a state that is invariant under the action of

an onsite symmetry generator g, we require that local tensors

satisfy the following symmetry condition:

A|α j 〉 = Wg, jA
|α j〉
g W −1

g, j+1, (B2)

where A
|α j〉
g = g ◦ A|α j 〉 and Wg, j is an invertible matrix imple-

menting a gauge transformation acting on the left virtual leg of

the local tensor at site j. The set of {Wg, j}g form a projective

representation of the symmetry group generated by {g}. We

choose the virtual legs to index a three-dimensional Hilbert

space with basis {|0〉, |1〉, |2〉}. The gauge transformations are

represented by

Wg, j = g j for g = gz, gx, C ; W�, j = 1. (B3)

The virtual leg (2k − 1, 2k) hosts the projective representation

[1], while the virtual leg (2k, 2k + 1) carries [2]. Thus, for

each tensor one has [l] + [p] = [r] mod 3, where [l] ([r])

labels the projective representation on the left (right) virtual

leg, and [p] labels that of the physical leg.

The most general matrices consistent with invariance are

A|0〉 =

⎡
⎣

γ 0 0

0 0 δ

0 δ 0

⎤
⎦, A|1〉 =

⎡
⎣

0 0 δ

0 γ 0

δ 0 0

⎤
⎦,

A|2〉 =

⎡
⎣

0 δ 0

δ 0 0

0 0 γ

⎤
⎦, (B4)

where γ , δ ∈ R. At the special point γ �= 0, δ = 0 the wave

function reduces to the ground state of the zFM phase. Sim-
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ilarly, at another special point γ = δ �= 0 the wave function

becomes the ground state of the xFM phase. For other param-

eter values this MPS represents an SPT state.

2. SPT phase with U(1) × U(1) symmetry

We now consider the case where Z
z
3 is enlarged to

U(1) × U(1). A basis for the legs (physical or virtual) can

be labeled by particle numbers |n1, n2〉, which are defined in

Eqs. (16) and (17). For the D = 3 MPS we considered, the

physical leg at site j and virtual leg ( j − 1, j) share the same

basis, defined to be

{|0, 0〉 ≡ |0〉, |(−1) j, 0〉 ≡ |1〉, |0, (−1) j〉 ≡ |2〉}. (B5)

The generic form for a local tensor at site j can be represented

by a quantum state:

Â j =
∑

(A j )
n1n2

l1l2;r1r2
|n1, n2〉 j ⊗ |l1, l2〉( j−1, j)

⊗ 〈r1, r2|( j, j+1). (B6)

Translation T1 acts as particle-hole symmetry on

U(1) × U(1), which relates tensors at even sites Âe and

those at odd sites Âo via

(Ao)n1n2

l1l2;r1r2
= (Ae)−n1,−n2

−l1,−l2;−r1,−r2
. (B7)

For a U(1) × U(1) symmetric MPS, Â j in Eq. (B6) should

satisfy the particle number conservation condition

na + la = qa + ra, where a = 1, 2. (B8)

Here qa is a site-dependent constant. On a periodic chain,

this state has definite total particle numbers Na ≡
∑

j na, j =∑
j qa, j , a = 1, 2.

By construction, a generic MPS in Eq. (B4) breaks

U(1) × U(1) symmetry to Z
z
3. However, U(1) × U(1) symme-

try can be restored by setting γ = 0. Indeed, in this case the

local tensors can be written

Âe = |0, 0〉 ⊗
(
|1, 0〉〈0,−1| + |0, 1〉〈−1, 0|

)
+ |1, 0〉 ⊗

(
|0, 1〉〈0, 0| + |0, 0〉〈0,−1|

)
+ |0, 1〉 ⊗

(
|0, 0〉〈−1, 0| + |1, 0〉〈0, 0|

)
,

(B9)

Âo = |0, 0〉 ⊗ (| − 1, 0〉〈0, 1| + |0,−1〉〈1, 0|) + | − 1, 0〉 ⊗ (|0,−1〉〈0, 0| + |0, 0〉〈0, 1|) + |0,−1〉
⊗ (|0, 0〉〈1, 0| + | − 1, 0〉〈0, 0|), (B10)

where we have dropped the overall amplitude δ. One can

check that these tensors indeed satisfy Eq. (B8) with qa = 1

(−1) for even (odd) sites. The other symmetries of the model,

I, �, gx, and C, are also preserved by this MPS.

However, for the purpose of obtaining an MPS beyond the

D = 3 case we can work out the symmetry constraints on

A j . Constraints from T1 and U(1) × U(1) are already listed in

Eqs. (B7) and (B8). Time reversal � simply requires all tensor

entries to be real numbers.

To be consistent with U(1) × U(1) symmetry in Eq. (B8),

inversion I acts with an additional particle-hole symmetry on

the virtual legs, imposing the following constraint:

(A j )
n1n2

l1l2;r1r2
= (A j )

n1n2

−r1,−r2;−l1,−l2
. (B11)

C interchanges particles between the two species, thus

(A j )
n1n2

l1l2;r1r2
= (A j )

n2n1

l2l1;r2r1
. (B12)

On the physical leg at site j, gx maps |n1, n2〉 j to

|(−1) j − n1 − n2, n1〉 j . On the left virtual leg ( j − 1, j), the

action of gx is the same:

gx : |l1, l2〉( j−1, j) → |(−1) j − l1 − l2, l1〉( j−1, j), (B13)

while on the right legs the fact that these are contracted with

the left legs on the next tensor fixes the transformation to be

gx : 〈r1, r2|( j, j+1) → 〈(−1) j+1 − r1 − r2, r1|( j, j+1).

Thus, gx imposes the constraint

(A j )
n1n2

l1l2;r1,r2
= (A j )

(−1) j−n1−n2,n1

(−1) j−l1−l2,l1;(−1) j+1−r1−r2,r1
(B14)

In summary, to construct a fully symmetric MPS with site

tensor Â j defined in Eq. (B6), tensor entries (A j )
n1n2

l1l2;r1r2

should be real numbers satisfying the symmetry conditions in

Eqs. ((B7), (B8), (B11), (B12), (B14)).

3. Bond-centered magnetic order phase

In this part, we present an MPS construction for the bond-

centered magnetic order phase, which is the intermediate

phase smoothly connecting the zFM and SPT phases in the

classical phase diagram, as shown in Fig. 5 in Sec. IV B 2.

Although it is a spontaneously symmetry-breaking phase with

sixfold ground-state degeneracy, its ground states cannot be

represented by direct product states.

We start from the MPS representation of the SPT phase

with U(1) × U(1) symmetry. This MPS is constructed from a

site tensor A in Eq. (B4) with γ = 0. We can represent A as a

quantum state as

Â =
2∑

a=0

|a〉 ⊗ (|a − 1〉〈a + 1| + |a + 1〉〈a − 1|). (B15)

Let us insert additional bond tensors B j, j+1 sitting between

sites j and j + 1. For the SPT phase, B j, j+1 is the identity

matrix, whose quantum state representation is

B̂ j, j+1 =
2∑

a=0

|a〉〈a|. (B16)

We now break some symmetry by introducing a parameter

κ into the bond tensors:

B̂2k−1,2k = (1 − κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 + κ )|2〉〈2|,

B̂2k,2k+1 = (1 − κ )|0〉〈0| + (1 + κ )|1〉〈1| + (1 − κ )|2〉〈2|,
(B17)
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where 0 � κ � 1. We leave the site tensors unchanged. When

κ = 0, we recover the SPT state. When κ = 1, B̂2k−1,2k =
2|2〉〈2| and B̂2k,2k+1 = 2|1〉〈1|, and by contracting all virtual

legs, we get a zFM state
⊗

j |0〉 j (up to a constant). Thus, the

above state can indeed interpolate between the SPT and zFM

phases.

We now analyze symmetry properties for the state with

0 < κ < 1, based on the symmetry actions discussed in

Appendix B 2. It is straightforward to see that this state pre-

serves U(1) × U(1) symmetry and breaks gx, C, T1, and I

symmetries. In fact, T1, I, and C act in the same way on this

MPS, producing a state with even and odd bond tensors in

Eq. (B17) interchanged:

B̂2k−1,2k = (1 − κ )|0〉〈0| + (1 + κ )|1〉〈1| + (1 − κ )|2〉〈2|,

B̂2k,2k+1 = (1 − κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 + κ )|2〉〈2|,
(B18)

We note that this pair of MPS share the same symmetry prop-

erties as states labeled by (π/6 ± υ, π/6 ∓ υ ) in Eq. (76).

The MPS representation of the other two pairs of states in

Eq. (76) can be generated by the action of gx. Note that site

tensors are invariant under gx symmetry, and are given by

Eq. (B15). Bond tensors for the MPS states corresponding to

(π/6 ∓ υ,−π/3) are

B̂2k−1,2k = (1 ± κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 ∓ κ )|2〉〈2|,

B̂2k,2k+1 = (1 ∓ κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 ± κ )|2〉〈2|,
(B19)

and the bond tensors for states corresponding to

(−π/3, π/6 ± υ ) are

B̂2k−1,2k = (1 ∓ κ )|0〉〈0| + (1 ± κ )|1〉〈1| + (1 − κ )|2〉〈2|,

B̂2k,2k+1 = (1 ± κ )|0〉〈0| + (1 ∓ κ )|1〉〈1| + (1 − κ )|2〉〈2|.
(B20)

APPENDIX C: DOMAIN WALL DUALITY MAPPING WITH

Z3 GAUGE FIELD

In this section we present the more precisely defined ver-

sion of the duality mapping to domain walls on a periodic

chain, which appear as matter fields on the dual lattice coupled

to a Z3 gauge field. The purpose of the gauge field is essen-

tially for bookkeeping, as it does not have its own dynamics.

Instead, it will account for the differing global properties of

the phases, the most important example in our case being

ground-state degeneracy [33].

In addition to the domain wall variables X̃ j+1/2, Z̃ j+1/2

which live on the sites of the dual lattice, we place gauge

degrees of freedom ρx
j , ρz

j which form a [1] projective

representation of Z3 × Z3 on the links of the dual lattice

(equivalently, on the sites of the primal lattice). The duality

mapping is then given by

X̃ j+1/2 = Z
†
j Z j+1, (C1)

Z̃
†
j−1/2 ρ

z†
j Z̃ j+1/2 = X j, (C2)

ρx
j = Z j . (C3)

The physical Hilbert space satisfies the gauge constraint

X̃ j+1/2 = ρ
x†
j ρx

j+1. (C4)

The proof of the exact equivalence is similar to the Ising case

in Ref. [33].

The Hamiltonian Eq. (3) translates to

H̃ = −
∑

j

[
(JxZ̃

†
j−1/2ρ

z†
j ρ

z†
j+1Z̃ j+3/2 + JzX̃ j+1/2 + H.c.)

+ K (1 + Z̃
†
j−1/2ρ

z†
j ρ

z†
j+1Z̃ j+3/2 + H.c.)

× (1 + X̃ j+1/2 + H.c.)
]
. (C5)

Using the dictionary above, and requiring equality to hold

only in the physical sector, we can also rewrite the symmetry

generators as

gx =
∏

j

ρ
z†
j , gz =

∏

k

X̃2k+1/2 =
∏

k

ρ
x†
2k

ρx
2k+1, (C6)

which are exact on a periodic system. One obtains the duality

mapping presented in Sec. IV A by fixing the gauge ρz
j = 1.

The action of the symmetries on the gauge variables is

gx : (ρx
j , ρ

z
j ) �→

(
ω−1ρx

j , ρ
z
j

)
, (C7)

gz :
(
ρx

j , ρ
z
j

)
�→
(
ρx

j , ω
1−2p j ρz

j

)
, (C8)

� :
(
ρx

j , ρ
z
j

)
�→
(
ρ

x†
j , ρz

j

)
, (C9)

C :
(
ρx

j , ρ
z
j

)
�→
(
ρ

x†
j , ρ

z†
j

)
, (C10)

T1 :
(
ρx

j , ρ
z
j

)
�→
(
ρx

j+1, ρ
z
j+1

)
, (C11)

I :
(
ρx

j , ρ
z
j

)
�→
(
ρx

− j, ρ
z
− j

)
. (C12)

Importantly, gx acts nontrivially in this formulation. As in the

main text, we designate the “even” and “odd” sublattices of

the dual lattice as locations 2k + 1/2 and 2k + 3/2, k ∈ Z,

respectively.

We refer to this theory as having a Z
ρ

3 gauge symme-

try. Briefly, the pure gauge theory with physical constraint

ρ
x†
j ρx

j+1 = 1 comprises three sectors, specified by ρx
j = ωr for

r = 0, 1, 2. These sectors are related by the symmetry gener-

ator
∏

j ρ
z†
j = gx, which is a symmetry of the Hamiltonian.

Thus the appropriate sectors of the gauge symmetry are the

linear combinations respecting gx, namely with definite flux∏
j ρ

z
j taking values 1, ω, or ω2. The instanton operator adding

Z
ρ

3 flux is ρx
j , which indeed transforms nontrivially under gx.

1. Symmetry-breaking phases from the dual perspective

We can now revisit the phases described in Sec. IV A.

Consider first the case in which domain walls are gapped, so

the low-energy properties are determined only by the gauge

sector. In this case we have schematically 〈Z̃ j+1/2〉 = 0; this

pattern is energetically favored in our model for Jz dominant.

Because the instanton operator is not allowed in the Hamilto-

nian the three gauge flux sectors do not mix. From a formal

perspective where we integrate out the gapped matter field Z̃ ,

the three states with different flux
∏

j ρ
z
j can obtain slightly

different energies but the energy splitting is exponentially
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small in the chain length. This corresponds to spontaneously

breaking gx and accounts for the threefold degeneracy of the

ground state in the zFM phase.

The domain wall condensate having schematically

〈Z̃odd〉 �= 0, 〈Z̃even〉 �= 0 leads to a Higgs phase of the gauge

field. Minimizing the energy of the Jx terms, it must be that∏
j ρ

z
j = 1; i.e., a unique gauge flux is selected and hence

the gx symmetry is respected. Solving for classical ground

states, there are three gauge-inequivalent solutions with this

flux, with representative states ρz
j = 1, Z̃odd = 1, Z̃even = ωp

everywhere on the chain, with p = 0,±1. These solutions are

distinguished by gauge-invariant observables Z̃
†
j−1/2ρ

z†
j Z̃ j+1/2,

which are the same as the original X j variables, and the

resulting three different patterns in these correspond to the

three xFM ground states in Eq. (13). We can thus see from

the matter fields that gz is broken but spatial symmetries

are respected. All of these cases, which are favored at large

values of Jx, make up the xFM phase with threefold de-

generacy. That is to say, in the absence of the gauge field

we would have separate Z3 symmetries associated with the

“even” and “odd” sublattices of the dual lattice. Simultane-

ous condensation 〈Z̃odd〉 �= 0, 〈Z̃even〉 �= 0 would then produce

nine ground states. However, the dual gauge field reduces the

true number of ground states down to three via the Higgs

mechanism.

We can also consider a condensate 〈Z̃odd〉 �= 0 and

〈Z̃even〉 = 0, or vice versa. As was the case in the xFM phase,

the Higgs mechanism here restores the gx symmetry by se-

lecting a unique flux sector
∏

j ρ
z
j = 1, but in contrast to the

previous case, gz and other internal symmetries are respected

as well. (Schematically, the naive three-fold degeneracy from

condensing Z̃ on one sublattice is reduced down to one by

the Higgs mechanism.) The state does break a Z2 translation

symmetry, however, and therefore is identified as the VBS

phase. It is not evident from this analysis that this phase

is energetically favored at large K in our model, but ample

evidence of this fact is obtained from other sources.

2. SPT phase from the dual perspective

To obtain a fully symmetric phase, we condense a bound

state of a domain wall on the odd sublattice and a domain wall

on the even sublattice: schematically, 〈Z̃oddZ̃even〉 �= 0 while

〈Z̃odd〉 = 〈Z̃even〉 = 0. The gx symmetry is restored because

this bound state carries unit dual gauge charge: Indeed, keep-

ing track of only the dual gauge charge, we have schematically

Z̃2 ∼ Z̃−1 (note that it is crucial that we have ZN gauge

field with odd N). Hence, the Z̃oddZ̃even condensate completely

Higgses out the dual gauge field ρ, which corresponds to the

presence of the gx symmetry. Since translation interchanges

Z̃odd and Z̃even, this condensate clearly preserves this sym-

metry. Under gz action, Z̃oddZ̃even obtains a phase factor ω2;

however, this is related to the fact that this schematic object

is not gauge invariant and the phase factor can be removed

by a gauge transformation. Any gauge-invariant local operator

with nonzero expectation value will respect the gz symmetry.

Thus, we obtain a fully symmetric phase.

Another perspective on this condensate is that we condense

bound states of a domain wall field in the gx-symmetry-

breaking order (i.e., Z̃ field) and a gz charge field (i.e., X

field). Indeed, Z̃ j−1/2Z̃ j+1/2 = Z̃2
j−1/2ρ

z
jX j ∼ Z̃

†
j−1/2X j (fixing

the gauge ρz
j = 1). We expect that condensation of bound

states of domain walls and charges leads to a nontrivial SPT

phase.

APPENDIX D: DUALITY OF q-STATE SEPARABLE

MODEL AND q2-STATE POTTS MODEL AND

GENERALIZATION TO NONSEPARABLE MODEL

In this Appendix, we perform a two-step duality that con-
nects the q-state separable integrable model and QPotts =
q2-state Potts model. We will also follow the nonseparable
integrable model under the same mapping. The treatment here
is in the Hamiltonian language and can be carried out for any
integer q.

We begin with a q-state generalization of the U(1)2-
symmetric q = 3 model from the main text. Consider the
Hamiltonian

H = −
∑

j

[
Jz

q−1∑

ℓ=0

(Z†
j Z j+1)ℓ

+ K

q−1∑

ℓ=0

(X jX j+1)ℓ
q−1∑

ℓ=0

(Z†
j Z j+1)ℓ

]
. (D1)

For q = 3 this reduces to the model in the main text, up to an
additive constant. For general q the terms in the Hamiltonian
have a simple form in bra-ket notation [see also Eq. (15)]:

q−1∑

ℓ=0

(Z†
j Z j+1)ℓ = q

∑

α

|α, α〉〈α, α| j, j+1,

q−1∑

ℓ=0

(X jX j+1)ℓ
q−1∑

ℓ=0

(Z†
j Z j+1)ℓ = q

∑

α,β

|β, β〉〈α, α| j, j+1,

from which it is easy to see that the model has continuous
U(1)q−1 symmetry as well as Sq permutation symmetry. It has
a trivial solvable point Jz > 0, K = 0 inside the zFM phase as
well as two nontrivial integrable points: Jz = 0, K > 0 which
is inside the VBS phase, and Jz = K (q − 2) > 0 which we
propose is at the transition between the zFM and VBS phases.

We first perform a formal duality transformation which is

a straightforward q-state generalization of the one in the main

text:

X j = Z̃
†
j−1/2Z̃ j+1/2, (D2)

Z
†
j Z j+1 = X̃ j+1/2. (D3)

(For simplicity here and below, we do not exhibit dual gauge

fields which would be necessary to account for global aspects

in a periodic chain.) The dual Hamiltonian reads

H̃ = −
∑

j

[
Jz

q−1∑

ℓ=0

(X̃ j+1/2)ℓ

+ K

q−1∑

ℓ=0

(Z̃†
j−1/2Z̃ j+3/2)ℓ

q−1∑

ℓ=0

(X̃ j+1/2)ℓ

]
. (D4)

Similarly to the main text, this can be viewed as two individ-

ually Potts-symmetric q-state systems residing on the “even”

and “odd” sublattices of the dual lattice (locations 2k + 1/2

and 2k + 3/2, k ∈ Z, respectively). The two systems have
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energy-energy coupling between them. In these variables, the

zFM phase occurs when both Z̃2k+1/2 and Z̃2k+3/2 are gapped.

On the other hand, the VBS phase occurs when only one

species orders but not the other, which breaks the translation

symmetry.

Let us now maintain the even sublattice variables (Z̃2k+1/2, X̃2k+1/2) and perform the above duality transformation on the odd

sublattice variables (Z̃2k+3/2, X̃2k+3/2), treating this system as a 1D chain:

X̃2k+3/2 = Z̃
†

2k+1/2Z̃2k+5/2, (D5)

Z̃
†
2k−1/2Z̃2k+3/2 = X̃ 2k+1/2. (D6)

Note that the variables dual to (Z̃2k+3/2, X̃2k+3/2) reside at the same locations as the even sublattice variables (Z̃2k+1/2, X̃2k+1/2),

as indicated by the location indices of (Z̃2k+1/2, X̃ 2k+1/2). After this transformation, the Hamiltonian reads:

H̃ = −
∑

k∈Z

[
Jz

q−1∑

ℓ=0

(X̃2k+1/2)ℓ + Jz

q−1∑

ℓ=0

(Z̃
†

2k+1/2Z̃2k+5/2)ℓ

+ K

q−1∑

ℓ=0

(X̃ 2k+1/2)ℓ
q−1∑

ℓ=0

(X̃2k+1/2)ℓ + K

q−1∑

ℓ=0

(Z̃†
2k+1/2Z̃2k+5/2)ℓ

q−1∑

ℓ=0

(Z̃
†

2k+1/2Z̃2k+5/2)ℓ

]
. (D7)

In these variables, the zFM phase corresponds to gapped Z̃2k+1/2 variables and condensed Z̃2k+1/2 variables. On the other hand,

the VBS phase corresponds to either both Z̃2k+1/2 and Z̃2k+1/2 being gapped or both condensed.

We can combine the tilded and double-tilded variables on each site 2k + 1/2 to form a q2-state variable, |A〉2k+1/2 ≡
|̃α〉2k+1/2 ⊗ |̃α〉2k+1/2, α̃, α̃ = 1, . . . , q. The K terms become precisely the on-site and intersite quantum Potts terms for these

QPotts = q2-state variables:

q−1∑

ℓ=0

(X̃2k+1/2)ℓ
q−1∑

ℓ=0

(X̃ 2k+1/2)ℓ =
∑

α̃,̃β

|̃β〉〈̃α|2k+1/2 ⊗
∑

α̃,̃β

|̃β〉〈̃α|2k+1/2 =
∑

A,B

|B〉〈A|2k+1/2 ≡
q2−1∑

ℓ=0

(X2k+1/2)ℓ, (D8)

q−1∑

ℓ=0

(Z̃†
2k+1/2Z̃2k+5/2)ℓ

q−1∑

ℓ=0

(Z̃
†

2k+1/2Z̃2k+5/2)ℓ = q
∑

α̃

|̃α, α̃〉〈̃α, α̃|2k+1/2,2k+5/2 ⊗ q
∑

α̃

|̃α, α̃〉〈̃α, α̃|2k+1/2,2k+5/2

= q2
∑

A

|A, A〉〈A, A|2k+1/2,2k+5/2 ≡
q2−1∑

ℓ=0

(Z†
2k+1/2Z2k+5/2)ℓ, (D9)

where we have introduced standard operators Z2k+1/2,X2k+1/2

in the QPotts = q2-state Hilbert space on each site 2k + 1/2.

Thus, in the absence of the Jz term we indeed obtain the

self-dual q2-state Potts model on the “even” sublattice of the

dual lattice. This type of equivalence of the integrable model

H[Jx = 0, Jz = 0, K] to the self-dual q2-state Potts model

has been well known at least since Refs. [40,76] where it

was argued by comparing the Temperley–Lieb operator alge-

bras in the two models. This is the quantum version of the

equivalence between the classical separable integrable NIS

and classical q2-state Potts models mentioned in Sec. V. By

examining the origins of the two K terms in Eq. (D7), it is

also easy to see that staggering bond couplings in the original

model corresponds to moving off self-duality in the Potts

model.
The derivation here is of some interest in that it clearly

demonstrates a nonlocal relation between the two models and
also allows one to formulate the precise relation on periodic
chains by carefully including the gauge fields appearing in the
dualities to keep track of the global aspects, which for the sake
of simplicity we did not include. Of particular interest to us
is that we can also write the Jz terms, which from Eq. (D7)

are

q−1∑

ℓ=0

(X̃2k+1/2)ℓ =
q−1∑

ℓ=0

(X2k+1/2)ℓ·q, (D10)

q−1∑

ℓ=0

(Z̃
†

2k+1/2Z̃2k+5/2)ℓ =
q−1∑

ℓ=0

(Z†
2k+1/2Z2k+5/2)ℓ·q. (D11)

Note that the powers of operators summed on the right hand
side are ℓ · q, which appear in the convention of the following
ordering of the q2 states |A〉 = |̃α〉 ⊗ |̃α〉:

A = (̃α − 1)q + α̃, (D12)

α̃, α̃ = 1, . . . , q; A = 1, . . . , q2. We can now see that the q2-
state model remains self-dual also in the presence of the Jz

term, which, however, breaks the formal symmetry in these
variables from Sq2 down to Sq × Sq. Unfortunately, this for-
mulation does not appear to inform us why Jz = K (q − 2)
places the model precisely at the transition between the zFM
and VBS phases. In the q2-state Potts variables Z2k+1/2, the
VBS phase corresponds to the first-order coexistence of the
standard disordered and ordered Potts phases, while the zFM
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phase corresponds to a specific partial order. In this language,
Jz = K (q − 2) appears to correspond to a special multicritical

point, and we are hopeful that this information may be useful
for future elucidation of this transition.
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