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ABSTRACT: We report a new multi-GPU capable ab initio
Hartree—Fock/density functional theory implementation inte-
grated into the open source QUantum Interaction Computational
Kernel (QUICK) program. Details on the load balancing
algorithms for electron repulsion integrals and exchange correlation
quadrature across multiple GPUs are described. Benchmarking
studies carried out on up to four GPU nodes, each containing four
NVIDIA V100-SXM2 type GPUs demonstrate that our imple-
mentation is capable of achieving excellent load balancing and high
parallel efficiency. For representative medium to large size protein/
organic molecular systems, the observed parallel efliciencies
remained above 82% for the Kohn—Sham matrix formation and
above 90% for nuclear gradient calculations. The accelerations on
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NVIDIA A100, P100, and K80 platforms also have realized parallel efficiencies higher than 68% in all tested cases, paving the way for

large-scale ab initio electronic structure calculations with QUICK.

1. INTRODUCTION

At the dawn of the exascale computing era, multiple graphics
processing unit (multi-GPU) execution has become inevitable
for high performance computing applications. Software
packages from various fields such as artificial intelligence'
and numerical weather prediction” are already harvesting the
power of hundreds and thousands of GPUs. While a single
GPU is capable of performing trillions of floating point
operations per second, outperforming single or even multiple
modern central processing units (CPUs), properly engineered
scientific applications are able to exploit an enormous amount
of computational power on multi-GPU platforms.

The power of using multiple GPUs has been harnessed into
a range of traditional computational chemistry tools,® >’
including a range of ab initio electronic structure software
packages.'” >’ However, among these are only a few Gaussian
function based quantum chemistry codes for mean-field
Hartree—Fock (HF) and density functional theory (DFT)
calculations."®™***"°757 Meanwhile, with multi-GPU nodes
increasingly becoming common in contemporary super-
computer centers, open-source quantum chemical codes that
can fully exploit their power are in demand. Toward this end,
we have further improved our open source quantum chemistry
software package called QUantum Interaction Computational
Kernel (QUICK)**™® by incorporating multi-GPU capabil-
ities. QUICK is capable of performing efficient ab initio HF
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and DFT energy and gradient calculations with Gaussian basis
sets. The CPU version of QUICK is parallelized via the
message passing interface (MPI),°" and excellent performance
was recently demonstrated both for the CPU and the GPU
version.”’ For instance, B3LYP energy and gradient calcu-
lations performed on a single NVIDIA V100 were shown to be,
respectively, ~30—90 times and ~35—60 times faster than the
same calculations performed using a single Intel Xeon Skylake
CPU core.”® In the QUICK GPU version, the electron
repulsion integrals (ERIs), the exchange correlation (XC)
energy and potential, and their derivatives with respect to
nuclear coordinates are computed on the GPU. The ERIs are
computed using vertical and horizontal recurrence relation-
ships reported by Obara, Saika, Head-Gordon, and Pople
(OSHGP algorithm).éz’63 The XC contributions are calculated
based on a scheme developed by Pople and co-workers.”* In
addition to computing the above quantities, assembling the
Fock matrix and gradient vector are also done on the GPU.
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Among the few publications found in the literature regarding
the multi-GPU implementation of ERIs, Ufimtsev and
Martinez’s work'® is perhaps the earliest. In this implementa-
tion, the Coulomb and exchange ERIs are first organized into
two matrices in which the rows and column indices correspond
to bra and ket pairs of primitive integrals. The matrices are
then sorted based on (1) the angular momentum of each bra
and ket pair, (2) each pair’s contribution to the Schwarz upper
bound. Next, different rows of the matrices are cyclically
mapped to available GPUs such that each GPU computes a
subset of the Coulomb and exchange integrals. A similar
approach is used for parallelizing ERI gradient calculations."”
The observed speed-ups using this approach were reasonable,
for instance 2 to 2.8-fold for computing ERIs on 3 GTX280
cards and 3 to 3.5-fold for computing ERI gradients on 2
GeForce 295GTX cards each having 2 graphics processors.
Extending this work further, the authors reported SCF
calculations of different molecular systems on up to 128
GPU nodes in a later article.”” The ERI calculations displayed
linear scaling through 128 nodes, however, the linear algebra
demonstrated linear scaling only between 4 to 16 nodes. A
second multi-GPU capable ERI engine was reported by
Kussman and Ochsenfeld,”” and quite recently, a fragmenta-
tion based Fock build algorithm with dynamic load balancing
was reported by Gordon and co-workers.”® In the context of
XC parallelization on multi-GPUs, Williams-Young et al.>”
documented a three level parallelization scheme. In such a
scheme, the load balancing is achieved by pre-estimating the
floating point operations (FLOPs) incurred by batches of grid
points.

Our multi-GPU implementation consists of the following
features. The message passing interface (MPI) is used to set up
the calculation and communicate between compute ranks (i.e.
different CPU cores) hosting GPUs. The ERI workload is
statically distributed among the GPUs. The XC workload
parallelization is performed in two stages, with the second
being a load rebalancing stage for the XC gradients. The next
sections of this manuscript are organized as follows: In section
2, we briefly revisit some of the theoretical concepts essential
to describe the implementation. Since the practical computa-
tional implementation of HF and DFT methods are not
distinct from each other, we focus on the Kohn—Sham
formalism to drive the discussion. The details of the multi-
GPU parallelization are then presented in section 3. Here we
first discuss the important aspects of multi-GPU programming
and present an implementation that follows this philosophy. In
section 4, benchmarking results are presented and discussed.
The tests provide insight into the scaling of the ERI and XC
algorithms on several widely used NVIDIA GPU types. Finally,
in section 5, we conclude our discussion by exploring
directions for further improvement.

2. THEORY

In the Kohn—Sham formalism, the total electronic energy (E)
of a closed shell system within the generalized gradient
approximation (GGA) is given by,**
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where the first term is the kinetic energy of the electrons, the
second is the electron—nuclear interaction energy, the third is
the Coulomb self-interaction energy of the electron density
and the fourth is for the exchange correlation energy.
Furthermore, the y; are spatial molecular orbitals, Z, is the
charge of nuclei A, and p is the electron density expressed as
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where n is the number of occupied orbitals. In practice,
calculation of the energy using eq 1 requires expressing the
molecular orbitals and the electron density in terms of basis
functions (atomic orbitals),
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where ¢, (u = 1, ..., N) are the atomic orbitals, C,; and C,; are
molecular orbital coefficients and P, is the density matrix.
Substituting eqs 3 and 4 into eq 1 and minimizing with respect
to the molecular orbital coefficients under orthonormality
constraints leads to a series of linear equations represented by
the Kohn—Sham matrix (Klw),
_ core XC
Kyy - H}tl/ + ];w + Kl”/ (5)
Here H,,* is the one electron operator matrix. ], is the
Coulomb matrix given by

N
Juw = Z P, (ulio)
Ao

(6)
where the ERIs over atomic orbitals are defined as
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lry = 1) (7)

K< is the XC potential contribution to the Kohn—Sham
matrix expressed as

/|3
dp
where y = IVpl* is the gradient invariant.

The computationally most expensive task in building the
Kohn—Sham matrix is computing the ERIs required in eq 6. In
practice, atomic basis functions are constructed as a linear
combination of primitive atom centered Cartesian Gaussian
functions and the contracted ERIs can be written in terms of
primitive ones:
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Figure 1. Flowchart depicting the multi-GPU workflow of a DFT gradient calculation. Major steps and substeps are denoted by purple and light
blue color boxes, respectively. Steps indicated by green boxes are performed only on the root compute rank. Circle arrows indicate iterative steps.
Steps marked with yellow boxes containing “GPU” are performed only on the GPU. One-electron integrals and gradients (not shown) are
asynchronously computed on the CPU during ERI and ERI gradient steps, respectively. CPUs remain idle during GPU steps Sc, 6c, and Ge.

Here a, b, ¢, and d are the primitive function indices and c,,
Cuty Cio and c,y are the contraction coeflicients. Primitive ERIs
can be computed and assembled into contracted ERIs using an
established algorithm such as OSHGP.*>®® The second most
expensive contribution for constructing the Kohn—Sham
matrix is calculating the XC potential. Because of the
complexity of XC functionals, this quantity is obtained
numerically, involving the formation of a quadrature grid, in
which quantities such as electron densities, value of the basis
functions, and their gradients are computed at each grid point.

An expression for the molecular gradients can be obtained
from eq 1 by differentiating with respect to nuclear
coordinates.
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Here S, is the overlap matrix, and the primed sum in the
fourth term indicates that only y centered on nucleus A is
considered for the summation. W, is the energy weighted
density matrix and X,,, is a matrix element given by
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Similar to eq 5, the most expensive terms in eq 10 are
computing ERI gradients (second term) and XC gradients
(fourth term).

3. IMPLEMENTATION

3.1. Key Considerations in Multi-GPU Programming.
GPUs allow massive data parallel computations in comparison
to classic CPU platforms. However, their hardware architecture
is more complex and one needs a proper understanding of the
execution and memory models and available multi-GPU
programming models in order to write an efficient application.
In the context of execution, GPUs use a single instruction
multiple data paradigm for performing work.’® At the
microarchitectural level, the graphics processing chip of a
GPU consists of a series of streaming multiprocessors. A
programmer should organize and map the work to threads
which are then assigned to streaming multiprocessors as thread
blocks and executed as warps of a certain size (32 for recent
NVIDIA architectures). The streaming multiprocessors
execute warps by issuing the same instruction for each thread.
Therefore, branching in the code should be minimized to avoid
thread divergence which leads to performance penalties. A
GPU (device) carries its own memory spaces which are
physically distinct from the CPU (or host) memory.”® The
main type, called global memory, is the largest and accessible
to threads located on all streaming multiprocessors. Typically,

https://doi.org/10.1021/acs.jctc.1c00145
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Figure 2. Distribution of the ERI workload and thread walking. In the single GPU version, a single CPU core constructs the half ERI matrix of a
protonated Schiff base (PSB3, top left) and sorts ERIs based on the type, number of primitives, and the estimated value. The row and column
indices of the matrix correspond to bra and ket pairs and the colors denote magnitude of the ERI value. The table on the top right indicates the
boundaries for different ERI types. In the parallel GPU version, each compute rank prepares and sorts an ERI matrix based on the same criteria and
additionally runs a distribution algorithm, excluding bra types (indicated by white vertical strips) and thus keeping only a set of ERIs that would be
computed on the corresponding GPU. See text for details on the distribution algorithm.

several GBs of global memory is available on a GPU, however,
global memory transactions suffer from high memory latency.
A second type of memory called shared memory is available on
each streaming multiprocessor, but is relatively small and only
accessible by the threads being executed on the same streaming
multiprocessor. The constant and texture memory are read
only memory types accessible to all threads. These are available
in small quantities and the transactions are faster than global
memory transactions. Additionally, a certain number of
registers is available for threads in the same warp. Register
transactions are the fastest; however, their number is very
limited. Careful use of these memory spaces is essential to
write a performant GPU application.

Different approaches have been discussed in the literature
for how to architecture a multi-GPU program.67 One option is
to employ CUDA streams to coordinate the use of multiple
GPUs in a single compute node. Alternatively one can write a
multithreaded program using OpenMP or POSIX threads®® for
which each thread handles a different GPU in a single compute
node. Another option is to employ MPI and allow each
compute rank to handle one GPU. The latter option has the
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advantage that it allows the utilization of devices from multiple
nodes, however, at the expense of sacrificing some performance
on a single node with respect to CUDA streams. In MPI based
multi-GPU programming, one can employ a root-worker
model and design algorithms to eliminate the communications
between devices. In the root-worker model, the root compute
rank assigns computations to worker ranks, the worker ranks
perform the computations, and the results are returned to the
root. Alternatively, algorithms with device—device communi-
cation can be achieved using CUDA-aware MPI technology.
Previously, we implemented ERI and XC schemes in a single
GPU version of QUICK following the previously discussed
execution and memory models. As detailed below, we
implement the parallel multi-GPU version adhering to the
same philosophy and employing the MPI based root-worker
model without direct communication between the GPUs.
3.2. Parallelizing ERI and ERI Gradient Schemes. The
existing implementation of the ERI engine in QUICK can be
mainly divided into four parts.”®” The first part comprises
several host functions that process molecular and basis set
information, compute Schwarz cutoff values, and perform

https://doi.org/10.1021/acs.jctc.1c00145
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presorting of ERIs. Handling CPU—GPU data transfer such as
uploading molecular and basis set information, construction of
the ERI matrix and downloading the Kohn—Sham matrix are
also performed by the functions in the first part. In the second
part, there exist several global kernels (i.e, GPU capable
functions that can be directly invoked from the host) that go
through the 4, v, 4, and o indices and invoke kernels that
perform the horizontal recurrence relations (HRR) step of the
OSHGP algorithm. Assembling the Kohn—Sham matrix is also
performed here. The HRR step is carried out by a set of device
kernels (GPU capable functions that cannot be directly
invoked from the host) belonging to the third part. The
fourth part contains a set of complex machine generated device
kernels. These kernels perform the vertical recurrence relations
(VRR) step.

To extend the above implementation to multi-GPUs,
changes are required only for the first two parts. We first
assign the GPUs to CPU cores (from now on compute ranks)
depending on their local ranks. Input processing and
calculating precomputable quantities are done on the root
compute rank (see Figure 1). The calculated information is
then broadcast to worker ranks. Each compute rank uploads
molecular and basis set information and Schwarz cutoff values
to their assigned GPUs. The next step is presorting the ERIs.
As documented previously,"®'”*” presorting helps to minimize
the thread divergence during ERI computation by ensuring
that threads in a warp receive the same instructions to the
largest possible extent. In the existing presorting scheme, the
four-index ERIs are treated as an N* X N* matrix problem with
horizontal and vertical directions represented by a bra (abl and
ket lcd). The elements of such an ERI matrix are organized by
four different criteria in each dimension. First, ERIs are
separated into dense or sparse regions based on the Schwarz
cutoff value (see Figure 2). The pairs with values greater than
10~ fall into the dense zone, while the remaining ones fall into
the sparse. Then, ERIs in each zone are sorted based on their
shell type, resulting in subzones (type-zones) such as ss, sp, ps,
etc. in the matrix. Third, pairs within each type-zone are sorted
based on the number of primitive functions creating primitive-
zones. Finally, elements in primitive-zones are sorted based on
the Schwarz cutoff values. The resulting ERI matrix is used to
determine the order of ERI calculation by navigating from one
matrix element to another (called thread-walking). In our
multi-GPU version, this procedure is replicated on each
compute rank, eliminating the need to broadcast the ERI
matrix. At this stage, the workload distribution takes place.
Focusing on the horizontal direction of the ERI matrix, we
divide bra types in the dense region among compute ranks.
More specifically, for every compute rank, bins of bra types are
created, and the total number of items and the primitive
functions are tracked. The assignment of a given bra is then
performed by considering its primitive count. The same
procedure is repeated for the sparse region and the resulting
ERI matrices are well balanced in terms of elements inside
each region and workload of shell types (see Figure 2). On the
basis of the prepared bins, a set of binary flags is created for
every compute rank and uploaded to the global memory of the
assigned GPU, and the array pointers are stored in constant
memory. During ERI and ERI gradient computation, each
thread works on a contracted ERI after checking the value of
the corresponding binary flag.

3.3. Parallelization of XC and XC Gradient Schemes.
The XC potential calculation in the single GPU implementa-
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tion follows a scheme involving three major steps.”” The first
step performs grid operations. Here the numerical grid is
formed, weights are computed, and the grid is pruned based on
the values of the weights. Next, the remaining points are
partitioned in space using an octree algorithm as described in
our previous work.”” The values of atom centered basis and
primitive functions are then computed at grid points in each
spatial bin. The points that have at least one significant basis
function are retained in the bin, while the rest is eliminated.
Lists of significant basis and primitive function indices are also
prepared for each bin and locator maps are constructed to
facilitate the retrieval of indices from the lists. Finally, the grid
information, basis and primitive function index lists and
corresponding maps are uploaded to the GPU. In the second
and third steps, electron densities and the XC potential are
computed on the GPU. The potential contributions are
assembled into the Kohn—Sham matrix residing in global
memory as they are computed in later steps.

In our multi-GPU version, the majority of the operations of
the first step is done on the root rank (see Figure 1). This
includes grid generation, weight computation, pruning, and the
preparation of the basis/primitive function index lists and
maps. The time spent on such tasks is considerably small and
parallelization on multi-GPUs is deemed unnecessary.
Prepared data structures are then broadcast to the worker
compute ranks. All ranks then run a load distribution
algorithm. Here the bins are sorted based on the number of
grid points or the product of the grid point-primitive function
count. Sorted bins are assigned to ranks using a round robin
algorithm, and lists of binary flags are created to record the
assignment. At this stage, each rank picks up the assigned list of
binary flags and repacked grid points, basis and primitive
function lists, and locator maps. It is important to note that
unlike ERI kernels, XC kernels perform a large amount of
frequent global memory transactions and repacking is vital to
maintain coalesced memory access patterns and, hence, kernel
performance. The ranks then repack data on the host and
upload to their GPUs. Since each rank independently works on
a subset of numerical grid points, the kernels performing the
second and third steps do not require any changes. The
computed XC potentials are assembled into Kohn—Sham
operators maintained by each rank. During a given SCF (i.e.,
self-consistent field) iteration, worker ranks download copies
of the operator from the GPU and send them to the root rank
to perform the reduction and operator diagonalization.

The calculation of the XC energy nuclear gradients is a two-
step procedure implemented in separate kernels in the serial
GPU version. The first computes the XC energy gradients and
can be used in the multi-GPU version as is. The second, a grid
weight gradient computation, is only required for points for
which the grid weight is not equal to unity and is dependent on
the XC energy at a given grid point, a quantity computed by
the former kernel. In the single GPU version, points are filtered
on the host and reuploaded to the GPU prior to the second
kernel launch. Since different ranks in the multi-GPU version
work on subsets of grid points, they may end up with an
unequal number of grid points, thus leading to a workload
imbalance. Therefore, a load rebalancing step is required after
the filtering. Here compute ranks communicate with each
other to determine the minimum number of grid points that
should be transferred to achieve a balanced workload and then
transfer the data accordingly. Following the rebalancing step,
the data are uploaded, grid weight gradients are computed and
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assembled into individual gradient vectors. At the end of the
calculation, the vectors are downloaded, and are reduced in an
analogous way to the Kohn—Sham operator.

4. BENCHMARK RESULTS AND DISCUSSION

4.1. Benchmarking the Multi-GPU Implementation.
Below we present the benchmarking results of our multi-GPU
implementation. In past work, we have compared QUICK
serial CPU, MPI parallel CPU, and single GPU performance
against another GPU capable quantum chemical code.”” We
therefore limit current benchmarks to QUICK single- versus
multi-GPU comparisons. Figure 3 depicts the organic
molecules and protein systems that we have chosen for our

benchmarks.

/‘ 5
Olestra (453) 2“]
o

o |

Figure 3. Molecules used for benchmarks in this work. The number
of atoms is listed in parentheses.

First, the performance of B3LYP gradient calculations on
multiple GPUs is analyzed using olestra (C,s¢H,75010, see
Figure 3 for molecular structure) with three different basis sets.
The goal here is to analyze the parallel efficiency of the ERI
and XC contributions to the Kohn—Sham operator matrix and
the corresponding gradient computation tasks for basis sets
with different maximum angular momentum quantum number
and basis functions with different contraction levels. Second, a
similar investigation is carried out using systems of different
sizes; but with the same basis set, aiming to analyze the impact
of system size on performance and scalability.

The selected platform for both tests includes four GPU
nodes from the recently assembled Expanse cluster at the San
Diego Supercomputer Center (SDSC). Each node has four
NVIDIA Volta V100-SXM2 type GPUs (32 GB) hosted by
two 20-core Intel Xeon Gold 6248 CPUs (2.50 GHz) with 374
GB memory. The nodes are interconnected by 100 GB/s HDR
InfiniBand technology. The QUICK code was compiled using
the GNU/8.3.1 compiler tool chain, CUDA/10.2 and
OpenMPI/4.0.4 with optimization level 2 (-O2). For all
calculations, the density matrix cutoff and XC grid pruning
cutoff was set to 107°. The number of CPU cores employed for
a calculation was set to the number of GPUs being used. Prior
to the benchmark runs, performance of different ERI thread
walking strategies were compared using a set of HF
calculations (see Figure S1, Table S1) and circular thread
walking was chosen for the ERI and ERI gradient computation.
As documented previously,” the sorting procedure results in
an ERI matrix in which large and small-valued ERIs are most
likely distributed circularly at the origin or edge of the matrix.
The fact that circular thread-walking displayed better perform-
ance over other strategies in the multi-GPU version suggests
that dummy regions introduced to ERI matrices of individual
compute ranks, which results in idle threads, does not cause
significant thread divergence. On the basis of a second
comparison (Table S3), numerical grid point count (rather
than the product of primitive function and grid point count)
based XC load balancing was selected for all benchmarks. This
occurs because both methods display similar performance.

In Figure 4, we report the speed-ups (calculated as
T(serial)/T(n) where T(serial) and T(n) are the wall times
using a single and n GPUs respectively) of the ERI, ERI
gradient, XC potential, and XC gradient calculation for olestra

Ale . B 6. , Ci6 . ,
—o- ERI ERI gradient P -e- ERI ERI gradient -e- ERI ERI gradient
- XC XC gradient ;- -e- XC XC gradient -e- XC XC gradient ./ 2
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(=¥
A A 2
4 41 4
B3LYP/6-31G B3LYP/6-31G** B3LYP/cc-pvDZ
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Figure 4. Speed-up of ERI, XC, and their gradient calculations for olestra at the B3LYP/6-31G (A), B3LYP/6-31G** (B), and B3LYP/cc-pVDZ
(C) levels of theory on up to four GPU nodes. Each node consists of four NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon Gold 6248 CPUs (2.50
GHz), and 374 GB memory per node. Total operator speed-up includes the sum of ERI, XC, and MPI communication time during 19 SCF
iterations for B3LYP/6-31G, 18 SCF iterations for B3LYP/6-31G**, and 32 SCEF iterations for B3LYP/cc-pVDZ. Total gradient speed-up includes

the time for ERI and XC gradient computation and MPI communication.
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Table 1. Wall Times” in Seconds for ERI, XC Potential, ERI Gradient, and XC Gradient Tasks on Olestra (453 Atoms) at

Different Levels of Theory on up to 4 GPU Nodes”

B3LYP/6-31G* B3LYP/6-31G*** B3LYP/cc-pVDZ
gradient gradient gradient
GPUs ERI° XC*© ERI XC ERI° XC* ERI XC ERI® XC* ERI XC
1 510.0 30.0 198.7 187.6 1795.9 67.0 784.4 192.6 11783.9 278.1 3298.4 206.2
2 2549 17.2 99.8 95.8 906.7 38.9 3934 98.7 5941.3 157.0 1652.9 106.1
4 128.1 11.8 50.2 50.4 457.3 26.0 197.3 52.0 3004.6 102.5 829.5 56.7
6 87.1 9.2 33.5 323 307.7 19.2 1324 33.5 2131.8 73.8 554.3 37.0
8 65.7 8.0 25.2 27.4 230.8 17.1 99.4 28.4 1609.9 69.5 416.0 31.7
10 53.1 79 20.2 22.9 185.3 17.8 79.8 239 12574 67.4 334.8 27.0
12 44.3 6.7 16.8 18.7 156.1 15.4 66.8 19.5 1049.1 55.9 280.2 219
14 38.2 6.0 144 14.1 134.6 13.4 57.8 149 898.7 48.8 239.9 17.1
16 33.8 S.5 12.6 14.0 117.8 12.5 50.4 14.6 790.4 44.7 209.2 16.8

“Excluding MPI communication times. YEach node has 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon Gold 6248 CPUs (2.50 GHz),
and 374 GB memory. “Reported ERI and XC times are the total of 19 iterations for BALYP/6-31G, 18 iterations for B3LYP/6-31G**, and 32
iterations for B3LYP/cc-pVDZ. 9131 /4962 contracted/primitive functions. “4015/6846 contracted/primitive functions.f4015/ 9224 contracted/

primitive functions.
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Figure S. Speed-up for (A) Kohn—Sham operator formation during second SCF iteration (includes ERI, XC, and MPI communication time), and
(B) gradient computation (includes ERI, XC gradient, and MPI communication time) of morphine (40 atoms, 410 basis functions),
buckministerfullerene (buckyball, 60 atoms and 900 basis functions), valinomycin (168 atoms, 1620 basis functions), a-contoxin (1m2c, 220 atoms
and 2276 basis functions), crambin (642 atoms, 6504 basis functions) gradient calculations at B3LYP/6-31G** on up to four GPU nodes. Each
node consists of four NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon Gold 6248 CPU (2.50 GHz) and 374 GB memory per node.

using B3LYP with the 6-31G, 6-31G** and cc-pVDZ basis
sets. The corresponding wall times are reported in Table 1,
load balancing and MPI communication times are reported in
Table S4, and the parallel efficiencies (calculated as 1/n X
T(serial)/T(n) X 100) are reported in Tables S6—S8. MPI
communication time is excluded from the timings in Table 1
because the partial Kohn—Sham matrix, and gradient vector
that are sent from the workers to the root task contain both
ERI and XC contributions. It is, however, included in the total
speedups for Kohn—Sham operator and gradient vector
formation in Figure 4. Linear algebra operations are currently
executed on a single GPU and are reported in section S3.
Three key pieces of information can be immediately obtained
from these data. First, the ERI and ERI gradient calculations
display near-linear strong scaling and high parallel efficiency in
all cases, suggesting that the implemented load balancing
scheme is effective. Second, the XC tasks demonstrate a lower,
nonlinear scaling in speed-up despite the fact that their load
balancing remains as impressive as that for the ERIs (see
Figure S2). The parallel efficiency for the XC potential
diminishes with increasing number of GPUs; but remains high
for the XC gradient computation. Careful examination of
device kernels using NVIDIA profiler tools revealed that the
performance of all ERI kernels is limited by register availability
and only a single thread block can reside on a streaming
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multiprocessor at a given time. With an increasing number of
GPUs, more streaming multiprocessors are available for the
computation resulting in the observed near-linear strong
scaling. In contrast, the performance of the XC potential and
energy gradient kernels are limited by global memory
transactions, while the grid weight gradient kernel, which
dominates the XC gradient time, is register bound. The
reduced kernel efficiency in spite of having a balanced
workload can be explained by GPU starvation. As mentioned
previously, the parallelism of the XC computation is achieved
by assigning numerical grid points to threads. In the presence
of sufficient active warps, such as is the case for 1 or 2 GPUs,
better latency hiding can be obtained by executing compute
operations during the loading of memory and storage.
However, achieving such hiding becomes difficult with more
GPUs since the workload becomes lighter. The third piece of
information from the first set of benchmarks is that the near-
linear strong scaling of the total performance for complete
Kohn—Sham operator formation and gradient calculations
remains largely unaffected by the lower, nonlinear scaling of
the XC potential and energy gradient tasks. The total parallel
efficiency in all three test cases remains greater than 82% on up
to 16 GPUs. This occurs because XC tasks represent only a
small fraction of the total time. In all cases, the load balancing
times were less than 2 s, and MPI communication times were
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Figure 6. Speed-up of ERI, XC, and their gradient calculations for a water cluster (270 atoms, 2250 basis functions) at PBEQ/def2-SVP level of
theory on up to 4 GPU nodes of V100 (A), P100 (B), and K80 (C). Each V100 node comprises 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2
Intel Xeon Gold 6248 CPUs (2.50 GHz), and 374 GB memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs (16 GB), 2 Intel Xeon
ES5—2680 v4 CPUs (2.4 GHz), and 128 GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB), 2 Intel Xeon ES—2680 v3 CPUs
(2.5 GHz), and 128 GB memory. Total operator speed-up includes the sum of ERI, XC, and MPI communication time during 13 SCF iterations.
Total gradient speed-up includes the time for ERI and XC gradient computation and MPI communication.

Table 2. Wall Times” in Seconds for ERI, XC Potential, ERI Gradient, and XC Gradient Tasks of a Water Cluster (270 Atoms,
2250 Basis Functions) Single Point Energy Plus Gradient Calculation at PBE0/def2-SVP Level of Theory (2250/3510
Contracted/Primitive Functions) on up to 4 Nodes with V100, P100, and K80 GPUs”

V100 P100 K80
gradient gradient gradient
GPUs ERI¢ XC* ERI XC ERI° XC*© ERI XC ERI° XC* ERI XC
1 40S.5 30.8 232.0 48.1 645.2 80.1 461.0 96.5 2382.7 565.6 1697.8 723.5
2 202.0 20.0 116.3 24.9 327.7 42.7 233.2 49.2 1224.5 302.0 859.1 367.2
4 101.3 11.0 58.6 13.3 169.6 25.6 119.0 26.1 638.6 160.1 436.9 184.5
6 67.7 8.2 39.3 9.6 117.9 22.1 81.3 18.4 448.1 115.1 297.6 124.1
8 50.7 7.1 29.6 7.7 92.0 152 62.3 13.4 350.3 91.1 227.1 95.9
10 41.1 6.5 24.0 5.9 76.7 14.0 50.8 10.8 295.9 72.5 185.8 77.1
12 34.2 5.6 20.0 5.8 66.7 12.7 43.6 10.2 258.0 69.0 157.7 64.5
14 30.2 S.5 17.6 4.2 59.4 12.6 379 8.4 229.5 56.4 137.0 58.1
16 25.8 5.0 15.3 4.1 54.2 10.3 35.1 8.2 209.9 52.8 122.3 50.1

“Excluding MPI communication times. PEach V100 node comprises 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon Gold 6248 CPUs
(2.50 GHz), and 374 GB memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs (16 GB), 2 Intel Xeon ES—2680 v4 CPUs (2.4
GHz), and 128 GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB), 2 Intel Xeon ES—2680 v3 CPUs (2.5 GHz), and 128 GB
memory. “Reported ERI and XC times are the total of 13 SCF iterations.

small (see Table S4) having no significant impact on the total 4.2. Performance on Different Microarchitectures. For
operator and gradient formation speed-ups. It is worth noting, all the benchmarks presented so far, we have used NVIDIA
however, that the linear algebra operations can become V100-SXM2 type GPUs. It is also necessary to document the
significant in comparison to the Kohn—Sham operator performance of the QUICK multi-GPU version on other
formation, consuming up to 29% of the total SCF time in widely used data center cards. For this purpose, we selected 4
the worst case of the 6-31G basis set when using 16 GPUs. NVIDIA P100 and K80 (belonging to Pascal and Kepler

In Figure S, we report the total speed-up of B3LYP/6- microarchitectures respectively) GPU nodes from the SDSC
31G** Kohn—Sham operator formation and gradient calcu- Comet cluster. In Figure 6 and Table 2, we report the speed-
lation times for five molecular systems of different size (see ups and wall times for gradient computation for a cluster
Figure 3 for structures). The parallel efficiencies and combined containing 90 water molecules at the PBEQ/def2-SVP level of
total times are reported in Tables S9, S10, S15, and S16 theory. The load balancing and MPI communication times are
respectively. Times for linear algebra operations are also given reported in Table SS. The parallel efficiencies are reported in
in section S6. As anticipated, the larger systems display better Tables S11—-S13. Times for linear algebra operations are also
scaling with high parallel efficiency. For instance, crambin and reported in section S3. At first glance, one notices the highest
1m2c examples show efficiencies greater than 78% for operator single GPU performance for all tasks on the V100 and the
build and 94% for gradient calculation on 16 computing ranks. lowest on the K80. This trend is expected and consistent with
In contrast, for the smallest example morphine, the operator the reported peak FP64 compute power (7.8, 5.3, and 2.9

and gradient formation efficiencies drop down to ~30% and TFLOPS for the V100, P100, and K80, respectively) and
~56% on 16 ranks. Such a performance decrease is expected memory bandwidths (900, 780, and 480 GB/s for the V100,

since the workload becomes lighter in the presence of more P100, and K80, respectively) for each device.””~”" The best
computation resources. scaling for ERI and ERI gradient calculations is also observed
3962 https://doi.org/10.1021/acs.jctc.1c00145
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on the V100 platform. The associated parallel efficiency is
greater than 94%. Such scaling slightly diminishes on the P100
and K80 platforms; however, the parallel efficiency remains
above 70%. Exploring for potential performance improvement,
we reevaluated the thread walking strategies for the latter
platforms (see Table S2). The results suggested that circular
thread walking is the most suitable as for V100s. For XC tasks,
the best scaling is observed on the K80 platform with parallel
efficiencies >66% and >89% for potential and gradient
computations, respectively. This is followed by the efficiencies
of P100 and then the V100. The different scaling of ERI and
XC tasks on the three platforms must be due to their
significant architectural differences.””””* The highest overall
parallel efficiency (>89%) is achieved on the V100 class of
GPUs. In addition to the above platforms, we benchmarked
the QUICK multi-GPU version on a single NVIDIA DGX
A100 node” equipped with eight A100 type GPUs (belonging
to recent Ampere microarchitecture).74 Owing to the high
peak FP64 compute power, ERI and ERI gradient calculations
on a single A100 are much faster in comparison to V100 (see
Table S17). In contrast, XC and XC gradient times remain
substantially the same. The observed scaling and parallel
efficiencies are similar to that of eight V100s (see Figure S3
and Table S14). On all platforms, the load balancing and MPI
communication times remain considerably small.

5. CONCLUSIONS

We have reported the details of a MPI parallel multi-GPU ab
initio HF/DFT implementation of the QUICK quantum
chemical package. Our implementation features static ERI
and XC load balancing schemes. Dynamic load balancing is
employed in the XC gradient calculations. Benchmarking
against the single GPU version on up to 16 GPUs
demonstrated near-linear strong scaling behavior for ERIs
and ERI gradients and lower, nonlinear scaling for the XC and
XC gradients resulting in excellent aggregated parallel
efficiencies above 82% for Kohn—Sham operator build and
above 91% for gradient computation. Similar scaling is
observed on A100, P100, and K80 platforms. The associated
parallel efficiencies for operator and gradient calculation were
always greater than 68% and 80%, respectively, paving the way
for large-scale ab initio electronic structure calculations. The
benchmarks in the current study were limited to four nodes,
which is the maximum allowed per user at the SDSC. The
performance scaling on more compute nodes would be
informative. We recommend NVIDIA V100 or Al00 data
center GPUs for the latest QUICK version (v21.03).

The profiling of the ERI and XC kernels has indicated room
for potential improvement. For the ERI kernels, the current
bottleneck is the register availability. Reordering load and store
procedures to reuse available registers and reimplementing
large device kernels into smaller kernels may lead to favorable
performance on both serial and multi-GPU versions. For the
XC kernels, the memory efficiency should be enhanced. In this
context, increasing the register and shared memory usage may
be viable strategies. Furthermore, the overall performance of
single point energy calculations can be improved by utilizing
multiple GPUs for linear algebra operations, which are
currently performed using a single GPU.

Finally, we recently integrated the QUICK multi-GPU
version as a library into the development version of the
AMBER molecular dynamics package’® enabling GPU capable
quantum mechanics/molecular mechanics (QM/MM) simu-
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lations.”® QUICK version 21.03 can be downloaded from
https://github.com/merzlab/QUICK under the Mozilla public
license free of charge, and will also be available as part of
AmberTools version 21, freely available.”
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